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Abstract

Some numerical algorithms are known to be related to discrete-time integrable systems, where it is
essential that quantities to be computed (for example, eigenvalues and singular values of a matrix, poles of
a continued fraction) are conserved quantities. In this paper, a new application of conserved quantities of
integrable systems to numerical algorithms is presented. FraN (N > 2) real upper bidiagonal matrix
B where all the diagonals and the upper subdiagonals are positive, conserved quantitRsB)Mj¢*)

(M =1,2,--.) of the discrete finite Toda equation give a sequence of lower bounds of the minimal singular
value of B. Recurrence relations for computing higher order conserved quantitie8 TR(Y")~%) are also
derived.
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1 Introduction

As a numerical method for non-linearfidirential equations which possess conserved quantities, we can use 1)
the well-known Runge-Kutta method, 2) symplectic integrators (see [3], for example,) to Hamiltonian systems,
or 3) energy preserving methods (see [7], for example). In the methods 1) and 2), conserved quantities can be
used as an indicator for precision offégrence schemes. Namely, dfeience scheme is regarded as a better
scheme if deviation of conserved quantities from the correct value during time evolution is smaller than those
of other schemes. On the other hand, in the method 3)ffereince scheme is designed so as to preserve

a conserved quantity such as an energy function. Therefore, conserved quantities are important in design of
difference schemes or verification of their precision.

There are some examples where a special typeftdrdnce scheme of an integrable system becomes not
only a numerical method but also a recurrence relation of a particular numerical algorithm. The resulting
discrete-time dynamical systems have fiisient number of conserved quantities. We can give a few examples
of such sets of a nonlinear integrable system and a numerical algorithm as follows: (i) The discrete finite Toda
equation [5] and the qd (quotientffiirence) algorithm [12] for computing of matrix eigenvalues and so on.
This relationship is pointed out by Sogo [14]. (ii) The discrete potential KdV (Korteweg-de Vries) equation [1]
and thee-algorithm [16] which is used to accelerate convergence of a sequence. This relationship is pointed out
by Papageorgioet al. [10]. (iii) From a discrete-time Lotka-Volterra equation [4], the dLV (discrete Lotka-
Volterra) algorithm which is used in computation of singular values of a matrix is presented by Tsugimoto
al. [15]. Applications of integrable systems to numerical algorithm are based on the fact that quantities to
be computed, for example, eigenvalues and singular values of a matrix and poles of a continued fraction, are
conserved under the time evolution of the corresponding discrete integrable system.

In this paper, a new application of conserved quantities of the discrete finite Toda equation of the gd form,
which is shown in Section 2, to numerical algorithm is presentedBLet(B; j) denote arN x N (N > 2) real
upper bidiagonal matrix where all the diagonals and the upper subdiagonals are positive. L&ixHea
matrix denote its transpose. Let the trace of inverse powers of the positive definite Biairbe denoted by

Ju(B) = Tr(((B"B)M)™) M=12--) (1)
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Note that it holds

N
1
Im(B) = —_— M=12---). 2
v(B) zl] B ( ) )
It is shown in Section 2 thaly(B) are conserved quantities of the discrete finite Toda equation of the qd form.
Let singular values dB beoy(B), - - - , on(B) such that1(B) > --- > on(B) > 0. Since all the subdiagonals

of B are nonzero, the singular values are simple [9, p.124].
In this paper, we present two results. The first is as follows. It is shown that the quantities

Om(B) = (Ju(B)) 7 M=12-) 3)

give a sequence of lower bounds of the minimal singular valy@) of B. Therefore, from the conserved
guantitiesJy(B), a sequence of lower bounds of the minimal singular valuB o&én be obtained. The bound
0m(B) is named the generalized Newton lower bound of oMéan Section 3. These lower bounds are shown
to increase monotonically, that 8;(B) < 62(B) < - - - < on(B) and converges ton(B) asM goes to infinity.

