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Abstract In this paper, a portfolio selection model with a combined Worst-case Con-
ditional Value-at-Risk (WCVaR) and Multi-Factor Model is proposed. It is shown that
the probability distributions in the definition of WCVaR can be determined by specifying
the mean vectors under the assumption of multivariate normal distribution with a fixed
variance-covariance matrix. The WCVaR minimization problem is then reformulated as a
linear programming problem. In our numerical experiments, to compare the proposed model
with the traditional mean variance model, we solve the two models using the real market
data in Japan and present the efficient frontiers to illustrate the difference. The comparison
reveals that the WCVaR minimization model is more robust than the traditional one in a
market recession period.

Keywords Portfolio Selection, Worst-Case Conditional Value-at-Risk, Multi-Factor Model,
Linear Programming

1 Introduction

In portfolio selection problems, it is commonly accepted that investors must deal with a trade-
off between expected returns and variance of returns. In Markowitz’s paper [12], the formula
of calculating the expected return on a portfolio was proposed, together with the variance
and covariance of the portfolio. By incorporating the theory of Markowitz [12], Sharp [16]
investigated the market equilibrium under conditions of risk and gave an asset pricing theory
known as CAPM. Ross [15] generalized the Security Market Line in CAPM to a multi-factor
case, which served as a basis for the Multi-Factor Model. After that, Fama and French [8]
showed a Multi-Factor Model containing three factors; the market index, the firm size and
the book to market equity.

On the other hand, it is noted that in the process of portfolio selection, the original data
brought to the model are not always accurate, i.e., it may be subject to some errors. Thus the
result may be influenced by perturbations in the parameters. To deal with such a situation,
Ben-Tal and Nemirovski [3] introduced a framework that can handle linear programming
problems with contaminated data. Assuming that the perturbations lie within an uncertainty
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set, they proposed a robust counterpart of the original optimization model to produce a
solution immune to the contaminated data.

The combination of the Multi-Factor Model with robust optimization was given by Gold-
farb and Iyengar [9], where they showed robust formulations of portfolio selection problems
by assuming statistical and modeling errors in the estimates of market parameters. Besides
considering the robust formulation of Markowitz’s mean-variance model, they studied the
robust portfolio selection with Value-at-Risk (VaR) constraints. However, because of the
existence of probability distribution with a long-tail on the loss side, VaR may fail to be a
proper measure of potential extreme loss. According to Artzner et al. [1], it does not satisfy
the rule of subadditivity. Instead of VaR, Rockafellar and Uryasev [13, 14] considered a new
measure called the conditional Value-at-Risk (CVaR). They focused on minimizing CVaR in
the portfolio optimization problem by constructing a new function Fβ, which is actually min-
imized instead of dealing with CVaR directly. The model has the advantage of calculating
CVaR efficiently while calculating VaR simultaneously. However, the function Fβ is con-
structed on the bases of a certain single probability distribution, which represents the future
joint probability distribution of some random variables and thus must be approximated by
simulations. Therefore, it may not be the same probability distribution as the one expected
by the investors in advance. At this point, it is necessary to impose an uncertainty on the
probability distribution that allows us to include some worst-case scenarios in a more general
form of the uncertainty set.

This idea led El Ghaoui, Oks and Oustry [4] to assume partial information on the return’s
distribution in the portfolio optimization problem and extend their approach to uncertainty
in a factor model. Specifically, they considered the set of allowable distributions, and defined
the worst-case VaR with respect to the set of probability distributions. Then they showed that
the optimization of the worst-case VaR can be reformulated as a semidefinite programming
problem (SDP), which can be solved efficiently by the interior point method.

As another attempt to deal with the set of probability distributions, Zhu and Fukushima
[17] proposed the concept of worst-case CVaR (WCVaR), which is proved to be a coherent
measure, and investigated the minimization of WCVaR under mixture distribution uncer-
tainty, box uncertainty, and ellipsoidal uncertainty. The problems are formulated as linear
programs and second-order cone programs (SOCPs). Then by applying the model to port-
folio management problems, they showed that the model is robust in practice, through some
numerical experiments using real market data. Because of the inadequate knowledge of the
set of probability distributions in the definition of WCVaR and the possibility of predicting
distribution parameters such as mean through a Multi-Factor Model, we may expect that if
there is a bridge that links the two fields together, then the model developed by Zhu and
Fukushima [17] can further be applied in the financial area.

This paper is devoted to the following three points. First, as an extension of the work
of Zhu and Fukushima [17], we aim at specifying the shape of probability distributions with
some assumptions on the portfolio selection problem. Second, by estimating the mean vector
of the underlying probability distribution through the Multi-Factor Model, we relate the
WCVaR minimization problem to the asset pricing theory. Third, to show the robustness of
our model for real market data, we compare it with Markowitz’s mean variance model.
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The remainder of this paper consists of five sections. In Section 2, we introduce the defi-
nition of WCVaR and propose a general formulation for the WCVaR minimization problem.
In Section 3, we explain the structure of Single Index and Multi-Factor Models based on
some previous studies and investigate the estimation of the mean vector of a probability dis-
tribution by the Multi-Factor Model. In Section 4, we present a formulation for the WCVaR
minimization problem based on the Factor-Model in portfolio management. In Section 5, in
order to obtain stable investments in different assets, we generate samples from the under-
lying probability distributions by quasi-Monte Carlo approach instead of the traditional one
and show some numerical results on the WCVaR model. In Section 6, the conclusion and
some future studies are mentioned.

