
Confining Sets and Avoiding Bottleneck Cases: A Simple
Maximum Independent Set Algorithm in Degree-3 Graphs

Mingyu Xiao

School of Computer Science and
Engineering, University of Electronic

Science and Technology of China, China,
myxiao@gmail.com

Hiroshi Nagamochi

Department of Applied Mathematics and
Physics, Graduate School of Informatics,

Kyoto University, Japan,
nag@amp.i.kyoto-u.ac.jp

Abstract

We present an O∗(1.0836n)-time algorithm for finding a maximum independent set in an
n-vertex graph with degree bounded by 3, which improves all previous running time bounds for
this problem. Our approach has the following two features. Without increasing the number
of reduction/branching rules to get an improved time bound, we first successfully extract the
essence from the previously known reduction rules such as domination, which can be used to
get simple algorithms. More formally, we introduce a procedure for computing “confining sets,”
which unifies several known reducible subgraphs and covers new reducible subgraphs. Second
we identify those instances that generate the worst recurrence among all recurrences of our
branching rules as “bottleneck instances” and prove that bottleneck instances cannot appear
consecutively after each branching operation.

Key words. Exact Algorithm, Independent Set, Measure and Conquer

1 Introduction

The maximum independent set problem (MIS), to find a maximum set of vertices in a graph such
that there is no edge between any two vertices in the set, is one of the basic NP-hard optimization
problems and has been extensively studied in the literature, in particular in the line of research
on worst-case analysis of algorithms for NP-hard optimization problems. In 1977, Tarjan and
Trojanowski [16] designed the first nontrivial algorithm for this problem, which runs in O∗(2n/3) time
and polynomial space. Later, the running time was improved to O∗(20.304n) by Jian [10]. Robson [14]
obtained an O∗(20.296n)-time polynomial-space algorithm and an O∗(20.276n)-time exponential-space
algorithm. In a technical report [15], Robson also claimed better running times. Fomin et al. [7]
got an O∗(20.288n)-time polynomial-space algorithm by using the “Measure and Conquer” method.
Recently Kneis et al. [11] and Bourgeois et al. [2] improved the running time bound to O∗(1.2132n)
and O∗(1.2127n) respectively. There is also a considerable amount of contributions to the maximum
independent set problem in sparse graphs, especially in degree-3 graphs [1, 5, 19, 4]. Chen at al. [5]
showed that MIS3 (the maximum dependent set problem in degree-3 graphs) can be solved in
O∗(1.1254n) time. Xiao et al. [19] used the number of degree-3 vertices as a measure to analyze
algorithms and got an O∗(1.1034n)-time algorithm for MIS3. Razgon [12] also designed another
O∗(1.1034n)-time algorithm for this problem. Fürer [9] designed an algorithm for MIS3 by measuring
the running time in terms of m−n, where m is the number of edges. Based upon a refined branching
with respect to Fürer’s algorithm, Bourgeois et al. [4] got an O∗(1.0977n)-time algorithm for MIS3.
Razgon [13] and Xiao [18] further improved the running time bound to O∗(1.0892n) and O∗(1.0885n)
respectively. Currently, the best result on this problem is Bourgeois et al.’s O∗(1.0854n)-time
algorithm designed by carefully checking the worst cases [2]. See Table 1 for a summary on the
currently published results on low-degree graphs as wellas general graphs.

1Technical report 2012-002, May 8, 2012

1

Authors Running times References Notes

Tarjan & Trojanowski O∗(1.2600n) for MIS 1977 [16] n: number of vertices

Jian O∗(1.2346n) for MIS 1986 [10]

Robson O∗(1.2109n) for MIS 1986 [14] Exponential space

Beigel O∗(1.0823m) for MIS 1999 [1] m: number of edges
O∗(1.1259n) for MIS3

Chen et al. O∗(1.1254n) for MIS3 2003 [5]

Xiao et al. O∗(1.1034n) for MIS3 2005 [19] Published in Chinese

Fomin et al. O∗(1.2210n) for MIS 2006 [7]

Fomin & Høie O∗(1.1225n) for MIS3 2006 [8]

Fürer O∗(1.1120n) for MIS3 2006 [9]

Razgon O∗(1.1034n) for MIS3 2006 [12]

Bourgeois et al. O∗(1.0977n) for MIS3 2008 [4]

Razgon O∗(1.0892n) for MIS3 2009 [13]

Kneis et al. O∗(1.2132n) for MIS 2009 [11]

Xiao O∗(1.0885n) for MIS3 2010 [18]

Bourgeois et al. O∗(1.2127n) for MIS 2012 [2]
O∗(1.0854n) for MIS3

this paper O∗(1.0836n) for MIS3 2012

Table 1: Exact algorithms for the maximum independent set problem
One reason why MIS3 has been extensively studied is that MIS in low-degree graphs are usually

the bottlenecks to get improvement for the problem in general graphs. Most previous result for MIS
in general graphs are obtained by carefully analyzing the problems in low-degree graphs. Bourgeois
et al. [2] presented a bottom-up method for MIS, which shows that the improvements on MIS for
low-degree graphs can be used to derive improved algorithms for MIS in general graphs and get the
current best result for MIS in general graphs by designing an improved algorithm for MIS3 and so
on.