The second result is as follows. A simple recurrence formula is derived for computing diagonals of the
inverses (BTB)M)~1 and (BB")M)! for a fixed positive integeM. This formula is useful for computing the
higher order conserved quantitigg(B) and the sequence of increasing lower bounds.

This paper is organized as follows. In Section 2, as a preliminary, we give a Lax form and conserved
guantities of the discrete finite Toda equation of the gd form. In Section 3, we present a sequence of lower
bounds of the minimal singular value of an upper bidiagonal m#tribn Section 4, for a fixed positive integer
M, a formula for computation of the diagonals d{(B)™)~* and (BB")M)~! which enables us to compute the
conserved quantityy (B) is given in a form of recurrence relations. Derivation of these recurrence relations is
also described. Moreover, computational complexity for the conserved quaw(iB) is estimated. In Section
5, concluding remarks are presented.

2 The discrete Lax form of the discrete finite Toda equation of the qd form:
Preliminary

Let us consider the discrete finite Toda equation [5]

li(t +8) = Ii(t) = 83(Vi(t) — Vi_a(t + 8)) (i=1---,N),
li(t+ 8)Vi(t + 8) = lina(t)Vi(t) (i=1--,N-1), 4
Vo(t) = Vn(t) = 0.

The Lax form and conserved quantities of the discrete finite Toda equation (4) are given as follows in [5]. Let
matricesL(t) andR(t) denote

1 o)
Vi) 1

L(t) = dVo(t) 1 :
o) | 6VN_.1(t) 1
() & o)

lo(t)  ®
R(t) = la(t) - :
SN

O In(t)

respectively. Eq. (4) is expressed as

R(L() = L(t + O)R(t + 9).



Let us introduce matrice&(t) defined as
A(t) = L()R().
Then, we have a discrete Lax form of Eq. (4) as
At +8) = L(t + d)R(t + 8) = R()L(t) = (L)) TAM)L(L). (5)

Thus, since eigenvalues 8{t) are conserved under the time evolutios t + 8, Tr((A(t))™) for an arbitrary
positive integemis independent of timeand is a conserved quantity of Eq. (4).
The cases where the integeris positive are usually considered. For example AT} and Tr(A(t))?)
are corresponding to momentum and energy conservation laws, respectively. However, note that in the case
where the integem is negative, these traces are also conserved quantities. Namely, tracagt))(j?)
(mf =1,2,---) are conserved.
Similarly to [8, 11], let us consider the following transformation

1i(no) = o (i=1-,N),
el(n) _
V|(n6):§ (|:0,"',N)
forn=0,1,2,---. By this transform to Eq. (4), We then obtain recurrence relations
q(ln+1) — q(1n) + e(ln)’
g g™ = e (=1 .N-1)
g+ eV =" + & (=2-.N), ©®)
ef\'l‘) =0

of the qd algorithm by Rutishauser [12]. See also [5, 14]. Let us call Eq. (6) the discrete finite Toda equation of
the gd form. In this paper, let us consider cases where aqi(?ﬁei =1---,N) andel(o) i=21---,N-1)are
positive. Foralln=0,1,2,---, all the quantitie$1i(”) i=1---,N) andel(”) (i=1---,N- 1) obtained from

the recurrence relations (6) are positive [13]. Let us consider symmetric positive definite tridiagonal matrix

o Vel 0
N
HM = \/@
qgn—)legl)l
0 L, e,
forn=0,1,2,---. The matrixH®™ is decomposed as
H® = (BMTBM, (7)

whereB™ is

BM —




Let us introduce a diagonal matr(™ and a lower bidiagonal matri®™ defined as

1 (i=1),

D(n) = dlag(dg_n), . d§\|n)) dl(n) = i-1 ef(n) . ,
|1 <5 @<i<N),
k=1 qk

qg{‘) o
n 4
€ %
G = & ,
MM
O -1 On
respectively, fon=0,1,2,---. Moreover, let us introduce a diagonal matb¥) defined as
S ) () Q) o )
DM = diagd}", - ,d{) 4V = d” (=1-.N)
Gi
forn=0,1,2,---. LetU® pe
u® = (M)~ pm (n=0,1,2,---).