2 WCVaR Formulation

Consider a portfolio selection problem, where a decision is represented by vector x and it is
restricted to a feasible set X . By using some measure M which is a function of x, the risk of
one portfolio associated with a decision vector x can be quantified. Thus the minimization
of the risk for a portfolio is generally formulated as

min M(x)
s.t. x ∈ X .

(1)

In practice, it is possible to construct and use different measures M . Before describing in
detail some measures and their minimization, we first give several important definitions.

Let f(x,y) denote the loss associated with the decision vector x ∈ X ⊆ Rn and the
random vector y ∈ Rm. Specifically, each component of x refers to the fraction of the fund
allocated to an asset and y is the vector of future rates of returns of all assets, i.e., m = n.
In the rest of this section, we assume that y follows a continuous distribution and denote its
density function as p(·). For the proper definition of CVaR and WCVaR, We also assume
E[|f(x,y)|] < +∞ for each x ∈ X .

Given a decision vector x ∈ X , the probability that f(x,y) does not exceed a threshold
α is given by

Ψ(x, α)
def
=

∫

f(x,y)≤α
p(y)dy.

For a fixed x, Ψ(x, α) is a cumulative distribution function of f(x,y) for the loss associated
with x. It is obvious that Ψ(x, α) is non-decreasing with respect to α.

Given a confidence level β (commonly set as 0.90, 0.95, 0.99) and a fixed x ∈ X , the
Value-at-Risk (VaR) is defined as

VaRβ(x)
def
= min{α ∈ R : Ψ(x, α) ≥ β}.

VaR has been considered a proper measure for the risk management. However, according to
Bedar [2], the value of VaR is sensitive to small perturbations of data. On the other hand,
VaR fails to capture the quantity of loss when the distribution of some random variable has a
flat tail on the loss side. Rockafellar and Uryasev [13, 14] proposed a new risk measure called
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the Conditional Value-at-Risk (CVaR), which is an alternative measure of risk for VaR and
defined as

CVaRβ(x)
def
=

1
1− β

∫

f(x,y)≥VaRβ(x)
f(x,y)p(y)dy. (2)

Since CVaRβ(x) represents the average of loss that exceeds VaRβ(x), the extreme value
of loss on the flat tail of a probability distribution can be gauged by CVaR. In fact, CVaR has
been considered one of the measures to be used instead of the objective function in problem
(1). From definition (2), for a fixed β, we have the following formulation for the minimization
of CVaR:

min CVaRβ(x)
s.t. x ∈ X .

(3)

This is the optimization problem that Rockafellar and Uryasev have discussed in their
papers [13, 14]. In the definition (2) of CVaR, the random vector y ∈ Rm is assumed to
follow a probability distribution represented by a density function p(·). Thus the randomness
in y ∈ Rm is characterized by the density function p(·). However, in practice, we usually do
not have enough information on the probability distribution p(·). Thus it may be reasonable
to suppose that there exists an uncertainty about p(·), which can be expressed as

p(·) ∈ P, (4)

where P is a set consisting of different probability distributions. It implies an uncertainty
about the future probability distribution p(·) and also reflects our reliance on a set of several
possible scenarios of distribution. According to the work of Zhu and Fukushima [17], worst-
case CVaR (WCVaR) may be used as a new risk measure based on the condition (4) in
portfolio selection. The concept is defined as

WCVaRβ(x)
def
= sup

p(·)∈P
CVaRβ(x). (5)

Generally, a proper risk measure ρ mapping random loss X or Y to a real number should
satisfy the following rules:

(a) Subadditivity: For all random losses X and Y , ρ(X + Y ) ≤ ρ(X) + ρ(Y );

(b) Positive homogeneity: For a positive constant λ, ρ(λX) = λρ(X);

(c) Monotonicity: If X ≤ Y for each outcome, then ρ(X) ≤ ρ(Y );

(d) Translation invariance: For a constant m, ρ(X + m) = ρ(X) + m.

In portfolio selection, these rules imply that (a) the risk of a portfolio constituted by
two assets is less than or equal to the sum of the total risk if the two assets are measured
individually, (b) if the asset grows λ times larger, the corresponding risk should also be λ

times greater, (c) if one of the assets has less loss or equal loss to the other one, its risk
should be less than or equal to the risk of the other asset, (d) the risk of the portfolio remains
constant if the risk-free asset or cash is added to it. These intuitive rules exclude many risk
measures such as the standard deviation and VaR. The measure satisfying all the rules is
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called a coherent risk measure. Actually, WCVaR is shown to be a coherent risk measure
[17]. This fact allows WCVaR to be a proper risk measure that can be used as the objective
function in problem (1), just as CVaR does in formulation (3):

min WCVaRβ(x)
s.t. x ∈ X .

(6)

In this problem, minimization of WCVaRβ(x) becomes the most critical step, which may not
be easy to accomplish at first glance. However, according to Rockafellar and Uryasev [13, 14],
the calculation of CVaR can be achieved by minimizing the following function:

Fβ(x, α) = α +
1

1− β

∫

y∈Rm
[f(x,y)− α]+p(y)dy,

where [t]+ = max{0, t}. It means that

CVaRβ(x) = min
α∈R

Fβ(x, α).

Thus the problem of minimizing CVaR (3) is rewritten as

min(x,α)∈Rn×R Fβ(x, α)
s.t. x ∈ X .

