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Abstract

Some numerical algorithms are known to be related to discrete-time integrable systems, where it is
essential that quantities to be computed (for example, eigenvalues and singular values of a matrix, poles of
a continued fraction) are conserved quantities. In this paper, a new application of conserved quantities of
integrable systems to numerical algorithms is presented. For anN×N (N ≥ 2) real upper bidiagonal matrix
B where all the diagonals and the upper subdiagonals are positive, conserved quantities Tr(((BT B)M)−1)
(M = 1,2, · · · ) of the discrete finite Toda equation give a sequence of lower bounds of the minimal singular
value ofB. Recurrence relations for computing higher order conserved quantities Tr(((BT B)M)−1) are also
derived.
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1 Introduction

As a numerical method for non-linear differential equations which possess conserved quantities, we can use 1)
the well-known Runge-Kutta method, 2) symplectic integrators (see [3], for example,) to Hamiltonian systems,
or 3) energy preserving methods (see [7], for example). In the methods 1) and 2), conserved quantities can be
used as an indicator for precision of difference schemes. Namely, a difference scheme is regarded as a better
scheme if deviation of conserved quantities from the correct value during time evolution is smaller than those
of other schemes. On the other hand, in the method 3), a difference scheme is designed so as to preserve
a conserved quantity such as an energy function. Therefore, conserved quantities are important in design of
difference schemes or verification of their precision.

There are some examples where a special type of difference scheme of an integrable system becomes not
only a numerical method but also a recurrence relation of a particular numerical algorithm. The resulting
discrete-time dynamical systems have a sufficient number of conserved quantities. We can give a few examples
of such sets of a nonlinear integrable system and a numerical algorithm as follows: (i) The discrete finite Toda
equation [5] and the qd (quotient difference) algorithm [12] for computing of matrix eigenvalues and so on.
This relationship is pointed out by Sogo [14]. (ii) The discrete potential KdV (Korteweg-de Vries) equation [1]
and theε-algorithm [16] which is used to accelerate convergence of a sequence. This relationship is pointed out
by Papageorgiouet al. [10]. (iii) From a discrete-time Lotka-Volterra equation [4], the dLV (discrete Lotka-
Volterra) algorithm which is used in computation of singular values of a matrix is presented by Tsujimotoet
al. [15]. Applications of integrable systems to numerical algorithm are based on the fact that quantities to
be computed, for example, eigenvalues and singular values of a matrix and poles of a continued fraction, are
conserved under the time evolution of the corresponding discrete integrable system.

In this paper, a new application of conserved quantities of the discrete finite Toda equation of the qd form,
which is shown in Section 2, to numerical algorithm is presented. LetB = (Bi, j) denote anN × N (N ≥ 2) real
upper bidiagonal matrix where all the diagonals and the upper subdiagonals are positive. Let the suffix T of a
matrix denote its transpose. Let the trace of inverse powers of the positive definite matrixBT B be denoted by

JM(B) ≡ Tr(((BT B)M)−1) (M = 1, 2, · · · ). (1)
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Note that it holds

JM(B) =
N∑

i=1

1
(σi(B))2M

(M = 1, 2, · · · ). (2)

It is shown in Section 2 thatJM(B) are conserved quantities of the discrete finite Toda equation of the qd form.
Let singular values ofB beσ1(B), · · · , σN(B) such thatσ1(B) > · · · > σN(B) > 0. Since all the subdiagonals

of B are nonzero, the singular values are simple [9, p.124].
In this paper, we present two results. The first is as follows. It is shown that the quantities

θM(B) ≡ (JM(B))−
1

2M (M = 1,2, · · · ) (3)

give a sequence of lower bounds of the minimal singular valueσN(B) of B. Therefore, from the conserved
quantitiesJM(B), a sequence of lower bounds of the minimal singular value ofB can be obtained. The bound
θM(B) is named the generalized Newton lower bound of orderM in Section 3. These lower bounds are shown
to increase monotonically, that is,θ1(B) < θ2(B) < · · · < σN(B) and converges toσN(B) asM goes to infinity.

The second result is as follows. A simple recurrence formula is derived for computing diagonals of the
inverses ((BT B)M)−1 and ((BBT)M)−1 for a fixed positive integerM. This formula is useful for computing the
higher order conserved quantitiesJM(B) and the sequence of increasing lower bounds.

