
Simplex type algorithm for second-order cone programs

via semi-infinite programming reformulation∗

Yoshihiko Ito and Shunsuke Hayashi†

Abstract

The (linear) second-order cone program (SOCP) is to minimize a linear function over the inter-
section between a polyhedral set and an affine transformation of Cartesian product of second-order
cones. For solving such a problem, the primal-dual interior-point method has been studied exten-
sively so far and said to be the most efficient method by many researchers. On the other hand,
the simplex type method for SOCP is much less spotlighted, while it still keeps an important po-
sition for linear programming (LP) problems. Actually, some researchers have tried to apply such
a method to the SOCPs. However, in those existing studies, the proposed algorithms were not
implemented practically, or could be applied only to some restricted class of problems.

In this paper, we apply the dual-simplex primal-exchange (DSPE) method, which was originally
developed for solving linear semi-infinite programs (LSIP), to the SOCP by reformulating the
second-order cone constraint as an infinite number of linear inequality constraints. Especially,
by means of some numerical experiments, we observe that such a simplex type method can be
more efficient than the existing interior-point based method, when we solve multiple SOCPs having
similar data structures successively applying the so-called “hot start” technique.

1 Introduction

In this paper, we focus on the second-order cone program (SOCP) [1] of the form

minimize
x∈Rm

c>x

subject to Ax + b ∈ K, (1.1)

where A ∈ Rn×m, b ∈ Rn and c ∈ Rm are given matrix and vectors, and K ⊆ Rn is given as

K = Kn1 ×Kn2 × · · · × Knp

with an ni-dimensional second-order cone (SOC)

Kni :=

{{
u = (u1, u) ∈ R × Rni−1 u1 ≥ ‖u‖, u1 ∈ R, u ∈ Rni−1

}
(ni ≥ 2)

R+ = {u ∈ R u ≥ 0 } (ni = 1).

Here, n = n1 + n2 + · · · + np and ‖ · ‖ denotes the Euclidean norm. Throughout the paper, we write
u := (u2, u3, . . . , un)> ∈ Rn−1 for a given n-dimensional vector u = (u1, u2, . . . , un)> ∈ Rn. Also, we
often identify (u1, u) ∈ R × Rn−1 with

(
u1

u

)
∈ Rn.

The SOCP has a wide class of applications such as the antenna array weight design problem, the
finite impulse response (FIR) design problem, the portfolio optimization with loss risk constraints [5],

∗Technical report 2011-015, September 23, 2011. This research was supported in part by Grant-in-Aid for Young
Scientists (B) from Japan Society for the Promotion of Science.

†Department of Applied Mathematics and Phisics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501,
Japan. shunhaya@amp.i.kyoto-u.ac.jp (corresponding author)

1

the magnetic shield design problem for maglev trains [10], and so on. Since the nonnegative orthant
is identical with the Cartesian product of one-dimensional SOCs, i.e., Rn

+ = K1 × K1 × · · · × K1, the
linear program (LP) can be regarded as a subclass of SOCP. Moreover, the quadratic program (QP)
and a certain class of robust optimization problems can be reformulated as an SOCP. On the contrary,
the SOCP is involved in the semidefinite program (SDP) as a subclass. However, it is not reasonable
to solve the SOCP as an SDP [14] since the SDP has matrix variables and therefore the computational
cost tends to be much higher than that of SOCP.

Currently, the most popular method for solving the SOCP is the primal-dual interior-point method
[5, 6, 13], which was originally developed for solving LPs and has been extended to SOCP and SDP.
This method is known to be quite efficient both theoretically and practically, and several software
packages [12, 11, 15] have been developed. On the other hand, there are only a few studies on the
simplex method for SOCP, though it is still important and popular for LP. For example, Muramatsu [7,
8] defined a “dictionary” with respect to the simplex method and proposed an implementable simplex
type algorithm for SOCP with some restricted structure. Pataki [9] extended the simplex method for
LP to SDP in a theoretical manner. However, his approach has not been implemented to practical
problems.

The main reason why the simplex method for SOCP has not been studied so much is that the
feasible region of an SOCP has infinitely many extreme points unlike LP. However, the simplex type
method has an advantage when we need to solve multiple problems whose structures are similar to
each other. In such a case, the simplex type method can be accelerated by using the “hot start”
technique, which inherits the information of the bases of the problem solved in the previous step.

In this paper, we first reformulate the SOCP as a linear semi-infinite program (LSIP), and then
apply to it the dual-simplex primal-exchange (DSPE) method [4, Chapter 12]. Since any (linear)
SOCP can be reformulated as an LSIP, we do not need to restrict the structure of SOCPs. Moreover,
in the step of finding the “most violated index” in the DSPE method, we have only to substitute an
obtained vector into an explicit formula. This advantage is due to the special structure of the SOC.
Indeed, such an index is usually obtained by solving a nonconvex optimization problem when we apply
the DSPE method to general LSIPs.

The paper is organized as follows. In Section 2, we give some fundamental background on SOCP
and LSIP, and reformulate the SOCP as an LSIP. In Section 3, we introduce the DSPE method for
solving such an LSIP, and mention some properties important for implementation. In Section 4, we
report some numerical results. Especially, we compare the simplex type algorithm with the existing
primal-dual interior-point method, and observe that the simplex type algorithm is often more efficient
in solving multiple problems with similar structures successively. In Section 5, we conclude the paper
with some remarks.

2 Preliminaries

2.1 Linear semi-infinite program and its duality

We first study the duality theory for LSIP and provide the condition under which the strong duality
holds. The LSIP is described as follows:

minimize
x∈Rm

c>x

subject to a>t x ≥ bt (∀t ∈ T),
(2.1)

where T is a given compact metric space, c ∈ Rm is a given vector, and at = a(t) = (a1(t), . . . , am(t))>

and bt = b(t) are continuous mappings from T to Rm and R, respectively. Originally, the dual problem

2

of LSIP (2.1) is written as

maximize
∫

T
b(t)µ(dt)

subject to
∫

T
a(t)µ(dt) = c

µ ∈ W, µ ≥ 0,

(2.2)

where the decision variable µ is a Borel measure, W is a set of Borel measures on T , and µ ≥ 0 denotes
that µ(T ′) ≥ 0 for any Borel set T ′ ⊆ T . However, this dual problem is quite difficult to be handled
since the variables are not vectors or matrices but a measure. We therefore introduce another type of
dual problem called Haar’s dual problem.