Most fast algorithms for the maximum independent set problem are obtained via careful exam-
inations of the structures in the graph. In those algorithms, a long list of reduction and branching
rules are used, which is derived from a somewhat complicated case analysis. In this paper, we in-
troduce some uniform reduction and branching rules for the maximum independent set and vertex
cover problems, which can be used to design simple algorithms. To catch more properties of the
graphs, we use the sum of max{0, δ(v)− 2} over all vertices v as the measure of a graph to analyze
the algorithm, where δ(v) is the degree of a vertex v to analyze our algorithm. When the graph is
a degree-3 graph, the measure is the number of degree-3 vertices in the graph. To get improvement
on MIS3, we use an idea of avoiding the worse cases. Finally, our algorithm runs in O∗(1.0836n)
time, which improves previous algorithms for MIS3 and can derive improved algorithm for MIS in
general graph by using the bottom-up method introduced in [2].

Based on our new result on MIS3, we recently designed an O∗(1.1446n)-time algorithm to MIS4
(the maximum dependent set problem in degree-4 graphs) [21], which improves the previous best
bound O∗(1.1571n) on MIS4 [3].

2 Preliminaries

Let V denote the set of all vertices in an instance and let n = |V |. We may simply use v to denote
the set {v} of a single vertex v. For a set X of vertices, let N(X) to denote the neighbors of X, i.e.,
the vertices y ∈ V −X adjacent to a vertex x ∈ X, and denote N(X) ∪X by N [X]. For a vertex
v ∈ V , let N2(v) denote the set of vertices with distance exactly 2 from v, and δ(v) (= |N(v)|)

2

denote the degree of v. Define ρ(v) = max{0, δ(v) − 2}. For a graph H = (VH , EH), we denote
ρ(H) =

∑
v∈VH

ρ(v). We also denote ρ(X) =
∑

v∈X ρ(v) for a set X of vertices in G.
We say that an edge e is incident on a vertex set X, if at least one endpoint of e is in X. Let

G−X denote the graph obtained from G by removing the vertices in X and the edges incident to
X. Contracting X is to identify all vertices in X as a single vertex s, where any resulting self-loops
and multiple edges will be removed. Hence s is adjacent to a vertex v ∈ V − X in the resulting
graph if and only if v is adjacent to a vertex in X. Let G/X denote the graph obtained from G by
contracting a subset X of vertices.

A subgraph of G is called a k-path (or path) if it consists of a sequence of k+1 distinct vertices
v1, v2, . . . , vk+1 such that vi and vi+1 are adjacent for each i = 1, 2, . . . , k. A (k−1)-path v1, v2, . . . , vk
(k ≥ 3) together with an edge vkv1 called a k-cycle (or cycle). A path v1, v2, . . . , vk+1 in a graph G
is called a pure path if each non-endpoint vi in the path has no neighbor other than vi−1 and vi+1

in G. A pure path is called an o-path (resp., e-path) if the two endpoints are of degree ≥ 3 and the
number of non-endpoints (of degree 2) in it is odd (resp., even), where we allow the two endpoints
being a same vertex. A component of a graph means a maximal connected subgraph of the graph.

Our algorithms are based on the branch-and-reduce paradigm. We will first apply some reduction
rules to reduce the size of instances of the problem. Then we apply some branching rules to branch
on the instance by including some vertices in the independent set or excluding some vertices from
the independent set. In each branch, we will get a maximum independent set problem in a graph
instance with a smaller measure. Next, we introduce the reduction rules and branching rules that
will be used in our algorithm.

2.1 Reduction Rules

Let η(G) denote the size of a maximum independent set of a graph G. For a subset X of vertices
in G, let η(X) denote η(G′) of the graph G′ = G− (V −X) induced by X.

Reduction by removing unconfined vertices
A vertex v in an instance G is called removable if η(G) = η(G − v), i.e., there is a maximum
independent set of G which does not contain v. We can tell that a vertex v is removable if a
contradiction is obtained from an assumption that every maximum independent set of G contains
S = {v}. Based on this idea, we introduce a sufficient condition for testing if a given is removable
or not. This is also an extension of “satellite” proposed in [11].

N(S)

S

(a)

u1 u3u2

v1
v3v2

w3

u5u4

w1 w2V-N[S]

v5v4

u6

(c)

v

(b)

u

v=u1

u2

u3u4

u5

Figure 1: (a) A process of extending a confining set S; (b) A vertex v dominated by a neighbor u;
(c) A roof v in a 5-cycle u1(= v)u2u3u4u5.