Then, time evolution of Eq. (6) is expressed as the form of similarity transform,
HM+D) — (U(n))—lH(n)U(n) (n=0,1,2,---).

This gives a Lax form of Eq. (6). We have the following remark.

Remark 2.1
The traces Tr(®™)TBM)™ (m= +1, +2,---) are conserved quantities of the discrete finite Toda equation
of the qd form for the initial valueqi(o) i=21---,N) andel(o) i=21---,N-1).

On the discussion of conserved quantities, the case wher@ositive has been usually considered. In this
paper, we focus on the case wherés negative.

3 Conserved guantities of the discrete finite Toda equation of the gd form and
lower bounds of the minimal singular value

First, in this paper, for a fixed positive integdr, we show that the conserved quantlfy(B™) = Tr(((B™)T B(M)M)-1

gives a lower bound of the minimal singular valueB$P. Note that arbitrary upper bidiagonal matBxwhere

all the diagonals and the upper subdiagonals are positive can be used as the initiaBffatiiherefore, we
write B = BO). Let us consider characteristic equation of the positive definite marniBjM,

det(B"B)M - A1) = 0, (8)

wherel is theN x N unit matrix, for a fixed positive intega¥l. Applying once iteration of the well-known
Newton method to Eq. (8) starting froin= 0, we have Jy(B))™*. Note that (yu(B))™! gives a lower bound
of the minimal eigenvalue{(B) of the matrix 87B)™. Sincer{"(B) = (on(B))?M, whereon(B) is the

minimal singular value oB, we obtain a lower bounéiy(B) = (JM(B))‘ﬁ of on(B). Namely,
Om(B) < on(B). )

In numerical analysish1(B) is presented in the preceding works as a lower bouns\¢B). The lower
bound6,(B) is presented by Fernando and Parlett [2]. Since the lower boap(B) (M = 1,2,---) are
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obtained from Eqg. (8) by the Newton method and this argument is a generalization of those in [2], we name
these bounds "the generalized Newton lower bound of okMér These lower bounds have the following
properties.

Theorem 3.1
The generalized Newton lower bounds increase monotonically, that is,

01(B) < 02(B) < - -+ < on(B). (10)

The generalized Newton lower bounds convergey¢B), the minimal singular value oB, as M goes to
infinity, namely,

lim 6m(B) = on(B). (11)

The properties in Theorem 3.1 can readily be proved. For an arbitrary positive iMe@gt,1(B)/6m(B) >
1 holds from

N M+1
(OM (B) )ZM(M+1) [; ( (B))ZM ]
Om(B)

N M
(Z © (B»ZW]

i=1

M+1
[Z (o.(B))ZM) Z (o.(B))ZM

M 1
(((’N(B))2 Z (o (B))zm] (on(B))M

with consideration of Egs. (2) and (3). Therefore, we have the inequality (10). Next, for an arbitrary positive
integerM, it holds
N-1

B\ *
om(B) = [Z © (B))ZM] = on(B) [1+ Zl“ ((::(B) ) ]

from Egs. (2) and (3). Then, we obtain Eqg. (11) by taking the limivlof> oo for this equation. o

>1

1

L
2M

4 Recurrence relations for diagonals of required inverse

In the previous section, we show that a sequence of lower bounds of the minimal singular vBlue BY,
whereB(© gives an initial value of the discrete finite Toda equation (6) of the qd form, is givéy EB) =
(Jm(B))"2 (M = 1,2,---). Considering that Tr(@TB)M)~1) = Tr(BBT)M)™}) (M = 1,2,---), if all the
diagonals of (B"B)M)~ or ((BBT)M)~! are obtained, we can compute the conserved quaniijéB) of Eq.
(6). A simple way to compute the diagonals d{B)M)~* or (BBT)M)~1 for higher ordeM is required since
higher order conserved quantify, (B) gives a better estimation of the minimal singular valuefB) of B
from Theorem 3.1.