Let R(T) and R(T)
+ be the sets of functions from T to R and R+, respectively, such that there exist

at most finitely many arguments with nonzero functional value, i.e.,

R(T) :=
{
λ : T → R

∣∣ |suppλ| < ∞
}
,

R(T)
+ :=

{
λ : T → R+

∣∣ |suppλ| < ∞
}
,

where

suppλ := { t ∈ T λt 6= 0 } .

Then, Haar’s dual problem is given as follows:

maximize
∑
t∈T

λtbt

subject to λ ∈ R(T)
+ ,

∑
t∈T

λtat = c
(2.3)

where
∑

t∈T denotes that the sum of all t with t ∈ suppλ. Although the dual problem (2.3) is
more restrictive than (2.2), it is known that both optimal value coincide under a general condition [4,
Chapter 8]. In what follows, we only focus on Haar’s dual problem as a dual of LSIP.

The following proposition provides an optimality condition for LSIP (2.1) and its dual (2.3), and
is deeply related to the terminate condition and the optimality of obtained solution for DSPE method
mentioned in Section 3.

Proposition 2.1. Let x ∈ Rn and λ ∈ R(T)
+ be feasible points of LSIP (2.1) and its dual (2.3), respec-

tively. Then, they are optimal if
λt(a>t x − bt) = 0 (∀t ∈ T). (2.4)

Proof. We readily obtain the result from [4, Theorem 7.1 (i)] and [4, Theorem 7.6 (iii)].

2.2 Semi-infinite reformulation of second-order cone program

We next reformulate the SOCP as an LSIP, by using the infinite linear inequality expression of SOC.
The following proposition claims that the n-dimensional SOC Kn can be rewritten by using an infinite
number of linear inequalities equivalently.

Proposition 2.2. Let T̃ := {t ∈ Rn−1 | ‖t‖ ≤ 1} be an (n − 1)-dimensional unit ball. Then, (u1, u) ∈
Kn if and only if

u1 ≥ t>u (∀t ∈ T̃). (2.5)

Proof. We first show “only if” part by means of contraposition. Suppose that there exists (u1, u) ∈ Rn

not satisfying (2.5). Then, there exists a t ∈ T such that u1 < t>u. We therefore have u1 < t>u ≤
‖t>u‖ ≤ ‖t‖‖u‖ ≤ ‖u‖, which implies (u1, u) /∈ Kn.

3

We next show “if” part. Let (u1, u) be an arbitrary vector satisfying (2.5). Then, letting t′ :=
u/‖u‖, we have

u1 ≥ (t′)>u =
(

u

‖u‖

)>
u = ‖u‖

due to t′ ∈ T̃ . Hence, (u1, u) ∈ Kn.

Now, let us decompose matrix A and vector b in SOCP (1.1) corresponding to the Cartesian
structure of K, that is,

A =

(
(a1)>

(A1)>

)
...(

(ap)>

(Ap)>

)
 , b =

(
b1
1

b
1

)
...(
bp
1

b
p

)
 , (2.6)

where ai ∈ Rm, Ai ∈ Rm×(ni−1), and (bi
1, b

i) ∈ R × Rni−1 (i = 1, . . . , p). Then we have Ax + b ∈ K if
and only if ((ai)>x + bi

1

(Ai)>x + b
i

)
∈ Kni (i = 1, . . . , p).

Therefore, by Proposition 2.2, SOCP (1.1) can be rewritten as an LSIP as follows:

minimize
x∈Rm

c>x

subject to (a1 − A1t1)>x ≥ (t1)>b
1 − b1

1 (∀t1 ∈ T̃ 1),
...

(ap − Aptp)>x ≥ (tp)>b
p − bp

1 (∀tp ∈ T̃ p),

(2.7)

where

T̃ i :=
{
ti ∈ Rni−1

∣∣ ‖ti‖ ≤ 1
}

(2.8)

for each i = 1, 2, . . . , p. Moreover, LSIP (2.7) can be written of the form LSIP (2.1) by letting

T := T̃ 1 ⊕ T̃ 2 ⊕ · · · ⊕ T̃ p, (2.9)

at := ai − Aiti, (2.10)

bt := (ti)>b
i − bi

1, (2.11)

t := (i, ti), (2.12)

where ⊕ denotes the direct sum. Notice that any element t ∈ T is expressed as (2.12) for some
i ∈ {1, . . . , p} and ti ∈ T̃ i.

Next we focus on the dual problems of LSIP (2.7) and SOCP (1.1), and study their strong dualities.
Note that the dual of SOCP (1.1) can be expressed as

maximize
y∈Rn

−b>y

subject to A>y = c, y ∈ K.
(2.13)

Moreover, the optimality condition for SOCP (1.1) and its dual can be given as follows.

4

Proposition 2.3. Let x ∈ Rm and y ∈ Rn be the feasible points for SOCP (1.1) and its dual (2.13),
respectively. Then, they are optimal if

(Ax + b)>y = 0. (2.14)

Proof. We readily obtain the proposition by the weak duality theory for SOCP [1, Lemma12].

On the other hand, the dual problem of LSIP (2.7) can be written as

maximize
λ1,λ2,...,λp

p∑
i=1

∑
ti∈T̃ i

λi
ti((t

i)>b
i − bi

1)

subject to
p∑

i=1

∑
ti∈T̃ i

λi
ti(a

i − Aiti) = c

λi ∈ R(T̃ i)
+ (i = 1, . . . , p),

(2.15)

which is of the form (2.3) by using (2.9) – (2.12) and

λ := (λ1, . . . , λp) ∈ R(T̃ 1) × · · · × R(T̃ p) = R(T).