(7)

An important fact is that problem (7) is a convex optimization problem [13, 14]. This
suggests that the WCVaR minimization problem (6) can also be reduced to a tractable one.
As the definition of WCVaR (5) shows, in order to deal with WCVaR, we need a probability
distribution set P. In this paper, we assume that the set P consists of the mixtures of some
predetermined distributions

PM def
=

{
l∑

i=1

λip
i(·) :

l∑

i=1

λi = 1, λ ≥ 0, i = 1, · · · , l
}

,

where pi(·) denotes the i-th likelihood distribution and l denotes the number of the likelihood
distributions. Let

F i
β(x, α)

def
= α +

1
1− β

∫

y∈Rm
[f(x,y)− α]+pi(·)dy,

which corresponds to the density function pi(·), i = 1, · · · , l. Moreover, let L def
= {1, · · · , l}

and
FL

β (x, α)
def
= maxi∈L F i

β(x, α), i = 1, · · · , l.
From Zhu and Fukushima [17], we have the following theorem and corollary.

Theorem 1. For each x, WCVaR with respect to PM is given by

WCVaRβ(x) = min
α∈R

FL
β (x, α).
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Corollary 1. Minimizing WCVaRβ(x) over X can be achieved by minimizing FL
β (x, α)

over X ×R, i.e.,
min
x∈X

WCVaRβ(x) = min
(x,α)∈X×R

FL
β (x, α).

More specifically, if (x∗, α∗) attains the right-hand side minimum, then x∗ attains the left-
hand side minimum and α∗ attains the minimum of FL

β (x∗, α), and vice versa.

The above results indicate that the minimization of FL
β (x, α) over X ×R is equivalent to

the minimization of WCVaRβ(x) on X . In view of the definition of FL
β (x, α), the WCVaR

minimization problem (6) can thus be reformulated as

min(x,α)∈X×R maxi∈L F i
β(x, α)

s.t. x ∈ X .
(8)

By introducing an auxiliary variable θ, problem (8) can be rewritten as

min(x,α,θ)∈X×R×R θ

s.t. F i
β(x, α) ≤ θ, i = 1, · · · , l,

x ∈ X .

(9)

Note that PM is the set consisting of all the mixtures of the density functions pi(·), and each
F i

β(x, α) corresponds to the i-th likelihood distribution. Thus for a clear understanding of
the correspondence of F i

β(x, α) to pi(·), we define

POriginal
def
= {pi(·) : i = 1, · · · , l},

i.e., POriginal is the collection of the original predetermined density functions pi(·) used to
construct PM. Thus the WCVaR minimization problem (9) can be discussed under POriginal .

To reformulate problem (9), it is necessary to determine the characteristics of each pi(·)
in POriginal . As mentioned in the beginning of this section, pi(·) represents a density function
of vector y of asset returns. Thus if we have some information that can help us to specify
the shape of the probability distribution of asset returns, then by reducing the WCVaR
formulation (9) to a standard frame, we may expect to apply it in practice. To do so, we
assume that y follows a multivariate normal distribution (Gaussian distribution) with a mean
vector µ and a variance-covariance matrix Σ, i.e., y ∼ N(µ,Σ).

There are two reasons for imposing the multivariate normal distribution assumption.
First, it is convenient for numerical calculation because Gaussian distribution can be approx-
imated by generating data through Monte-Carlo simulations. Second, the property ‘multi-
variate normal’ is common for the distribution of asset returns and employed by a number
of previous studies.

In this paper, we assume that Σ is constant and focus on the situation where the mean
vector µ is subject to uncertainty. We note that in portfolio selection the mean vector µ in
N(µ,Σ) refers to the expected returns of stocks in the financial market and that there are
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several important theories offering us with an access to the prediction of the future asset
returns. Therefore, to proceed our work, it is necessary to examine some of these theories in
advance.

3 Estimation of Expected Returns by Factor-Model

As shown in the previous section, the set of original probability distributions POriginal consists
of different components pi(·), i = 1, · · · , l. This implies that each pi(·) reflects the character-
istics of the future probability distribution of the asset returns. Here we only collect a set
of distribution scenarios from past information for the prediction of future probability dis-
tribution. However, we notice that the uncertainty about the probability distribution is
determined by the unknown mean vector µ, with Σ fixed, according to our multivariate nor-
mal distribution assumption given at the end of Section 2. This uncertainty regarding asset
returns arises from the future unknown environment surrounding stocks in the financial mar-
ket and the macro economy system. Thus with some approaches that can help us to grasp
such uncertainty, it is then possible to make a description of the set POriginal . Therefore, the
intention of dealing with uncertainty on asset returns relies naturally on the theory of Asset
Pricing Model, which is one of the most important branches in financial theory during the
past half century.

3.1 Single-Index Model

The fact that most stocks tend to increase in price when the market goes up leads to the idea
that the correlation of asset returns may be due to a common response to the market changes.
Thus to describe the movement of asset returns, one action is to relate the individual security
returns to the return on a market index, which can be expressed as follows:

yjt = αj + βjymt + εjt, (10)

where
yjt : the return on one particular stock j at time t,
ymt : the return on the market index at time t,
αj : a constant component independent of the market performance,
βj : a constant that measures the expected change in yjt given a change in ymt,
εjt : the random residual error term for asset j at time t.