This paper is organized as follows. In Section 2, as a preliminary, we give a Lax form and conserved
quantities of the discrete finite Toda equation of the qd form. In Section 3, we present a sequence of lower
bounds of the minimal singular value of an upper bidiagonal matrixB. In Section 4, for a fixed positive integer
M, a formula for computation of the diagonals of ((BT B)M)−1 and ((BBT)M)−1 which enables us to compute the
conserved quantityJM(B) is given in a form of recurrence relations. Derivation of these recurrence relations is
also described. Moreover, computational complexity for the conserved quantityJM(B) is estimated. In Section
5, concluding remarks are presented.

2 The discrete Lax form of the discrete finite Toda equation of the qd form:
Preliminary

Let us consider the discrete finite Toda equation [5]

I i(t + δ) − I i(t) = δ
2(Vi(t) − Vi−1(t + δ)) (i = 1, · · · ,N),

I i(t + δ)Vi(t + δ) = I i+1(t)Vi(t) (i = 1, · · · ,N − 1), (4)

V0(t) = VN(t) = 0.

The Lax form and conserved quantities of the discrete finite Toda equation (4) are given as follows in [5]. Let
matricesL(t) andR(t) denote

L(t) ≡



1 O
δV1(t) 1

δV2(t) 1
. . .

. . .

O δVN−1(t) 1


,

R(t) ≡



I1(t) δ O
I2(t) δ

I3(t)
. . .
. . . δ

O IN(t)


,

respectively. Eq. (4) is expressed as

R(t)L(t) = L(t + δ)R(t + δ).
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Let us introduce matricesA(t) defined as

A(t) ≡ L(t)R(t).

Then, we have a discrete Lax form of Eq. (4) as

A(t + δ) = L(t + δ)R(t + δ) = R(t)L(t) = (L(t))−1A(t)L(t). (5)

Thus, since eigenvalues ofA(t) are conserved under the time evolutiont → t + δ, Tr((A(t))m) for an arbitrary
positive integerm is independent of timet and is a conserved quantity of Eq. (4).

The cases where the integerm is positive are usually considered. For example, Tr(A(t)) and Tr((A(t))2)
are corresponding to momentum and energy conservation laws, respectively. However, note that in the case
where the integerm is negative, these traces are also conserved quantities. Namely, traces Tr(((A(t))m′)−1)
(m′ = 1,2, · · · ) are conserved.

Similarly to [8, 11], let us consider the following transformation

I i(nδ) = q(n)
i (i = 1, · · · ,N),

Vi(nδ) =
e(n)

i

δ2
(i = 0, · · · ,N)

for n = 0,1,2, · · · . By this transform to Eq. (4), We then obtain recurrence relations

q(n+1)
1 = q(n)

1 + e(n)
1 ,

q(n+1)
i e(n+1)

i = q(n)
i+1e(n)

i (i = 1, · · · ,N − 1),

q(n+1)
i + e(n+1)

i−1 = q(n)
i + e(n)

i (i = 2, · · · ,N), (6)

e(n)
N = 0

of the qd algorithm by Rutishauser [12]. See also [5, 14]. Let us call Eq. (6) the discrete finite Toda equation of
the qd form. In this paper, let us consider cases where all theq(0)

i (i = 1, · · · ,N) ande(0)
i (i = 1, · · · ,N − 1) are

positive. For alln = 0, 1, 2, · · · , all the quantitiesq(n)
i (i = 1, · · · ,N) ande(n)

i (i = 1, · · · ,N − 1) obtained from
the recurrence relations (6) are positive [13]. Let us consider symmetric positive definite tridiagonal matrix

H (n) =



q(n)
1

√
q(n)

1 e(n)
1 O√

q(n)
1 e(n)

1 q(n)
2 + e(n)

1

√
q(n)

2 e(n)
2√

q(n)
2 e(n)

2
. . .

. . .

. . .
. . .

√
q(n)

n−1e(n)
n−1

O
√

q(n)
n−1e(n)

n−1 q(n)
n + e(n)

n−1


for n = 0,1,2, · · · . The matrixH (n) is decomposed as

H (n) = (B(n))T B(n), (7)

whereB(n) is

B(n) =



√
q(n)

1

√
e(n)

1 O√
q(n)

2

√
e(n)

2
. . .

