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Robustness of Consensus Systems
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Abstract– This paper considers robust consensus problem of a multi-agent systems under the commu-
nication constraints described by a communication graph. The uncertainty of each agent is modeled as a
norm-bounded multiplicative uncertainty. A necessary and sufficient condition for achieving the robust con-
sensus is characterized in terms of the eigenvalues of the weighted Laplacian of the communication graph. In
the case where the nominal transfer function shared by all the agents is positive real, the robust consensus
condition turns out to depend only on the largest eigenvalue. It is also shown that, if the nominal transfer
function has a pole on the imaginary axis, the stability margin of the closed-loop multi-agent system is
independent of the graph topology nor the number of the agents.
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1 Introduction
Multi-agent coordinations have recently been at-

tracting a great attention in the area of systems and
control, since such phenomena can be encountered in
many applications in physics, biology, robotics, com-
puter science, etc (see e.g. the references 1) and 2)).

There have recently been several works on the ro-
bustness analysis of multi-agent systems4)-8). In par-
ticular, Takaba6) derived a sufficient condition for
robust output synchronization against gain-bounded
uncertainties for the case where the nominal agents
are incrementally passive nonlinear systems. For
general LTI multi-agent systems, Hara and his co-
workers7)-9) derived conditions for stability and ro-
bust stability by using a generalized frequency vari-
able representation.

In this paper, we will consider the necessary and
sufficient condition for achieving robust consensus of
an LTI multi-agent system with norm-bounded uncer-
tainties. We will show that the robust consensus con-
dition can be simplified in the case where each agent
is nominally passive. We will also study the stability
margin for several specific graph topologies and their
asymptotic properties as the number of agents goes
to infinity.

2 Problem Formulation
2.1 System description

In this paper, we consider a multi-agent system con-
sisting of N agents (Fig. 1). Each agent is described
by the input-output equations

xi = p̂i(s)ui, yi = xi + vi, i = 1, 2, . . . , N, (1)

where xi, yi, ui, and vi are the controlled output, the
measured output, the control input, and the measure-
ment noise, respectively. The dynamics of each agent
is given by the SISO transfer function p̂i(s). This

transfer function contains multiplicative uncertainty
Δi(s) which represents modeling errors and/or het-
erogeneity in the individual agents:

p̂i(s) = (1 + Δi(s))p(s),

where p(s) denotes the nominal dynamics shared by
all agents. Then, the system equations in (1) is re-
duced to (see Fig. 2)

zi = p(s)ui, (2a)

xi = zi + wi, (2b)

yi = xi + vi, (2c)

wi = Δi(s)zi, (2d)

i = 1, 2, . . . , N

Throughout this paper, we will assume that Δi(s) is
a stable transfer function whose H∞-norm is bounded
by a constant δ, namely, it belongs to the set Bδ de-
fined by

Bδ := {Δ ∈ H∞ | ‖Δ‖∞ ≤ δ }
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Fig. 1: Multi-agent system
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Fig. 2: Agent with multiplicative uncertainty
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Δ(s) = diag(Δ1(s), . . . , ΔN (s)).

Then, the equation (2) is equivalently rewritten as

z = p(s)u, (3a)

x = z + w, (3b)

y = x + v, (3c)

w = Δ(s)z. (3d)

2.2 Communication Graph
Communication among the agents is performed

through the network defined by the undirected graph
G = (V , E), where V := {1, 2, . . . , N} is the set of
nodes, and E ⊆ {(i, j)| i, j ∈ V} are the set of edges
(see Fig. 1). The node i ∈ V represents the i-th agent.
The edge (i, j) ∈ E represents the two-way communi-
cation link between the agents i and j. At each time
instant, the agent i transmits yi to its neighbors j,
(i, j) ∈ E .

Assumption 1 The communication graph G =
(V , E) is time-invariant, i.e. the network topology of
G is fixed all the time.

