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Abstract

The semi-infinite program (SIP) is normally represented with infinitely many inequality

constraints, and has been studied extensively so far. However, there have been very few

studies on the SIP involving conic constraints, even though it has important applications such

as Chebychev-like approximation, filter design, and so on.

In this paper, we focus on the SIP with a convex objective function and infinitely many

conic constraints, called an SICP for short. We show that, under the Robinson constraint qual-

ification, an optimum of the SICP satisfies the KKT conditions that can be represented only

with a finite subset of the conic constraints. We also introduce two exchange type algorithms

for solving the SICP. We first provide an explicit exchange method, and show that it has

global convergence under the strict convexity assumption on the objective function. We then

propose an algorithm combining a regularization method with the explicit exchange method,

and establish the global convergence of the hybrid algorithm without the strict convexity

assumption.

1 Introduction

In this paper, we focus on the following optimization problem with an infinite number of conic
constraints:

Minimize f(x)

subject to A(t)>x − b(t) ∈ C for all t ∈ T,
(1.1)

where f : Rn → R is a continuously differentiable convex function, A : T → Rn×m and b : T → Rm

are continuous functions, T ⊂ R` is a given compact set, and C ⊂ Rm is a closed convex cone
with nonempty interior. We call this problem the semi-infinite conic program, SICP for short.
Throughout this paper, we assume that SICP (1.1) has a nonempty solution set.

When m = 1 and C = R+ := {z ∈ R | z ≥ 0}, SICP (1.1)) reduces to the classical semi-
infinite program (SIP) [8, 15, 12, 18, 19, 22], which has a wide application in engineering, e.g., the
air pollution control, the robot trajectory planning, the stress of materials, etc.[12, 18]. So far,
many algorithms have been proposed for solving SIPs, such as the discretization method [8], the
local reduction based method [9, 16, 21] and the exchange method [15, 10, 22]. The discretization
method solves a sequence of relaxed SIPs with T replaced by T k ⊆ T , where T k is a finite index
set such that the distance1 from T k to T converges to 0 as k goes to infinity. While this method
is comprehensible and easy to implement, the computational cost tends to be huge since the
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cardinality of T k grows infinitely large. In the local reduction based method, the infinite number
of constraints in the original SIP are rewritten as a finite number of constraints with implicit
functions. Although the SIP can be reformulated as a finitely constrained optimization problem
by this method, it is not possible in general to evaluate the implicit functions exactly in a direct
manner. The exchange method solves a relaxed subproblem with T replaced by a finite subset
T k ⊆ T , where T k is updated so that T k+1 ⊆ T k ∪ {t1, t2, · · · , tr} with {t1, t2, · · · , tr} ⊆ T \ T k.

A more general choice for C is the symmetric cone such as the second-order cone (SOC)
Km :=

{
(z1, z2, . . . , zm)> ∈ Rm | z1 ≥ ‖(z2, z3, . . . , zm)>‖2

}
and the semi-definite cone Sm

+ :=
{Z ∈ Rm×m | Z = Z>, Z � 0}. We note that the algorithm proposed in this paper needs
to solve a sequence of subproblems in which T is replaced by a finite subset {t1, t2, . . . , tr} ⊆ T . To
such a subproblem, we can apply an existing algorithm such as the interior-point method and the
smoothing Newton method [1, 6, 11, 17]. There are some important applications of SICP (1.1). For
example, when C is an SOC, SICP (1.1) can be used to formulate a Chebychev-like approximation
problem involving vector-valued functions. Specifically, let Y ⊆ Rn be a given compact set, and
Φ : Y → Rm and F : R` × Y → Rm be given functions. Then, we want to determine a parameter
u ∈ R` such that Φ(y) ≈ F (u, y) for all y ∈ Y . One relevant approach is to solve the following
problem:

Minimize
u

max
y∈Y

‖Φ(y) − F (u, y)‖2.

By introducing the auxiliary variable r ∈ R, we can transform the above problem to

Minimize
u,r

r

subject to

(
r

Φ(y) − F (u, y)

)
∈ Km+1 for all y ∈ Y,

which is of the form (1.1) when F is affine with respect to u.
The main purpose of the paper is two-fold. First, we study the Karush-Kuhn-Tucker (KKT)

conditions for SICP. (We actually focus on the more general SICP of the form (2.1) or (2.6).)
Although the original KKT conditions for SICP could be described by means of integration and
Borel measure, we show that they can be represented by a finite number of elements in T under the
Robinson constraint qualification. Second, we provide two algorithms for solving SICP (1.1). Since
any closed convex cone can be represented as an intersection of finitely or infinitely many halfspaces,
we may reformulate (1.1) as a classical SIP with infinitely many linear inequlity constraints, and
solve it by using existing SIP algorithms [12, 18]. However, such a reformulation approach brings
more difficulties since the dimension of the index set may become much larger than that of the
original SICP (1.1).2 Therefore, it is more reasonable to deal with the cones directly without losing
their special structures. The two algorithms proposed in this paper are based on the exchange
method, which solves a sequence of subproblems with finitely many conic constraints. The first
algorithm is an explicit exchange method, of which we show global convergence under the strict
convexity of the objective function. The second algorithm is a regularized explicit exchange method,
which is a hybrid of the explicit exchange method and the regularization method. With the help of
regularization, global convergence of the algorithm can be established without the strict convexity
assumption.

This paper is organized as follows. In Section 2, we discuss the KKT conditions for SICP (1.1).
In Section 3, we propose the explicit exchange method for solving SICP (1.1). In Section 4, we
combine the explicit exchange method with the regularization method, and show that the hybrid

2In the case where C = Km, since Km = {z ∈ Rm | z>s ≥ 0, ∀s ∈ S}, where S := {(1, s̄)> ∈ Rm | ‖s̄‖ = 1},
SICP (1.1) can be reformulated as the SIP: min f(x) s.t. s>(A(t)>x−b(t)) ≥ 0 for all (s, t) ∈ S×T . The dimension

of S × T is then equal to m + dim T − 1, where dim T denotes the dimension of T .
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algorithm is globally convergent for SICP (1.1). In Section 5, we give some numerical results to
examine the efficiency of the proposed algorithm . In Section 6, we conclude the paper with some
remarks.

Throughout the paper, we use the following notations. ‖·‖ denotes the Euclidean norm defined
by ‖z‖ :=

√
z>z for z ∈ Rm. For zi ∈ Rmi (i = 1, 2, . . . , p), we often write (z1, z2, . . . , zp) for

((z1)>, (z2)>, . . . , (zp)>)> ∈ Rm1+m2+···+mp . For a given cone C ⊆ Rm, Cd denotes the dual cone
defined by Cd := {z ∈ Rm | z>w ≥ 0, ∀w ∈ C}. For vectors z ∈ Rm and w ∈ Rm, the conic
complementarity condition, z>w = 0, z ∈ C and w ∈ Cd, is also written as C 3 z ⊥ w ∈ Cd. For
a nonemptyset D ⊆ Rm and a function h : Rm → R, argminz∈Dh(z) denotes the set of minimizers
of h over D. In addition, for z ∈ Rm and δ > 0, B(z, δ) ⊆ Rm denotes the closed ball with center
z and radius δ, i.e., B(z, δ) := {w ∈ Rm | ‖w − z‖ ≤ δ}.