Moreover, by Proposition 2.1, the optimality condition for LSIP (2.7) and its dual (2.15) can be given
as

λi
ti

{
(ai − Aiti)>x − ((ti)>b

i − bi
1)

}
= 0 (i = 1, . . . , p). (2.16)

Although SOCP (1.1) and LSIP (2.7) have the same feasible regions and decision variables, their
dual problems (2.13) and (2.15) look quite different. In what follows, we study the relation between
both feasible points λ = (λi)p

i=1 and y ∈ Rn, which plays an important role in evaluation the accuracy
of the algorithm in the subsequent numerical experiments.

Proposition 2.4. Let λ ∈ R(T) be any feasible point of dual LSIP (2.15). Then, the vector y ∈ Rn

defined by

y :=

(
y1
1

y1

)
(

y2
1

y2

)
...(
yp
1

yp

)

:=

(∑
t1∈T̃ 1 λ1

t1

−
∑

t1∈T̃ 1 λ1
t1

t1

)
(∑

t2∈T̃ 2 λ2
t2

−
∑

t2∈T̃ 2 λ2
t2

t2

)
...(∑

tp∈T̃ p λp
tp

−
∑

tp∈T̃ p λp
tpt

p

)

(2.17)

is feasible for problem (2.13).

Proof. Let ΛD and λ ∈ ΛD be a feasible set of (2.15) and its arbitrary feasible point, respectively.
Then, the vector y = (yi

1, y
i)p

i=1 defined by (2.17) satisfies

yi
1 − ‖yi‖ =

∑
ti∈T̃ i

λi
ti −

∥∥∥∥ −
∑

ti∈T̃ i

λi
tit

i

∥∥∥∥ ≥
∑

ti∈T̃ i

λi
ti −

∑
ti∈T̃ i

λi
ti‖t

i‖ ≥ 0

for each i = 1, . . . , p, where the first inequality is due to the triangle inequality and λi
ti

≥ 0, and
the last inequality follows from ‖ti‖ ≤ 1. We thus have y ∈ K. Moreover, the equality condition of

5

problem (2.15) together with (2.17) yields

c =
p∑

i=1

ai
∑

ti∈T̃ i

λi
ti −

p∑
i=1

Ai
∑

ti∈T̃ i

λi
tit

i

=
p∑

i=1

(
aiyi

1 + Aiyi
)

= A>y.

Therefore, the vector y defined by (2.17) is feasible for (2.13).

Finally, we show that the vector y with (2.17) is optimal for the dual SOCP (2.13) when x and λ
are optimal for (2.7) and (2.15), respectively.

Proposition 2.5. Suppose that x and λ are feasible for (2.7) and (2.15), respectively, and that they
satisfy the optimality condition (2.16). Then, x and y defined by (2.17) satisfy the SOCP optimality
condition (2.14), that is, x and y are optimal for SOCP (1.1) and its dual (2.13), respectively.

Proof. Let x and λ be the feasible solutions of (2.7) and (2.15) satisfying (2.16). Then, we can easily see
that x and y defined by (2.17) are feasible for SOCP (1.1) and its dual (2.13), respectively. Moreover,
by (2.16), we have

((ai)>x + bi
1)λ

i
ti + ((Ai)>x + b

i)>(−λi
tit

i) = 0

for any ti ∈ T i (i = 1, 2, . . . , p). Therefore, by (2.17), we obtain

((ai)>x + bi
1)y

i
1 + ((Ai)>x + b

i)>yi = 0,

which implies
(Ax + b)>y = 0.

Hence, by Proposition 2.3, x and y are optimal for SOCP (1.1) and its dual (2.13), respectively.

3 Simplex type algorithm for second-order cone programs

In this section, we study the simplex type algorithm for SOCP (1.1) by applying the DSPE method
to LSIP (2.7).

3.1 Dual-simplex primal-exchange method

The DSPE method is based on the simplex method for LPs, where the pivoting in the dual space
corresponds to the exchanging of active constraints in the primal space. In the initial step, the DSPE
method requires the feasible extreme point for the dual LSIP (2.15). For a given convex set C ⊆ R(T),
the extreme point c ∈ C is defined as follows1.

Definition 3.1. Let C ⊆ R(T) be a convex set and c be an arbitrary element in C. Then c is said to be
an extreme point of C if there do not exist c1, c2 ∈ C \{c} and µ ∈ (0, 1) such that c = (1−µ)c1 +µc2.

Denote the feasible set of the dual problem (2.15) by

Λ :=
{
λ ∈ R(T)

+

∣∣ ∑
t∈T λtat = c

}
=

{
(λi)p

i=1 ∈ R(T̃ 1)
+ × · · · × R(T̃ p)

+

∣∣ ∑p
i=1

∑
ti∈T̃ i λi

ti
(ai − Aiti) = c

}
.

Then we have the following two properties on the extreme points of Λ.
1This definition is a natural extension of the extreme point in Rn.

6

• λ ∈ Λ is an extreme point if and only if all vectors at with t ∈ suppλ are linearly independent [3,
Theorem 3.1]．

• If an extreme point λ ∈ Λ satisfies |suppλ| = m, then it is called non-degenerate.

We therefore choose λ0 ∈ R(T)
+ in the initial step so that the vectors at with t ∈ suppλ0 are linearly

independent. Moreover, all the points λr ∈ R(T)
+ (r = 0, 1, 2, . . .) generated by the DSPE method

are guaranteed to be extreme points of Λ as will be mentioned in Theorem 3.1. Similarly to the
LP simplex method, the pivoting procedure of the DSPE method utilizes the basic set derived from
λr ∈ R(T)

+ in each iteration. Here, B ⊆ T is called a basic set of an extreme point of λ ∈ Λ if it satisfies
the following two conditions:

(i) B ⊇ suppλ;

(ii) {at | t ∈ B} becomes the basis of Rm.

We immediately have |B| = m from (ii). Generally, the basic set B is not determined uniquely for
a given extreme point λ ∈ Λ. However, if λ is non-degenerate in addition to (i) and (ii), then B is
determined uniquely and given as B = supp λ. Indeed, as well as the LP case, it is guaranteed that
the optimal value decreases strictly for each iteration if the generated extreme points λr (r = 1, 2, . . .)
are non-degenerate. This will be shown in Theorem 3.1, later.