The model shows that the performance of a stock is divided into two components. One
is due to the performance of the whole market, regared as the macro effect, and the other is
due to itself, uncorrelated with the market performance, regarded as the micro effect which
is merely related to the stock itself. By construction, since εjt is a random residual error, its
expectation and variance are given by

E(εjt) = 0, VAR(εjt) = σ2
εj

(11)

for some σ2
εj

. By assumption, we have

COV(εjt, ymt) = 0 (12)
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and
COV(εjt, εkt) = 0, j 6= k, (13)

where COV stands for covariance between two random variables. Assumption (12) indicates
that the return on any asset is independent of the return on the market index. Moreover,
assumption (13) implies that εjt is independent of εkt for j 6= k, i.e., the assets vary together
because of the co-movement with the market index.

We note that ymt and εjt are both random variables in (10). Thus if we take the expec-
tation of equation (10), we obtain

E(yjt) = αj + βjE(ymt) + E(εjt). (14)

Since the last term in (14) is null by (11), it follows

E(yjt) = αj + βjE(ymt). (15)

As the investors are more concerned with risk premium, defined as the excess of the risk-free
rate rf , i.e., yjt − rf for security and ymt − rf for market, we put the risk premium instead
of the return in (15) and obtain

E(yjt − rf ) = αj + βjE(ymt − rf ). (16)

This is one of the most famous models in the financial field, named the Capital Asset
Pricing Model (CAPM). It was developed by Sharp [16] and Lintner [11] and built on the
work [12] of Markowitz on the portfolio selection theory. CAPM provides us with a way to
deal with the equilibrium relationship between the risk and the expected return on assets.
Here ymt represents a well-diversified market portfolio. The model determines appropriately
the required return of a risky asset if that asset is added to the market portfolio. It also
offers another concept βj , which quantifies the sensitivity of the asset to the whole market.
The value of βj acts as an indicator of the risk of one asset; the higher the value of βj is, the
more sensitive the asset is to the movement of the market.

If αj , βj and σ2
εj

are assumed to be constant through time, then for each stock j, equation
(10) is expected to hold at every time t. Thus by time series regression analysis for one past
period, referred to as sample period (SP) in this paper, αj , βj , and σ2

εj
can be estimated.

Furthermore, if ymt − rf is estimated based on historical data, it is possible to calculate the
expected return of asset j for one future period, referred to as Test Period (TP) in this paper,
through equation (16). A procedure for estimating the expected return can be summarized
as follows:

Procedure 1.

Step 1. Calculate αj and βj by time-series regression analysis for stock j in SP.

Step 2. Estimate the market risk premium and rf based on the data in SP.

Step 3. Calculate the expected return of asset j by equation (16).
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3.2 Multi-Factor Model

As suggested by the Single Index Model in the previous subsection, the stocks move together
because of a common movement with the market. Therefore it can be extended to a multi-
factor model consisting of different types of systematic risk. The Arbitrage Pricing Theory
(APT), proposed by Ross [15], emerged as an alternative asset pricing model to CAPM.
It combines a factor model with a no-arbitrage condition (Law of One Price) and posits a
relationship between expected return and risk. Since the assumptions in APT are weaker than
those of CAPM, it is considered more general and can be used to support the Multi-Factor
Model from a theoretical aspect. The model is shown as follows:

yjt = αj +
Q∑

h=1

βjhfht + εjt,

where
fht : the different factors at time t,
αj : the constant component independent of the factors’ performance,
βjh : the factor-loadings,
εjt : the residual error term at time t,
Q : the number of factors.

The explanation is similar to the Single Index Model except that there are several factors
besides the market index. Each factor represents the exposure to one systematic risk, such as
inflation risk, business-cycle risk and so on. As in the Single Factor Model, it is convenient
to assume that the factors are uncorrelated to each other and the residual error term is also
independent of the factors. To guarantee that the stocks vary together because of the co-
movement with a set of factors, assumption (13) in the Single Factor Model should remain
in the Multi-Factor Model.

Since the Multi-Factor Model incorporates a set of factors, the determination of the
risk factors becomes important. Furthermore the selected systematic factors should have
considerable ability to explain the asset returns. One example of the multi-factor approach
is presented by Fama and French [8], known as the Fama-French Three-Factor Model. This
model is based on firm characteristics such as the market capitalization and the ratio of the
book value of equity to the market value of equity. These factor variables seem to give a
prediction of average asset returns by empirical studies. Considering the risk premium, the
model can be shown as

yjt − rf = αj + βjm(ymt − rf ) + βjSMBSMB t + βjHMLHMLt + εjt, (17)

where

9



yjt − rf : the risk premium for asset j at time t,
βjM , βjSMB , βjHML : the factor-loadings of the corresponding factors,
αj : the constant component independent of factors’ performance,
ymt − rf : the risk premium for the market index at time t,
SMB t : the abbreviation for Small Minus Big, which stands for the return of a portfolio

of small stocks in excess of the return of a portfolio of large stocks at time t,
HMLt : the abbreviation for High Minus Low, which represents the return of a portfolio

of stocks with a high book-to-market ratio in excess of the return of a portfolio of
stocks with a low book-to-market ratio at time t,

εjt : the random residual error term at time t.

The model indicates that the risk premium for one asset can be explained by the risk
premium for the market index, the firm size and the book-to-market equity. If we take into
account the expectation of equation (17), we obtain

E[yjt − rf ] = αj + βjmE[ymt − rf ] + βjSMBE[SMB t] + βjHMLE[HMLt] + E[εjt].