For an independent set S of G, a vertex u ∈ N(S) is called a child of S if it has a unique neighbor

3

s ∈ S (i.e., |N(u) ∩ S| = 1), where s is called the parent of u. (See Fig. 1(a), where vertices u1, u2
and u3 are the children of S = {v1, v2, . . . , v5}.)

Lemma 1 Let S be an independent set that is contained in any maximum independent set of G.
Then every maximum independent set of G contains at least one vertex w ∈ N(u)−N [S] for each
child u ∈ N(S).

Proof. Assume that there is a maximum independent set SG of G such that SG∩ (N(u)−N [S]) = ∅
for some child u ∈ N(S). The parent u′ ∈ S ∩ N(u) of u belongs to SG by the assumption on S.
Hence we can replace the parent u′ ∈ SG with its child u to obtain another set S′

G = (SG−u′)∪{u},
which is an independent set of G by N(u)∩ (S − u′) = ∅. However, S′

G does not entirely contain S,
contradicting that S is always contained in a maximum independent set of G.

Suppose that we wish to know if a given vertex v is removable or not, i.e., {v} is an independent
set that is contained in any maximum independent set of G or not. Starting with S := {v}, we
repeatedly apply Lemma 1 as follows. If there is a child u ∈ N(S) of S such that |N(u)−N [S]| = 1
(such as u3 in Fig. 1), then we can add the vertex w ∈ N(u) − N [S] to S to obtain a larger set
S ∪ {w}, which also needs to be contained in any maximum independent set of G. We call such a
child u extending. On the other hand, if there is a child u ∈ N(S) such that N(u)−N [S] = ∅ (such
as u2 in Fig. 1), then this implies that the assumption on S was false.

From these observation, we obtain the following sufficient condition for a vertex v to be remov-
able. After starting with S := {v}, we repeat (i) until (ii) or (iii) holds:

(i) If S has any extending child in N(S), then let W be the set of vertices w ∈ N(u)−N [S] for
all extending children u ∈ N(S) of S. If W is an independent set in G, then S := S ∪W ;

(ii) If W in (i) is not an independent set or there is a child u ∈ N(S) such that N(u)−N [S] = ∅,
then halt concluding that v is “unconfined” (see below);

(iii) If |N(u) − N [S]| ≥ 2 for all children u ∈ N(S), then halt by delivering S as the set Sv that
“confines” v (see below).

Obviously the procedure can be executed in polynomial time for any starting set S of a vertex.
If the procedure halts in (iii), then we say that the set S obtained in (iii) confines vertex v: vertex
v is called confined. The set confining a vertex v is denoted by Sv, which is uniquely determined
by the procedure with starting set S = {v} (possibly Sv = {v}). On the other hand, vertex v is
called unconfined. If v has no such set S in (iii), then it is called unconfined. Clearly any unconfined
vertex is removable since η(G) = η(G−v). As one of our reduction rules, we remove any unconfined
vertex in an instance G.

We here observe two structures that involve unconfined vertices. We say that a vertex v is
dominated by a neighbor u of it if v is adjacent to all neighbors of u, i.e., N [v] ⊇ N [u]. (see
Fig. 1(b)). Clearly, any dominated vertex v is unconfined, since S = {v} has a child u with
N(u)−N [S] = ∅.

A roof is defined to be a vertex u1 which belongs to a 5-cycle u1u2 · · ·u5 such that u2 and u5
are two adjacent degree-3 vertices. (see Fig. 1(c)). A roof v = u1 is not confined, since children u2
and u5 of S = {v} are extending, but W = {u3, u4} is not an independent set, indicating that no
set S can confine a roof.

After removing any dominated vertex, we can also remove all the resulting degree-0 vertices
by including them into the solution directly. We will consider this operation as part of removing
dominated vertices. For a vertex u dominated by a degree-1 vertex v, the operation of removing
dominated vertex u is also called folding a degree-1 vertex v.

4

Reduction by folding degree-2 vertices and twins
We call a set A = {v1, . . . , vk} of k degree-(k+1) vertices a complete k-independent set if they have
common neighbors N(v1) = · · · = N(vk). If there is a complete k-independent set A, then we only
need to look for a maximum independent set SG of G such that N [A]∩SG = A or N [A]∩SG = N(A)
(since N [A]∩ SG with |N [A]∩ SG| ≤ k can be replaced with A to obtain another independent set).
Then if N(A) is not an independent set (the case of N [A] ∩ SG = N(A) cannot occur), then the
new instance G−N [A] obtained by removing N [A] satisfies η(G) = η(G−N [A])+k (see Fig. 2(a));
Otherwise (N(A) is an independent set) the new instance G/N [A] obtained by contracting N [A]
satisfies η(G) = η(G/N [A]) + k (see Fig. 2(b)). Folding a complete k-independent set A is to
eliminate the set N [A] from an instance in the above way.

u1u2

u4

G

G

G

G

d

c
b a

d

c

(b)

u3

ABAB

N(A)N(B) N(A)N(B)

(c)
(a)

G

G/N[A]

v1 v2

A

G-N[A]

G

v1 v2

A

(d)

Figure 2: (a) Removing set N [A] for a twin A = {v1, v2}; (b) Contracting set N [A] for a twin
A = {v1, v2}; (c) A short 3-funnel b-a-{b, c}; (d) A desk u1u2u3u4.