We now introduce some useful matrices from the
algebraic graph theory10). Denote with B the inci-
dence matrix of G. Then, the weighted Laplacian
L of G is defined by L = BKB�, where K is a
positive definite diagonal matrix whose diagonal el-
ements denote the weight on the edges of G. Note
that rankL = rankB ≤ N − 1, and the equality is at-
tained when G is a connected graph. By definition, L
has at least one zero eigenvalue with the eigenvector
1N , i.e. L1N = 0, where 1n := (1, 1, · · · , 1)� ∈ Rn.

Let U be the orthogonal matrix such that

U�LU =
[
L̂ 0
0 0

]
:=

⎡
⎢⎢⎢⎣

λ2 0 0
. . .

...
0 λN 0
0 · · · 0 0

⎤
⎥⎥⎥⎦ ,

where λ1(= 0), λ2, . . . , λN are the eigenvalues of L
ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

Note that G is connected iff λ2 > 0.
Since L1N = 0 holds, U can be expressed as

U =
[
Q� 1√

N
1N

]
(4)

where Q ∈ R(N−1)×N satisfies

Q�Q +
1
N

1N1�
N = IN , (5a)

Q1N = 0, (5b)

QQ� = IN−1. (5c)

Lemma 1 For ui, vi ∈ L2, i = 1, . . . , N , we define

u =

⎡
⎢⎣

u1

...
uN

⎤
⎥⎦ , v =

⎡
⎢⎣

v1

...
vN

⎤
⎥⎦ , ũ = Qu, ṽ = Qv.

Then,

〈ũ, ṽ〉 =
1

2N

N∑
i=1

N∑
j=1

〈ui − uj , vi − vj〉 ,

where 〈u, v〉 :=
∫ ∞
0

u(t)�v(t)dt.

2.3 Consensus Protocol
The consensus problem is to design a protocol (dis-

tributed control law) which drives the outputs of all
agents towards the same value, i.e., xi − xj , i, j ∈ V
should converge to zero, or should be sufficiently small
in the presence of measurement noises.

Under the communication constraints due to G, a
typical strategy for achieving coordinative tasks such
as consensus, synchronization, formation, etc, is to
apply the relative output feedback law

ui = −
∑

(i,j)∈E
kij(yi − yj), i ∈ V , (6)

or equivalently,

u = −Ly = −L(x + v), (7)

where kij > 0, (i, j) ∈ E are constant feedback gains
corresponding to weights in the graph G, and K =
diag{kij : (i, j) ∈ E}. It then follows from (3) and (7)
that the overall multi-agent system is described as

x = −p(s)L(x + v) + w, (8a)

z = −p(s)L(x + v), (8b)

w = Δ(s)z. (8c)

We define

x̃ = Qx, x′ =
1√
N

1�
Nx, x̄ =

1
N

1�
Nx.

We also apply analogous definitions to other variables.



Since

‖x̃‖2 =

⎛
⎝ 1

2N

∑
i,j∈V

‖xi − xj‖2
2

⎞
⎠

1/2

(9)

immediately follows from Lemma 1, we adopt the
(worst-case) L2-gain of the closed-loop map from ṽ to
x̃ as the performance measure of the consensus task.

Definition 1 The multi-agent system (8) is said to
achieve the robust consensus if the closed-loop trans-
fer function from ṽ to x̃ is stable for all Δi’s in Bδ.

3 Robustness Analysis
3.1 Robust consensus condition

It follows from (8) that

x = −[IN + p(s)L]−1p(s)Lv + [IN + p(s)L]−1w,

z = −[IN + p(s)L]−1p(s)Lv − [IN + p(s)L]−1p(s)Lw.