Since E[εjt] is null, we have

E[yjt − rf ] = αj + βjmE[ymt − rf ] + βjSMBE[SMB t] + βjHMLE[HMLt]. (18)

This equation is similar to equation (16) except that it considers two additional factors.
Note that αj , βjM , βjSMB , βjHML and σ2

εj
are assumed to be constant through time. Then

Procedure 1 in the Single Index Model can be extended to Procedure 2 in the Fama-French
Three Factor Model as follows:

Procedure 2.

Step 1. Calculate the constant component αj , the factor-loadings βjM , βjSMB and βjHML

by time series regression analysis for stock j in SP.

Step 2. Estimate the market risk premium, rf , SMB and HML based on the data in SP.

Step 3. Calculate the expected return on asset j by equation (18).

4 Combination of WCVaR Formula with Factor Model

In Section 2, it has been shown that the formulation of minimizing WCVaR (9) can be
discussed with POriginal = {pi(·) : i = 1, · · · , l}. Moreover, in Section 3, it has been suggested
that the prediction of the expected asset return can be performed via the Multi-Factor Model
in one SP. Note that in portfolio selection, under the assumption of multivariate normal
distribution with a fixed Σ, the original probability distribution pi(·) in POriginal can be
determined by specifying the mean vector µi whose components are the expected returns of
the stocks. Thus, to combine WCVaR with the Multi-Factor Model, SP should be chosen
properly to estimate the parameter µi.
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4.1 Falling Period

In the previous section, Procedure 2 for calculating the expected asset return via the Multi-
Factor Model has been discussed. In Step 1 of Procedure 2, we need to specify SP. To make
our model more robust to the future recession, it may be useful to determine the probability
distribution pi(·) based on the data in a market depression period.

Thus it is natural to find some proxy that can reflect the condition of the whole market
and pick up the falling tendency based on that proxy. This motivates us to consider the
market index (such as TOPIX) as the proxy and examine its trace in a time range. We define
IMarket ∈ R as an index of the financial market. Obviously, it is a function of time t, and can
be denoted as IMarket(t). We also define the time period during which the value of IMarket(t)
has a falling tendency as the Falling Period (FP). Just for simplicity, suppose that IMarket(t)
is a differentiable function with respect to time t. Then FP can be expressed as

FP
def
=

{
t :

dIMarket(t)
dt

< 0
}

.

By determining pi(·) based on FP, Procedure 2 can be tailored to FP:

Procedure 2’.

Step 1. Calculate the constant component αj , the factor-loadings βjM , βjSMB and βjHML

by time series regression analysis for stock j in FP.

Step 2. Estimate the market risk premium, rf , SMB and HML based on the data in FP.

Step 3. Calculate the expected return on asset j by equation (18).

Note that there may exist many FPs during the past time span. Hence it is convenient
to index them as FPi, i = 1, · · · , l. During each FPi, by applying Procedure 2’, the expected
returns can be obtained for all assets j = 1, · · · , n. In other words, we can form a vector µi

consisting of n components of the expected returns. Then we can obtain a density function
pi(·) for each FPi. Moreover, by collecting pi(·), i = 1, · · · , l, together, the set POriginal can
be constructed.

This process can be summarized as follows:

Procedure 3.

Step 0. Set i := 1, j := 1; Go to Step 1.

Step 1. Calculate the constant component αj , the factor-loadings βjM , βjSMB and βjHML

by time series regression analysis for stock j in FPi.

Step 2. Estimate market risk premium, rf , SMB and HML based on the data in FPi.

Step 3. Calculate the expected return on asset j by equation (18), and set j := j + 1. If
j > n, then go to Step 4. Otherwise, return to Step 1.

Step 4. Form a mean vector µi, obtain pi(·), and set i := i + 1. If i > l, then go to Step 5.
Otherwise, set j := 1 and go to Step 1.
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Step 5. Collect pi(·) together to form POriginal .

Here, n refers to the number of assets in the portfolio. For a clear understanding of
the WCVaR minimization formulation under the Multi-Factor Model, we use PFactor−Model

to denote the set POriginal obtained by using the Multi-Factor Model approach. Then the
WCVaR minimization formulation (9) in Section 2 can be reformulated as

min(x,α,θ)∈X×R×R θ

s.t. F i
β(x, α) ≤ θ,

x ∈ X ,

where pi(·) ∈ PFactor−Model , i = 1, · · · , l.
According to Rockafellar and Uryasev [13, 14], for a single distribution p(·), the approxi-

mation of Fβ(x, α) can be given as

F̃β(x, α) = α +
1

S(1− β)

S∑

k=1

[f(x,y[k])− α]+,

where S denotes the number of samples and y[k] refers to the k-th sample. If the number
of samples is large enough, F̃β(x, α) approximates Fβ(x, α) by the Law of Large Numbers in
statistics. Thus for each distribution pi(·) ∈ PFactor−Model , i = 1, · · · , l, we can approximate
F i

β(x, α) by

F̃ i
β(x, α) = α +

1
Si(1− β)

Si∑

k=1

[f(x,yi
[k])− α]+,

where Si denotes the number of samples from distribution pi(·) and yi
[k] denotes the k-th

sample. The WCVaR minimization model can then be reformulated as

min(x,α,θ)∈X×R×R θ

s.t. α + 1
Si(1−β)

∑Si

k=1[f(x,yi
[k])− α]+ ≤ θ, k = 1, · · · , Si, i = 1, · · · , l,

x ∈ X .