A complete 1-independent set A = {v} consists of a degree-2 vertex v. Folding a degree-2 vertex
v with no degree-1 neighbor means to fold the set A = {v}. We call a complete 2-independent set
a twin (see Fig. 2(a) and (b)). Note that a twin is a special case of crown-reductions [6], and our
algorithm does not need to rely on any other crown-reduction rules.

Reduction by folding short funnels and desks
Two disjoint independent subsets A and B in a graph G are called alternative if |A| = |B| ≥ 1 and
there is a maximum independent set SG of G which satisfies SG ∩ (A∪B) = A or B. Let G† be the
graph obtained from G by removing A ∪B ∪ (N(A) ∩N(B)) and adding an edge ab for every two
nonadjacent neighbors a ∈ N(A)−N [B] and b ∈ N(B)−N [A].

Lemma 2 For alternative subsets A and B in a graph G, η(G) = η(G†) + |A|.

Proof. By definition, there is a maximum independent set SG ofG which satisfies SG∩(N [A]∪B) = A
or SG ∩ (N [B] ∪ A) = B. For such an independent set SG, S

′ = SG − (A ∪ B) ∪ (N(A) ∩ N(B))
is an independent set in G† since S′ ∩ (N(A) − N [B]) = ∅ or S′ ∩ (N(B) − N [A]) = ∅ holds and

5

any newly added edge ab is adjacent to a vertex not in S′. Conversely for any independent set S′

in G†, S′ satisfies S′ ∩ (N(A) − N [B]) = ∅ or S′ ∩ (N(B) − N [A]) = ∅ (since N(A) − N [B] and
N(B)−N [A] induce a complete bipartite graph between them in G†), and S′ ∪A or S′ ∪B is also
an independent set in G. Therefore η(G) = η(G†) + |A|.

A vertex a together with its neighbors N(a) is called a funnel (or a δ(a)-funnel) if N [a] − b
induces a complete graph for some b ∈ N(a), and is denoted by b-a-(N(a)− b) (see Fig. 2(c) for a
3-funnel b-a-{c, d}).

Lemma 3 For a funnel b-a-(N(a)− b), there are only two cases: (i) every maximum independent
set of G contains b; (ii) there is a maximum independent set of G which contains a. Hence A = {a}
and B = {b} are alternative.

Proof. Assuming that there is a maximum independent set SG of G which does not contain b, we
show that (ii) holds. If SG∩{a, b} = ∅, then it must hold |SG∩N(a)−b| ≤ 1 (since N(a)−b induces
a clique). On the other hand, at least one of a’s neighbors, say c, must be in SG, otherwise we can
add a into SG to get a bigger independent set. Therefore, c is the only neighbor of a that is in SG

and we can replace c with a in SG to obtain another maximum independent set which contains a.

A funnel b-a-(N(a) − b) is called short if N(b) ∩ N(a) = ∅ and there are at most δ(b) pairs of
nonadjacent vertices u ∈ N(b) − a and v ∈ N(a) − b (note that N(b) ∩ N(a) = ∅ holds when a
dominates no vertex in N(b)− a).

A chordless 4-cycle u1u2u3u4 with four vertices of degree at least 3 is called a desk if A = {u1, u3}
and B = {u2, u4} have no common neighbor and each of them has at most two neighbors outside
the cycle; i.e., N(A) ∩N(B) = ∅ and |N(A)−B|, |N(B)−A| ≤ 2 (see Fig. 2(d)).

Lemma 4 For a desk u1u2u3u4 in a graph G, sets A = {u1, u3} and B = {u2, u4} are alternative.

Proof. We show that G has a maximum independent set SG satisfying |SG ∩ {u1, u2, u3, u4}| = 2,
which clearly implies SG∩{u1, u2, u3, u4} = {u1, u3} or {u2, u4}. Let SG be a maximum independent
set of G with |SG ∩ {u1, u2, u3, u4}| ≤ 1, where SG ∩ {u2, u3, u4} = ∅ is assumed without loss of
generality. Then we get another maximum independent set S′ = (SG −N(A)) ∪A with |S′| ≥ |SG|
and |SG ∩ {u1, u2, u3, u4}| = 2 (note that if u1 ∈ SG then |SG ∩ (N(A) − B)| ≤ 1 since the degree
of u1 is at least 3).