By applying the coordinate transformations[
x̃
x′

]
= U�x,

[
ṽ
v′

]
= U�v

to the above equations, we obtain[
z
x̃

]
=

[−Q�G(s)Q −Q�G(s)
H(s)Q −G(s)

] [
w
ṽ

]
(10a)

w = Δ(s)z. (10b)

where

G(s) := [IN−1 + p(s)L̂]−1p(s)L̂, (11)

H(s) := [IN−1 + p(s)L̂]−1. (12)

Therefore, the consensus analysis for multi-agent
system of (8) is equivalently reduced to the robust sta-
bility analysis of the LFT system in (10). That is, the
consensus is achieved for the nominal case (Δ(s) = 0)
if and only if G(s) is stable, and a condition for the
robust consensus is equivalent to the robust stability
condition of (10) against the diagonally structured un-
certainty.

A necessary and sufficient condition for the nominal
consensus immediately follows from Theorem 1 in the
reference7).

Proposition 1 The multi-agent system in (8)
achieves the nominal consensus if and only if

d(s) + n(s)λi (13)

is a Hurwitz polynomial, where (d, n) is a pair of co-
prime polynomials satisfying p(s) = n(s)/d(s).

Remark 1 By definition of L̂, G(s) is a diagonal
transfer matrix of the form

G(s) = diag(g2(s), g3(s), . . . , gN(s)), (14a)

gi(s) =
p(s)λi

1 + p(s)λi
, i = 2, . . . , N. (14b)

We next consider a condition for robust consensus.
The situation here is slightly different from that of the
reference8), since there exists a non-square matrix Q
between G(s) and Δ(s). Since Δ(s) has a diagonal
structure, the robust stability condition for the multi-
agent system in (10) is reduced to a so-called scaled
small gain condition on F (s) := Q�G(s)Q:

inf
D∈D

‖D(s)F (s)D(s)−1‖∞ < δ−1,

D := {D(s) | N × N diagonal, D(s), D(s)−1 ∈ H∞}.
However, since F (s) = F (s)� holds due to the di-
agonal structure of G(s), the above scaled small gain
condition is equivalent to the unscaled small gain con-
dition ‖F‖∞ < δ−111). Moreover, since QQ� = IN−1,
we have ‖F‖∞ = ‖G‖∞ < δ−1. Finally, by making
use of the diagonal structure (14) of G(s), we obtain
the following robust consensus condition.

Proposition 2 The multi-agent system of (8)
achieves the robust consensus if and only if it achieves
the nominal consensus, and∥∥∥∥ p(s)λi

1 + p(s)λi

∥∥∥∥
∞

< δ−1, i = 2, . . . , N. (15)

From this condition, we can compute the stability
margin δ̄ of the multi-agent system (10) as

δ̄ =
1

max
i∈[2,...,N ]

∥∥∥∥ p(s)λi

1 + p(s)λi

∥∥∥∥
∞

= min
i∈[2,...,N ]

inf
ω∈R

∣∣∣∣1 +
1

p(jω)λi

∣∣∣∣ (16)

3.2 Consensus for nominally passive agents
In this subsection, we assume that, each agent is

nominally passive, which is the case for many practi-
cal situations such as vehicle formation, robotic coor-
dination, e.t.c. This is equivalent to saying that the
transfer function p(s) is positive real, namely, it is
analytic in C+ and Re p(jω) ≥ 0 for all ω.

By the well-known passivity theorem, d(s) + n(s)λ
is Hurwitz for all λ > 0. Thus, the nominal consensus
condition (Proposition 1) is reduced to Proposition 3.

Proposition 3 Assume that p(s) is positive real.
Then, the multi-agent system (8) achieves the nomi-
nal consensus iff either one of the following is satisfied.

(i) d(s) is Hurwitz.

(ii) d(s) has a root on the imaginary axis, and λ2 > 0.

The following lemma plays an important role for
the robust consensus.

Lemma 2 Assume that p(s) is positive real. Then,∣∣∣∣ p(jω)λ
1 + p(jω)λ

∣∣∣∣ ≥
∣∣∣∣ p(jω)λ′

1 + p(jω)λ′

∣∣∣∣ ∀ω ∈ R.

holds for λ > λ′ ≥ 0.



