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Abstract

Some of the authors design an algorithm, named the dhLV algorithm, for
computing complex eigenvalues of a certain band matrix. The recursion
formula of the dhLV algorithm is derived from the discrete hungry Lotka-
Volterra system which is an integrable system. One of the authors proposes
an algorithm, named the multiple dqd algorithm, for eigenvalues of totally
nonnegative (TN) matrix. In this paper, by introducing a similarity trans-
formation and a theorem for matrix eigenvalues, we show that eigenvalues
of the TN matrix are computable by the dhLV algorithm. Based on the in-
tegrable discrete hungry Toda equation, we design a new algorithm for TN
matrix eigenvalues. We also describe a close relationship among the above
three algorithms. The numerical stabilities of two algorithm, based on the
integrable discrete hungry systems, are investigated through an error analysis
of them. Some numerical examples are given.
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1. Introduction

Several integrable systems have the profound relationships with various
algorithms. In [26], Symes finds that 1-step of the QR algorithm, for com-
puting matrix eigenvalues, corresponds to a time evolution of the continuous-
time Toda equation. Hirota’s discretization technique [11] leads to the discrete-
time version of the Toda equation,
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where q
(n)
k , e

(n)
k denote the values of qk, ek at the discrete time n, respec-

tively. The discrete Toda equation (1) is just equal to the recursion formula
of Rutishauser’s quotient difference (qd) algorithm [25] for eigenvalue of a
symmetric tridiagonal matrix. The qd algorithm, namely, the discrete Toda
equation (1) is applicable for singular value of a bidiagonal matrix [5, 6].
The applications of the discrete Toda equation (1) are also observed in many
fields such as the BCH-Goppa decoding [21], Laplace transformation [20],
and so on. In [19], it is shown that the discrete Toda equation (1) is related
to the ε-algorithm for accelerating the convergence rate of sequence.

Another integrable discrete system yields some numerical algorithms re-
lated to matrix eigenvalues or singular values. Iwasaki and Nakamura in
[14, 15] design an algorithm for singular values from the integrable discrete-
time discrete Lotka-Volterra (dLV) system [12],{
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which is known as a time discretization of the continuous-time Lotka-Volterra
(LV) system, where δ(n) denotes the nth discrete step size and u

(n)
k denotes
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the number of kth species at the discrete time
∑n−1

j=0 δ(j). The LV system
originally describes the struggle for survival of 2m − 1 species such that the
kth species preys upon the (k + 1)th species and becomes the food for the
(k − 1)th species [30]. The dLV system (2) is also given from the discrete
Toda equation (1) through the Miura transformation,q
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A remarkable property of the dLV system (2) is that, for the suitable initial

u
(0)
k , the dLV variable u

(n)
2k−1 converges to singular value of bidiagonal matrix,

as n → ∞. This asymptotic convergence immediately brings an algorithm,
named the dLV algorithm, for singular value. In [3], the dLV algorithm
is reviewed by Chu. In order to accelerate the convergence rate, Iwasaki
and Nakamura in [16] introduce shift of origin into the dLV algorithm. The
shifted version of the dLV algorithm is called the modified dLV with shift
(mdLVs) algorithm. The computed singular values by the mdLVs algorithm
are shown to have high relative accuracy.

The LV system is naturally extended to the continuous-time hungry LV
(hLV) system by considering the case where the kth species prays not only
the (k +1)th species but also the (k +2)th, the (k +3)th, . . . , the (k +M)th
ones [2, 13]. The hLV system with M = 1 coincides with the LV system. A
time-discretization [22] of the hLV (dhLV) system is given as u

(n+1)
k

M∏
j=1

(1 + δ(n+1)u
(n+1)
k−j ) = u

(n)
k

M∏
j=1

(1 + δ(n)u
(n)
k+j), k = 1, 2, . . . ,Mm,

u
(n)
1−M ≡ 0, . . . , u

(n)
0 ≡ 0, u

(n)
Mm+1 ≡ 0, . . . , u

(n)
Mm+M ≡ 0, n = 0, 1, . . . ,

(4)

where Mk := (M + 1)k−M and the notations k, δ(n) and u
(n)
k in (4) are the

same as those in the dLV system (2). From the dhLV system (4), Fukuda,
Ishiwata, Iwasaki and Nakamura in [7] derive an algorithm, named the dhLV
algorithm, for computing complex eigenvalue of a band matrix. Though it
is verified by some numerical examples that eigenvalues are computed with
high relative accuracy, any error analysis for the dhLV algorithm has not
been theoretically clarified.
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The box and ball system (BBS) is found by Takahashi and Matsukidaira
in [23] from the viewpoint of integrable systems. The BBS represents a
movement of finite number of balls in an array of boxes. Rule of the BBS is
that the leftmost ball is moved to the nearest right empty box. The dynamics
of the BBS is related to the discrete Toda equation (1). Tokihiro, Nagai and
Satsuma in [24] propose a different BBS, named the numbered BBS, by
numbering the balls from 1 to M . Of course, every ball is distinguished by
its index. The numbered BBS imposes that the leftmost ball with index 1
is moved to the nearest right empty box, and do this procedure for the balls
with index from 2 to M . The numbered BBS is also associated with the
integrable discrete hungry Toda (dhToda) equation,
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which is regarded as an extension of the discrete Toda equation (1). The
authors of [24] expect that the dhToda equation (5) has some interesting
relationship with matrix eigenvalue. However, to the best of our knowledge,
the dhToda equation (5) has not been shown to be related to what kind of
matrices, much less achieves a new algorithm for matrix eigenvalue.

In [29], Yamamoto and Fukaya propose an algorithm, named multiple dqd
algorithm, for eigenvalues of totally nonnegative (TN) band matrices [1, 18]
where all the minors are nonnegative. TN matrices appear in many fields of
mathematical subjects and applications including combinatorics, probability,
stochastic processes, and inverse problems [4, 8, 9, 17]. It is also shown in
[29] that the multiple dqd variable corresponds to the dhLV one.

The main purpose of this paper is threefold. The first is to clarify that
the eigenvalues of TN matrix are computable by the dhLV algorithm. The
second is to design a new algorithm for matrix eigenvalue through a matrix
representation and an asymptotic analysis for the dhToda equation (5). The
relationship among the three algorithms: the dhLV algorithm, the algorithm
based on the dhToda equation (5), and the multiple dqd algorithm is also
shown. The third is to perform an error analysis of the dhLV algorithm and
the algorithm based on the dhToda equation (5). Some numerical examples
are given.
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This paper is organized as follows. In Section 2, we briefly explain how
to derive the dhLV algorithm proposed in [7] from the dhLV system (4).
We expand the class of matrices where the dhLV algorithm is applicable by
considering a similarity transformation. And then, with the help of a theorem
in [28] for matrix eigenvalue we especially show that eigenvalues of TN matrix
are computable by the dhLV algorithm. We also clarify the relationship of the
dhLV algorithm with the multiple dqd algorithm. In Section 3, we investigate
a matrix representation, named the Lax form, for the dhToda equation (5)
and an asymptotic behavior of the dhToda variable as time variable n → ∞.
Based on the dhToda equation (5), we design a new algorithm for eigenvalues
of TN matrix. We besides describe the relationship of the dhLV algorithm,
the algorithm designed in Section 3, and the multiple dqd algorithm. In
Section 4, we present the error analyses for the dhLV algorithm and the
algorithm in Section 3, in order to show the numerical stabilities of them. In
Section 5, we confirm the theoretical results in Sections 2–4 through some
numerical examples. Finally, we give concluding remarks in Section 6.

2. The dhLV algorithm for band matrices

A matrix A is said to be totally nonnegative (TN), if every minor of A
is nonnegative [1, 18]. The main purpose of this section is to show that
the eigenvalues of some TN matrices are computable by the dhLV algorithm
proposed in [7].

The dhLV algorithm and its basic properties are briefly reviewed in Sec-
tion 2.1. In Section 2.2, we give a different aspect on the dhLV algorithm.
Not only the band matrices L(n)+dI appearing in Section 2.1 but also the TN
matrices in Section 2.2 are shown to be the targets of the dhLV algorithm. A
theorem on matrix eigenvalue [28] plays a key role for this proof. In Section
2.3, we explain the multiple dqd algorithm designed in [29] for computing
the eigenvalues of TN matrices. We also clarify a relationship between the
dhLV algorithm and the multiple dqd algorithm.