Folding alternative subsets A and B is to replace an instance G with G†. In our algorithm, we
use only alternative sets A and B such that A = {a} and B = {b} for a short funnel b-a-(N(a)− b);
or A = {u1, u3} and B = {u2, u4} for a desk u1u2u3u4, both of which can be found in polynomial
time.

Reduction by folding line graphs
If a graph H is the line graph of a graph H ′, then a maximum independent set S of H can be
obtained as the set of vertices that corresponds the set of edges in a maximum matching M in H ′.
Not every graph is a line graph. There are several good methods to check whether a graph is a line
graph or not, which depend on characterizations of line graphs [17].

Suppose that an instance G contains a component H which is the line graph of a 3-regular
graph. Folding such a line graph H is to discard H from the instance after computing a maximum
independent set of H. We can test whether a component H in G is such a line graph or not in
polynomial time, since a graph is the line graph of a 3-regular graph if and only if the graph has
only degree-4 vertices and each of them is contained in two edge-disjoint triangles.

6

Reduction by folding small components
A component H with at most 20 vertices in an instance G is called small. Folding small component
H is to discard H from the instance after computing a maximum independent set of H.

Definition 5 An instance is called reduced, if none of the above reduction rules is applicable.

We can test whether each of the above reduction rules is applicable to an instance or not in
polynomial time. Then an instance can be reduced to a reduced one in polynomial time.

2.2 Branching Rules

Next we introduce our branching rules in a reduced instance G. The simplest branching rule is to
branch on a single vertex v by considering two cases (i) there is a maximum independent set of
G which does not contain v; (ii) every maximum independent set of G contains v. Branching on
a vertex v means creating two subinstances by excluding v from the independent set or including
Sv into the independent set. In the first branch we will delete v from the instance whereas in the
second branch we will delete N [Sv] from the instance.

We also use the following two branching techniques, branching on a 4-cycle and branching on
a funnel, which are simple and obvious, but can be used to avoid tedious branching rules in the
algorithms.

Branching on 4-cycles

Lemma 6 Let abcd be a 4-cycle in an instance G. Then for any independent set S in G, either
a, c /∈ S or b, d /∈ S.

Proof. Since any independent set contains at most two vertices in a 4-cycle and the two vertices
cannot be adjacent, we know the lemma holds.

Based on Lemma 6, we get the following branching rule. Branching on a 4-cycle abcd means
branching by either excluding vertices {a, c} or excluding {b, d} from the independent set. Hence
we generate the two subinstances by removing either {a, c} or {b, d} from an instance G.

Branching on funnels
Based on Lemma 3, we get the following branching rule. Branching on a funnel b-a-(N(a)− b) in a
reduced instance G by either including a or including Sb in the independent set. Hence we generate
the two subinstances by removing either N [a] or N [Sb] from G.

3 Preliminary Analysis

Our algorithm for the maximum independent set problem first applies reduction rules repeatedly
until a reduced instance is obtained, and then branches on one of a funnel, a 4-cycle and a vertex
of maximum degree. However, we choose a vertex/funnel/4-cycle which we branch on carefully so
that the two resulting subinstances can have smaller ‘measure.’ Next, we first define our measure
and analyze some properties of it.

3.1 The measure

The measure of the problem is used to analyze the time complexity of the algorithm. When we
apply a branching rule, we will get a recurrence relation related to the measure. We will require the
measure satisfying: (i) the problem can be solved directly (in polynomial time), when the measure
is not greater than 0; (ii) the measure will not increase when any reduction rule is applied; and

7

(iii) when any branching rule is applied, the measure in each sub instance becomes smaller. For
worst-case analysis, we will design the algorithm such that the worst recurrence in the algorithm is
better and then get a better running time bound.

In this paper, we set r = ρ(V) as the measure of graph G = (V,E). Recall that ρ(V) =∑
v∈V ρ(v) and ρ(v) = max{0, δ(v)−2}. When measure r ≤ 0, the graph has only degree-0, degree-

1 and degree-2 vertices and the maximum independent set problem can be solved in linear time.
Next, we consider the reduction and branching operations. To make the measure reduction clear, we
adopt a notation to indicate how much r decreases from a vertex or a set of vertices in an operation.
For a subset X of vertices in G, we use X → t to mean that ρ(X) decreases by at least t by an
application of a reduction or branching operation.

3.2 Analysis on reduction operations

We call any of an o-path, a vertex of degree ≥ 4 and a cycle containing at most 4 vertices of degree
≥ 3 and at least one vertex of degree ≥ 3 a fine local structure. Note that a reduced graph may
contain some fine local structures.

Lemma 7 Let G be an instance (not necessarily reduced), and G′ be a reduced instance obtained
from G by applying all of our reduction rules in Section 2.1. Then:

(i) ρ(G) ≥ ρ(G′).