Proof: The inequality in the lemma is equivalent to

Φ(ω) := |1 + p(jω)λ′|2λ2 − |1 + p(jω)λ|2λ′2 ≥ 0 (17)

By direct calculation, we obtain

Φ(ω) =2λλ′(λ − λ′)Re p(jω) + (λ2 − λ′2).

Since Re p(jω) ≥ 0 holds by the positive realness, and
since λ > λ′, we conclude that (17) is satisfied. This
completes the proof.

Therefore, we obtain the following proposition re-
garding the robust consensus for the positive real case.

Proposition 4 Assume that p(s) is positive real.
Then, the multi-agent system (8) achieves the robust
consensus if and only if it achieves the nominal con-
sensus, and ∥∥∥∥ p(s)λN

1 + p(s)λN

∥∥∥∥
∞

< δ−1 (18)

Thus, the stability margin in (16) becomes

δ̄ = = inf
ω∈R

∣∣∣∣1 +
1

p(jω)λN

∣∣∣∣ (19)

We summarize the observations from Propositions 3
and 4 as follows.

(i) The nominal consensus is achieved as long as the
graph G is connected (λ2 > 0).

(ii) The robust consensus condition and the stability
margin depend only on the largest eigenvalue of
the weighted Laplacian L.

(iii) Since p(s) is positive real and λN > 0, the lower
bound of the stability margin is given by δ̄ ≥ 1.

(iv) In the same way as Lemma 2, it is seen that
the stability margin δ̄ increases for a smaller λN .
Hence, when p(s) is fixed, the optimal stability
margin can be obtained by minimizing λN . The
minimization of the eigenvalue of the weighted
Laplacian was considered by Boyd 3). In particu-
lar, if the weights (feedback gains) kij , (i, j) ∈ V
are confined in a convex set, this minimization
problem reduces to a convex programming.

(v) If p(s) has a pole on the imaginary axis, say
s = jωo, then the infimum in (19) is achieved by
taking ω → ωo. In this case, the stability margin
δ̄ = 1 depend on neither the graph topologies nor
the number of agents.

3.3 Stability margins for specific graphs
In this subsection, we will consider the relation be-

tween the robustness and the graph topologies when
N is very large. For simplicity, we assume that p(s)
is positive real, and that kij = 1 for all (i, j) ∈ E .

The list of Laplacian eigenvalues below is taken
from the references 2) and 12).

• Line graph:

λi = 2 − 2 cos π(i−1)
N , i = 1, 2, . . . , N

• Cycle graph:{
0, 2 − 2 cos 2π

N
, 2 − 2 cos 4π

N
, : . . . , 2 − 2 cos 2(N−1)π

N

}
In particular,

λ2 = 2−2 cos
2π

N
, λN =

{
4 (N : even)

2
(
1 + cos π

N

)
(N : odd)

• Star graph:

λ1 = 0, λ2 = · · · = λN−1 = 1, λN = N

• Complete graph:

λ1 = 0, λ2 = · · · = λN = N

It is seen from the above list that λN is monotone
increasing with respect to N , and λN converges to 4
for the line and cycle graphs, and λN goes to +∞ for
the star and complete graphs, as N goes to infinity.
Thus, the stability margin δ̄ is monotone decreasing
with respect to N , and

lim
N→∞

δ̄ =

{
inf
ω∈R

∣∣∣1 + 1
4p(jω)

∣∣∣ ≥ 1 (line, cycle),

1 (star, complete).

4 Conclusions
A necessary and sufficient condition for achieving

the robust consensus against norm-bounded uncer-
tainties is characterized in terms of the eigenvalues
of the associated Laplacian matrix of the communi-
cation graph. In the case where the nominal transfer
function p(s) is positive real, the consensus condition
turned out to depend only on the largest eigenvalue.
In addition, if p(s) has a pole on the imaginary axis,
the stability margin of the overall multi-agent system
is independent of the graph topology nor the number
of the agents. We have also compared the stability
margins for several specific graph topologies and their
asymptotic properties as N goes to infinity.
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