2.1. The dhLV system and matrix eigenvalues

We first survey some important properties of the dhLV system, which
are the basis of the dhLV algorithm. One of the essential properties of in-
tegrable systems is a matrix representation called Lax form. The Lax form
is an idea which arises from the study of integrable systems. It is fruitful to
reconsider the Lax form from the viewpoint of matrix analysis. The QR and
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the qd algorithms are actually related to the integrable systems, called the
Toda equation and the discrete Toda equation (1), respectively, through the
discussion of the Lax form. The dLV algorithm is designed with the help of
a Lax form for the dLV system.

A Lax form for the dhLV system (4) is presented in [27] as follows.

R(n)L(n+1) = L(n)R(n), (6)

M︷ ︸︸ ︷
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0 . . . 0 U
(n)
1

1 0 . . . 0 U
(n)
2

1
. . . . . . . . .
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1 0
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The equality in each entry of (6) is equivalent to the dhLV system (4).
Assume that

0 < u
(0)
k < K0, k = 1, 2, . . . ,Mm, (11)
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where K0 is some positive constant. Then it is obvious from (10) that V
(n)
k ≥

1 in R(n) for k = 1, 2, . . . ,Mm + M . Hence there exists the inverse matrix of
R(n), and then (6) can be transformed as

L(n+1) = (R(n))−1L(n)R(n). (12)

This is a similarity transformation from L(n) to L(n+1). Namely, the eigen-
values of L(n) are invariant under the time evolution from n to n+1. There-
fore, the matrices L(0) and L(1), L(2), . . . are similar to each other. For
a unit matrix I and an arbitrary constant d, the matrices L(0) + dI and
L(1) + dI, L(2) + dI, . . . are also similar.

There exist other invariants under the time evolution of the dhLV systems.
The sum and the product concerning the variable U
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U
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, (14)

are invariants. From the assumption (11), it holds that 0 <
∑Mm

k=1 U
(0)
k < K1

and 0 <
∏m

k=1 U
(0)
Mk

< K2, where K1 and K2 are positive constants. Taking

account of (13) and (14), we derive 0 < u
(n)
k < K for a positive constant K.

An asymptotic behavior of u
(n)
k with (11) is also given as

lim
n→∞

u
(n)
Mk

= ck, k = 1, 2, . . . ,m, (15)

lim
n→∞

u
(n)
Mk+p = 0, k = 1, 2, . . . ,m − 1, p = 1, 2, . . . ,M, (16)

where c1, c2, . . . , cm are positive constants such that

c1 ≥ c2 ≥ · · · ≥ cm. (17)

See [7] for the proof of (13), (14) and (15), (16).
Next we explain how to apply the dhLV system (4) to a matrix eigenvalue

computation. Obviously, from (9), (10) and (15), (16), the limits of U
(n)
k and
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V
(n)
k also exist as n → ∞. The limit of the matrix L(n) + dI becomes

L(d) := lim
n→∞

(L(n) + dI)

=


L1(d)
EM L2(d)

. . . . . .

EM Lm(d)

 , (18)

where Lk(d) and EM are (M + 1) × (M + 1) block matrices

Lk(d) :=


d ck

1 d
. . . . . .

1 d

 , EM :=


0 · · · 0 1

. . . 0
. . .

...
0

 . (19)

It is of significance to note that, by cofactor expansion,

det(λI − L(d)) =
m∏

k=1

det(λI − Lk(d)),

det(λI − Lk(d)) = (λ − d)M+1 − ck.

Then, the characteristic polynomial of L(d) is given as

det(λI − L(d)) =
m∏

k=1

[
(λ − d)M+1 − ck

]
.

Consequently, we obtain the eigenvalues λk,` of L(0) + dI as follows.

λk,` = c
1

M+1

k

(
exp

(
2πi

M + 1

))`

+ d, k = 1, 2, . . . ,m ` = 0, 1, . . . ,M.

(20)

Namely, the eigenvalues of L(0) + dI are given by using the (M + 1)th root
of ck derived from the time evolution of the dhLV system (4). Since, for a

sufficiently large N , u
(N)
Mk

is an approximation to ck, the (M + 1)th root of

u
(n)
Mk

leads to the approximation of the eigenvalues of L(0) + dI.
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The above discussion is a brief review of [7]. We finally expand the
applicable range of the dhLV algorithm. Let us introduce a diagonal matrix

D := diag (1, α1, α1α2, . . . , (α1α2 · · ·αMm+M−1)) , (21)

with arbitrary positive constants α1, α2, . . . , αMm+M−1. Then the similarity
transformation by D yields

L̂(n) + dI := D(L(n) + dI)D−1 (22)

=



d Û
(n)
1

α1 d
. . .

α2
. . . Û

(n)
Mm

. . . . . .
. . . . . .

αMm+M−1 d


, (23)

where Û
(n)
k = U

(n)
k /(αk+1αk+2 · · ·αk+M−1). Obviously, the eigenvalues of

L̂(n) + dI coincide with those of L(n) + dI. Hence the eigenvalues of L̂(0) + dI
are given as (20), if the initial U

(0)
1 , U

(0)
2 , . . . , U

(0)
Mm

are set, in accordance

with Û
(0)
1 , Û

(0)
2 , . . . , Û

(0)
Mm

and α1, α2, . . . , αMm+M−1, as

U
(0)
k = Û

(0)
k (αkαk+1 · · ·αk+M−1). (24)

To sum up, the dhLV algorithm for computing the eigenvalues of L̂(0) +dI is
shown in Table 1. The lines from the 7th to the 11th of the dhLV algorithm
is performed until maxk 6=M1,M2,...,Mm uk ≤ eps or n > nmax is satisfied for a
sufficiently small eps > 0.

2.2. The dhLV algorithm for TN matrix

We show that eigenvalues of TN matrix are computable by the dhLV
algorithm. It has been already reported in [7] that, as is described in Section
2.1, the band matrix L(n) + dI is a target of the dhLV algorithm. Of course
L(n) + dI is not TN. For simplicity, we hereinafter discuss the case where
d = 0.

Let us introduce a technique for matrix permutation which is a special
case of [28]. Let P be the permutation matrix such that PL(n) becomes the
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Table 1: dhLV algorithm for L̂(0) + dI

01: for k := 1, 2, . . . ,Mm do

02: U
(0)
k = Û

(0)
k

∏M−1
j=0 αk+j

03: end for
04: for k := 1, 2, . . . ,Mm do

05: u
(0)
k = U

(0)
k /

∏M
j=1(1 + δ(0)u

(0)
k−j)

06: end for
07: for n := 1, 2, . . . , nmax do
08: for k := 1, 2, . . . ,Mm do

09: u
(n+1)
k := u

(n)
k

[∏M
j=1(1 + δ(n)u

(n)
k+j)/

∏M
j=1(1 + δ(n+1)u

(n+1)
k−j )

]
10: end for
11: end for
12: for k := 1, 2, . . . ,m do
13: for ` := 1, 2, . . . ,M + 1 do

14: λk,` := M+1

√
u

(n)
Mk

{cos [2`π/(M + 1)] + i sin [2`π/(M + 1)]} + d

15: end for
16: end for

matrix which is given by interchanging the [(k−1)(M +1)+ j]th row of L(n)

with the [(j − 1)m + k]th one for j = 1, 2, . . . ,M + 1 and k = 1, 2, . . . ,m.
Namely, P is the matrix whose ((j − 1)m + k, (k − 1)(M + 1) + j) entry is
1 and the others are 0. Since L(n)P−1 is the matrix given by interchanging
the [(k − 1)(M + 1) + j]th column of L(n) with the [(j − 1)m + k]th one, it
follows that

B(n) := PL(n)P−1

=


L(n)

1

R(n)
M

. . .

R(n)
2

R(n)
1

 , (25)
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where

L(n)
1 =


U

(n)
M1

1 U
(n)
M2

. . . . . .

1 U
(n)
Mm

 , R(n)
j =


1 U

(n)
M2−j

1
. . .
. . . U

(n)
Mm−j

1

 .

(26)

As concerned with matrix eigenvalues, we take up the following theorem.