(ii) ρ(G)− ρ(G′) ≥ 1 if G has a fine local structure, but G′ has no longer any fine local structure.

Proof. (i) Clearly the measure never increases by removing unconfined vertices or folding degree-1
and -2 vertices and twins. It suffices to show that folding short funnels and desks also does not
increase the measure either. Consider a short funnel b-a-(N(a)−b) (the case of desks can be treated
analogously). Removing {a, b} decreases the measure r by 2δ(a) + 2δ(b) − 6 ≥ 2δ(b) (since G has
no degree-1, -2 or dominated vertices in Step 6), and adding new k edges between N(b) and N(a)
increases the measure by at most 2k. Since the funnel is short, it holds k ≤ δ(b) and hence folding
a short funnel does not increases r.

(ii) Clearly ρ(G) ≥ 1 since G contains a fine local structure. Note that G′ is a 3-regular graph
with at least 21 vertices that has neither triangles nor 4-cycles. Removing unconfined vertices of
degree ≥ 3 decreases the measure. We assume that only folding degree-1, -2 vertices, desks, funnels
or discarding a component has been applied to G to obtain G′. Discarding a component H with
ρ(H) ≥ 1 during the application of reduction rules proves the lemma. Discarding a component
H with ρ(H) = 0 (i.e., H is a component of path or cycle) still leaves any of the existing fine
local structures. Folding desks or funnels always leaves a 4-cycle if the measure does not decrease.
Folding a degree-1 vertex v cannot eliminate any of fine local structures unless the unique neighbor
u of v is of degree ≥ 3 or u is a degree-2 vertex adjacent to a vertex of degree ≥ 3 (the measure
will decrease in this case). Folding a degree-2 vertex v does not decrease the measure only when
the two neighbors u1, u2 ∈ N(v) are not adjacent and has no common neighbor other than v (note
that when u1 and u2 are adjacent one of them is of degree ≥ 3, since otherwise N [u] has been
discarded as a small component). Folding such a degree-2 vertex v leaves a contracted vertex of
degree δ(u1) + δ(u2) − 2 ≥ 4 unless one of u1 and u2 is a degree-2 vertex. In this case, folding a
degree-2 vertex just can decrease the number of degree-2 vertices in an o-path or e-path by exactly 2
without eliminating any of a vertex of degree ≥ 4, an o-path and a cycle containing k ∈ [1, 4] vertices
of degree ≥ 3. Therefore, the fine local structures of G cannot be eliminated without decreasing
the measure.

Observe that the measure of an instance with no degree-1 vertices is always an even integer.
Hence for two such instances G and G′ and an odd integer ∆, ρ(G)−ρ(G′) ≥ ∆ always implies that
ρ(G)− ρ(G′) ≥ ∆+ 1.

8

3.3 Analysis on basic branching operations

We use C(r) to denote the worst-case size of the search tree in our algorithm when the measure of
the graph is r, and consider how much the measure can decrease in each branch of our search tree.
We analyze each branching rule applied to an instance G to obtain new instances G1 and G2 from
the two branches, and derive a recurrence in the form of

C(r) ≤ C(r −∆1) + C(r −∆2), (1)

where ∆i is a lower bound on ρ(G)− ρ(Gi) for each i. For convenience, we always assume that G1

is the instance with ∆1 ≤ ∆2. Our first target is to make ∆1 and ∆2 in (1) as large as possible.
One possible way to do this is to require the algorithm first branching on funnels and 4-cycles if

they exist and then branching on a vertex of maximum degree. In fact, funnels and 4-cycles catch
some local structures of the graphs and we may get a good recurrence. However, when the reduced
graph has none of funnels, 4-cycles and vertices of degree ≥ 4, we may meet a worst case. For this
case, we are forced to branch on a degree-3 vertex v by removing either v or N [Sv] = N [v], which
may only decrease the measure r by ρ(v) + |N(v)| = 4 and ρ(N [v]) + |N2(v)| ≥ 10, respectively, as
will be analyzed in Lemma 13. Then we can get only recurrence

C(r) ≤ C(r − 4) + C(r − 10), (2)

which solves to C(r) = 1.1120r. Even if the recurrences from the other branching rules are better
than (2), we cannot get our claimed bound C(r) = 1.0836r unless we device a way of maintaining
instances so that such a “bottleneck branching” will not frequently occur. Our second target is to
try to make the two subinstances G1 and G2 corresponding to (1) will not branch with the worst
recurrence (2) directly.

A reduced instance with no fine local structure is called a bottleneck instance. Contrary to this,
we call an instance G with no degree-1 vertices (not necessarily reduced) a fine instance if it contains
at least one fine local structure. Note that it is possible that we can branch on a bottleneck graph
with a recurrence better than (2) but it is sure that we can get a recurrence better than (2) on a
fine instance. We also note that by Lemma 7 the measure of a fine instance G will decrease by at
least 2 if G becomes a bottleneck instance after simply applying some reduction rules.