2 KKT conditions for SICP

In this section, we do not assume the convexity of objective function and constraint functions in
(1.1). We focus on the following semi-infinite conic program (SICP):

Minimize f(x)

subject to g(x, t) ∈ C for all t ∈ T,
(2.1)

where f : Rn → R is a continuously differentiable function, g : Rn × T → Rm is a continuous
function such that g(·, t) is differentiable for each fixed t, T ⊆ R` is a compact set and C ⊆ Rm

is a closed convex cone with nonempty interior. Notice that SICP (2.1) includes SICP (1.1) as a
special case. If f is convex and g is affine with respect to x, then the local optimality analyses in
this section hold in the global sense. The goal of this section is to derive the Karush-Kuhn-Tucker
(KKT) conditions for SICP (2.1).

When m = 1 and C = R+, SICP (2.1) reduces to the classical semi-infinite program with the
KKT conditions given as follows.

Lemma 2.1. [18, Theorem 2] Let x∗ ∈ Rn be an arbitrary local optimum of SICP (2.1) with
C := R+. Let Tact(x) be the set of active indices at x ∈ Rn, i.e., Tact(x) := {t ∈ T | g(x, t) = 0}.
Suppose that the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x∗, i.e., there
exists a vector d ∈ Rn such that ∇xg(x∗, t)>d > 0 for any t ∈ Tact(x∗). Then, there exist p indices
t1, t2, . . . , tp ∈ Tact(x∗) and Lagrange multipliers µ1, µ2, . . . , µp ≥ 0 such that p ≤ n and

∇f(x∗) −
p∑

i=1

µi∇xg(x∗, ti) = 0,

R+ 3 µi ⊥ g(x∗, ti) ∈ R+ (i = 1, 2, . . . , p).

In the above result, the MFCQ plays a key role. However, for SICP (2.1), it is difficult to
apply the MFCQ in a straightforward manner. We therefore introduce the Robinson constraint
qualification (RCQ), which is defined as follows:

Definition 2.2 (Robinson Constraint Qualification (RCQ)). Let x ∈ Rn be a feasible point of
SICP (2.1). Then, we say that the Robinson constraint qualification (RCQ) holds at x if there
exists a vector d ∈ Rn such that

g(x, t) + ∇xg(x, t)>d ∈ intC for all t ∈ T. (2.2)
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When m = 1 and C = R+, the RCQ reduces to the MFCQ. When g is affine, i.e., g(x, t) :=
A(t)>x− b(t), the RCQ holds at any feasible point if and only if the Slater constraint qualification
holds, i.e., there exists x0 ∈ Rn such that A(t)>x0 − b(t) ∈ intC for all t ∈ T . For a detail of
the RCQ, see [4]. The next proposition states that any closed convex cone is represented as the
intersection of finitely or infinitely many halfspaces generated by a certain compact set.

Proposition 2.3. Let C ( Rm be an arbitrary nonempty closed convex cone. Then, (i) there
exists a nonempty compact set S ⊆ {s ∈ Rm | ‖s‖ = 1} such that

C = {x | s>x ≥ 0, ∀s ∈ S}. (2.3)

Moreover, ( ii ) we have S ⊆ Cd.

Proof. We first show (i). For any s ∈ Rm with s 6= 0, define the halfspace H(s) := {x ∈ Rm |
s>x ≥ 0}. In addition, let S := {s ∈ Rm | ‖s‖ = 1, H(s) ⊇ C}. By [20, Corollary 11.7.1], we have
C =

∩
s∈S H(s). Therefore, it suffices to show the compactness of S. Since the boundedness is

evident, we only show the closedness. Choose an arbitrary convergent sequence {sk} ⊆ S such that
limk→∞ sk = s∗ and let z ∈ C be an arbitrary vector. Obviously, we have ‖sk‖ = 1. Moreover,
from C =

∩
s∈S H(s) ⊆ H(sk), we have (sk)>z ≥ 0 for all k. Therefore, letting k → ∞, we obtain

‖s∗‖ = 1 and (s∗)>z ≥ 0, which implies z ∈ H(s∗). Since z ∈ C was arbitrarily chosen, we have
C ⊆ H(s∗). Hence, we have s∗ ∈ S.

Next, we show ( ii ). Choose s ∈ S arbitrarily. From (2.3), we have s>x ≥ 0 for all x ∈ C, which
implies s ∈ Cd.

By using this proposition, we reformulate SICP (2.1) as a standard semi-infinite program,
whereby we can derive the KKT conditions.

Theorem 2.4. Let x∗ ∈ Rn be an arbitrary local optimum of SICP (2.1). Suppose that the RCQ
holds at x∗. Then, there exist p indices t1, t2, . . . , tp ∈ T and Lagrange multipliers y1, y2, . . . , yp ∈
Rm such that p ≤ n and

∇f(x∗) −
p∑

i=1

∇xg(x∗, ti)yi = 0, (2.4)

Cd 3 yi ⊥ g(x∗, ti) ∈ C (i = 1, 2, . . . , p). (2.5)

Proof. By Proposition 2.3, there exists a nonempty compact set S ⊆ {s ∈ Rm | ‖s‖ = 1} such that
SICP (2.1) is equivalent to the following semi-infinite program:

Minimize f(x)

subject to s>g(x, t) ≥ 0 for all (s, t) ∈ S × T.
(2.6)

Let (S × T )act(x∗) := {(s, t) ∈ S × T | s>g(x∗, t) = 0}. If (S × T )act(x∗) = ∅, then we have (2.4)
and (2.5) with yi = 0 for all i. Therefore, we suppose (S × T )act(x∗) 6= ∅. We first show that the
MFCQ holds for problem (2.6), i.e., there exists a vector d ∈ Rn such that

(∇xg(x∗, t)s)>d > 0 for all (s, t) ∈ (S × T )act(x∗). (2.7)

By assumption, there exists a vector d ∈ Rn satisfying RCQ (2.2), i.e., g(x∗, t) +∇xg(x∗, t)>d ∈
intC for all t ∈ T . By Proposition 2.3, we also have 0 /∈ S ⊆ Cd. Hence, we have s>(g(x∗, t) +
∇xg(x∗, t)>d) > 0 for all (s, t) ∈ S × T , which implies (2.7). Therefore, d is a vector satisfying
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the MFCQ. Now, applying Lemma 2.1 to (2.6), we have p indices (s1, t1), (s2, t2), . . . , (sp, tp) ∈
(S × T )act(x∗) and the Lagrange multipliers µ1, µ2, . . . , µp ≥ 0 such that p ≤ n and

∇f(x∗) −
p∑

i=1

µi∇xg(x∗, ti)si = 0, (2.8)

R+ 3 µi ⊥ (si)>g(x∗, ti) ∈ R+ (i = 1, 2, . . . , p). (2.9)

Letting yi := µis
i for each i, we have from (2.9) that 0 = µis

>
i g(x∗, ti) = (yi)>g(x∗, ti). We

also have yi ∈ Cd since si ∈ S ⊆ Cd from Proposition 2.3 and µi ≥ 0. In addition, we also
have g(x∗, ti) ∈ C since x∗ is feasible to SICP (2.1). Thus, (2.8) and (2.9) yield (2.4) and (2.5),
respectively. This completes the proof.