Theorem 2.1 (Watkins [28]). The nonzero complex number λ is an eigen-
value of X if and only if its kth roots λ1/k, λ1/kω, λ1/kω2, . . . , λ1/kωk−1 are all
eigenvalues of X̂, where ω = exp (2πi/k) and

X = XkXk−1 · · ·X1 ∈ Cm×m, Xj ∈ Cm×m, j = 1, 2, . . . , k, (27)

X̂ =


Xk

X1

X2

. . .

Xk−1

 . (28)

Let k = M + 1 in Theorem 2.1. Then B(n) in (25) has the same form

as X̂ in (28). The blocks R(n)
M ,R(n)

M−1, · · · ,R(n)
1 and L(n)

1 correspond to

X1, X2, · · · , XM and XM+1, respectively. So, A(n) := L(n)
1 R(n)

1 R(n)
2 · · ·R(n)

M

has the same form as X in (27). Let us assume that u
(n)
1 , u

(n)
2 , . . . , u

(n)
Mm

, ap-

pearing in R(n)
1 ,R(n)

2 , . . . ,R(n)
M and L(n)

1 , are positive. Obviously, L(n)
1 ,R(n)

1 ,

R(n)
2 , . . . ,R(n)

M are the TN matrices, and then A(n) is also. As is shown in
Section 2.1, the eigenvalues of B(n) are the (M + 1)th roots of c1, c2, . . . , cm.
Hence it turns out that the eigenvalues of A(n) become c1, c2, . . . , cm. In the
case where A(n) is decomposed as A(n) = L(n)

1 R(n)
1 R(n)

2 · · ·R(n)
M , the eigenval-

ues of A(n) are accordingly computed by the dhLV algorithm.
In [1], it is shown that any strictly sign regular matrix has real and distinct

eigenvalues. TN matrix is one of strictly sign regular matrices. In other
words, TN matrix does not have multiple eigenvalues. Since A(n) is the TN
matrix, it is concluded that c1, c2 . . . , cm are distinct. By taking account of
(17), we have the following theorem.

11



Theorem 2.2. Let u
(0)
k > 0 for k = 1, 2, . . . ,Mm. As n → ∞, the dhLV

variable u
(n)
Mk

converges to ck, where

c1 > c2 > · · · > cm. (29)

More precisely, ck becomes the eigenvalue of the TN matrix A(0).

It is to be noted that (29) holds in the eigenvalue computation of L̂(0)+dI.
The discussion in this section leads to the sorting property (29), which is more
precise than (17).

2.3. Relationship with the multiple dqd algorithm

Recently, one of the authors proposes the multiple dqd algorithm for
computing eigenvalues of TN band matrix [29].

Let L1, L2, . . . , LmL
and R1, R2, . . . , RmR

be the m × m lower and upper
bidiagonal matrices, respectively, defined by

Lj =


qj,1

1 qj,2

. . . . . .

1 qj,m

 , Rj =


1 ej,1

1
. . .
. . . ej,m−1

1

 , (30)

where qj,1, qj,2, . . . , qj,m > 0 and ej,1, ej,2, . . . , ej,m−1 > 0. Then the target
matrix of the multiple dqd algorithm is represented as

ATN = L1L2 · · ·LmL
R1R2 · · ·RmR

. (31)

Since it is obvious that L1, L2, . . . , LmL
and R1, R2, . . . , RmR

are the TN ma-
trices, ATN is also. Besides the TN matrix ATN has no multiple eigenvalues.
The basic idea of the multiple dqd algorithm is to employ the dqd algorithm
(mL × mR) times for one LR transformation of ATN. See [29] for the details
concerning the convergence theorem.

Let us consider the case where mL = 1,mR = M in the multiple dqd
algorithm. Note that Lj and Rj in (30) have the same form as L(n)

j and

R(n)
j (26), respectively. Then the form of ATN in (31) coincides with that of

A(n) = L(n)
1 R(n)

1 R(n)
2 · · ·R(n)

M .
The target TN matrix of the dhLV algorithm is accordingly equal to that

of the multiple dqd algorithm with mL = 1 and mR = M .
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3. dhToda equation and matrix eigenvalue

We here investigate some properties of the dhToda equation (5), and
then design a new algorithm for computing matrix eigenvalues in terms of
the dhToda equation (5). The dhToda equation (5) with M = 1 becomes
the discrete Toda equation (1). The discrete Toda equation (1) has a close
relationship to the qd algorithm for tridiagonal matrix eigenvalues. It is
known that the discrete Toda equation (1) is just equal to the recursion
formula of the qd algorithm. No wonder that the dhToda equation (5) is also
related to matrix eigenvalue problem. The main purpose of this section is to
design a matrix eigenvalue algorithm in terms of the dhToda equation (5).

The dqd algorithm is an improvement version of the qd algorithm, and
algebraically equivalent to the qd algorithm. The dqd algorithm differs from
the qd algorithm in that its recursion formula, called the differential form, has
no subtraction. In other words, the dqd algorithm employs the differential
form of the discrete Toda equation (1). In Section 3.1, we first derive a
differential form of the dhToda equation, and we next show the positivity
and the asymptotic behavior of the dhToda variables. In Section 3.2, based
on the differential form of the dhToda equation, we finally design a new
algorithm for computing eigenvalues.

3.1. Properties of the dhToda equation
Let us begin our analysis by deriving a differential form without subtrac-

tion from the dhToda equation (5). Let us introduce a new variable D
(n)
k

defined by

D
(n)
1 := Q

(n)
1 ,

D
(n)
k := Q

(n)
k − E

(n+1)
k−1 , k = 2, 3, . . . ,m.

Then, by combining it with (5), we obtain the relationship between D
(n)
k and

D
(n)
k+1

D
(n)
k+1 =

Q
(n)
k+1

Q
(n+M)
k

D
(n)
k .

Note that the ratio Q
(n)
k+1/Q

(n+M)
k also appears in the 2nd equation of (5).

Moreover, let

F
(n)
k+1 :=

Q
(n)
k+1

Q
(n+M)
k

,
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then the differential form without subtraction of (5) is given by
Q

(n+M)
k = E

(n)
k + D

(n)
k , k = 1, 2, . . . ,m,

E
(n+1)
k = F

(n)
k+1E

(n)
k , k = 1, 2, . . . ,m − 1,

D
(n)
k+1 = F

(n)
k+1D

(n)
k , D

(n)
1 = Q

(n)
1 , F

(n)
k+1 =

Q
(n)
k+1

Q
(n+M)
k

.

(32)

Though the recursion formula employed in (32) is different from that in (5),

the sequences of Q
(n)
k and E

(n)
k generated by (32) coincide with those by (5).

The differential form (32) is useful for clarifying the positivity of the dhToda

variables Q
(n)
k and E

(n)
k . If Q

(0)
k , Q

(1)
k , . . . , Q

(M−1)
k for k = 1, 2, . . . ,m and E

(0)
k

for k = 1, 2, . . . ,m − 1 are positive, then Q
(M)
k and E

(1)
k are also positive.

For n = 1, 2, . . . , by induction, we obtain the following proposition on the
positivity of the dhToda variables.

Proposition 3.1. Let Q
(0)
k > 0, Q

(1)
k > 0, . . . , Q

(M−1)
k > 0 for k = 1, 2, . . . ,m

and E
(0)
k > 0 for k = 1, 2, . . . ,m− 1. Then the variables Q

(n)
k , E

(n)
k and D

(n)
k

in the differential form (32) satisfy the positivity,

Q
(n)
k > 0, k = 1, 2, . . . ,m, n = M,M + 1, . . . , (33)

E
(n)
k > 0, k = 1, 2, . . . ,m − 1, n = 1, 2, . . . , (34)

D
(n)
k > 0, k = 1, 2, . . . ,m, n = 0, 1, . . . . (35)

With the help of Proposition 3.1, we have a theorem on an asymptotic
convergence of the dhToda variables Q

(n)
k and E

(n)
k as n → ∞.