4 The Algorithm

We may reduce the instance directly by applying reduction rules. So when a reduction rule can
be applied, we just apply it. For the worst case, we may only get reduced graph in each step and
no reduction rule can be used. However, branching rules may affect the running time greatly. In
a reduced graph, we should choose a ‘good’ vertex/funnel/4-cycle to branch such that the corre-
sponding recurrence (1) satisfies the above two targets. We define the following special cases of
vertices/funnels/4-cycles.

The vertex a of a 3-funnel b-a-(N(a)− b) is called effective if a has three degree-3 neighbors and
ρ(G)− ρ(G−N [Sa]) ≥ 20.

(1) A funnel is called optimal if (i) it is a 4-funnel; (ii) when there is no 4-funnel, a 3-funnel
b-a-{c, d} is called optimal if δ(b) ≥ 4; (iii) when there is no funnel of (i) or (ii), a 3-funnel
b-a-{c, d} is called optimal if b is in a triangle; (iv) when there is no funnel of (i)-(iii), a 3-funnel
b-a-{c, d} is called optimal if there is a vertex of degree ≥ 4 in N({a, b}); and (v) when there
is no funnel of (i)-(iv), a 3-funnel b-a-{c, d} is called if G − N [b] is a fine instance (such a
3-funnel exists by Lemma 8 below);

(2) A 4-cycle abcd is called optimal if (i) δ(a) = δ(c) = 3 (or δ(b) = δ(d) = 3); and (ii) when there
is no such 4-cycle of (i), the number of degree-3 vertices in the cycle is maximized; and

9

(3) A vertex v of maximum degree d is optimal if (i) it maximizes |N2(v)| for d ≥ 4; or (ii) it
maximizes the number of o-paths in G−N [v] for d = 3.

Lemma 8 Let G be a reduced instance that has neither an effective vertex nor a 4-funnel. Assume
that G has a 3-funnel and that for every 3-funnel b-a-{c, d}, b is not in a triangle and each vertex
in N [{a, b}] is of degree 3. Then there is a 3-funnel b-a-{c, d} such that G−N [b] is a fine instance.

Proof. Consider a triangle v1v2v3 containing a degree-3 vertex. Then each ui-vi-(N(vi) − ui) is a
3-funnel, where ui is the third neighbor of vi. We show that one of Gi = G−N [ui] (i = 1, 2, 3) is a
fine instance or one of v1, v2 and v3 is an effective vertex. Let u′i and u′′i be the two neighbors of ui
other than vi, where u′i and u′′i are also degree-3 vertices by assumption. We observe the following
properties for each i = 1, 2, 3:

(P1) There are 6 edges between N(ui) and N2(ui);

(P2) There is no edge between {u′i, u′′i } and {v1, v2, v3} (otherwise one of v1, v2 and v3 would be a
dominated vertex or a roof); and

(P3) If u′i and u′′i have a common neighbor u∗ ∈ N2(vi), the degree of u∗ is at least 4 (otherwise
viu

′
iu

∗u′′i would be a desk).

First, we show that the lemma holds when u1, u2 and u3 have a common neighbor u′1 = u′2 = u′3.
Let a and b be the two neighbors of u′′1 other than u1. If the graph G1 is not a fine instance, then
there are only three cases in G: (i) both of a and b are degree-4 vertices; (ii) vertices a and b are two
adjacent degree-3 vertices; and (iii) it holds {a, b} = {u′′2, u′′3}. The reason is based on the following
observation: graph G1 has at most two e-paths if it has no o-path. When G1 has only one e-path
of length 4, which is u′′2u2v2v3u3u

′′
3, we get Case (i). When G1 has two e-paths, we get Case (ii).

When G1 has only one e-path of length 6, we get Case (iii).
Case (i): If neither of G2 and G3 contains a degree-4 vertex, then both of u′′2 and u′′3 are adjacent

to a and b. However, we can see that there is a 4-cycle u′′2au
′′
3b containing at least one degree-3 vertex

in G1, which implies that G1 is a fine instance. Case (ii): Now u′′1ab is a triangle. If G2 (resp., G3)
does not contain triangle u′′1ab, then at least one vertex in the triangle is in N [u2] (resp., N [u3]).
This means that {a, b} = {u′′2, u′′3} holds and the component containing v1 has only 10 vertices,
contradicting that every component in a reduced instance has at least 21 vertices. Case (iii): We
know that there are two edges u′′1u

′′
2 and u′′1u

′′
3. By switching the indices i of vi, we can also get an

edge u′′2u
′′
3. Therefore, the component containing v1 has only 10 vertices, again a contradiction.