Before closing this section, we provide a more enhanced theorem available to the case where
C has a Cartesian structure, i.e., C = C1 × · · · × Ch ⊆ Rm = Rm1 × · · · × Rmh . Consider the
following problem:

Minimize f(x)

subject to gj(x, tj) ∈ Cj for all tj ∈ Tj , j = 1, 2, · · · , h,
(2.10)

where gj : Rn × Tj → Rmj is continuous, gj(·, tj) is differentiable for each fixed tj , Tj ⊆ R`j is
compact and Cj ⊆ Rmj is a closed convex cone with nonempty interior for each j. Then, the
following theorem holds.

Theorem 2.5. Let x∗ ∈ Rn be an arbitrary local optimum of SICP (2.10). Assume that the RCQ
holds at x∗, i.e., there exists a vector d ∈ Rn such that

gj(x∗, tj) + ∇xgj(x∗, tj)>d ∈ intCj for all tj ∈ Tj , j = 1, 2, . . . , h. (2.11)

Then, there exist j1, j2, . . . , jp ∈ {1, 2, . . . , h}3 and (tji

i , yji

i ) ∈ Tji × Rmji for i = 1, 2, . . . , p such
that p ≤ n and

∇f(x∗) −
p∑

i=1

∇xgji
(x∗, tji

i )yji

i = 0 (2.12)

(Cji)d 3 yji

i ⊥ gji(x
∗, tji

i ) ∈ Cji (i = 1, 2, . . . , p). (2.13)

Proof. For each j = 1, 2, . . . , h, let t̃j ∈ R`j \ Tj be an arbitrary point and T̃j be defined as
T̃j := {t̃1} × · · · × {t̃j−1} × Tj × {t̃j+1} × · · · × {t̃h} ⊆ R`1+`2+···+`h . Then we can easily see that
T̃j ∩ T̃j′ = ∅ for any j 6= j′. Let

t := (t1, t2, . . . , th) ∈ R`1+`2+···+`h , T :=
h∪

j=1

T̃j ⊆ R`1+`2+···+`h , (2.14)

and define g : Rn × T → Rm1+m2+···+mh by

g(x, t) := (g̃1(x, t), . . . , g̃h(x, t)), (2.15)

where

g̃j(x, t) :=

gj(x, tj) (t ∈ T̃j)

ζj (t /∈ T̃j)
(2.16)

3Repeated choice of the same index is allowed in the set {j1, j2, . . . , jp}.
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and ζj ∈ intCj is an arbitrary vector. Then, the function g id continuous on Rn × T and g(·, t)
is differentiable for each t ∈ T . In particular, we have

∇xg̃j(x, t) :=

∇xgj(x, tj) (t ∈ T̃j)

0 (t /∈ T̃j)
. (2.17)

Then, T is nonempty and compact, and SICP (2.10) is equivalent to SICP (2.1) with C = C1 ×
· · · × Ch and g defined by (2.15). By letting d ∈ Rn satisfy (2.11), we have

g̃j(x∗, t) + ∇xg̃j(x∗, t)>d =

gj(x∗, tj) + ∇xgj(x∗, tj)>d ∈ intCj (t ∈ T̃j)

ζj ∈ intCj (t /∈ T̃j)

for each j = 1, 2, . . . , h, where the first case follows from (2.11) and the second one follows from
(2.16), (2.17) and ζj ∈ intCj . Therefore, we have g(x∗, t) + ∇g(x∗, t)>d ∈ intC for all t ∈ T ,
which implies that the RCQ holds at x∗ for SICP (2.1). Hence, by Theorem 2.4, there exist p ≤ n,
t1, t2, . . . , tp ∈ T and y1, y2, . . . , yp ∈ Rm such that

∇f(x∗) −
p∑

i=1

∇xg(x∗, ti)yi = 0, (2.18)

Cd 3 yi ⊥ g(x∗, ti) ∈ C (i = 1, 2, . . . , p). (2.19)

Let ti := (t1i , t
2
i , . . . , t

h
i ) ∈ R`1+`2+···+`h and yi := (y1

i , y2
i , . . . , yh

i ) ∈ Rm1+m2+···+mh for i =
1, 2, . . . , p. From (2.14), for each i, there exists ji ∈ {1, 2, . . . , h} such that ti ∈ T̃ji , i.e., tji

i ∈ Tji .
Then, we have

p∑
i=1

∇xg(x∗, ti)yi =
p∑

i=1

(
∇xg̃1(x∗, ti),∇xg̃2(x∗, ti), . . . ,∇xg̃h(x∗, ti)

)
y1

i

...
yh

i


=

p∑
i=1

∇xgji(x
∗, tji

i )yji

i ,

where the second equality follows from (2.16) and (2.17), which together with (2.18) implies (2.12).
In the last, we show (2.13). From (2.19) and Cd = (C1)d × (C2)d × · · · × (Ch)d, we have (Cj)d 3
yj

i ⊥ g̃j(x∗, ti) ∈ Cj for j = 1, 2, . . . , h, which together with g̃ji(x
∗, ti) = gji(x

∗, tji

i ) from (2.16)
implies (2.13) for i = 1, 2, . . . , p. The proof is complete.

3 Explicit exchange method for SICP

In this section, we propose an explicit exchange method for solving SICP (1.1), and show its global
convergence under the assumption that f is strictly convex.

3.1 Algorithm

The algorithm proposed in this section requires solving conic programs with finitely many con-
straints as subproblems. Let CP(T ′) be the relaxed problem of SICP (1.1) with T replaced by a
finite subset T ′ := {t1, t2, . . . , tp} ⊆ T . Then, CP(T ′) can be formulated as follows:

CP(T ′)
Minimize f(x)

subject to A(ti)>x − b(ti) ∈ C (i = 1, 2, . . . , p).
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Note that an optimum x∗ of CP(T ′) satisfies the following KKT conditions:

∇f(x∗) −
p∑

i=1

A(ti)yti = 0,

Cd 3 yti ⊥ A(ti)>x∗ − b(ti) ∈ C (i = 1, 2, . . . , p),

where yti is the Lagrange multiplier vector corresponding to the constraint A(ti)>x∗ − b(ti) ∈ C

for each i.
Now, we propose the following algorithm.

Algorithm 1 (Explicit exchange method)

Step 0. Let {γk} ⊆ R++ be a positive sequence such that limk→∞ γk = 0. Choose a finite subset
T 0 := {t01, . . . , t0`} ⊆ T with ` ≥ 0 chosen arbitrarily4, and an arbitrary vector e ∈ intC.
Solve CP(T 0) to obtain an optimum x0. Set k := 0.