Theorem 3.2. Let Q
(0)
k > 0, Q

(1)
k > 0, . . . , Q

(M−1)
k > 0 for k = 1, 2, . . . ,m

and E
(0)
k > 0 for k = 1, 2, . . . ,m− 1. As n → ∞, the limits of Q

(n)
k and E

(n)
k

are given by

lim
n→∞

M−1∏
j=0

Q
(n−j)
k = Ck, k = 1, 2, . . . ,m, (36)

lim
n→∞

E
(n)
k = 0, k = 1, 2, . . . ,m − 1, (37)

where Ck is a positive constant and C1 ≥ C2 ≥ · · · ≥ Cm.
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Proof. We first give a proof of (37). Let us take summation of the both sides
of the 1st equation of (5) of the superscript from 0 to n,

n∑
j=0

Q
(j+M)
k =

n∑
j=0

Q
(j)
k +

n∑
j=0

E
(j)
k −

n∑
j=0

E
(j+1)
k−1 . (38)

In order to consider the limit n → ∞, we may assume that n > M without
loss of generality. Noting that Q

(M)
k , Q

(M+1)
k , · · · , Q

(n)
k appears in the both

sides of (38), we derive

n∑
j=n−M+1

Q
(j+M)
k =

M−1∑
j=0

Q
(j)
k +

n∑
j=0

E
(j)
k −

n∑
j=0

E
(j+1)
k−1 . (39)

From Proposition 3.1, it is obvious that
∑n

j=n−M+1 Q
(j+M)
k > 0. This implies

that the right hand side of (39) is positive. Hence it follows that

n∑
j=0

E
(j+1)
k−1 <

M−1∑
j=0

Q
(j)
k +

n∑
j=0

E
(j)
k . (40)

The case where k = m and n → ∞ in (40) with
∑∞

j=0 E
(j)
m = 0 leads to, for

positive constant K̄0,

∞∑
j=1

E
(j)
m−1 <

M−1∑
j=0

Q(j)
m < K̄0. (41)

Successively, by considering the cases where k = m−1,m−2, . . . , 1, we have,
for positive constant K̄m−k,

∞∑
j=0

E
(j)
k < K̄m−k, k = m − 1,m − 2, . . . , 1. (42)

From the positivity E
(n)
k > 0, it is concluded that E

(n)
k → 0 as n → ∞.

We next prove (36) with the help of (37). Let n = ` × M + j in the 1st
equation of (5), then

Q
((`+1)×M+j)
k = Q

(`×M+j)
k + E

(`×M+j)
k − E

(`×M+j+1)
k−1 . (43)
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Moreover, let us take summation of the both sides of (43) of ` from `1 to
`2 − 1 where `2 ≥ `1. Then it follows that

Q
(`2×M+j)
k = Q

(`1×M+j)
k +

`2−1∑
`=`1

E
(`×M+j)
k −

`2−1∑
`=`1

E
(`×M+j+1)
k−1 . (44)

By combining it with the positivity E
(n)
k > 0, we derive∣∣∣Q(`2×M+j)

k − Q
(`1×M+j)
k

∣∣∣ ≤ ∣∣∣∣∣
`2−1∑
`=`1

E
(`×M+j)
k

∣∣∣∣∣ +

∣∣∣∣∣
`2−1∑
`=`1

E
(`×M+j+1)
k−1

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

`=`1

E
(`×M+j)
k

∣∣∣∣∣ +

∣∣∣∣∣
∞∑

`=`1

E
(`×M+j+1)
k−1

∣∣∣∣∣ . (45)

Noting that the right hand side of (45) converges to zero as `1 → ∞, we have

lim
`1,`2→∞

∣∣∣Q(`2×M+j)
k − Q

(`1×M+j)
k

∣∣∣ = 0, (46)

which implies that {Q(0×M+j)
k , Q

(1×M+j)
k , Q

(2×M+j)
k , . . . } is a Cauchy sequence.

Since {Q(0×M+j)
k , Q

(1×M+j)
k , Q

(2×M+j)
k , . . . } is a real positive sequence, it turns

out that Q
(`×M+j)
k , for each j, converges to some positive constant Ck,j as

` → ∞. It is concluded that
∏M−1

j=0 Q
(n−j)
k converges to some positive constant

Ck =
∏M−1

j=0 Ck,j as n → ∞.
We finally show the inequality of Ck for k = 1, 2, . . . ,m. From the 2nd

equation of the dhToda equation (5),

E
(n)
k = E

(0)
k

n−1∏
N=0

Q
(N)
k+1

Q
(N+M)
k

= E
(0)
k

n′∏
`=0

Q(`)
k+1

Q(`+1)
k

, (47)

where Q(`)
k =

∏M−1
j=0 Q

(`×M−j)
k and n > n′ ∈ N. Note that E

(0)
k is bounded

and limn→∞ E
(n)
k = 0 for k = 1, 2, . . . ,m − 1, then from (47) we have

lim
n→∞

n∏
`=0

Q(`)
k+1

Q(`+1)
k

= 0, k = 1, 2, . . . ,m − 1. (48)
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If lim`→∞Q(`)
k+1/Q

(`+1)
k > 1, then it contradicts (48). From (36), we obtain

Ck ≥ Ck+1, k = 1, 2, . . . ,m − 1. (49)

To sum up, the suitable initial setting of the dhToda variables yields that
as n grows larger,

∏M−1
j=0 Q

(n−j)
k and E

(n)
k , with keeping the positivity Q

(n)
k > 0

and E
(n)
k > 0, converge to some positive constant and zero, respectively.

3.2. The dhToda algorithm for TN matrix

In order to find the conserved quantities for the dhToda equation, we
consider the Lax form,

L(n+1)R(n+M) = R(n)L(n), (50)

L(n) :=


1

E
(n)
1 1

E
(n)
2

. . .

. . . 1

E
(n)
m−1 1

 , (51)

R(n) :=


Q

(n)
1 1

Q
(n)
2 1

. . . . . .
. . . 1

Q
(n)
m

 . (52)

Let us introduce the matrix, given by the matrix products of L(n), R(n), R(n+1),
· · · , and R(n+M−1),

A(n) := L(n)R(n+M−1)R(n+M−2) · · ·R(n+1)R(n). (53)

Note here that the entries of A(n) consist of the dhToda variables. Then from
(50) we derive A(n+1) = R(n)A(n)(R(n))−1, which implies that the eigenvalues
of A(n) are invariant under the time evolution from n to n + 1. So, it should
be emphasized here that A(n), for any n, has the same eigenvalues as A(0).

In [24], the conserved quantities of so-called numbered box and ball sys-
tems are presented based on the Lax form (50) for the dhToda equation (5).
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Since the eigenvalues of A(n) is invariant, conserved quantities of the dhToda
equation (5) are given by

Tr{(A(n))j}, j = 1, 2, . . . ,m. (54)

The authors of [24] suggest that the dhToda equation (5) has an interesting
relationship with matrix eigenvalue. However, to the best of our knowledge,
the matrix eigenvalue algorithm has not been derived from the dhToda equa-
tion (5).

Now we design a new algorithm for computing eigenvalues of m×m band
matrix A(0), given by the matrix products of lower bidiagonal L(0) and upper
bidiagonal R(M−1), R(M−2), . . . , R(0) such that A(0) = L(0)R(M−1)R(M−2) · · ·R(0).
If m > M , then the form of A(n) is as follows.

M︷ ︸︸ ︷

A(n) =



∗ · · · ∗ 1

∗ ∗ · · · ∗ . . .

∗ . . . . . . 1
. . . . . . ∗

. . . . . .
...

∗ ∗


, (55)

where ∗ denotes a nonzero entry. The (i, i + M) entry of A(n) is fixed to

1 and the other nonzeros consist of the dhToda variables Q
(n)
k and E

(n)
k . If

m ≤ M , A(n) becomes the upper Hessenberg form without the entries fixed
to 1. In both cases, the eigenvalues of A(0) are computable with the dhToda
equation (5), as is shown in the following theorem.

Theorem 3.3. Let Q
(0)
k > 0, Q

(1)
k > 0, . . . , Q

(M−1)
k > 0, and E

(0)
k > 0. Then

for k = 1, 2, . . . ,m, Ck = limn→∞
∏M−1

j=0 Q
(n−j)
k coincides with an eigenvalue

of A(0).