. . .

. . .
√

e(n)
N−1

O
√

q(n)
N


.
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Let us introduce a diagonal matrixD(n) and a lower bidiagonal matrixG(n) defined as

D(n) ≡ diag(d(n)
1 , · · · , d

(n)
N )

d(n)
i ≡


1 (i = 1),
i−1∏
k=1

√√√
e(n)

k

q(n)
k

(2 ≤ i ≤ N),

 ,

G(n) ≡



q(n)
1 O

e(n)
1 q(n)

2

e(n)
2
. . .
. . .

. . .

O e(n)
N−1 q(n)

N


,

respectively, forn = 0, 1, 2, · · · . Moreover, let us introduce a diagonal matrixD̃(n) defined as

D̃(n) ≡ diag(d̃(n)
1 , · · · , d̃

(n)
N )

d̃(n)
i ≡

√√√
q(n)

1

q(n)
i

· d(n)
i (i = 1, · · · ,N)


for n = 0,1,2, · · · . Let U(n) be

U(n) ≡ (D(n))−1G(n) D̃(n) (n = 0,1,2, · · · ).

Then, time evolution of Eq. (6) is expressed as the form of similarity transform,

H (n+1) = (U(n))−1H (n)U(n) (n = 0,1,2, · · · ).

This gives a Lax form of Eq. (6). We have the following remark.

Remark 2.1
The traces Tr(((B(n))T B(n))m) (m= ±1,±2, · · · ) are conserved quantities of the discrete finite Toda equation

of the qd form for the initial valuesq(0)
i (i = 1, · · · ,N) ande(0)

i (i = 1, · · · ,N − 1).

On the discussion of conserved quantities, the case wherem is positive has been usually considered. In this
paper, we focus on the case wherem is negative.

3 Conserved quantities of the discrete finite Toda equation of the qd form and
lower bounds of the minimal singular value

First, in this paper, for a fixed positive integerM, we show that the conserved quantityJM(B(n)) = Tr((((B(n))T B(n))M)−1)
gives a lower bound of the minimal singular value ofB(n). Note that arbitrary upper bidiagonal matrixB where
all the diagonals and the upper subdiagonals are positive can be used as the initial matrixB(0). Therefore, we
write B = B(0). Let us consider characteristic equation of the positive definite matrix (BT B)M,

det((BT B)M − λI ) = 0, (8)

whereI is theN × N unit matrix, for a fixed positive integerM. Applying once iteration of the well-known
Newton method to Eq. (8) starting fromλ = 0, we have (JM(B))−1. Note that (JM(B))−1 gives a lower bound
of the minimal eigenvalueλ(M)

N (B) of the matrix (BT B)M. Sinceλ(M)
N (B) = (σN(B))2M, whereσN(B) is the

minimal singular value ofB, we obtain a lower boundθM(B) = (JM(B))−
1

2M of σN(B). Namely,

θM(B) < σN(B). (9)

In numerical analysis,θ1(B) is presented in the preceding works as a lower bound ofσN(B). The lower
boundθ1(B) is presented by Fernando and Parlett [2]. Since the lower boundsθM(B) (M = 1,2, · · · ) are
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obtained from Eq. (8) by the Newton method and this argument is a generalization of those in [2], we name
these bounds ”the generalized Newton lower bound of orderM”. These lower bounds have the following
properties.

Theorem 3.1
The generalized Newton lower bounds increase monotonically, that is,

θ1(B) < θ2(B) < · · · < σN(B). (10)

The generalized Newton lower bounds converge toσN(B), the minimal singular value ofB, as M goes to
infinity, namely,

lim
M→∞

θM(B) = σN(B). (11)

The properties in Theorem 3.1 can readily be proved. For an arbitrary positive integerM, θM+1(B)/θM(B) >
1 holds from

(
θM+1(B)
θM(B)

)2M(M+1)