Step 1. Obtain xk+1 and T k+1 by the following steps.

Step 1-0 Set r := 0, E0 := T k, v0 := xk and solve CP(E0) to obtain an optimum v0.

Step 1-1 Find a trnew ∈ T such that

A(trnew)>vr − b(trnew) /∈ −γke + C. (3.1)

If such a trnew does not exist, i.e.,

A(t)>vr − b(t) ∈ −γke + C (3.2)

for all t ∈ T , then set xk+1 := vr, T k+1 := Er, and go to Step 2. Otherwise, let

E
r+1

:= Er ∪ {trnew},

and go to Step 1-2.

Step 1-2 Solve CP(E
r+1

) to obtain an optimum vr+1 and the Lagrange multipliers yr+1
t

for t ∈ E
r+1

.

Step 1-3 Let Er+1 := {t ∈ E
r+1 | yr+1

t 6= 0}. Set r := r + 1 and return to Step 1-1.

Step 2. If γk is sufficiently small, then terminate. Otherwise, set k := k + 1 and return to Step 1.

When C is a symmetric cone such as an SOC or a semidefinite cone, the most typical choice for the
interior vector e is the identity element with respect to Euclidean Jordan algebra [5].5 Moreover,
in Step 1-2, we can apply existing methods such as the primal-dual interior point method, the
regularized smoothing method, and so on [1, 6, 11, 14, 17].

Now, denote the optimal values of CP(T ′) and SICP (1.1) by V (T ′) and V (T ), respectively.
Since Er+1 just removes the constraints with zero Lagrange multipliers from E

r+1
, and the feasible

region of CP(Er) is larger than that of CP(E
r+1

), we have

V (E0) ≤ V (E
1
) = V (E1) ≤ · · · ≤ V (Er) ≤ V (E

r+1
) = V (Er+1) ≤ · · · ≤ V (T ) < ∞. (3.3)

In the subsequent convergence analysis, we omit the termination condition in Step 2, so that the
algorithm generates an infinite sequence {xk}.

4` = 0 means that we do not choose anything from T .
5For example, if C is R+, Km and Sm

+ , then the identity element is 1, (1, 0, . . . , 0)> ∈ Rm, and the m × m

identity matrix, respectively.
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3.2 Global convergence under strict convexity assumption

In the previous subsection, we proposed the explicit exchange method for solving SICP (1.1). In
this subsection, we show that the algorithm generates a sequence converging to the optimal solu-
tion under the following assumption.

Assumption A. i) Function f is strictly convex over the feasible region of SICP (1.1). ii) In Step
1-2 of Algorithm 1, CP(E

r+1
) is solvable for each r. iii) A generated sequence {vr} in every Step 1

of Algorithm 1 is bounded.

Notice that all statements i)–iii) automatically hold when f is strongly convex. Under Assump-
tion A, we first show that the inner iterations within Step 1 do not repeat infinitely, which ensures
that Algorithm 1 is well-defined. To prove this, we provide the following proposition stating that
the distance between vr+1 and vr does not tend to zero during the inner iterations in Step 1.

Proposition 3.1. Suppose that Assumption A holds. Then, there exists a positive number N > 0
such that

‖vr+1 − vr‖ ≥ Nγk

for any r ≥ 0 and k ≥ 0.

Proof. Denote z(v, t) := A(t)>v − b(t) for simplicity. Due to the continuity of the matrix norm
‖A(t)‖ := max‖w‖=1 ‖A(t)>w‖ and the compactness of T , there exists a sufficiently large M > 0
such that ‖A(t)‖ ≤ M for any t ∈ T . Hence, we have

‖z(vr+1, t) − z(vr, t)‖ = ‖A(t)>(vr+1 − vr)‖ ≤ M‖vr+1 − vr‖ (3.4)

for any t ∈ T .
We next show that ‖z(vr+1, trnew)− z(vr, trnew)‖ is bounded below by some positive number for

any r ≥ 0. Let e ∈ intC be the vector chosen in Step 0. Then, there exists a δ > 0 such that
e + B(0, δ) ⊆ C. We therefore have

z(vr+1, trnew) + B(0, δγk) = −γke + z(vr+1, trnew) + γk (e + B(0, δ))

⊆ −γke + C, (3.5)

where the inclusion follows since e + B(0, δ) ⊆ C, γk > 0, z(vr+1, trnew) ∈ C, and C is a convex
cone6. From (3.1), we have z(vr, trnew) /∈ −γke + C, which together with (3.5) implies that

‖z(vr+1, trnew) − z(vr, trnew)‖ ≥ δγk. (3.6)

Combining (3.4) and (3.6) with N := δ/M , we obtain

‖vr+1 − vr‖ ≥ δγk/M = Nγk.

Theorem 3.2. Suppose that Assumption A holds. Then, Step 1 of Algorithm 1 terminates in a
finite number of iterations for each k.

Proof. Suppose, for a contradiction, that the inner iterations in Step 1 do not terminate finitely
for some outer iteration k. (In what follows, k is fixed.) Then, by Assumption A iii), there exist
accumulation points v∗ and v∗∗ of {vr} such that vrj → v∗ and vrj+1 → v∗∗ as j → ∞. Moreover,

6When C is a convex cone, αx + βy ∈ C holds for any x, y ∈ C and α, β ≥ 0.
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we must have v∗ 6= v∗∗ from Proposition 3.1. Denote zr
t := A(t)>vr − b(t) for simplicity. Since vr

solves CP(E
r
), it satisfies the following KKT conditions:

∇f(vr) −
∑
t∈E

r

A(t)yr
t = 0, (3.7)

Cd 3 yr
t ⊥ zr

t ∈ C (t ∈ E
r
), (3.8)

where yr
t are the Lagrange multipliers. From (3.3), we have f(v1) ≤ f(v2) ≤ · · · ≤ V (T ) < +∞,

which implies
lim

r→∞

(
f(vr+1) − f(vr)

)
= 0. (3.9)

Let Fr := f(vr+1) − f(vr) −∇f(vr)>(vr+1 − vr). Then, we have

f(vr+1) − f(vr) = Fr + ∇f(vr)>(vr+1 − vr)

= Fr +
( ∑

t∈E
r

A(t)yr
t

)>

(vr+1 − vr) (3.10)

= Fr +
∑
t∈E

r

(yr
t )>zr+1

t −
∑
t∈E

r

(yr
t )>zr

t (3.11)

= Fr +
∑
t∈E

r

(yr
t )>zr+1

t , (3.12)

where (3.10) and (3.12) follow from (3.7) and (3.8), respectively and (3.11) follows from zr
t =

A(t)>vr − b(t) and zr+1
t = A(t)>vr+1 − b(t). Since f is convex, we have Fr ≥ 0. In addition, since

yr
t ∈ Cd and zr+1

t ∈ C, we have
∑

t∈E
r (yr

t )>zr+1
t ≥ 0 . Therefore, from (3.9) and (3.12), we have

0 = lim
r→∞

Fr = lim
j→∞

Frj = f(v∗∗) − f(v∗) −∇f(v∗)>(v∗∗ − v∗). (3.13)

However, this contradicts v∗ 6= v∗∗ and the strict convexity of f . Hence, the inner iterations in
Step 1 must terminate finitely.