Proof. As is shown in the proof of Theorem 3.2, the subsequence {Q(0×M+j)
k ,

Q
(1×M+j)
k , Q

(2×M+j)
k , . . . } is a Cauchy sequence for all k = 1, 2, . . . ,m and

j = 1, 2, . . . ,M . Obviously, the Cauchy sequence {Q(0×M+j)
k , Q

(1×M+j)
k ,

Q
(2×M+j)
k , . . . } is bounded. For arbitrary k and n, Q

(n)
k is also bounded.
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By combining it with the convergence of E
(n)
k shown in Theorem 3.2,

we find that the (i + 1, i) entry of A(n), written as E
(n)
i

∏M−1
j=0 Q

(n+j)
i , con-

verges to zero as n → ∞. Let (A
(n)
k )i,i be the diagonal (i, i) entry of

A
(n)
k = L(n)R(n+M−1)R(n+M−2) · · ·R(n+M−k). Then (A

(n)
k )i,i is given by

(A
(n)
k )i,i = E

(n)
i−1

M−1∏
j=M+1−k

Q
(n+j)
i−1 + Q

(n+M−k)
i (A

(n)
k−1)i,i, k = 2, 3, . . . ,M,

(A
(n)
0 )i,i = 1, (A

(n)
1 )i,i = E

(n)
i−1 + Q

(n+M−1)
i .

Noting that A
(n)
M = A(n), we derive from the limit (37) and the boundedness of

Q
(n)
k that the limit of the diagonal entry becomes Ck = limn→∞

∏M−1
j=0 Q

(n+j)
k .

Consequently, as n → ∞, the matrix A(n) converges to the following upper
triangular matrix, namely,

lim
n→∞

A(n) =



C1 ∗ · · · ∗ 1

C2 ∗ · · · ∗ . . .
. . . . . . . . . 1

. . . . . . ∗
. . . . . .

...
Cm−1 ∗

Cm


, (56)

and the diagonal entries Ck for k = 1, 2, . . . ,m are the eigenvalues of A(0).

Suppose that the positive sequences {E(0)
1 , E

(0)
2 , . . . , E

(0)
m−1} and {Q(0)

1 , Q
(0)
2 ,

. . . , Q
(0)
m }, {Q(1)

1 , Q
(1)
2 , . . . , Q

(1)
m },. . . ,{Q(M−1)

1 , Q
(M−1)
2 , . . . , Q

(M−1)
m } are given.

Then, from (51)–(53), we have the band matrix A(0). Theorem 3.3 claims

that, for sufficiently large n,
∏M−1

j=0 Q
(n−j)
k becomes an approximate eigen-

value of A(0) through the dhToda equation (5). The above procedure for
matrix eigenvalues is called the dhToda algorithm, and is shown in Table 2.
The values M and m are given from the form of A(0) and the parameter nmax

is set as the maximal iteration number. As the inequality maxk E
(n)
k < eps

is employed as the stopping criterion for sufficiently small eps > 0.
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Table 2: dhToda algorithm

01: for n := 0, 1, 2, . . . , nmax do

02: D
(n)
1 = Q

(n)
1

03: for k := 1, 2, . . . ,m − 1 do

04: Q
(n+M)
k = E

(n)
k + D

(n)
k

05: F
(n)
k+1 = Q

(n)
k+1/Q

(n+M)
k

06: E
(n+1)
k = F

(n)
k+1E

(n)
k

07: D
(n)
k+1 = F

(n)
k+1D

(n)
k

08: end for

09: Q
(n+M)
m = D

(n)
m

10: end for

11: for k := 0, 1, 2, . . . ,m do

12: Ck =
∏M−1

j=0 Q
(n−j)
k

13: end for

3.3. Relationships between the dhLV and the multiple dqd algorithms

We clarify a relationship of the dhToda algorithm to the dhLV algorithm.
Let us introduce the block matrix B(n) ∈ Rm(M+1)×m(M+1), composed by the
matrices L(n) in (51) and R(n+M−1), . . . , R(n+1), R(n) in (52), such that

B(n) =


L(n)

R(n+M−1)

R(n+M−2)

. . .

R(n)

 . (57)

Let us recall here the permutation technique shown in Section 2.2. We con-
sider the inverse of the permutation. Since the permutation matrix P is such
that PB(n) becomes the matrix given by interchanging the ((j − 1)m + k)th
row of B(n) with the ((k − 1)(M + 1) + j)th one, P> is such that P>B(n)
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becomes the matrix given by interchanging the ((k − 1)(M + 1) + j)th row
of B(n) with the ((j − 1)m + k)th one. It follows that

P−1B(n)P =


S

(n)
1 J

H
(n)
1 S

(n)
2

. . .
. . . . . . J

H
(n)
m−1 S

(n)
m

 , (58)

S
(n)
k :=


0 1

Q
(n+M−1)
k 0

. . . . . .

Q
(n)
k 0

 , (59)

H
(n)
k :=


0 · · · 0 E

(n)
k

0 · · · 0 0
...

...
...

0 · · · 0 0

 , J :=


0
1 0

. . . . . .

1 0

 . (60)

The band matrix P−1B(n)P in (58) has the same form as L̂(n) in (23) whose
eigenvalues are computable by the dhLV algorithm. Just as the discussion
in Section 2.2, the band matrices A(n) in (55) and B(n) in (57) correspond to
the matrices X and X̂ in Theorem 2.1, respectively. So, it is realized that
all the eigenvalues of B(n) are given as the (M + 1)th root of those of A(n).
On the other hand, B(n) and P−1B(n)P in (58) are similar and they have the
same eigenvalues. So it is concluded that all the eigenvalues of P−1B(n)P
are given as the (M + 1)th root of those of A(n). Namely, the target matrix
of the dhLV algorithm becomes that of the dhToda algorithm by a suitable
initial setting.

The dhToda algorithm is also related to the multiple dqd algorithm. By
comparing L(n) in (51), R(n) in (52) with Lj, Rj in (30), we see that the
transpose of L(n) and R(n) have the same form of Rj and Lj, respectively.
So, let

(L(0))> = R1, (R(0))> = L1, (R(1))> = L2, . . . , (R
(M−1))> = LM .

Let us recall that A(0) = L(0)R(M−1)R(M−2) · · ·R(0) is the target matrix of
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the dhToda algorithm. Then the transpose of A(0) becomes

(A(0))> = (R(0))>(R(1))> · · · (R(M−1))>(L(0))>

= L1L2 · · ·LMR1.

This implies that the target matrices of the dhToda algorithm and the mul-
tiple dqd algorithm with mL = M,mR = 1 are similar to each other.

4. Error analysis

Error analysis for the dqds algorithm has been reported in [6, 18]. The
zero-shift dqd algorithm is a numerically improved version of original qd algo-
rithm, however, the both algorithms generate the same sequence of similarity
transformations theoretically. Let us recall here that the dhToda equation
(5) is a generalization of the discrete Toda equation (1) which is just equal
to the recursion formula of the qd algorithm. As is shown in the previous
sections, the 1-step of the dhLV algorithm is algebraically equivalent to that
of the dhToda algorithm based on the dhToda equation (5). Here the 1-step
of algorithm means the procedure of a similarity transformation. To sum up,
the dhLV and the dhToda algorithms have some relationships with the dqd
algorithm. So, along the line similar to [6, 18], we present the error analysis
of the dhLV and the dhToda algorithms in finite precision arithmetic.

In order to estimate the relative perturbation of matrix eigenvalue after
the 1-step of the dhLV and the dhToda algorithms, our analysis in this section
is twofold. The first is to estimate the rounding errors appearing in the 1-step
of the dhLV and the dhToda algorithms, respectively. Let ψ be the mapping
from a set of floating point numbers F to itself F which generates the 1-step
of algorithm in floating point arithmetic. Suppose that the target matrix of
similarity transformation has the entry x, then, after the 1-step of algorithm,
we get a floating point number x̂ such that x̂ = ψ(x). Here we may regard
ψ as a composition of three mappings ψ1, ψ2 and ψ3, where ψ1 : x 7→ ~x gives
a relative perturbation of x, ψ2 : ~x 7→ x̆ represents the 1-step of algorithm
for transforming ~x to x̆ exactly, and ψ3 : x̆ 7→ x̂ gives a relative perturbation
of x̆. From the viewpoint of mixed stability in [6], it is concluded that the
algorithm is better if relative perturbations given by ψ1 and ψ3 are small.