Here we fix the notations used in the next theorem. Let the diagonal element and the upper subdiagonal
element in the—th row of B be denoted bY; andc;, respectively. That is,

biEBi,i>0 (L<i<N),



For a fixed positive integavl, let us set

vim = (v = (BTB)M ™,

wm — (VVi(,T)) = ((BBT)™,

(@ = (XI(Q)) = (B(BT B)Q)—l - ((BBT)QB)—L
v = (Yi(,?) = (X@T

(12)

for integersm (0 < m < M) andq (0 < g < M — 1), respectively. For simplicity, we wrlte(m) = Vl(’I“),
W™ = W, X = X9 andy®@ = v for 1 < i < N. LetZ? be defined by

Zi(q) (Q) y(Q)) (13)

for1<i < NandO0< g< M - 1. Note that we have
29 = 25X = 2@ (L<i<N) (14)

from the definition (13) sinc&® = y@ (1 <i < N).
Then, the following theorem which is useful for computing the higher order conserved quantities of the
discrete finite Toda equation of the qd form holds.

Theorem 4.1

Let M be a fixed positive integer. All the diagonal eleme\rﬁ@ andvvi(M) of inverse matrices ' B)M)~!
and (BBT)M)~1, respectively, are obtained through a finite number of arithmetics by using the following simple
recurrence relations. The recurrence relations are

VO =1 (L<i<N), (15)
w? =1 (1<i<N), (16)
®_ L1 (1
WP = b_zw(l\? ’ (17)
N
VP = (c,zvff)l + 2P Pty (1<i<N-1) (18)
WP = 1 WP (19)
1 b2 l >
Wl(p) b2 (2, (p) )+ %(p 1_ p—l)) (2<i<N), (20)
29 = 2/, (21)
29 = 49 4 2/ — W@, (2<i<N), (22)

for integersp andqg such that 1< p < M and 0< g < M — 1. Instead of Egs. (21) and (22), the following
relations can be used.

A9 2W(q) (23)
Z.-(q) =49 1 ow® -\, (1<i<N-1) (24)

for integersq suchthat.cg<M-1. O

As preparation for proof of Theorem 4.1, we show some properties of the inveBeawod present four
lemmas. For convenience, let us wiSe= (S;j) = B~L. SinceBS = |, we obtain

S = oSy (<i<i<N),

1 o
Sii=1g (1<i=j<N), (25)
Sij=0 (L<j<igN).



SinceSB = |, the (, j) element of the matrix produ@Biis zero ifi < j. Then, we have

-1
Si!j = —-——

b Sij-1 (I<i<j<N). (26)
i

Considering thatg")~! = ST, we have

VP = x(P-DgGT = gy(P-1) = WP-1)ST
WP = y(P-1g = gTx(P-1) = gTy(P-1)g
X@ = vAg = SWD,

Y@ —\w@gT = sTy(@

(27)

from the definition (12).

Let P = (Pi;j) andQ = (Q;,j) beN x N (N > 2) matrices having some special relationshifstdNVe have
the following useful four lemmas.

Lemma 4.2
If P =SQholds betweerP andQ throughS, then the elements & andQ satisfy
Proof.

Let j be an integer such thatd j < N. The elemenP, j is expressed with; j as
N N
Pij= Z SikQkj = Z SikQkj =SiiQij+ Sii+1Qir1,j + aij
k=1 k=i

1
= EQi,j +( b|+ —Si |)Q|+l] + Qi j
1
R

where eachy; j is defined by

——Qirj+oij (1<i<N-1), (29)

EZSNQM (N>3, 1<i<N-2),
k=i+2

0 (N>2 i=N-1)