The next theorem shows the global convergence of Algorithm 1 under the strict convexity
assumption.

Theorem 3.3. Suppose that SICP (1.1) has a solution and Assumption A holds. Let x∗ be the
optimum, and {xk} be the sequence generated by Algorithm 1. Then, we have

lim
k→∞

xk = x∗.

Proof. We first show that {xk} is bounded. Let X(γ) := {x ∈ Rn | A(t)>x−b(t)+γe ∈ C, ∀t ∈ T}
and L := {x ∈ Rn | f(x) ≤ f(x∗)}. Since xk ∈ L ∩ X(γk) ⊆ L ∩ X(γ) with γ := maxk≥0 γk,
it suffices to show that L ∩ X(γ) is bounded for any γ > 0. By Proposition 2.3, there exists a
compact set S ⊆ Rm such that 0 /∈ S ⊆ Cd and

X(γ) = {x ∈ Rn | s>
(
A(t)>x − b(t) + γe

)
≥ 0 , ∀(s, t) ∈ S × T}

= {x ∈ Rn | (e>s)−1
(
s>b(t) − (A(t)s)>x

)
≤ γ , ∀(s, t) ∈ S × T}

=
{

x ∈ Rn | h(x) := max
(s,t)∈S×T

(e>s)−1
(
s>b(t) − (A(t)s)>x

)
≤ γ

}
,

where the second equality is valid since e ∈ intC and 0 6= s ∈ S ⊆ Cd entail mins∈S e>s > 0.
Notice that h(x) < ∞ from the compactness of S × T and continuity of A(·) and b(·). Therefore,
function h is closed, proper and convex. Now, let h : Rn → (−∞,+∞] be defined as

h(x) :=

h(x) (x ∈ L)

∞ (x /∈ L)
.
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Then h is also closed, proper and convex since L is convex. Notice that

L ∩ X(γ) = {x ∈ Rn | h(x) ≤ γ},

i.e., L ∩ X(γ) is a level set of h. If a closed proper convex function has at least one compact level
set, then its any nonempty level set is also compact [3]. Moreover, we have L∩X(0) = {x∗} since
f is strictly convex. Therefore, L ∩ X(γ) is compact for any γ ≥ 0.

We next show that limk→∞ xk = x∗. Let x̄ be an arbitrary accumulation point of {xk}.
Then, there exists a subsequence {xkj} ⊆ {xk} and {γkj} ⊆ {γk} such that limj→∞ xkj = x̄ and
limj→∞ γkj = 0. For all j, we have A(t)>xkj − b(t) + γkj e ∈ C (∀t ∈ T ) and f(xkj ) ≤ f(x∗).
Hence, letting j tend to ∞, we have

A(t)>x̄ − b(t) ∈ C (∀t ∈ T ), (3.14)

f(x̄) ≤ f(x∗) (3.15)

from the continuity of f and the closedness of C. From (3.14), we have f(x̄) ≥ f(x∗), which
together with (3.15) implies f(x̄) = f(x∗). Therefore, x̄ solves SICP (1.1). Since f is strictly
convex, we must have x̄ = x∗. We thus have limk→∞ xk = x∗.

4 Regularized explicit exchange method for SICP

In the previous section, we proposed the explicit exchange method for SICP (1.1) and analyzed
the convergence property. However, to ensure the global convergence, we had to assume the strict
convexity of the objective function (Assumption A). In this section, we propose a new method
combining the regularization technique with the explicit exchange method, and establish the global
convergence without assuming the strict convexity.

4.1 Algorithm

Let f : Rn → R be a convex function. Then, function fε : Rn → R defined by fε(x) := 1
2ε‖x‖2 +

f(x) is strongly convex for any ε > 0. So, if we apply Algorithm 1 to the following regularized
SICP:

RSICP(ε)
Minimize fε(x)

subject to A(t)>x − b(t) ∈ C for all t ∈ T,

then Step 1 terminates in a finite number of (inner) iterations and the sequence generated by
Algorithm 1 converges to the unique solution x∗

ε of RSICP(ε).
By introducing a positive sequence {εk} converging to 0, we can expect that x∗

εk
converges to the

solution of the original SICP (1.1) as k goes infinity. However, it requires too much computational
cost if we solve RSICP(εk) exactly for every k. Therefore, in the regularized explicit exchange
method, we solve RSICP(εk) inexactly by the explicit exchange method. In the inner iterations,
we repeatedly solve finitely relaxed regularized problems of the form:

CP(εk, T ′)
Minimize fεk

(x)

subject to A(ti)>x − b(ti) ∈ C (i = 1, 2, . . . , p),

where T ′ := {t1, t2, . . . , tp} ⊆ T . The detailed steps of the regularized explicit exchange method
are described as follows.

Algorithm 2 (Regularized Explicit Exchange Method)
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Step 0. Choose positive sequences {γk} ⊆ R++ and {εk} ⊆ R++ such that limk→∞ γk = limk→∞ εk =
0. Choose a finite subset T 0 := {t01, . . . , t0l } ⊆ T with ` ≥ 0 chosen arbitrarily7. Moreover,
choose e ∈ intC arbitrarily. Set k := 0.

Step 1. Obtain xk+1 and T k+1 by the following procedure.

Step 1-0 Set r := 0 and E0 := T k. Solve CP(εk, E0) and let v0 be an optimum.

Step 1-1 Find trnew ∈ T such that

A(trnew)>vr − b(trnew) /∈ −γke + C. (4.1)

If such a trnew does not exist, i.e.,

A(t)>vr − b(t) ∈ −γke + C (4.2)

for any t ∈ T , then set xk+1 := vr and T k+1 := Er, and go to Step 2. Otherwise, let

E
r+1

:= Er ∪ {trnew},

and go to Step 1-2.

Step 1-2 Solve CP(εk,E
r+1

) to obtain an optimum vr+1 and the Lagrange multipliers yr+1
t

for t ∈ E
r+1

.

Step 1-3 Let Er+1 := {t ∈ E
r+1 | yr+1

t 6= 0}. Set r := r + 1 and return to Step 1-1.

Step 2. If γk and εk are sufficiently small, then terminate. Otherwise, set k := k + 1 and return
to Step 1.

In the next convergence analysis, we omit the termination check in Step 2.

4.2 Global convergence without strict convexity assumption

In this section, we show the global convergence of Algorithm 2 for SICP (1.1) without the strict
convexity assumption. Indeed, we only need the following assumption for the proof of the conver-
gence.

Assumption B. Function f is convex. Moreover, the Slater constraint qualification (SCQ) holds
for SICP (1.1), i.e., there exists an x0 ∈ Rn such that A(t)>x0 − b(t) ∈ intC for all t ∈ T .