=

 N∑
i=1

1
(σi(B))2M


M+1

 N∑
i=1

1
(σi(B))2M+2


M

>

 N∑
i=1

1
(σi(B))2M


M+1

 1
(σN(B))2

N∑
i=1

1
(σi(B))2M


M
=

N∑
i=1

1
(σi(B))2M

1
(σN(B))2M

> 1

with consideration of Eqs. (2) and (3). Therefore, we have the inequality (10). Next, for an arbitrary positive
integerM, it holds

θM(B) =

 N∑
i=1

1
(σi(B))2M


− 1

2M

= σN(B)

1+ N−1∑
i=1

(
σN(B)
σi(B)

)2M

− 1

2M

from Eqs. (2) and (3). Then, we obtain Eq. (11) by taking the limit ofM → ∞ for this equation. �

4 Recurrence relations for diagonals of required inverse

In the previous section, we show that a sequence of lower bounds of the minimal singular value ofB = B(0),
whereB(0) gives an initial value of the discrete finite Toda equation (6) of the qd form, is given asθM(B) =
(JM(B))−

1
2M (M = 1, 2, · · · ). Considering that Tr(((BT B)M)−1) = Tr(((BBT)M)−1) (M = 1,2, · · · ), if all the

diagonals of ((BT B)M)−1 or ((BBT)M)−1 are obtained, we can compute the conserved quantitiesJM(B) of Eq.
(6). A simple way to compute the diagonals of ((BT B)M)−1 or ((BBT)M)−1 for higher orderM is required since
higher order conserved quantityJM(B) gives a better estimation of the minimal singular value ofσN(B) of B
from Theorem 3.1.

Here we fix the notations used in the next theorem. Let the diagonal element and the upper subdiagonal
element in thei−th row of B be denoted bybi andci , respectively. That is,bi ≡ Bi,i > 0 (1≤ i ≤ N),

ci ≡ Bi,i+1 > 0 (1≤ i ≤ N − 1).
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For a fixed positive integerM, let us set
V(m) = (V(m)

i, j ) ≡ ((BT B)m)−1,

W(m) = (W(m)
i, j ) ≡ ((BBT)m)−1,

X(q) = (X(q)
i, j ) ≡ (B(BT B)q)−1 = ((BBT)qB)−1,

Y(q) = (Y(q)
i, j ) ≡ (X(q))T

(12)

for integersm (0 ≤ m ≤ M) andq (0 ≤ q ≤ M − 1), respectively. For simplicity, we writev(m)
i = V(m)

i,i ,

w(m)
i =W(m)

i,i , x(q)
i = X(q)

i,i andy(q)
i = Y(q)

i,i for 1 ≤ i ≤ N. Let z(q)
i be defined by

z(q)
i ≡ bi(x

(q)
i + y(q)

i ) (13)

for 1 ≤ i ≤ N and 0≤ q ≤ M − 1. Note that we have

z(q)
i = 2bi x

(q)
i = 2biy

(q)
i (1 ≤ i ≤ N) (14)

from the definition (13) sincex(q)
i = y(q)

i (1 ≤ i ≤ N).
Then, the following theorem which is useful for computing the higher order conserved quantities of the

discrete finite Toda equation of the qd form holds.

Theorem 4.1
Let M be a fixed positive integer. All the diagonal elementsv(M)

i andw(M)
i of inverse matrices ((BT B)M)−1

and ((BBT)M)−1, respectively, are obtained through a finite number of arithmetics by using the following simple
recurrence relations. The recurrence relations are

v(0)
i = 1 (1 ≤ i ≤ N), (15)

w(0)
i = 1 (1 ≤ i ≤ N), (16)

v(p)
N =

1

b2
N

w(p−1)
N , (17)

v(p)
i =

1

b2
i

(c2
i v(p)

i+1 + z(p−1)
i − w(p−1)

i ) (1 ≤ i ≤ N − 1), (18)

w(p)
1 =

1

b2
1

v(p−1)
1 , (19)

w(p)
i =

1

b2
i

(c2
i−1w(p)

i−1 + z(p−1)
i − v(p−1)

i ) (2 ≤ i ≤ N), (20)

z(q)
1 = 2v(q)

1 , (21)

z(q)
i = z(q)

i−1 + 2(v(q)
i − w(q)

i−1) (2 ≤ i ≤ N), (22)

for integersp andq such that 1≤ p ≤ M and 0≤ q ≤ M − 1. Instead of Eqs. (21) and (22), the following
relations can be used.