(19)
By introducing the auxiliary variables ui ∈ RSi , i = 1, · · · , l, we can rewrite (19) as

min(x,α,θ,u)∈Rn×R×R×RN θ

s.t. α + 1
Si(1−β)

(ei)Tui ≤ θ, i = 1, · · · , l,
ui

[k] ≥ f(x,yi
[k])− α, k = 1, · · · , Si, i = 1, · · · , l,

ui ≥ 0, i = 1, · · · , l,
x ∈ X ,

(20)

where ei = (1, · · · , 1)T ∈ RSi , ui = (ui
[1], · · · , ui

[Si])
T , i = 1, · · · , l, u = ((u1)T , · · · , (ul)T )T ,

and N =
∑l

i=1 Si. Note that if the loss function f(x,y) is linear with respect to x and X is
a convex polyhedron, then problem (20) becomes a linear programming problem.

Remark. When we consider a WCVaR minimization problem under the condition pi(·) ∈
PFactor−Model , we in fact deal with the problem under the condition p(·) ∈ PM which is the
mixtures of the probability distributions pi(·) obtained from the Multi-Factor Model.
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4.2 Portfolio Selection Based on WCVaR

Now we are in a position to describe the set X which is formed by some constraints in the
portfolio selection problem. The j-th component of vector x represents the fraction of the
fund allocated to the j-th stock. Thus the sum of all components of vector x is equal to 1,
namely

eTx = 1, (21)

where e ∈ Rn is the vector of ones and n is the number of assets.
In our model, we suppose that the short selling position is not allowed, i.e., each compo-

nent of vector x should be greater than or equal to 0. Thus we have

x ≥ 0. (22)

Since the investors in the market will require a minimum level, given by η, of performance
achieved by portfolio investment, we impose the condition

RTx ≥ η, (23)

where R refers to the vector of the expected returns for all stocks and η stands for the
minimum performance of the portfolio investment. In Section 3, based on one SP, R can
be estimated by Procedure 2 and is equal to the estimated mean vector. Note that there
are other mean vectors that are estimated based on FPs through Procedure 2’. In order
to compare our model with the mean-variance model in Section 5, we fix a SP, estimate R
by Procedure 2, and use the constraint (23) in the two models. To determine pi(·) in the
WCVaR minimization problem, we estimate the mean vectors from the fixed SP and FPs.

Since the return on one portfolio can be expressed as xTy, the loss function is given by

f(x,y) = −xTy.

Consequently, the portfolio selection model with a combined WCVaR and the Multi-
Factor Model can be formulated as

min(x,α,θ,u)∈Rn×R×R×RN θ

s.t. α + 1
Si(1−β)

(ei)Tui ≤ θ, i = 1, · · · , l,
ui

[k] ≥ −xTyi
[k] − α, k = 1, · · · , Si, i = 1, · · · , l,

ui ≥ 0, i = 1, · · · , l,
eTx = 1,

x ≥ 0,

RTx ≥ η,

(24)

where ui = (ui
[1], · · · , ui

[Si])
T , i = 1, · · · , l, u = ((u1)T , · · · , (ul)T )T , N =

∑l
i=1 Si and yi

[k] are
generated with the distributions pi(·) ∈ PFactor−Model for i = 1, · · · , l.
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5 Numerical Experiments

In this section, we compare the WCVaR minimization model (24) with the traditional mean
variance model through numerical experiments using real market data in Japan. In particular,
we examine how robust the portfolio will be if the investors make a decision based on the
model (24), compared with the traditional method. In the process, the Fama-French Three-
Factor Model is used to estimate the expected return on each stock and quasi-Monte Carlo
simulation is applied to generate samples from each probability distribution. The efficient
frontiers are drawn to examine the difference between the two models. All the data are
obtained from Nikkei Quick News Inc. and Daiwa Institute of Research Holdings Ltd. We
use MatLab 7.8.0 for solving linear programming problems on a PC with Intel(R) Core(TM)2
Duo CPU 1.20GHz and 2.0 GB RAM.

5.1 Quasi-Monte Carlo Simulation

Since we assume a normal distribution of y, i.e., y ∼ N(µ,Σ), it is convenient to generate
samples from the joint distribution of y by Monte Carlo simulation (MC simulation) ap-
proach. However, as Rockafellar and Uryasev [13] pointed out, in the CVaR optimization,
the conventional Monte Carlo approach may lead to an unstable value of CVaR. Thus they
worked with the Sobol quasi-random sequence besides pseudo-random sequences (MC simu-
lation). We also found that the investment ratio (each component of decision vector x) for
each asset varies heavily among different simulations, which makes it difficult to compare our
model with other models. Therefore, in this paper, to obtain a stable decision vector x, we
generate samples from the multivariate normal distribution by the quasi-random approach.