The second is to analyse the relative perturbations of the computed eigen-
values in accordance with the results for mixed stability. As concerns of the
relative perturbation of matrix eigenvalue, Koev [18] proves the following
theorem.
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ψ
x 7−−−−−−−−−→ x̂
¯

ψ1

y xψ3

¯
~x 7−−−−−−−−−→ x̆

ψ2

Figure 1: x diagram

Theorem 4.1 (Koev [18]). Let B1, B2, . . . , Bs be nonnegative nonsingular
bidiagonal matrices, and let A = B1B2 · · ·Bs. Let x be an entry in some
Br, for r = 1, 2, . . . , s, and Â be obtained from A by replacing x in Br by
x̂ = x(1 + δ), where |δ| ¿ 1. Let the eigenvalues of A and Â be λ1(A) ≥
λ2(A) ≥ · · · ≥ λn(A) and λ1(Â) ≥ λ2(Â) ≥ · · · ≥ λn(Â), respectively. Then
for all k = 1, 2, . . . , n

|λ̂k − λk| ≤
2|δ|

1 − 2|δ|
λk. (61)

In this section, we hereinafter use the notation λk(·) as the eigenvalue.
Let u be the unit roundoff of the floating point system. In order to analyse
the rounding error, for the floating point arithmetic of two floating point
numbers x and y, we use the standard model

fl(x ◦ y) = (x ◦ y)(1 + η1) (62)

= (x ◦ y)/(1 + η2), (63)

where ◦ ∈ {+,−,×, /} and |η1|, |η2| < u. The following lemma by Higham
[10] is useful in relative error analysis of eigenvalues.

Lemma 4.2 (Higham [10]). For any positive integer k let θk denote a quan-
tity bounded according to |θk| ≤ γk = ku/(1 − ku). The following relation
holds.

γk + γj + γkγj ≤ γk+j. (64)

In [18], Koev rewrites (64) as the inequality

|(1 + δ1)(1 + δ2) − 1| ≤ (m1 + m2)δ

1 − (m1 + m2)δ
, (65)

for clarifying the relative accuracy of his algorithm, where δk = mku/(1 −
mku). We also use (65) for our analysis of relative perturbation of eigenval-
ues.
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4.1. Error analysis for the dhLV algorithm

The target matrices of the dhLV algorithm are the band L(0) in (7),
L(0) + dI, L̂(0) + dI in (23) and the TN A(0) in (31). Let us recall that the 1-
step for a similarity transformation in the dhLV algorithm are not essentially
different in any cases of computing the eigenvalues of L(0), L(0)+dI, L̂(0)+dI
and A(0). So, in the former of this section, we only discuss the dhLV algorithm
for the eigenvalues of L(0) in (7). Let δ(0), δ(1), . . . be fixed as the positive
constant δ for simplicity. Moreover, let us introduce a new variable

w
(n)
k := u

(n)
k

M∏
j=1

(ζ + u
(n)
k−j), (66)

where ζ = 1/δ. Note that the entry U
(n)
k , given as (9) in L(n) coincides with

δMw
(n)
k . Hence the time evolution from u

(n)
k to u

(n+1)
k of the dhLV system (4)

is also rewritten as that from w
(n)
k to w

(n+1)
k as follows.

u
(n)
k =

w
(n)
k

M∏
j=1

(ζ + u
(n)
k−j)

, k = 1, 2, . . . ,Mm,

w
(n+1)
k = u

(n)
k

M∏
j=1

(ζ + u
(n)
k+j), k = 1, 2, . . . ,Mm.

(67)

Let us simplify u
(n)
k , w

(n)
k as uk, wk, respectively. In (67), by taking account

of (62) and (63), u
(n)
k and w

(n+1)
k are not computed without rounding errors.

Namely, in the floating point arithmetic, we get the floating point numbers
~uk and ŵk instead of u

(n)
k and w

(n+1)
k , respectively, after the 1-step of the

dhLV algorithm. Actually, ~uk and ŵk with rounding errors are given as

~uk =
wk

M∏
j=1

(ζ + ~uk−j)

1 + ε/(k)

(1 + ε+(k,M))
M−1∏
i=1

(1 + ε+(k, i))(1 + ε×(k, i))

,

ŵk = ~uk

M∏
i=1

(ζ + ~uk+j))
M∏
i=1

(1 + ε?
+(k, i))(1 + ε?

×(k, i)),

(68)

where ε/(k), ε◦(k, i), ε?
◦(k, i) for ◦ ∈ {+,×, /} denote the relative perturba-

tions arisen from the addition, the multiplication, the division, and they
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satisfy |ε◦(k, i)| < u. Let Ψ be the mapping from W := {w1, w2, . . . , wMm}
to Ŵ := {ŵ1, ŵ2, . . . , ŵMm}. Then, it may be regarded that the 1-step of the
dhLV algorithm is performed by Ψ.

Let us introduce two mappings Ψ1 : W → ~W and Ψ3 : W̆ → Ŵ , where
~W = {~w1, ~w2, . . . , ~wMm}, W̆ = {w̆1, w̆2, . . . , w̆Mm} and

~wk = wk

1 + ε/(k)

(1 + ε+(k,M))
M−1∏
i=1

(1 + ε+(k, i))(1 + ε×(k, i))

, (69)

ŵk = w̆k(1 + ε?
+(k,M))

M−1∏
i=1

(1 + ε?
+(k, j))(1 + ε?

×(k, i)). (70)

Moreover, let Ψ2 : ~W → W̆ be the mapping where

~uk =
~wk

M∏
j=1

(ζ + ~uk−j)

, k = 1, 2, . . . ,Mm,

w̆k = ~uk

M∏
j=1

(ζ + ~uk+j), k = 1, 2, . . . ,Mm.

(71)

Then the mapping Ψ is regarded as the composition of Ψ1, Ψ2 and Ψ3,
namely, Ψ = Ψ3 ◦ Ψ2 ◦ Ψ1. It is remarkable that (71) becomes (67) by

replacing ~uk, ~wk and w̆k with u
(n)
k , w

(n)
k , and w

(n+1)
k , respectively. This implies

that ~wk = wk, w̆k = ŵk by Ψ1, Ψ3, respectively, and Ψ = Ψ2 in the case where
all ε are zero. We show the relationship of Ψ with Ψ1, Ψ2, Ψ3, and then have
the following theorem.

Theorem 4.3. There exist two sets ~W and W̆ , given by adding the small
relative perturbations to W and Ŵ , respectively, such that ~W is theoretically
transformed into W̆ by the 1-step of the dhLV algorithm. Each entry of ~W
and W̆ differs from the corresponding ones of W and Ŵ by at most 2Mu,
respectively.

In the following, we mainly analyse the relative perturbation of eigenval-
ues in the 1-step of the dhLV algorithm for transforming the TN matrix A(n)

into A(n+1). Without any numerical errors, the eigenvalues of A(n) coincide
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W
Ψ−−−−−−−−→ Ŵ

Ψ1

y xΨ3

~W −−−−−−−−→
Ψ2

W̆

Figure 2: W diagram

with those of A(n+1). Let us recall that the block matrix B(n) is given from
L(n) by only permutation and the entry U

(n)
k in L(n) is equal to δMw

(n)
k . This

implies that the entries of B(n) are written by w
(n)
k . Since A(n) becomes the

products of the blocks L(n)
1 and R(n)

1 ,R(n)
2 , . . . ,R(n)

M in B(n), it is also obvious

that entries of A(n) are represented by w
(n)
k . If a small relative perturbation is

added to W (n) = {w(n)
1 , w

(n)
2 , . . . , w

(n)
Mm

}, the entries of A(n) undergo the same
amount of relative perturbation. Let us denote the matrices corresponding
to W, ~W, W̆ and Ŵ by A, ~A, Ă and Â, respectively. Then, by combining
Theorem 4.3 with Theorem 4.1 and (65), the differences between λk( ~A) and
λk(A) and between λk(Â) and λk(Ă) are evaluated as

|λk( ~A) − λk(A)| ≤ 4MMmu

1 − 4MMmu
λk(A), (72)

|λk(Â) − λk(Ă)| ≤ 4MMmu

1 − 4MMmu
λk(Â). (73)

Noting that the similarity transformation is exactly performed by Ψ2, we get
λk( ~A) = λk(Ă). By combining it with (72), (73) and Lemma 4.2, we have
the following theorem.