Notice that, for SICP (1.1), the SCQ holds if and only if any feasible point satisfies the RCQ as
studied in Section 2. We first show that Step 1 terminates finitely.

Proposition 4.1. Suppose that Assumption B holds. Then, Step 1 terminates finitely.

Proof. By Theorem 3.2, it suffices to show that Assumption A holds when Step 1 of Algorithm 1 is
applied to RSICP(ε) for any ε > 0. Since Assumptions A i) and ii) hold from the strong convexity
of fε, we only show Assumption A iii). Let x∗

ε be an optimum of RSICP(ε) and L∗
ε := {x ∈ Rn |

fε(x) ≤ fε(x∗
ε)}. Then, L∗

ε is compact since fε is strongly convex. Moreover, we have vr ∈ L∗
ε, i.e.,

fε(vr) ≤ fε(x∗
ε) for all r since E

r ⊆ T . Hence, {vr} is bounded.

Now, we show that under Assumption B the generated sequence {xk} is bounded, and Algo-
rithm 2 is globally convergent in the sense that the distance from xk to the solution set of SICP
(1.1) tends to 0.

7` = 0 means that we don’t choose anything from T .
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Theorem 4.2. Suppose that Assumption B holds. Let {xk} be the sequence generated by Algo-
rithm 2. Then, the following statements hold.

i) If {εk} and {γk} are chosen in Step 0 so that γk = O(εk), then {xk} is bounded.

ii) Any accumulation point of {xk} solves SICP (1.1).

Proof. i) Let x∗ ∈ Rn be an arbitrary solution of SICP (1.1). Since Assumption B holds, Theorem
2.4 holds for SICP (1.1), i.e., there exist t1, t2, . . . , tp ∈ T and y1, y2, . . . , yp ∈ Rm such that p ≤ n

and

∇f(x∗) −
p∑

i=1

A(ti)yi = 0, (4.3)

Cd 3 yi ⊥ A(ti)>x∗ − b(ti) ∈ C (i = 1, 2, . . . , p). (4.4)

Let {xk} be the sequence generated by Algorithm 2. Since xk solves CP(εk−1, T
k) and x∗ is feasible

to CP(εk−1, T
k), we have

1
2
εk−1‖xk‖2 + f(xk) ≤ 1

2
εk−1‖x∗‖2 + f(x∗). (4.5)

Multiplying both sides of (4.5) by 2/εk−1, we have

‖xk‖2 ≤ ‖x∗‖2 − 2
εk−1

(f(xk) − f(x∗))

≤ ‖x∗‖2 − 2
εk−1

∇f(x∗)>(xk − x∗)

= ‖x∗‖2 − 2
εk−1

(
p∑

i=1

A(ti)yi

)>

(xk − x∗), (4.6)

where the second inequality holds since f is convex, and the equality follows from (4.3). Moreover,
the last term of (4.6) satisfies the following inequalities:

−
( p∑

i=1

A(ti)yi

)>

(xk − x∗)

= −
p∑

i=1

(yi)>(A(ti)>xk − b(ti) + γk−1e) +
p∑

i=1

(yi)>(γk−1e) +
p∑

i=1

(yi)>(A(ti)>x∗ − b(ti))

≤
p∑

i=1

(yi)>(γk−1e)

≤ pµ‖e‖γk−1, (4.7)

where µ := max{‖y1‖, ‖y2‖, . . . , ‖yp‖}, and the first inequality follows since (4.2) and (4.4) imply
yi ∈ Cd, A(ti)>xk − b(ti) + γk−1e ∈ C and (yi)>(A(ti)>x∗ − b(ti)) = 0. Then, by substituting
(4.7) into (4.6), we have

‖xk‖2 ≤ ‖x∗‖2 + 2pµ‖e‖γk−1/εk−1. (4.8)

Since γk−1 = O(εk−1), {γk−1/εk−1} is bounded, and hence {xk} is also bounded.
ii) Let x̄ be an arbitrary accumulation point of {xk}. Then, taking a subsequence if necessary,

we have
xk → x̄, εk−1 → 0, γk−1 → 0 (k → ∞).

First, we show that x̄ is feasible to SICP (1.1). Since xk is determined as vr satisfying (4.2)
with γk replaced by γk−1, A(t)>xk − b(t) + γk−1e ∈ C holds for any t ∈ T . Noticing that C is
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closed, we have limk→∞ A(t)>xk − b(t) + γk−1e = A(t)>x̄ − b(t) ∈ C for any t ∈ T . Hence, x̄ is
feasible to SICP (1.1).

We next show that x̄ is optimal to SICP (1.1). Let x∗ be an arbitrary optimum of SICP (1.1).
Since x̄ is feasible to SICP (1.1), we have f(x̄) ≥ f(x∗). On the other hand, x∗ is feasible to
CP(εk−1, Ek) since the feasible region of SICP (1.1) is contained in that of CP(εk−1, Ek). Hence,
we have

1
2
εk−1‖xk‖2 + f(xk) ≤ 1

2
εk−1‖x∗‖2 + f(x∗). (4.9)

Due to the continuity of f , by letting k → ∞ in (4.9), we have f(x̄) ≤ f(x∗). Therefore, we obtain
f(x∗) = f(x̄), which implies that x̄ solves SICP (1.1).

From the above theorem, we can see that if we choose {εk} and {γk} so that γk = O(εk), then
the generated sequence {xk} has an accumulation point and it solves SICP (1.1). Moreover, we
can show that, if {εk} and {γk} are chosen so that γk = o(εk), {xk} is actually convergent and its
limit point is the least 2-norm solution.

Theorem 4.3. Suppose that Assumption B holds. Let {εk} and {γk} be chosen such that γk =
o(εk), and {xk} be a sequence generated by Algorithm 2. Let S∗ ⊆ Rn denote the nonempty solution
set of SICP (1.1) and x∗ ∈ Rn be the least 2-norm solution, i.e., x∗

min := argminx∈S∗‖x‖. Then,
limk→∞ xk = x∗

min.

Proof. By Theorem 4.2, {xk} is bounded and every accumulation point belongs to S∗. Moreover,
x∗

min can be identified uniquely since S∗ is closed and convex. Therefore, it suffices to show that
‖x̄‖ = ‖x∗

min‖ for any accumulation point x̄ of {xk}.
Now, let x̄ be an arbitrary accumulation point of {xk}. By (4.8) in the proof of Theorem 4.2

ii), we have
‖xk‖2 ≤ ‖x∗‖2 + 2pµ‖e‖γk−1/εk−1. (4.10)

Since γk = o(εk), by letting k → ∞, we obtain ‖x̄‖ ≤ ‖x∗
min‖. On the other hand, we also have

‖x̄‖ ≥ ‖x∗
min‖ since x̄ ∈ S∗ and x∗

min = argminx∈S∗‖x‖. We thus have ‖x̄‖ = ‖x∗
min‖.