The quasi-random method has strong advantages in the risk management field. In this ap-
proach, deterministic sequences are generated instead of random sequences. These sequences
are known as low discrepancy sequences which cover the space evenly, so that the clustering
brought by the pseudo-random approach can be avoided. Another advantage is that quasi-
Monte Carlo simulations perform more efficiently than the traditional MC simulation. As
pointed out by Kreinin [10], in Monte Carlo simulations, errors E for estimates in any two
simulations satisfy

E ∼ O

(
1√

NUM

)
,

where NUM refers to the number of samples in one simulation. It shows that in order to
reduce the error E by half, NUM should be increased by four times the original value. In
contrast to this fact, star discrepancy DNUM in the quasi-Monte Carlo approach has the
following property:

DNUM ∼ O

(
(log NUM)d

NUM

)
,

where d refers to the dimension of each sample generated in the simulation. It is clear that
with a small d, DNUM decreases asymptotically with 1

NUM .
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Table 1: Codes and Industries for Stocks in Portfolio

Code Company Name Industry
4502
4503
4063
4901
3382
9983
7974
4689
7203
7267
8058
8031
9437
5401
5411
9022
7751
6752
9501
9503
8802
8801
8604

Takeda Pharmaceutical Co., Ltd.
Astellas Pharma Inc.
Shin-Etsu Chemical Co., Ltd.
FUJIFILM Holdings Co.
7-Eleven Japan Inc.
Fast Retail Co., Ltd
Nintendo Co., Ltd.
Yahoo Japan Co.
Toyota Motor Co.
Honda Motor Co., Ltd.
Mitsubishi Co.
Mitsui & Co., Ltd.
NTT Docomo Co.
Nippon Steel Co.
JFE Steel Co.
Central Japan Railway Co.
Canon Inc.
Panasonic Co.
Tokyo Electric Power Co., Inc.
Kansai Electric Power Co., Inc.
Mitsubishi Estate Co., Ltd.
Mitsui Fudosan Co., Ltd.
Nomura Holdings Inc.

Pharmaceutical Drug
Pharmaceutical Drug
Chemical
Chemical
Retail Trade
Retail Trade
Service
Service
Automotive
Automotive
Trading Business
Trading Business
Telecommunications
Steel
Steel
Railway Business
Electric Appliance
Electric Appliance
Electric Power
Electric Power
Real Estate
Real Estate
Securities

5.2 Data Description and Real Market Data Analysis

To select the stocks in our experiments, we pick up the first 50 listed stocks in the Tokyo
Stock Exchange by ranking the total market values. Then by selecting the first and second
market value stocks in each industry, 23 stocks are obtained as each asset in our portfolio.
The code, the name, and the corresponding industry of the security are shown in Table 1.
The time period for the data is from 1/11/2005 to 1/11/2010, which provides us with 1228
samples in the experiments. The daily closing prices are used for calculating the daily returns.

The purpose of the experiments is to compare the model (24) with the traditional mean
variance model, which is shown as follows:

min VAR(Rx)
s.t. x ∈ X ,

(25)

where Rx represents the return on portfolio and VAR stands for the variance of a random
variable. By replacing the set X in the constraints with the portfolio constraints (21)–(23),
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problem (25) can be reformulated as

min xT Σx
s.t. eTx = 1,

x ≥ 0,

RTx ≥ η,

(26)

where Σ is the variance-covariance matrix of the stocks. For convenience, we let RbM stand
for the robust model (24) and MVM stand for the mean-variance model (26) in the subsequent
discussions. To proceed, we pick up two periods; one is the sample period (SP) as defined in
Section 3, and the other is the test period (TP). By applying RbM (24) and MVM (26) in SP
and by solving the two models, two decision vectors are obtained, denoted as xRbM for RbM
and xMV M for MVM. By observing the actual performance of the two portfolios invested
in the two decision vectors xRbM and xMV M in TP, the movement of the return on the two
portfolios is analyzed. The data in SP are used to estimate Σ in the objective function of
MVM (26), and the expected return R in the constraints of MVM (26) is estimated based on
the data in SP through Procedure 2. Note that we estimate the return on the three factors
by averaging the values in the SP during Step 2 of Procedure 2.

On the other hand, to compare with the MVM (26), we fix the same SP for calculating
R in the constraint (23) of RbM. Moreover TOPIX is used as the index of the market to
determine the FP for RbM. By observing the falling tendency of TOPIX value in the time
range, two FPs are specified, namely

FP1 : 18/6/2007 ∼ 17/8/2007,
FP2 : 3/12/2007 ∼ 22/1/2008.

Since we have fixed one SP for comparison, the same SP is also included to generate one
probability distribution in RbM (24). As shown by the definition of PFactor−Model in Section
3, the set PFactor−Model in this case consists of three probability distributions pi(·), i = 1, 2, 3,
calculated from FP1, FP2 and SP, respectively, that is,

PFactor−Model = {pi(·) : i = 1, 2, 3}.

Note that both models incorporate the same data in SP while additionally, the RbM (24)
considers FP1 and FP2 as the past information input. Thus we expect that RbM (24) can
perform more robustly than the MVM in the experiment. We set l = 3 and n = 23 in
Procedure 3 to construct PFactor−Model . We also set β = 0.90 and S1 = S2 = S3 = 800 in the
RbM (24) in calculating the decision vector xRbM .

For an accurate comparison of the two models, we select two pairs of SP and TP, denoted
(SPI, TPI), (SPII, TPII), which represent the following time periods:

SPI : 21/10/2009 ∼ 18/3/2010, TPI : 8/6/2010 ∼ 29/10/2010,
SPII : 23/1/2008 ∼ 17/6/2008, TPII : 1/9/2008 ∼ 30/1/2009.