Theorem 4.4. In floating point arithmetic, after the 1-step of the dhLV
algorithm, the relative perturbation of eigenvalues is estimated as

|λk(Â) − λk(A)| ≤ 8MMmu

1 − 8MMmu
λk(A). (74)

In [18], Koev shows that his algorithm for m × m TN matrix gives rise
to the relative perturbation of eigenvalues as

|λ̂k − λk| ≤

(
32

3
m3 + O(m2)

)
u

1 −
(

32

3
m3 + O(m2)

)
u

λk, (75)
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and hence claim that his algorithm has high relative accuracy. Comparing
Theorem 4.4 with (75), we therefore conclude that the upper bound of relative
perturbation in (74) is smaller than in (75), and then the dhLV algorithm is
high relative accurate in the process of computing eigenvalues of TN matrix.

Now we consider transformation from L(n) into L(n+1) by the dhLV algo-
rithm. Note that the λk(L(n)) becomes the (M + 1)th root of the eigenvalue
of B(n). Then we derive the following corollary.

Corollary 4.5. In the floating point arithmetic, after the 1-step of the dhLV
algorithm, the relative perturbation of eigenvalues is estimated as

|λk(L(n+1)) − λk(L(n))| ≤ 1

M + 1
· 8MMmu

1 − 8MMmu
λk(L(n)). (76)

The upper bound of relative perturbation in (76) is smaller than that in
(74). We see that the dhLV algorithm for L(n) is also high relative accurate
even though L(n) has the complex eigenvalues.

4.2. Error analysis for the dhToda algorithm

We here remark that the dhToda equation (5) with M = 1 is just the
discrete Toda equation (1) which is the recursion formula of the qd algorithm.

We also observe in [6] an error analysis for the dqd algorithm, which is
the differential form of the qd algorithm. It is emphasized that the qd recur-
sion formula (1) is transformed into the dhToda equation (5) by replacing

e
(n)
k , e

(n+1)
k , q

(n)
k and q

(n+1)
k in (1) with E

(n)
k , E

(n+1)
k , Q

(n)
k and Q

(n+M)
k , respec-

tively. Fortunately, in Section 3.1, we already get a differential form of (5)
similar to the recursion formula of the dqd algorithm. So, along the same
line of [6], we give an error analysis for the dhToda algorithm. For simplicity,
let us introduce eight kinds of sets,

Q := {Q(n)
1 , Q

(n)
2 , . . . , Q

(n)
m }, ~Q := { ~Q

(n)
1 , ~Q

(n)
2 , . . . , ~Q

(n)
m },

Q̆ := {Q̆(n+M)
1 , Q̆

(n+M)
2 , . . . , Q̆

(n+M)
m }, Q̂ := {Q̂(n+M)

1 , Q̂
(n+M)
2 , . . . , Q̂

(n+M)
m },

E := {E(n)
1 , E

(n)
2 , . . . , E

(n)
m−1}, ~E := { ~E

(n)
1 , ~E

(n)
2 , . . . , ~E

(n)
m−1},

Ĕ := {Ĕ(n+1)
1 , Ĕ

(n+1)
2 , . . . , Ĕ

(n+1)
m−1 }, Ê = {Ê(n+1)

1 , Ê
(n+1)
2 , . . . , Ê

(n+1)
m−1 }.

Here we use Q̂ and Ê as the sets given by transforming from Q and E through
the dhToda algorithm in floating point arithmetic. The sets Q̂ and Ê are
distinguished from the sets theoretically given by the dhToda algorithm.
Then we immediately have the following theorem on error analysis for the
dhToda algorithm.
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Theorem 4.6. There exist ~Q, ~E and Q̆, Ĕ, given by adding the small rel-
ative perturbation of Q,E and Q̂, Ê, respectively, such that ~Q and ~E are
theoretically transformed into Q̆ and Ĕ by the 1-step of the dhLV algorithm,
respectively. Each entry of ~Q, ~E and Q̆, Ĕ differs from the corresponding ones
of Q,E and Q̂, Ê by at most 3u,u and 2u, 2u, respectively.

{Q,E} −−−−−−−→ {Q̂, Ê}

Change each Qk by 3u, Ek by 1u

y xChange each Q̆k, Ĕk by 2u

{ ~Q, ~E} −−−−−−−→ {Q̆, Ĕ}

Figure 3: {Q,E} diagram

Let A = A(n). Moreover, let ~A, Ă and Â denote the matrices given by
replacing {Q,E} with { ~Q, ~E}, {Q̆, Ĕ} and {Q̂, Ê} in the entries of A. With
the help of Theorem 4.1 and Lemma 4.2, we clarify a relative perturbation of
matrix eigenvalue after the 1-step of the dhToda algorithm in floating point
arithmetic. The differences of λk( ~A) and λk(Â) from λk(A) and λk(Ă) are
evaluated as

|λk(Ă) − λk(A)| ≤ 8mu

1 − 8mu
λk(A), (77)

|λk(Â) − λk(Ă)| ≤ 8mu

1 − 8mu
λk(Â). (78)

By taking account that λk( ~A) = λk(Ă), from (77), (78) and also (4.2), we
obtain a perturbation theorem for eigenvalues in the dhToda algorithm.

Theorem 4.7. In floating point arithmetic, after the 1-step of the dhToda
algorithm, the relative perturbation of eigenvalue is evaluated as

|λk(Â) − λk(A)| ≤ 16mu

1 − 16mu
λk(A). (79)

Similarly as the dhLV algorithm, it is concluded that the dhToda algo-
rithm is high relative accurate with respect to eigenvalues of TN matrix.
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5. Numerical experiments

In this section, we numerically confirm our results shown in the previous
sections. Numerical experiments have been carried out on our computer
with OS: Windows XP, CPU: Genuine Intel (R) CPU L2400 @ 1.66GHz,
RAM: 2GB, compiler: Microsoft(R) C/C++ Optimizing Compiler Version
15.00.30729.01.

As an example matrix, we adopt the TN matrix A0 = L(0)R(2)R(1)R(0)

with

L(0) =


1
2 1

2 1
2 1

 , R(0) = R(1) = R(2) =


5 1

5 1
5 1

5

 .

Note here that M = 3 and m = 4 in our dhLV and the dhToda algorithms.
We first discuss the behavior of the dhToda variables Q

(n)
k and E

(n)
k . See also

[7] for the behavior of the dhLV variables u
(n)
k . It turns out from Figure 4

that, as is shown in Theorem 3.2, E
(n)
k converges to zero. Figure 5 shows

that the behavior of Q
(n)
k becomes periodic gradually as n grows larger. It is

obvious from Figure 6 that the product pk :=
∏M−1

j=0 Q
(n−j)
k converges to some

positive constant. This numerical convergence also agrees with Theorem 3.2.
Next we demonstrate that, for two kinds of matrices, the eigenvalues are

computable by the dhToda and the dhLV algorithms. Let us set eps =
1.0E − 16 in the both algorithms. Let us here introduce the block matrix

B0 =


L(0)

R(2)

R(1)

R(0)

 . (80)

For the suitable permutation matrix P0 shown in Section 3.3, the band matrix
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Figure 4: A graph of the iteration number n (x-axis) and the values of E
(n)
1 , E

(n)
2 , E

(n)
3

(y-axis) in the dhToda algorithm. Solid line : E
(n)
1 , dotted line : E

(n)
2 and dashed line :

E
(n)
3 .

L0 := P>
0 B0P0 has two diagonals as

L0 =



1
5 1

5 1
5 1

2 1
5 1

5 1
5 1

2 1
5 1

5 1
5 1

2 1
5

5
5



. (81)
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Figure 5: A graph of the iteration number n (x-axis) and the values of Q
(n)
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(n)
2 , Q

(n)
3 ,

Q
(n)
4 (y-axis) in the dhToda algorithm. Solid line with ◦ : Q
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1 , with 5 : Q

(n)
2 , with ? :

Q
(n)
3 , with × : Q

(n)
4

Table 3: Computed eigenvalues of A0

Mathematica dhLV algorithm dhToda algorithm

λ1 532.35140651953578 532.35140651953509 532.35140651953520
λ2 302.15799192937254 302.15799192937277 302.15799192937300
λ3 100.36858294952133 100.36858294952130 100.36858294952131
λ4 15.122018601570330 15.122018601570332 15.122018601570332

In order to get the eigenvalues of A0 and L0 with high relative accu-
racy, we employ the Mathematica function eigenvalues[ ] with 100 digits
arithmetic. We also use our dhLV and dhToda algorithms in double pre-
cision arithmetic. Tables 3 and 4, respectively, show the eigenvalues of A0

and L0 computed by eigenvalues[ ] and our algorithms. The 1st columns
of the both tables display the results by rounding eigenvalues[A0] and
eigenvalues[L0] into double precision numbers. The computed eigenval-
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Figure 6: A graph of the ratio of the iteration number n to the parameter M = 3 (x-axis)
and the values of p

(n)
1 , p

(n)
2 , p

(n)
3 , p

(n)
4 (y-axis) in the dhToda algorithm. Dotted line with

◦ : p1, with 5 : p2, with ? : p3, with × : p4

ues by the dhLV and the dhToda algorithms, respectively, are shown in the
2nd and the 3rd columns of the both tables. By comparing the 2nd and
the 3rd columns with the 1st columns in both tables, we conclude that the
eigenvalues of both matrices by the dhLV and the dhToda algorithm with
high relative accuracy. This numerical results are consistent with our error
analysis shown in Section 4.