Based on the above arguments, we mention the detailed steps of the DSPE method for LSIP (2.7).
We assume2 that λr is non-degenerate for r = 0, 1, 2, . . ., and the dimension of span {at | t ∈ suppλr}
is always m. We also assume c 6= 0 and Λ 6= ∅ for the original problem.

Algorithm 1. (Dual-simplex primal-exchange (DSPE) method)

Step 0 Choose a feasible extreme point λ0 ∈ Λ. Let B0 ⊆ T be a basic set of λ0, and N0 := T \ B0 be
the corresponding non-basic set. Set r := 0.

Step 1 Solve the linear equation a>t x = bt (t ∈ Br), and let xr be its (unique) solution.

Step 2 Let trin := argmint∈T (a>t xr − bt). If a>trin
xr − btrin

≥ 0, then terminate. Otherwise, go to the next
step.

Step 3 Let gr ∈ R(T) be such that supp gr ⊆ Br and
∑

t∈Br
gr
t at = atrin

.

Step 4 If −gr ∈ R(T)
+ , then terminate since the objective function is unbounded. Otherwise, let

µr := min
t∈Br,gr

t >0
{λr

t/gr
t },

trout := argmin
t∈Br,gr

t >0
{λr

t/gr
t }.

Step 5 Define λr+1, Br+1 and Nr+1 by

λr+1
t :=

λr

t − µrg
r
t (t ∈ Br \ {trout})

0 (t ∈ Nr \ {trin})
0 (t = trout)
µr (t = trin)

Br+1 := Br ∪ {trin} \ {trout},
Nr+1 := Nr ∪ {trout} \ {trin}.

Let r := r + 1 and return to Step 1.
2This assumption is necessary for the existence of a non-generate extreme point.

7

In Steps 1 and 3, xr and gr can be calculated by means of a classical technique such as the Gaussian
elimination under the non-degeneracy assumption. In Step 2, it is not easy to find the “most violated
index” trin ∈ T when we try to solve a general LSIP. However, in case of LSIP (2.7), we can easily
obtain such an index explicitly by using the special structure of T̃ i. Since T̃ i is an (ni−1)-dimensional
unit ball, we easily have

tr,imin := argmin
ti∈T̃ i

{
(ai − Aiti)>xr − (ti)>b

i + bi
1

}
= argmin

ti∈T̃ i

{
(ti)>(−(Ai)>xr − b

i) + (ai)>xr + bi
1

}
=

(Ai)>xr + b
i

‖(Ai)>xr + b
i‖

,

vr,i
min := min

ti∈T̃ i

{
(ai − Aiti)>xr − (ti)>b

i + bi
1

}
= −‖(Ai)>xr + b

i‖ + (ai)>xr + bi
1

for each i = 1, 2, . . . , p. Therefore, letting

ir := argmin
{
vr,i
min

∣∣ i = 1, . . . , p
}

(3.1)

trin := (ir, t
r,ir
min) (3.2)

we have trin = argmint∈T {a>t xr − bt}. If we have multiple candidates for ir in (3.1), then we can choose
the smallest index. Moreover, on the termination criterion in each iteration, we have the following
theorem.

Theorem 3.1. [4, Theorem12.2] Let xr ∈ Rm and λr ∈ R(T)
+ be the r-th iterative points for Algo-

rithm 1. Then, the following three statements hold.

(i) If the iteration terminates in Step 2, then xr and λr are optimal for (2.7) and (2.15), respectively.

(ii) If the iteration terminates in Step 4, then the dual problem (2.15) is unbounded and the primal
problem (2.7) is infeasible.

(iii) If the termination criterions in Steps 2 and 4 do not hold at the r-th iteration, then λr+1 is an
extreme point of Λ satisfying ∑

t∈T

λr
t bt <

∑
t∈T

λr+1
t bt.

3.2 Two-phase method

In the simplex method for LP, it is well known that the two-phase method is available to find an
initial feasible point [2]. The similar technique can be applied to the DSPE method in finding a
feasible extreme point λ0 ∈ Λ. Consider the following auxiliary problem for LSIP (2.15):

minimize
λ1,...,λp, λ̃

1>λ̃

subject to
p∑

i=1

∑
ti∈T̃ i

λi
ti(a

i − Aiti) + λ̃ = c,

λi ∈ R(Ti)
+ (i = 1, . . . , p), λ̃ ≥ 0,

(3.3)

where λ̃ ∈ Rm is an additional variable and 1 := (1, 1, . . . , 1)> ∈ Rm. Notice that we can assume c ≥ 0
without loss of generality.3 Therefore, (λ1, . . . , λp, λ̃) = (0, . . . , 0, c) ∈ R(T1)

+ ×· · ·×R(Tp)
+ ×Rm

+ becomes
the self-evident feasible extreme point of problem (3.3). Moreover, we have the following theorem.

3If ck < 0 for some k, then we have only to multiply the k-th equality constraint in (2.15) by −1.

8

Theorem 3.2. [3, Theorem 6.1] Let va be the optimal value of problem (3.3). Then,

• va ≥ 0 if (3.3) is feasible;

• (2.15) is infeasible if va > 0;

• the basic set at the optimum of (3.3) becomes a basic set of the original problem (2.15), if va = 0.

Therefore, if the optimum (λ1,∗, . . . , λp,∗, λ̃∗) of problem (3.3) satisfies λ̃∗ = 0, then we can choose
(λ1,∗, . . . , λp,∗) ∈ Λ as a feasible extreme point of problem (2.15). As a result, the two-phase method
can be summarized as follows.

Two-phase DSPE method

Step 1 Solve the auxiliary problem (3.3) by the DSPE method with the initial feasible extreme point
(0, . . . , 0, c) ∈ R(T1)

+ × · · · × R(Tp)
+ × Rm

+ . If the optimal value is 0, then go to Step 2. Otherwise,
terminate the algorithm since (2.15) is infeasible.