z(q)
N = 2w(q)

N , (23)

z(q)
i = z(q)

i+1 + 2(w(q)
i − v(q)

i+1) (1 ≤ i ≤ N − 1). (24)

for integersq such that 0≤ q ≤ M − 1. �

As preparation for proof of Theorem 4.1, we show some properties of the inverse ofB and present four
lemmas. For convenience, let us writeS= (Si, j) ≡ B−1. SinceBS= I , we obtain

Si+1, j = −
bi

ci
Si, j (1 ≤ i < j ≤ N),

Si, j =
1
bi

(1 ≤ i = j ≤ N),

Si, j = 0 (1 ≤ j < i ≤ N).

(25)
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SinceSB= I , the (i, j) element of the matrix productSB is zero if i < j. Then, we have

Si, j = −
c j−1

b j
Si, j−1 (1 ≤ i < j ≤ N). (26)

Considering that (BT)−1 = ST , we have
V(p) = X(p−1)ST = SY(p−1) = SW(p−1)ST ,

W(p) = Y(p−1)S= ST X(p−1) = STV(p−1)S,

X(q) = V(q)S= SW(q),

Y(q) =W(q)ST = STV(q)

(27)

from the definition (12).
Let P = (Pi, j) andQ = (Qi, j) be N × N (N ≥ 2) matrices having some special relationship toS. We have

the following useful four lemmas.

Lemma 4.2
If P = SQholds betweenP andQ throughS , then the elements ofP andQ satisfy

Pi+1, j +
bi

ci
Pi, j =

1
ci

Qi, j (1 ≤ i ≤ N − 1 and 1≤ j ≤ N). � (28)

Proof.
Let j be an integer such that 1≤ j ≤ N. The elementPi, j is expressed withαi, j as

Pi, j =

N∑
k=1

Si,kQk, j =

N∑
k=i

Si,kQk, j = Si,iQi, j + Si,i+1Qi+1, j + αi, j

=
1
bi

Qi, j +

(
− ci

bi+1
Si,i

)
Qi+1, j + αi, j

=
1
bi

Qi, j −
ci

bi+1bi
Qi+1, j + αi, j (1 ≤ i ≤ N − 1), (29)

where eachαi, j is defined by

αi, j ≡


N∑

k=i+2

Si,kQk, j (N ≥ 3, 1 ≤ i ≤ N − 2),

0 (N ≥ 2, i = N − 1).

The elementPi+1, j is also expressed withαi, j . If N ≥ 3 and 1≤ i ≤ N − 2, it holds

Pi+1, j =

N∑
k=i+1

Si+1,kQk, j = Si+1,i+1Qi+1, j +

N∑
k=i+2

(
−bi

ci
Si,k

)
Qk, j

=
1

bi+1
Qi+1, j −

bi

ci
αi, j . (30)

If N ≥ 2 andi = N − 1, it holds

Pi+1, j =

N∑
k=i+1

Si+1,kQk, j = Si+1,i+1Qi+1, j =
1

bi+1
Qi+1, j −

bi

ci
αi, j . (31)

From Eqs. (29), (30) and (31), we obtain

Pi+1, j +
bi

ci
Pi, j =

1
bi+1

Qi+1, j −
bi

ci
αi, j +

1
ci

Qi, j −
1

bi+1
Qi+1, j +

bi

ci
αi, j

=
1
ci

Qi, j (1 ≤ i ≤ N − 1 and 1≤ j ≤ N). �
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Lemma 4.3
If P = QST holds betweenP andQ throughS , then the elements ofP andQ satisfy

Pi, j+1 +
b j

c j
Pi, j =

1
c j

Qi, j (1 ≤ i ≤ N and 1≤ j ≤ N − 1). �

Lemma 4.4
If P = STQ holds betweenP andQ throughS , then the elements ofP andQ satisfy

Pi−1, j +
bi

ci−1
Pi, j =

1
ci−1

Qi, j (2 ≤ i ≤ N and 1≤ j ≤ N). �

Lemma 4.5
If P = QSholds betweenP andQ throughS , then the elements ofP andQ satisfy