6. Concluding remarks

In this paper, we first survey the dhLV algorithm in [7] derived from the
integrable dhLV system, and then expand the target matrix of the dhLV
algorithm by considering TN matrix. We next investigate some properties
of the integrable dhToda equation. It is found that the dhToda variables
become periodic and their products converge to matrix eigenvalues as the
time variable n → ∞. By taking account of this asymptotic convergence, we
design a new algorithm, named the dhToda algorithm, for computing eigen-
values of TN matrix. We describe the relationship of the dhLV algorithm
to the dhToda algorithm, namely, the class of matrices, whose eigenvalues
are computable by both the dhLV algorithm and the dhToda algorithm, are
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Table 4: Computed eigenvalues of L0

Mathematica dhLV algorithm dhToda algorithm

λ1,1 4.803409376080853 4.803409376080851 4.803409376080851
λ1,2 4.803409376080853i 4.803409376080851i 4.803409376080851i

λ1,3 -4.803409376080853 -4.803409376080851 -4.803409376080851
λ1,4 -4.803409376080853i -4.803409376080851i -4.803409376080851i

λ2,1 4.169255606169454 4.169255606169454 4.169255606169455
λ2,2 4.169255606169454i 4.169255606169454i 4.169255606169455i

λ2,3 -4.169255606169454 -4.169255606169454 -4.169255606169455
λ2,4 -4.169255606169454i -4.169255606169454i -4.169255606169455i

λ3,1 3.165187545316407 3.165187545316406 3.165187545316406
λ3,2 3.165187545316407i 3.165187545316406i 3.165187545316406i

λ3,3 -3.165187545316407 -3.165187545316406 -3.165187545316406
λ3,4 -3.165187545316407i -3.165187545316406i -3.165187545316406i

λ4,1 1.971979709463506 1.971979709463506 1.971979709463506
λ4,2 1.971979709463506i 1.971979709463506i 1.971979709463506i

λ4,3 -1.971979709463506 -1.971979709463506 -1.971979709463506
λ4,4 -1.971979709463506i -1.971979709463506i -1.971979709463506i

essentially the same. It is remarkable here that the transformation, such as
the Miura transformation (3), from the dhLV variable to the dhToda one or
its inverse has not been reported yet, but the dhLV algorithm is nevertheless
related to the dhToda algorithm from the viewpoint of matrix eigenvalue. It
is also shown that our two algorithms are related to the multiple dqd algo-
rithm, which is proposed for eigenvalues of TN matrix in [29]. In order to
clarify numerical stability of our two algorithms, we give the error analysis
for them. Through some numerical experiments, we confirm that the dhToda
variables have the asymptotic convergence discussed theoretically and com-
puted eigenvalues by our two algorithms are with high relative accuracy.

Acknowledgements

The authors would like to thank Prof. S. Tsujimoto and Prof. A. Nagai
for many fruitful discussions and helpful advices in this work.

33



References

[1] T. Ando, Totally positive matrices, Linear Algebra Appl., 90 (1987),
165–219.

[2] O. I. Bogoyavlensky, Integrable discretizations of the KdV equation,
Phys. Lett. A, 134 (1988), 34–38.

[3] M. T. Chu, Linear algebra algorithm as dynamical systems, Acta Numer.
17 (2008), 1–86.

[4] F. Brenti, Combinatrics and total positivity, J. Combin. Theory Ser. A,
71 (1995), 175–218.

[5] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia,
1997.

[6] K. V. Fernando and B. N. Parlett, Accurate singular values and differ-
ential qd algorithms, Numer. Math., 25 (1994), 191–229.

[7] A. Fukuda, E. Ishiwata, M. Iwasaki and Y. Nakamura, The discrete
hungry Lotka-Volterra system and a new algorithm for computing matrix
eigenvalues, Inverse Problems, 25 (2009), 015007.

[8] F. Gantmacher and M. Krein, Oscillation Matrices and Kernels and
Small Vibrations of Mechanical Systems, revised edition, AMS Chelsea,
Providence, RI, 2002.

[9] M. Gasca and C. A. Micchelli, eds., Total Positivity and Its Applica-
tions, Math. Appl. 359, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1996.

[10] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,
Philadelphia, 1996.

[11] R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys.
Soc. Japan, 50 (1981), 3785–3791.

[12] R. Hirota, Conserved quantities of a random-time Toda equation, J.
Phys. Soc. Japan, 66 (1997), 283–4.

34



[13] Y. Itoh, Integrals of a Lotka-Volterra system of odd number of variables,
Prog. Theor. Phys., 78 (1987), 507–510.

[14] M. Iwasaki and Y. Nakamura, On the convergence of a solution of the
discrete Lotka-Volterra system, Inverse Problems, 18 (2002), 1569–78.

[15] M. Iwasaki and Y. Nakamura, An application of the discrete Lotka-
Volterra system with variable step-size to singular value computation,
Inverse Problems, 20 (2004), 553–563.

[16] M. Iwasaki and Y. Nakamura, Accurate computation of singular values
in terms of shifted integrable schemes, Japan Journal of Industrial and
Applied Mathematics, 23–3 (2006), pp239–259.

[17] S. Karlin, Total Positivity, Vol. I, Stanford University Press, Stanford,
CA, 1968.

[18] P. Koev, Accurate eigenvalues and SVDs of totally nonnegative matrices,
SIAM J. Matrix Anal. Appl., 27 (2005), 1–23.

[19] A. Nagai, T. Tokihiro and J. Satsuma, The Toda molecule equation and
the ε-algorithm, Math. Comp, 67–224 (1998), 1565–1575.

[20] Y. Nakamura, Calculating Laplace transforms in terms of the Toda
molecule, SIAM J. Sci. Comput., 20 (1999), 306–317.

[21] Y. Nakamura and A. Mukaihira, Dynamics of the finite Toda molecule
over finite fields and a decoding algorithm, Phys. Lett. A, 249 (1998),
295–302.

[22] Y. Nakamura (Eds.), Applied Integrable Systems (in Japanese), Shokabo,
Tokyo, 2000.

[23] D. Takahashi and J. Matsukidaira, Box and ball system with a carrier
and ultradiscrete modified KdV equation J. Phys. A: Math. Gen., 30–21
(1997), L733–L739.

[24] T. Tokihiro, A. Nagai and J. Satsuma, Proof of solitonical nature of
box and ball systems by means of inverse ultra-discretization, Inverse
Problems, 15 (1999), 1639–1662.

35



[25] H. Rutishauser, Lectures on Numerical Mathematics, Boston,
Birkhauser, 1990.

[26] W. W. Symes, The QR algorithm and scattering for the finite nonperi-
odic Toda lattice, Physica D, 4 (1982), 275–80.

[27] S. Tsujimoto, R. Hirota and S. Oishi, An extension and discretization
of Volterra equation I, Tech. Rep. Proc. IEICE NLP, 92–90 (1993), 1–3.
(in Japanese)

[28] D. S. Watkins, Product eigenvalue problems, SIAM Review, 47 (2005),
3–40.

[29] Y. Yamamoto and T. Fukaya, Differential qd algorithm for totally
nonnegative band matrices: convergence properties and error analysis,
JSIAM Letters, 1 (2009), 56–59.

[30] S. Yamazaki, On the system of non-linear differential equations ẏk =
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