Step 2 Let λ0 := (λ1,∗, . . . , λp,∗) ∈ R(T1)
+ ×· · ·×R(Tp)

+ = R(T), where (λ1,∗, . . . , λp,∗, λ̃∗) ∈ R(T1)
+ ×· · ·×

R(Tp)
+ × Rm

+ is the optimum of problem (3.3). Then, apply Algorithm 1 with λ0 ∈ Λ in Step 0.

4 Numerical results

In this section, we report some numerical results to see the efficiency of the SDPE method provided
in Section 3. The following three statements apply to all experiments.

• We generate test problems of the form SOCP (1.1) as follows. We first generate matrix A ∈ Rn×m

and vectors b̃i ∈ Rni (i = 1, . . . , p) and c ∈ Rm so that their all components are randomly chosen
from [−1, 1]. Then, we let b := ((b1)>, . . . , (bp)>)> ∈ Rn1+···+np = Rn with bi := (αi, b̃

i
2, . . . , b̃

i
ni

)>

and αi := (1 + r)‖(b̃i
2, . . . , b̃

i
p)‖, where r ∈ R is randomly chosen from (0, 1). Hereby SOCP (1.1)

is guaranteed to be feasible at x = 0 since bi ∈ Kni for each i. If the generated test problem is
unbounded, then it is discarded and another problem is generated in the same way.

• In implementing Algorithm 1, we relax the termination criterion in Step 2 from a>trin
xr − btrin

≥ 0
to a>trin

xr − btrin
≥ −10−8.

• The programs are coded by Matlab 7.4 and run on a machine with Pentium (R) CPUs (3.2
GHz×2) and 2GB RAM.

4.1 Comparison to existing software: solving a single SOCP

Experiment 1

We first solve SOCP (1.1) with various choices of the Cartesian structure K. For comparison purpose,
we solve the generated SOCP not only by the DSPE method but also by SDPT3 solver [12], which is
existing software based on the primal-dual interior-point method. We generate 10 test problems for
each Cartesian structure K.

Table 1 shows the obtained result, in which] pivot denotes the number of pivot steps, and e(x∗, y∗)
is the nonnegative value defined by

e(x∗, y∗) := dist(Ax∗ + b,K) + dist(y∗,K) + |(Ax∗ + b)>y∗| + ‖A>y∗ − c‖,

9

where (x∗, y∗) is the solution obtained by the algorithms.4 Notice that e(x∗, y∗) evaluates the accuracy
of the obtained solution. Indeed we can easily see that e(x, y) ≥ 0 for any (x, y) ∈ Rm × Rn, and
e(x, y) = 0 if and only if x and y solve the primal SOCP (1.1) and the dual SOCP (2.13), respectively.

From the table, we can see that the accuracy of the obtained solutions by the DSPE method is
sufficiently high compared with SDPT3. Moreover, the DSPE method tends to find the solution faster
than SDPT3 as the dimension m of the decision variable x is small. However, as m becomes larger,
the CPU time and the number of pivot steps of the DSPE method increase drastically, and for such
problems, SDPT3 works much better than the DSPE method. On the other hand, the degree of
increment for those values is milder even when the value of n (dimension of K) increases.

4.2 Solving multiple SOCPs with similar structures

We next solve multiple test problems (10 problems) with similar structures successively for each trial.
We also apply the DSPE method and SDPT3 solver for solving test problems. However, in applying
the DSPE method (Algorithm 1), we determine the initial feasible extreme point in Step 0 by taking
advantage of the basic set in the problem solved previously.

Experiment 2

We first consider the sequence of problems

L = {SOCP(bk)}10
k=1,

where A and c are fixed and b is varied as b = b1, b2, . . . , b10. Here, b1 is generated so that all
components are randomly chosen from [−1, 1], and bk (k = 2, . . . , 10) are generated as

bk := bk−1 +
δ‖bk−1‖√

n
un, (4.1)

where δ > 0 is a fixed small number and un ∈ Rn is the vector whose components are randomly
chosen from [−1, 1]. We choose 3 different values and 8 different Cartesian structures for δ and K,
respectively. Moreover, for each (δ,K), we generate 10 families of problems L = L1, L2, . . . ,L10.
Therefore, we solve 2400 SOCPs in total.

In applying the SDPE method to L = {SOCP(bk)}10
k=1, we use the two-phase method only for

SOCP(b1). For solving SOCP(bk) (k = 2, . . . , 10), the initial basic set and feasible extreme point are
set to be the optimal basic set and the dual optimum5 of SOCP(bk−1), respectively. We notice that
the feasible region of LSIP (2.15) does not change even if the value of b changes.

The obtained results are shown in Tables 2–4, each of which corresponds to the case where δ =
10−4, 10−5, 10−6, respectively. Moreover, in those tables, CPUfirst and CPUtotal denote the CPU
time for solving the initial problem SOCP(b1), and the total CPU time for solving 10 problems
SOCP(b1), SOCP(b2), . . . , SOCP(b10) for each family of problems L, respectively. Each value of the
tables is an average for 10 families L = L1, L2, . . . ,L10 for each (δ,K).

As is observed from the tables, the value of CPUfirst/CPUtotal for the DSPE method is much larger
than 0.1. This implies that the computational cost for solving SOCP(bk) (k ≥ 2) is saved considerably
due to the hot start technique. Especially, when δ = 10−5 and 10−6, most of computational cost
for solving the 10 SOCPs is caused by the two-phase method for SOCP(b1). On the other hand, for
SDPT3, the CPU time required for solving SOCP(bk) does not depend on k so much, and therefore
the value of CPUfirst/CPUtotal is around 0.1.

4For the DSPE method, y∗ is calculated by means of formula (2.17).
5In this case, the dual optimum of SOCP(bk) means the optimum λ∗ of the equivalent dual LSIP (2.15). This applies

to SOCP(Ak) and SOCP(ck) in Experiments 3 and 4.

10

Experiment 3

Next we consider the case where A and b are fixed and c is varied as c = c1, c2, . . . , c10. Similarly to
Experiment 2, we generate the sequence of problems L as follows:

c1 := um,

ck := ck−1 +
δ‖ck−1‖√

m
um (k = 2, 3, . . . , 10),

L = {SOCP(ck)}10
k=1,

where δ > 0 is a fixed small number and um ∈ Rm is the vector whose components are randomly
chosen from [−1, 1]. We choose 3 different values and 8 different Cartesian structures for δ and K,
respectively, and generate 10 families of problems L = L1, L2, . . . ,L10 for each (δ,K).