Pi, j−1 +
b j

c j−1
Pi, j =

1
c j−1

Qi, j (1 ≤ i ≤ N and 2≤ j ≤ N). �

Lemmas 4.3, 4.4 and 4.5 can be proved along the same way as in Lemma 4.2.
Now we prove Theorem 4.1.
Eqs. (15) and (16) hold sinceV(0) = I andW(0) = I hold from the definition (12).
Let us derive the recurrence relation (18) onv(p)

i . In the following derivation,i is an integer such that

1 ≤ i ≤ N − 1. The elementV(p)
i,i+1 is expressed in two ways from Lemmas 4.2 and 4.3. Using the lemmas, we

obtain

V(p)
i,i+1 = −

ci

bi
v(p)

i+1 +
1
bi

Y(p−1)
i,i+1 , (32)

V(p)
i,i+1 = −

bi

ci
v(p)

i +
1
ci

x(p−1)
i . (33)

Since the right hand sides of Eqs. (32) and (33) are equal to each other, we have

v(p)
i =

c2
i

b2
i

v(p)
i+1 +

1
bi

x(p−1)
i − ci

b2
i

Y(p−1)
i,i+1 (34)

on the diagonalsv(p)
i . OnY(p−1)

i,i+1 in the right hand side of Eq. (34), we obtain

Y(p−1)
i,i+1 = −

bi

ci
y(p−1)

i +
1
ci

w(p−1)
i (35)

from Lemma 4.3. Substituting Eq. (35) into Eq. (34), finally we derive

v(p)
i =

1

b2
i

(c2
i v(p)

i+1 + z(p−1)
i − w(p−1)

i )

on the diagonalsv(p)
i of the inverse matrix ((BT B)p)−1. This gives Eq. (18) in Theorem 4.1.

Next, let us derive the recurrence relations (20) onw(p)
i and (22) onz(q)

i in similar ways tov(p)
i . In the

following derivation,i is an integer such that 2≤ i ≤ N. From Lemmas 4.4 and 4.5, we have

W(p)
i,i−1 = −

ci−1

bi
w(p)

i−1 +
1
bi

X(p−1)
i,i−1 = −

bi

ci−1
w(p)

i +
1

ci−1
y(p−1)

i .

8



From Lemma 4.5, we have

X(p−1)
i,i−1 = −

bi

ci−1
x(p−1)

i +
1

ci−1
v(p−1)

i .

Then, we obtain Eq. (20) in Theorem 4.1. From Lemmas 4.2 and 4.5, we have

X(q)
i,i−1 = −

bi−1

ci−1
x(q)

i−1 +
1

ci−1
w(q)

i−1 = −
bi

ci−1
x(q)

i +
1

ci−1
v(q)

i .

That is,

bi x
(q)
i = bi−1x(q)

i−1 + v(q)
i − w(q)

i−1.

Doubling both hand sides, we obtain Eq. (22) in Theorem 4.1 with consideration of Eq. (14).
Next, let us consider the values ofv(p)

N ,w
(p)
1 andz(q)

1 which are the end points of the sequencev(p)
i ,w

(p)
i and

z(q)
i for 1 ≤ i ≤ N on eachp or q, respectively. From Eq. (27), we derive

v(p)
N =

N∑
k=1

N∑
l=1

SN,kW
(p−1)
k,l ST

l,N = (SN,N)2W(p−1)
N,N =

1

b2
N

w(p−1)
N ,

w(p)
1 =

N∑
k=1

N∑
l=1

ST
1,kV

(p−1)
k,l Sl,1 = (S1,1)2V(p−1)

1,1 =
1

b2
1

v(p−1)
1 .

(36)

This is because the matrixS is upper triangular. These are Eqs. (17) and (19) in Theorem 4.1. By a manner
which is similar to Eq. (36), we obtain

x(q)
1 =

N∑
k=1

V(q)
1,kSk,1 = V(q)

1,1S1,1 =
1
b1

v(q)
1

from Eq. (27). Thus, we have

z(q)
1 = 2b1x(q)

1 = 2v(q)
1

from Eq. (14). This is Eq. (21) in Theorem 4.1.
Finally, we derive Eqs. (23) and (24). From Eq. (22), we have

z(q)
i+1 = z(q)

i + 2(v(q)
i+1 − w(q)

i ) (1 ≤ i ≤ N − 1).