5 Numerical experiments

In this section, we report some numerical results. The program was coded in Matlab 2008a and
run on a machine with an IntelrCore2 Duo E6850 3.00GHz CPU and 4GB RAM. In this experi-
ment, we consider the SICP with a linear objective function and infinitely many second-order cone
constraints with respect to a single second-order cone. Actual implementation of Algorithm 2 was
carried out as follows. In Step 0, we set e := (1, 0, . . . , 0)> ∈ intKm. In Step 1-1, to find trnew satisfy-
ing (4.1), we first check the values of λ

(
A(t)>vr − b(t) + γke

)
for t = −1,−0.98,−0.96, . . . , 0.98, 1,

where λ(·) denotes the spectral value of z ∈ Rm [6, 11] defined by

λ(z) := z1 −
√

z2
2 + z2

3 + · · · + z2
m.

If we find a t̄ ∈ {−1,−0.98,−0.96, . . . , 0.98, 1} such that λ
(
A(t̄)>vr − b(t̄) + γke

)
< 0, then we set

trnew := t̄.8 Otherwise, we solve

Minimize λ(A(t)>vr − b(t) + γke)

subject to t ∈ [−1, 1],
(5.1)

8Notice that λ
`

A(t)>x − b(t) + γe
´

≥ 0 if and only if A(t)>x − b(t) ∈ −γe + Km for any x ∈ Rn and γ ∈ R.
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and check the nonnegativity of its optimal value. To solve (5.1), we choose the initial point
t0 := argmin{λ

(
A(t)>vr − b(t) + γke

)
| t = −1,−0.98,−0.96, . . . , 0.98, 1} and apply Newton’s

method combined with the bisection method. In Step 1-2, we solve CP(ε, T ′) by the smoothing
method [6, 11]. In Step 1-3, we regard yr

t as 0 if ‖yr
t ‖ ≤ 10−12. In Step 2, we terminate the

algorithm if max(εk, γk) ≤ 10−5.

Experiment 1

In the first experiment, we solve the following SICP:

Minimize c>x

subject to A(t)>x − b(t) ∈ Km for all t ∈ [−1, 1],
(5.2)

where Km := {(x1, x2, . . . , xm)> ∈ Rm | x1 ≥ ‖(x2, x3, . . . , xm)>‖}, c ∈ Rn, A(t) := (Aij(t)) ∈
Rn×m with Aij(t) := αij0 + αij1t + αij2t + αij3t

3 (i = 1, 2, . . . , n, j = 1, 2, . . . , m) and b(t) :=
(bj(t)) ∈ Rm with b1(t) := −

∑m
j=2

∑3
`=0 |β`

j | and bj(t) := βj0 +βj1t+βj2t
2 +βj3t

3 (j = 2, . . . , m).
We choose αijk, βj` (i = 1, 2, . . . , n, j = 2, . . . , m, k = 0, 1, 2, 3, ` = 0, 1, 2, 3) and all components
of c randomly from [−1, 1]. Note that by the choice of b1(t), feasibility of (5.2) is ensured.9 In this
way, we generate two sets of data A(t), b(t) and c for each of the three pairs (m,n) = (25, 15),
(15, 15) and (10, 15), thereby obtaining six problems denoted by Problems 1, 2, . . . , 6.

In this experiment, using parameters {εk} and {γk} such that εk = 0.5k, γk = 0.3k, and the
initial set T 0 := {−1, 0, 1} in Step 0, we observe the convergence behavior of the algorithm. The
results are shown in Table 1, where each column represents the following:

iteout : the number of outer iterations,

{r̄k} : the values of r̄k for k = 0, 1, . . . , iteout − 1, where r̄k denotes the value of r

when the inner termination criterion (4.2) is satisfied at the k-th outer iteration,

r̄sum : the sum of r̄k’s for all k = 0, 1, 2, . . . , iteout − 1,

tsocp : the number of times the sub-SOCPs (CP(εk, E0) and CP(εk, E
r+1

)) are solved,

Tfin : the values of T k when the algorithm terminates,

time(sec) : the CPU time in seconds

In the column of r̄k, pq means that we had r̄k = p in q consecutive iterations. For example, 010, 2, 14

means that r̄k = 0 (k = 0, 1, . . . , 9), r̄10 = 2 and r̄k = 4 (k = 11, 12, 13, 14). Notice that we always
have tsocp = iteout + r̄sum, since we solve sub-SOCPs once at Step 1-0 and r̄k times at Step 1-3, for
each k. Although Tfin usually represents an approximate active index set at the optimum, the real
active index set is {−1, 1} for Problems 2 and 3. This is because the inner termination criterion
(4.2) was always satisfied with r = 0 and therefore the inactive index set t = 0 has never been
removed at Step 1-3. From the columns of r̄k, we can see that r̄k was sometimes large for k ≤ 4,
but it was always 0 or 1 for k = 7, 8, . . . , 17. This fact suggests that Tfin is usually obtained in the
early stage of iterations.

Experiment 2

In the second experiment, we implement the non-regularized exchange method (Algorithm 1) as
well as the regularized exchange method (Algorithm 2), and compare their performances. In both

9Note that the origin always lies in the interior of the feasible region, since we have −b(t) ∈ intKm from

−b1(t) − ‖(−b2(t), . . . ,−bm(t))>‖ > 0 for all t ∈ [−1, 1].
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methods, the initial index set T 0 is set to be T 0
a := {−1,−0.5, 0, 0.5, 1}, T 0

b := {−1, 0, 1}, or
T 0

c = {−0.5, 0, 0.5}. The parameters are chosen as γk = 0.5k for Algorithm 1, and εk = γk = 0.5k

for Algorithm 2. Both methods are applied to the same problems as in Experiment 1.
Table 2 shows the obtained results, where tasocp, tbsocp and tcsocp denote the values of tsocp for the

initial index sets T 0
a , T 0

b and T 0
c , respectively, and “F” means that we failed to solve a problem.

From the table, we can observe that tsocp for the non-regularized method is much less than tsocp for
the regularized method. This is due to the fact that the regularized exchange method has to solve
the sub-SOCP (CP(εk, E0)) at least once for every outer iteration, whereas the non-regularized
exchange method does not need to solve it when the inner termination criterion (3.2) is satisfied
for r = 0. However, as shown in Sections 3 and 4, the convergence of the non-regularized exchange
method is not guaranteed theoretically since the objective function is linear. Indeed, the non-
regularized exchange method failed to solve Problems 1, 4 and 5 with T 0 = T 0

c and Problem 6
with T 0 = T 0

b and T 0
c , since CP(T 0

b ) for Problems 1, 4, 5, 6 and CP(T 0
c ) for Problem 6 have no

solutions. On the other hand, the regularized exchange method succeeded in solving all problems
for any choice of T 0. This is the main advantage of the regularized exchange method.