O'LJ

The elemenP;,  is also expressed wiidy j. If N> 3 and 1<i < N -2, it holds

N N
b.
Pit1j = Z Sit1kQkj = Si+1i+1Qi+sj + Z (—Elsi,k) Qxj

k—i+1 k=i+2
Q- 2o (30)
“pQn T g
If N>2andi =N -1, it holds
: 1 b
P .= S =S 1= — O — 2 31
i+1,] k;:L I+1,ka,] I+l,|+1QI+1,] bi+1 QI+1,] G i, ( )
From Egs. (29), (30) and (31), we obtain
b; b; 1 b;
Pl+l]+_lplj_bl+ Qi+vj— C0hj+ QI]__QI+lJ+EIO~Ij
:EQi’j (<i<N-land1l<j<N). o
i



Lemma 4.3
If P=QS' holds betweerP andQ throughS, then the elements ¢t andQ satisfy

bj 1 . .
Pi,j+1+C—JPi,j :C_Qi’j (l<i<Nandl<j<N-1).oO
j j

Lemma 4.4
If P =STQ holds betweerP andQ throughS, then the elements ¢t andQ satisfy
Pi- 1J+C£P|]:_QI] (2<i<Nand1<j<N).o
(|
Lemma 4.5

If P =QSholds betweerP andQ throughS, then the elements ¢ andQ satisfy

bj
Pij- l+_PIj:_Q|] (l<i<Nand2<j<N).oO
Cj—l Cj—

Lemmas 4.3, 4.4 and 4.5 can be proved along the same way as in Lemma 4.2.

Now we prove Theorem 4.1.

Egs. (15) and (16) hold sina&® = | andW(© = | hold from the definition (12).

Let us derive the recurrence relation (18) véP?. In the following derivation, is an integer such that
1<i<N-1 The elemenviff’ll is expressed in two ways from Lemmas 4.2 and 4.3. Using the lemmas, we
obtain

® __Gm, 1ye

V|,|+1 - b |+1 + b YI i+1 ° (32)
® _ biw, 1 e

Vi,|+l V( Ci Xi . (33)

Since the right hand sides of Egs. (32) and (33) are equal to each other, we have

2
v G ey Gy
Vi b2V|+l + Exi szl i+1 (34)

on the diagonals®. On Yi(ﬁjll) in the right hand side of Eq. (34), we obtain

-0 _ _Bien, 1 e
View =g oW (35)

from Lemma 4.3. Substituting Eqg. (35) into Eq. (34), finally we derive

(p) 2 (p) (p 1) p-1)
| bz(cl |+1 W( )

on the diagonals(p) of the inverse matrix @ B)P)~L. This gives Eq. (18) in Theorem 4.1.
Next, let us derive the recurrence relations (ZO)W§P? and (22) onz @ in similar ways tovi(p). In the

following derivation,i is an integer such that2i < N. From Lemmas 4 4 and 4.5, we have

wo, = _Gtym Loy B e y(p—l)

ii-1 bi |1 b ii—1 Ci—l



From Lemma 4.5, we have

-0 __ P on, 1 ey

ii—1 Ci—l i Ci_1 i

Then, we obtain Eq. (20) in Theorem 4.1. From Lemmas 4.2 and 4.5, we have

b 1 1 bi
x@ _ _D-1@ W(q) ENCIN _V(q)
ii—1 CI 1 | 1 Ci—].XI Gi_1

That is,
XI(Q) by lx(q) (q) _Wi(g)r

Doubling both hand sides, we obtain Eg. (22) in Theorem 4.1 with consideration of Eq. (14

Next, let us consider the valueswﬁ’),w(lp) andz(lq) which are the end points of the sequen@é W(p) and

(

ziq) for 1 <i < N on eachp or g, respectively. From Eq. (27), we derive
N N
o = Z S SuP ST, = (Sun)PWEY = 1 W(p—l)
NN (36)
=3 Z STV 1 = (S = blz\,(lp—l)_
k=1 1= 1

This is because the matr&is upper triangular. These are Eqgs. (17) and (19) in Theorem 4.1. By a manner
which is similar to Eqg. (36), we obtain