Unlike Experiment 2, we may not be able to use the dual optimum of SOCP(ck−1) as the initial
feasible extreme point for SOCP(ck), since the dual feasible point6 of SOCP(ck−1) may not be feasible
for SOCP(ck). We therefore generate the initial feasible extreme point of SOCP(ck) as follows.

Let B∗
k−1 be the optimal basic set for SOCP(ck−1). We first calculate λ̃ ∈ R(T) such that

supp λ̃ = B∗
k−1 and the equality constraint of the dual LSIP (2.15) with c = ck holds. (To

this end, we have only to solve an m-dimensional linear equation.) If the nonnegativity
condition λ̃ ∈ R(T)

+ is satisfied, then we set λ̃ to be the initial feasible extreme point for
SOCP(ck). (In this case, B∗

k−1 becomes the initial basic set.) If λ̃ /∈ R(T)
+ , then we apply

the two-phase method.

The obtained results are shown in Tables 5–7, each of which corresponds to the case where δ =
10−4, 10−5, 10−6, respectively. In those tables, CPUfirst and CPUtotal are defined in the same way as
Experiment 2, and “] hot start” denotes the number of times that we succeeded in the hot start, i.e.,
we could inherit the basic set from the previous problem.7 Those values are also the average for 10
families of problems L = L1, . . . ,L10 for each (δ,K). As the tables show, the value of CPUtotal tends
to smaller than SDPT3 when δ = 10−6, since the basic sets were inherited more often. Particularly,
when K consists of multiple SOCs, this tendency is more remarkable. However, when δ = 10−5 or
10−4, the basic sets often failed to be inherited, and hence the total CPU time tends to larger than
the case of δ = 10−6.

Experiment 4

In the final experiment, vectors b and c are fixed, and matrix A is varied as A = A1, A2, . . . , A10.
Similarly to Experiments 2 and 3, we generate the sequence of problems L as follows:

A1 := an m × m matrix whose components are randomly chosen from [−1, 1],

Ak := Ak−1D (k = 2, 3, . . . , 10),

L = {SOCP(Ak)}10
k=1,

where D is an m × m diagonal matrix whose diagonal entries are randomly chosen from [1 − δ, 1 + δ]
with a given positive number δ > 0. We choose 3 different values and 8 different Cartesian structures
for δ and K, respectively, and generate 10 families of problems L = L1, L2, . . . ,L10 for each (δ,K). In
this experiment, we generate the initial feasible extreme point as follows, where ak

t denotes the value
of at with A := Ak. (at is defined by (2.10).)

6Here, the dual feasible point of SOCP(ck) means the feasible point λ for the equivalent dual LSIP (2.15). This
applies to SOCP(Ak) in Experiment 5.

7Notice that the value of] hot start is at most 9 since we have to use the two-phase method for solving SOCP(c1).

11

Let B∗
k−1 be the optimal basic set for SOCP(Ak−1). If ak

t (t ∈ B∗
k−1) are linearly dependent,

then we solve SOCP(Ak) by the two-phase method. If ak
t (t ∈ B∗

k−1) are linearly indepen-
dent, then we calculate λ̃ ∈ R(T) such that supp λ̃ = B∗

k−1 and the equality constraint of

the dual LSIP (2.15) with A = Ak holds. If λ̃ ∈ R(T)
+ , then we set λ̃ to be the initial feasible

extreme point for SOCP(Ak). If λ /∈ R(T)
+ , then we apply the two-phase method.

The obtained results are shown in Tables 8–10, each of which corresponds to the case where
δ = 10−4, 10−5, 10−6, respectively. In the tables, the meanings of CPUtotal, CPUfirst and] hot start
are the same as Experiment 3. As the tables show, the basic sets tend to be inherited more often
when δ = 10−6. Especially, when K consists of multiple SOCs, this tendency is more remarkable. We
expect that this is because the degree of linear independence of the vectors ak

t (t ∈ B∗
k−1) is stronger.8

However, in case of δ = 10−5 or 10−4, such a hot start technique tends to be unsuccessful.

5 Final remarks

In this paper, we reformulated an SOCP as an LSIP and studied their strong duality. Moreover, we
proposed the simplex type algorithm for SOCP, by applying the DSPE method for the reformulated
LSIP. We also solved a number of test problems, and observed that the DSPE method is advantageous
when we solve multiple SOCPs with similar structures. We expect that the simplex type approach
studied in this paper will be useful, when it is applied to the algorithms that are required to solve
multiple SOCPs successively as subproblems.

References

[1] Alizadeh, F. and Goldfarb, D.: Second-order cone programming, Mathematical Programming,
Vol. 95 (2003), 3–51.

[2] Chvátal, V.: Linear programming, WH Freeman, 1983.

[3] Goberna, M. A. and Jornet, V.: Geometric Fundamentals of the Simplex Method in Semi-Infinite
Programming, OR Spektrum, Vol. 10 (1988), 145–152.

[4] Goberna, M. A. and López, M. A.: Linear Semi-Infinite Optimization, John Wiley and Sons Ltd.,
1998.

[5] Lobo, M. S., Vandenberghe, L., Boyd, S. and Lebret, H.: Applications of second-order cone
programming, Linear Algebra and Its Applications, Vol. 284 (1998), 193–228.

[6] Monteiro, R. and Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-
orderone program based on the MZ-family of directions, Mathematical Programming, Vol. 88
(2000), 61–83.

[7] Muramatsu, M.: A pivoting procedure for a class of second-order cone programming, Optimization
Methods and Software, Vol. 21 (2005), 295–315.

[8] Muramatsu, M.: Towards a pivoting procedure for a class of second-cone programming problems
having multiple cone constraints, Pacific Journal of Optimization, Vol. 3 (2007), 87–97.

8This means that the full-rank property is maintained even if the square matrix with column vectors ak
t (t ∈ B∗

k−1) is
perturbed.