Therefore, it is obvious that Eq. (24) holds. Similarly to the derivation of Eq. (21), it holds

y(q)
N =

N∑
k=1

W(q)
N,kS

T
k,N =

N∑
k=1

W(q)
N,kSN,k =W(q)

N,NSN,N =
1

bN
w(q)

N .

Thus, we have

z(q)
N = 2bNy(q)

N = 2w(q)
N

from Eq. (14). This gives Eq. (23) in Theorem 4.1.
Now all the recurrence relations in Theorem 4.1 have been derived. This completes the proof of Theorem

4.1. �

On the recurrence relations from (17) through (20) in Theorem 4.1, let us consider the recurrence relations
for p = 1. Substitutingq = 0 into the recurrence relations (21) and (22), and using Eqs. (15) and (16), we can
readily derivez(0)

i = 2 for 1 ≤ i ≤ N. Then, substitutingp = 1 into the recurrence relations from (17) through
(20) and using Eqs. (15) and (16), we have the following remark.

Remark 4.6
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The recurrence relations from (17) through (20) in Theorem 4.1 forp = 1 are simplified to the recurrence
relations

v(1)
N =

1

b2
N

, (37)

v(1)
i =

1

b2
i

(c2
i v(1)

i+1 + 1) (1 ≤ i ≤ N − 1), (38)

w(1)
1 =

1

b2
1

, (39)

w(1)
i =

1

b2
i

(c2
i−1w(1)

i−1 + 1) (2 ≤ i ≤ N). (40)

Theorem 4.1 forM = 1 is reduced to these recurrence relations.�

In numerical analysis, there exist some preceding works on some limited cases.

Remark 4.7
A formula related to Eqs. from (37) to (40) for computing diagonals of the inverse (BBT)−1 is known. See

[2, 6, 13], for example. Another formula for computing diagonals of the inverse ((BBT)2)−1 is presented by
von Matt [6].

Finally in this section, for a fixed positive integerM, we consider computational complexity for the trace
JM(B) with the formula in Theorem 4.1. The following corollary of Theorem 4.1 holds.

Corollary 4.8
The traceJM(B) for a fixedM can be obtained withinO(NM) operations through the formula in Theorem

4.1. �
Proof.

We estimate computational complexity for computing all the diagonals of ((BT B)M)−1. Let us consider the
case where all the quantitiesv(q)

i , w(q)
i andz(q)

i for all i (1 ≤ i ≤ N) andq (0 ≤ q ≤ M − 1) are obtained before

obtaining the diagonalsv(M)
i for 1 ≤ i ≤ N. These quantities are sufficient to determine all the diagonalsv(M)

i

for 1 ≤ i ≤ N. As is discussed in the previous subsection,v(0)
i , w(0)

i andz(0)
i for 1 ≤ i ≤ N are given asv(0)

i = 1,

w(0)
i = 1 andz(0)

i = 2, respectively. Then, the number of the remaining quantities to be obtained isN(3M − 2).
Each of these quantities can be obtained with within at most six times of the four basic operations of arithmetic
according to the recurrence relations in Theorem. Then, all the diagonals of ((BT B)M)−1 are obtained less than
18NM operations. �

5 Concluding remarks

In this paper, a new application of conserved quantities of discrete-time integrable systems to numerical al-
gorithm is presented. Starting from the Lax form of the discrete finite Toda equation (6) of the qd form, we
see that tracesJM(B(n)) = Tr((((B(n))T B(n))M)−1) (M = 1, 2, · · · ) are conserved quantities of Eq. (6) for each
n (n = 0, 1, 2, · · · ). It is shown that the tracesJM(B) (M = 1, 2, · · · ) give a sequence of lower bounds of the
minimal singular valueσN(B) of B = B(0) which monotonically goes to the minimal singular value asM → ∞.
These bounds are defined by applying the Newton method to the characteristic equation (8) as described in
Section 3. Therefore we name these bounds the generalized Newton bounds in this paper.

Secondly, recurrence relations for computing higher order conserved quantitiesJM(B) of Eq. (6) are pre-
sented. Computational complexity forJM(B) is shown to beO(NM).
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