The reason why we take TPII into account is that there was a financial crisis (Rehman Shock)
in TPII. Thus by including such a recession period, the efficiency of the RbM (24) can be
tested thoroughly.
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Figure 2: Comparison of the Return on PE in TPI and TPII

The selected FP1, FP2, SPI, SPII, TPI and TPII are shown in Figure. 1. Note that FP1

and FP2 are taken before the two pairs of the periods (SPI, TPI) and (SPII, TPII). This
is because construction of probability distributions in RbM (24) should be based on the
historical data before SP and TP.

Before discussing the comparison of the two models, we first examine the characteristics
of the data in TPI and TPII. By constructing a portfolio by investing equally in the 23 assets,
denoted PE , the histogram of the return on PE in TPI and TPII can be observed. From
Figure 2, the distribution of the return on PE in TPII has a longer tail on the loss side than
the one in TPI. Specifically, Table 2 indicates that in TPI the mean of PE is higher than
that of PE in TPII, and the variance of PE in TPII turns out to be greater than that of PE

in TPI. These facts can be considered the evidence of a depressed market condition in TPII.
We obtain two portfolios from the two models (24) and (26) based on the data in SP and

compare the performance of the two portfolios in TP. For a fixed η in (24) and (26), we obtain
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Table 2: Mean and Standard Deviation of PE in TPI and TPII

TPI TPII

Mean
Std.

−0.00046
0.0113

−0.0036
0.0373

a pair of vectors (xRbM , xMVM ) based on the data in SP. Then we allocate the total wealth to
the assets by the decision vectors xRbM and xMVM respectively in TP. The two portfolios are
denoted as PRbM and PMVM . Thus based on the asset returns in TP, the standard deviation
(σ) of the return on PRbM and PMVM can be calculated. Then by changing the value of η

in the formulation of the two models, several pairs of (η, σ) are obtained and two curves,
known as the efficient frontiers, are drawn for PRbM and PMVM .

Figure 3 shows the efficient frontiers for the two TPs. In both TPI and TPII, the standard
deviation of returns on PRbM and PMVM increases as η grows. This reflects the basic high risk
high return principle in investment when the investors are risk-averse. To see the difference
between the two models, let us have a closer look at Figure 3. In TPI, for a fixed η, the
standard deviation of PRbM lies on the right of that of PMVM , which indicates that the
risk of PMVM is lower than that of PRbM . However, in TPII, PRbM is more robust than
PMVM since the efficient frontier for PRbM lies on the left of the one for PRbM . Moreover,
as the value of η grows, the standard deviations in the two models merge into a same value.
This corresponds to the fact that the unsystematic risk can be diversified through portfolio
selection while the systematic risk remains and is equal to the market risk. From Figure 3,
it can be concluded that the RbM (24) may fail to outperform the MVM (26) in the normal
period, but shows some advantage over the MVM (26) in a recession case where the market
is falling down heavily, as when the financial crisis took place. The explanation for this
lies in two points: (1) The return on the assets in a depressed market period usually shows
a flat tail on the loss side, which reflects the existence of some extreme large loss values.
(2) Since our model generates samples from probability distributions of the asset returns
using the historical data in the falling periods, we have included the past information on the
structures of asset returns. Also because of dealing with the minimization of the risk measure
WCVaR, which is the minimization of the worst case of the conditional expected value of the
loss exceeding a threshold on the flat tail, the risk of the portfolio in the RbM (24) can be
controlled in a market recession period.

6 Conclusion

In this paper, we have proposed a robust portfolio selection model with a combination of
WCVaR and Multi-Factor Model. We have shown that the proposed model yields a more
robust portfolio than the traditional mean variance model in a market recession period.
However, there are three points that need to be highlighted.

(1) In constructing the uncertainty set PFactor−Model, the multivariate normal distribu-
tion with a fixed Σ is assumed. However, in practice, the structure of the correlation be-
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Figure 3: Efficient Frontiers in TPI and TPII

tween different stocks is known to be unstable. Thus, there is also an uncertainty about the
variance-covariance matrix that can be taken into account in the robust model. Moreover,
the distribution of the asset return will often appear to be not normal, e.g., an asymmetric
distribution with a skew.

(2) In the procedure of estimating the expected asset return, several factor loadings are
assumed to be constant through time, which may not remain true as suggested by some
studies [8]. Also, to gain a more precise estimation of the return of the factors, an advanced
statistical approach can be applied in the procedure.

(3) The last point is that the available information in the market may have already been
reflected on the price of stocks, which is known as efficient market hypothesis (EMH). Fama
[6, 7] distinguishes three types of EMH; the weak form, the semi-strong form and the strong
form, where the classification is based on the degree of the amount of information reflected
on the price. The key point in EMH is that in an efficient market, it is very difficult to make
prediction of future price by using past information, because the price has already absorbed
it and the only thing that could give an influence to the stock price is future events which
have not happened yet. Those facts may induce that our model which has incorporated the
past information will not function in the future period. However, as anomalies regarding
fundamental analysis exist in the market from empirical studies, EMH is still a matter of
debate. Thus by using past information, we can at least obtain some profound insights into
the characteristics of the investment. Furthermore, since the proposed model is shown to be
more robust than the traditional model for real market data, using WCVaR as a risk measure
casts some effects in the portfolio selection.

As new financial instruments spread out, many new approaches will be developed to meet
the needs of the financial world. There is still much space to combine the field of operations
research with the area of finance; see a recent survey paper [5]. Of course, as the amount
of information is growing faster and faster, computer skills are required to solve large scale
problems in financial investment, and new methods should be developed in future studies.
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