1
(q) Z V(q) _ v{?}s 11= b_1\,(100

from Eq. (27). Thus, we have
Z(l 2b X(Q) 2\/(51)

from Eq. (14). This is Eqg. (21) in Theorem 4.1.
Finally, we derive Egs. (23) and (24). From Eq. (22), we have

(d) a) a)
Z|+1 Zl( +2V|(+l

w®) (L<i<N-1)
Therefore, it is obvious that Eq. (24) holds. Similarly to the derivation of Eq. (21), it holds

N N
l
yﬁl) — Z W(Q) Sk N = Z Wl(\lq?(SN W(Q) \N(Q)
k=1 k=1

Thus, we have
29 = 2y @ = 20

from EqQ. (14). This gives Eq. (23) in Theorem 4.1.
Now all the recurrence relations in Theorem 4.1 have been derived. This completes the proof of Theorem
41. O

On the recurrence relations from (17) through (20) in Theorem 4.1, let us consider the recurrence relations
for p = 1. Substitutingy = 0 into the recurrence relations (21) and (22), and using Eqgs. (15) and (16), we can
readily derive;.(o) = 2 for 1< i < N. Then, substitutingg = 1 into the recurrence relations from (17) through
(20) and using Egs. (15) and (16), we have the following remark.

Remark 4.6



The recurrence relations from (17) through (20) in Theorem 4.Dbferl are simplified to the recurrence
relations

ot (37)
N b2N

Yo b_lz (AW, + 1) (1<i<N-1), (38)
1

Wi = = (39)
1

Wi = b_liz (WY + 1) (2<i<N). (40)

Theorem 4.1 foM = 1 is reduced to these recurrence relations.
In numerical analysis, there exist some preceding works on some limited cases.

Remark 4.7

A formula related to Egs. from (37) to (40) for computing diagonals of the inva88€ ! is known. See
[2, 6, 13], for example. Another formula for computing diagonals of the inveBBY}?)~! is presented by
von Matt [6].

Finally in this section, for a fixed positive integht, we consider computational complexity for the trace
Jwm (B) with the formula in Theorem 4.1. The following corollary of Theorem 4.1 holds.

Corollary 4.8

The tracedy(B) for a fixedM can be obtained withi@(N M) operations through the formula in Theorem
4.1. O
Proof.

We estimate computational complexity for computing all the diagonalsB3f&jM)~2. Let us consider the
case where all the quantitiv@, vvi(Q) and;.(q) foralli (1 <i < N)andqg(0<qg< M -1)are obtained before
obtaining the diagonal@,"\") for 1 <i < N. These quantities are ficient to determine all the diagona)lg\")
for 1 <i < N. Asis discussed in the previous subsectidl, w(® andZ® for 1 < i < N are given as/” = 1,
w? = 1 andZ? = 2, respectively. Then, the number of the remaining quantities to be obtaif&aNs — 2).
Each of these quantities can be obtained with within at most six times of the four basic operations of arithmetic
according to the recurrence relations in Theorem. Then, all the diagonaB'@){')~* are obtained less than
18N M operations. O

5 Concluding remarks

In this paper, a new application of conserved quantities of discrete-time integrable systems to numerical al-
gorithm is presented. Starting from the Lax form of the discrete finite Toda equation (6) of the qd form, we
see that tracedy (B™) = Tr((BM)"BMM)-1) (M = 1,2,---) are conserved quantities of Eq. (6) for each
nn=20,12---). Itis shown that the trace,;(B) (M = 1,2,---) give a sequence of lower bounds of the
minimal singular valugy(B) of B = B which monotonically goes to the minimal singular valugviis- .
These bounds are defined by applying the Newton method to the characteristic equation (8) as described in
Section 3. Therefore we name these bounds the generalized Newton bounds in this paper.

Secondly, recurrence relations for computing higher order conserved quai(iB} of Eq. (6) are pre-
sented. Computational complexity fag(B) is shown to beD(N M).
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