Problem (m,n) iteout {r̄k} r̄sum tsocp Tfin time(sec)

1 (25, 15) 18 06, 4, 08, 1, 02 5 23 {−1,−0.296, 1} 5.57

2 (25, 15) 18 018 0 18 {−1, 0, 1} 2.41

3 (15, 15) 18 018 0 18 {−1, 0, 1} 1.84

4 (15, 15) 18 03, 11, 02, 1, 011 14 32 {−1,−0.2,−0.18, 1} 12.49

5 (10, 15) 18 02, 13, 0, 3, 0, 3, 0, 1, 09 20 38 {−1,−0.48,−0.46, 1} 3.83

6 (10, 15) 18 02, 7, 4, 6, 22, 05, 1, 03, 1, 0 23 41 {−1,−0.387, 0.25, 1} 12.91

Table 1: Convergence behavior for Experiment 1

regularized non-regularized

Problem (m,n) tasocp tbsocp tcsocp tasocp tbsocp tcsocp

1 (25, 15) 23 23 34 5 5 F

2 (25, 15) 18 18 20 1 1 11

3 (15, 15) 18 18 25 1 1 15

4 (15, 15) 27 28 44 4 4 F

5 (10, 15) 19 24 29 4 5 F

6 (10, 15) 28 30 46 8 F F

Table 2: Comparison of regularized and non-regularized exchange methods
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Experiment 3

In the third experiment, we apply Algorithm 2 to Chebyshev-like approximation problems for
vector-valued functions.

Experiment 3-1 We first focus on the complex Chebyshev approximation, which appears in
various fields such as the filter design [13] and so on [2, 7]. Let the complex functions G : [0, 2π] → C
and g : C` × [0, 2π] → C be defined by

G(t) :=
1

cos t − 1 + i(sin t − 1)
, g(z, t) :=

∑̀
ν=1

zν(cos t + i sin t)ν−1,

respectively, where i :=
√
−1 and z := (z1, z2, . . . , z`)> ∈ C`. Then, we aim to find a z ∈

C` such that g(z, t) approximates G(t) over [0, 2π], that is, to solve the following unconstrained
minimization problem:

Minimize
z∈C`

max
t∈[0,2π]

|G(t) − g(z, t)|. (5.3)

Introducing an auxiliary variable v ∈ R and real vectors (x, y) ∈ Rn × Rn with z = x + iy, we
can transform (5.3) into the following SICP with infinitely many three-dimensional second-order
cones:

Minimize
v,x,y

v

subject to

(
1 0 0 · · · 0

0 B1(t) B2(t) · · · B`(t)

)


v

x1

y1

...

x`

y`


−


0

b1(t)

b2(t)

 ∈ K3

for all t ∈ [0, 2π],

(5.4)

where

Bν(t) :=

(
cos(ν − 1)t − sin(ν − 1)t

sin(ν − 1)t cos(ν − 1)t

)
∈ R2×2, ν = 1, 2, . . . , `,

b1(t) :=
cos t − 1

(cos t − 1)2 + (sin t − 1)2
∈ R,

b2(t) :=
− sin t + 1

(cos t − 1)2 + (sin t − 1)2
∈ R.

We apply Algorithm 2 to SICP (5.3) with ` = 3, 5, 7, 9. In Step 0, we set T0 := {0, π} and
εk = γk := 0.5k. The results are shown in Table 3 and Figure 1. Table 3 shows that all problems
could be solved in acceptable time, and about two sub-SOCPs were solved on average at each outer
iteration k. Figure 1 represents the values of log10 |vexact−vk| for each ` and k, where vexact denotes
the exact optimal value of v for SICP (5.4). In fact, it is known that the value of vexact, which
equals the optimal value of (5.3), is explicitly given by 2(1−`)/2 [2]. From the figure, we can observe
that vk gets sufficiently close to vexact much before the termination criterion max(γk, εk) ≤ 10−5 is
satisfied. Indeed, we have |vexact − vk| ≤ 10−9 for all k ≥ 10 with ` = 3, 5, 7, 9. This fact suggests
that the termination criterion employed in the experiment still has a room to be improved.
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` iteout tsocp time(sec)

3 18 27 1.30

5 18 32 2.24

7 18 37 5.15

9 18 36 8.03

Table 3: Results for Experiment 3-1
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Figure 1: The values of log10 |vexact − vk| for each k
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Experiment 3-2. We next consider the vector-valued approximation problem with respect to
H : R → R3 and h : R8 × R → R3 defined by

H(t) =


et2

2tet2

(4t2 + 2)et2

 , h(u, t) :=
8∑

ν=1


uνtν−1

(ν − 1)uνtν−2

(ν − 1)(ν − 2)uνtν−3

 .

In order to find a u ∈ R8 such that h(u, t) ≈ H(t) over t ∈ [−1, 1], we solve the following problem:

Minimize
u∈R8

max
t∈[−1,1]

‖H(t) − h(u, t)‖ . (5.5)

Introducing an auxiliary variable v ∈ R, we can reformulate (5.5) as the following SICP with
infinitely many second-order cone constraints:

Minimize
v,u

v

subject to


1 0 0 0 · · · 0

0 1 t t2 · · · t7

0 0 1 2t · · · 7t6

0 0 0 2 · · · 42t5


(

v

u

)
−


0

et2

2tet2

(4t2 + 2)et2

 ∈ K4

for all t ∈ [−1, 1].

(5.6)

In applying Algorithm 2, we set T0 := {−1, 1} and εk = γk := 0.5k. Then, the algorithm out-
puts the solution v∗ = 0.1415, u∗ = (0.9948, 0.0000, 1.0707, 0.0000, 0.3083, 0.0000, 0.3442, 0.0000)>)
together with Tfin = {−1.00,−0.88,−0.52, 0, 0.52, 0.88, 1.00}. Notice that we have u∗

2 = u∗
4 =

u∗
6 = u∗

8 = 0. This is reasonable since H1(t) and H3(t) are even functions whereas H3(t)
is an odd function. Figure 2 shows the graph of ‖H(t) − h(u∗, t)‖ over t ∈ [−1, 1]. By the
graph, we can observe that the values of ‖H(t) − h(u∗, t)‖ is bounded above by v∗ = 0.1415,
and the bound is attained at multiple points in [−1, 1]. Actually, those points coincide with
Tfin = {−1.00,−0.88,−0.52, 0, 0.52, 0.88, 1.00}, which correspond to the active constraints at the
optimum.
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Figure 2: The graph of ‖H(t) − h(u∗, t)‖ over t ∈ [−1, 1]
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6 Concluding remarks

For the semi-infinite program with an infinitely many conic constraints (SICP), we have shown
that the KKT conditions can be represented with finitely many conic constraints, as long as the
Robinson constraint qualification (RCQ) holds. Furthermore, for solving the SICP with a convex
objective function and affine conic constrains, we have proposed the regularized explicit exchange
method, and established its global convergence under the Slater constraint qualification. Finally, we
have conducted numerical experiments with the proposed algorithm and made some observations
about its behavior. For the standard semi-infinite program, there have been developed many
methods other than the exchange method. It is an interesting future subject of research to extend
those methods to the SICP.

References

[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming,
95:3–51, 2003.

[2] I. Barrodale, L. M. Delves, and J. C. Mason. Linear chebyshev approximation of complex-
valued functions. Math. Comp, 32(143):853–863, 1978.
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