12

[9] Pataki, G.: Cone-LP’s and semidefinite programs: geometry and a simplex-type method, in
Integer Programming and Combinatorial Optimization, Vol. 1084 of Lecture notes in computer
science, Springer Berlin, Heidelberg, 1996, 162–174.

[10] Sasakawa, T. and Tsuchiya, T.: Optimal Magnetic Shield Design with Second-Order Cone Pro-
gramming, SIAM Journal on Scientific Computing, Vol. 24 (2003), 1930–1950.

[11] Sturm, J. F.: Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones
(Updated for Version 1.05), http://sedumi.ie.lehigh.edu/, 2001.

[12] Toh, K. C., Tütüncü, R. H. and Todd, M. J.: SDPT3 version 4.0 – a matlab soft-
ware for semidefinite-quadratic-linear programming, http://www.math.nus.edu.sg/~mattohkc/
sdpt3.html, 2006.

[13] Tsuchiya, T.: A convergence analysis of the scaling-invariant primal-dual path-following algo-
rithms for second-order cone programming, Optimization Methods and Software, Vol. 11 (1999),
141–182.

[14] Vandenberghe, L. and Boyd, S.: Semidefinite programming, SIAM Review, Vol. 38 (1996), 49–95.

[15] Yamashita, M., Fujisawa, K., Fukuda, M., Nakata, K. and Nakata, M.: A high-performance soft-
ware package for semidefinite programs: SDPA 7, Research report B-463, Dept. of Mathematical
and Computing Science, Tokyo Institute of Technology, Tokyo, Japan, 2010.

13

Table 1: Result of Experiment 1

m n K
CPU time (s)] pivot e(x∗, y∗)

SDPT3 DSPE DSPE SDPT3 DSPE
5 10 K10 0.136 0.030 105.5 1.326e-08 3.681e-09
5 50 (K10)5 0.791 0.042 73.6 1.146e-08 3.803e-09
5 100 (K10)10 1.646 0.046 62.8 1.292e-08 3.543e-09
5 100 K100 0.136 0.030 108.0 1.260e-08 3.748e-09
5 500 (K100)5 0.800 0.059 102.5 1.292e-08 4.120e-09
5 1000 (K100)10 1.788 0.091 109.6 1.124e-08 3.752e-09
5 200 K200 0.132 0.033 108.8 2.081e-08 3.887e-09
5 1000 (K200)5 0.951 0.069 106.2 1.309e-08 4.260e-09
5 2000 (K200)10 1.896 0.103 112.9 1.123e-08 4.113e-09
10 100 K100 0.143 0.172 525.6 9.254e-09 4.166e-09
10 500 (K100)5 0.909 0.351 496.7 1.556e-08 4.337e-09
10 1000 (K100)10 1.962 0.453 487.3 1.312e-08 4.221e-09
10 200 K200 0.152 0.184 547.1 1.138e-08 4.450e-09
10 1000 (K200)5 0.904 0.384 524.1 1.871e-08 4.227e-09
10 2000 (K200)10 1.943 0.490 486.2 1.577e-08 4.420e-09
20 100 K100 0.150 1.665 3717.8 1.541e-08 4.629e-09
20 500 (K100)5 1.048 3.237 3398.0 2.331e-08 4.323e-09
20 1000 (K100)10 2.271 3.919 3314.0 1.546e-08 4.542e-09
20 200 K200 0.158 1.713 3686.1 8.613e-09 4.732e-09
20 1000 (K200)5 1.130 3.772 3690.5 2.197e-08 4.424e-09
20 2000 (K200)10 2.208 4.541 3529.4 2.207e-08 4.588e-09
50 100 K100 0.266 174.705 107254.8 4.069e-08 4.759e-09
50 500 (K100)5 1.279 134.420 69106.3 3.694e-08 4.713e-09
50 1000 (K100)10 2.808 146.180 67093.8 3.696e-08 4.775e-09
50 200 K200 0.269 167.010 100891.9 2.216e-08 4.785e-09
50 1000 (K200)5 1.556 179.963 88713.5 3.796e-08 4.824e-09
50 2000 (K200)10 3.629 220.170 85746.6 2.469e-08 4.678e-09

Table 2: Result of Experiment 2 (δ = 10−6)

m K
CPUtotal CPUfirst CPUfirst/CPUtotal

SDPT3 DSPE SDPT3 DSPE SDPT3 DSPE
10 K20 1.444 0.185 0.215 0.157 0.149 0.849
10 (K20)10 14.254 0.223 1.511 0.210 0.106 0.942
10 K100 1.480 0.217 0.146 0.173 0.099 0.797
10 (K100)10 17.869 0.432 1.773 0.410 0.099 0.949
20 K40 1.852 1.849 0.188 1.804 0.102 0.976
20 (K40)10 19.906 2.480 1.983 2.453 0.100 0.989
20 K100 1.951 1.937 0.198 1.906 0.101 0.984
20 (K100)10 22.181 3.659 2.223 3.625 0.100 0.991

14

Table 3: Result of Experiment 2 (δ = 10−5)

m K
CPUtotal CPUfirst CPUfirst/CPUtotal

SDPT3 DSPE SDPT3 DSPE SDPT3 DSPE
10 K20 1.812 0.233 0.181 0.196 0.100 0.841
10 (K20)10 18.178 0.364 1.806 0.308 0.099 0.846
10 K100 1.887 0.293 0.190 0.212 0.101 0.724
10 (K100)10 19.948 0.592 1.996 0.471 0.100 0.796
20 K40 2.321 2.043 0.229 2.007 0.099 0.982
20 (K40)10 20.771 3.017 2.069 2.677 0.100 0.887
20 K100 2.094 2.241 0.214 1.946 0.102 0.868
20 (K100)10 23.145 4.253 2.303 3.534 0.100 0.831

Table 4: Result of Experiment 2 (δ = 10−4)

m K
CPUtotal CPUfirst CPUfirst/CPUtotal

SDPT3 DSPE SDPT3 DSPE SDPT3 DSPE
10 K20 2.039 0.361 0.206 0.198 0.101 0.548
10 (K20)10 17.299 0.876 1.729 0.343 0.100 0.392
10 K100 1.909 0.753 0.188 0.215 0.098 0.286
10 (K100)10 19.788 1.524 1.978 0.455 0.100 0.299
20 K40 2.233 3.477 0.233 1.984 0.104 0.571
20 (K40)10 19.841 6.630 1.972 2.534 0.099 0.382
20 K100 1.996 6.281 0.199 1.967 0.100 0.313
20 (K100)10 21.706 11.092 2.181 3.730 0.100 0.336

Table 5: Result of Experiment 3 (δ = 10−6)

m K
CPUtotal] hot start CPUfirst CPUfirst/CPUtotal

SDPT3 DSPE DSPE SDPT3 DSPE SDPT3 DSPE
10 K20 1.458 0.177 9.0 0.151 0.162 0.104 0.915
10 (K20)10 13.469 0.204 9.0 1.352 0.185 0.100 0.907
10 K100 1.451 0.233 8.7 0.144 0.172 0.099 0.738
10 (K100)10 16.483 0.443 8.7 1.636 0.325 0.099 0.734
20 K40 1.984 8.370 6.3 0.201 2.298 0.101 0.275
20 (K40)10 19.654 4.458 8.0 1.877 2.078 0.096 0.466
20 K100 1.902 7.638 6.8 0.190 2.393 0.100 0.313
20 (K100)10 21.832 7.655 7.7 2.182 3.241 0.100 0.423

Table 6: Result of Experiment 3 (δ = 10−5)

m K
CPUtotal] hot start CPUfirst CPUfirst/CPUtotal

SDPT3 DSPE DSPE SDPT3 DSPE SDPT3 DSPE
10 K20 2.074 1.792 2.9 0.208 0.260 0.100 0.145
10 (K20)10 17.571 0.816 6.8 1.748 0.261 0.099 0.320
10 K100 1.933 1.254 5.1 0.200 0.255 0.103 0.203
10 (K100)10 20.593 1.277 7.0 2.057 0.410 0.100 0.321
20 K40 1.958 24.889 0.0 0.196 2.476 0.100 0.099
20 (K40)10 21.626 18.019 2.4 2.164 2.298 0.100 0.128
20 K100 2.054 25.611 0.0 0.212 2.623 0.103 0.102
20 (K100)10 22.934 31.623 0.8 2.279 3.407 0.099 0.108

15

Table 7: Result of Experiment 3 (δ = 10−4)

m K
CPUtotal] hot start CPUfirst CPUfirst/CPUtotal

SDPT3 DSPE DSPE SDPT3 DSPE SDPT3 DSPE
10 K20 1.992 2.370 0.8 0.198 0.265 0.099 0.112
10 (K20)10 17.326 2.541 1.0 1.722 0.276 0.099 0.109
10 K100 2.023 2.625 0.0 0.204 0.259 0.101 0.099
10 (K100)10 20.931 4.135 0.2 2.083 0.428 0.100 0.104
20 K40 2.288 26.767 0.0 0.218 2.598 0.095 0.097
20 (K40)10 22.214 24.535 0.0 2.238 2.465 0.101 0.100
20 K100 2.071 26.002 0.0 0.201 2.569 0.097 0.099
20 (K100)10 23.366 34.497 0.0 2.326 3.407 0.100 0.099

Table 8: Result of Experiment 4 (δ = 10−6)

m K
CPUtotal] hot start CPUfirst CPUfirst/CPUtotal

SDPT3 DSPE DSPE SDPT3 DSPE SDPT3 DSPE
10 K20 1.489 0.794 6.4 0.228 0.228 0.153 0.287
10 (K20)10 12.617 0.419 8.0 1.261 0.208 0.100 0.496
10 K100 1.455 0.975 5.7 0.144 0.224 0.099 0.230
10 (K100)10 16.813 0.992 7.4 1.673 0.367 0.100 0.370
20 K40 1.840 23.896 1.2 0.179 2.770 0.097 0.116
20 (K40)10 19.038 11.094 5.3 1.886 2.215 0.099 0.200
20 K100 1.837 21.896 2.2 0.178 2.798 0.097 0.128
20 (K100)10 20.864 26.309 2.7 2.077 3.606 0.100 0.137

Table 9: Result of Experiment 4 (δ = 10−5)

m K
CPUtotal] hot start CPUfirst CPUfirst/CPUtotal

SDPT3 DSPE DSPE SDPT3 DSPE SDPT3 DSPE
10 K20 1.670 2.640 0.8 0.168 0.288 0.101 0.109
10 (K20)10 18.325 2.183 1.8 1.818 0.257 0.099 0.118
10 K100 1.850 2.921 0.2 0.187 0.292 0.101 0.100
10 (K100)10 20.530 3.906 1.1 2.054 0.442 0.100 0.113
20 K40 2.114 29.582 0.0 0.215 2.931 0.102 0.099
20 (K40)10 20.769 25.558 0.0 2.098 2.658 0.101 0.104
20 K100 1.967 29.799 0.0 0.196 2.962 0.100 0.099
20 (K100)10 22.509 36.049 0.0 2.253 3.596 0.100 0.100

Table 10: Result of Experiment 4 (δ = 10−4)

m K
CPUtotal] hot start CPUfirst CPUfirst/CPUtotal

SDPT3 DSPE DSPE SDPT3 DSPE SDPT3 DSPE
10 K20 1.999 2.988 0.0 0.197 0.310 0.099 0.104
10 (K20)10 18.269 2.909 0.0 1.924 0.294 0.105 0.101
10 K100 1.898 3.024 0.0 0.181 0.300 0.095 0.099
10 (K100)10 18.654 4.517 0.0 1.863 0.458 0.100 0.101
20 K40 2.116 30.578 0.0 0.211 3.105 0.100 0.102
20 (K40)10 20.820 25.623 0.0 2.085 2.558 0.100 0.100
20 K100 1.985 30.376 0.0 0.196 3.037 0.099 0.100
20 (K100)10 21.972 35.406 0.0 2.203 3.640 0.100 0.103

16