Second we show that the lemma holds when a pair of u1, u2 and u3, say u1 and u2, has a common
neighbor u′1 = u′2. Since we have already proved the case where u3 is also adjacent to u′1, we assume
that u′1 is not a neighbor u3. We look at G3. There is a 5-cycle v1v2u2u

′
1u1 in G3. We see that

at least one of u1, u2 and u′1 is of degree ≥ 3 in G3, since otherwise each of them is adjacent to
a or b, and a or b, say b is adjacent to “u1 and u2” but the case of b = u′3 = u′1 = u′2 has been
discussed in the first case (note that b is not adjacent to “u1 and u′1” since G has no triangle bu1u

′
1

by assumption). Then G3 is a fine instance.
Now we assume that the graph G has the fourth property:

(P4) For 1 ≤ i < j ≤ 3, it holds N [ui] ∩N [uj] = ∅.

Third, we show that if a pair of vertices in {u′1, u′2, u′3, u′′1, u′′2, u′′3} are adjacent, the lemma holds.
Note that u′i and u′′i are not adjacent, otherwise it becomes Case (ii) in the above. Next we
assume that u′1 and u′2 are adjacent without loss of generality. It is clear that there is a 6-cycle
v1u1u

′
1u

′
2u2v2 with at least two degree-2 vertices u1 and u2 in G3. Therefore G3 is a fine instance.

Let Bi = N(u′i) ∪N(u′′i)− {ui}. We assume the fifth property on G:

10

(P5) For each i = 1, 2, 3, it holds Bi ∩ (N [u1] ∪N [u2] ∪N [u3]) = ∅.

Forth, we get two more properties on Bi. If u′i and u′′i have a common neighbor u∗i ∈ Bi, then
graph Gj (j ̸= i) is a fine instance since there is a 4-cycle uiu

′
iu

′′
i u

∗
i in Gj . Then we assume the

following (P6).

(P6) For each i = 1, 2, 3, vertices u′i and u′′i have no common neighbor other than ui.

If there is a degree-3 vertex u∗i ∈ Bi, then u∗i should also be adjacent to a degree-3 vertex u∗∗i ∈ Bi

otherwise u∗i will become an o-path in Gi and we are done. If u∗i is also adjacent to a vertex in Bj

with j ̸= i, then Gi has a 5-cycle uiu
′
iu

∗
iu

∗∗
i u”i, where u∗i is a degree-2 vertex and ui is a degree-3

vertex in Gi, implying that Gi is a fine instance. Therefore, we know that if Bi ∩ Bj ̸= ∅ (i ̸= j)
then any vertex in Bi ∩Bj should be a vertex of degree ≥ 4. We get the following (P7).

(P7) For some 1 ≤ i < j ≤ 3, if a vertex a is adjacent to both of a vertex in {u′i, u′′i } and a vertex
in {u′j , u′′j }, then a is a vertex of degree ≥ 4.

Our last target is to prove that when the above five properties hold, vertex v1 is an effective ver-
tex. Note that V1 = {v1, u2, u3} ⊆ Sv1 . It is easy to see thatN [V1] = {v1, v2, v3, u1, u2, u3, u′2, u′3, u′′2, u′′3}
is a set containing 10 different vertices (by (P4)) and there are exact 10 edges between N [V1] and
N(N [V1]) in G (by (P5)). Furthermore, by (P6) and (P7) we know that for each vertex in N(N [V1])
either it is adjacent to one vertex in N [V1] or it is a vertex of degree ≥ 4 and adjacent to two vertices
in N [V1]. Therefore, after removing N [V1] from G the measurer decreases by 20 by N [V1] → 10 and
N(N [V1]) → 10, which implies that v1 is an effective vertex.

An entire description of our algorithm is given in Figure 3. We first apply the reduction rules to
reduce the current instance G (Step 1-6). Then when a reduced instance G contains an effective
vertex in a 3-funnel, we branch on it in Step 7. When a reduced instance G contains no effective
vertices, but has a 3- or 4-funnel, we branch on an optimal funnel in Step 8. When a reduced
instance G has no 3- or 4-funnel, but contains a 4-cycle, we branch on an optimal 4-cycle in Step 9.
Finally, a reduced instance G has neither 3-, or 4-funnels nor 4-cycles and we will select an optimal
vertex of maximum degree to branch on (Step 10).

5 The Analysis

Now we are ready to analyze each branching operations in the algorithm.

Lemma 9 Let v be an effective vertex in a reduced instance G. Then branching on it in Step 7
decreases the measure r of G at least with

C(r) ≤ C(r − 4) + C(r − 20), (3)

where instance G1 in (3) is a fine instance.

Proof. We branch on v by excluding it from the independent set or including Sv in the independent
set. By definition, vertex v is in a triangle vuu′ and the remaining degree-3 neighbor w ∈ N(v) has
no common neighbor with v (otherwise N(v) would contain a dominated vertex). In the branch of
removing v, measure r decreases by at least 4, and the neighbor w becomes an o-path in G − {v}
without leaving degree-1 vertices. Hence G1 = G − {v} is a fine instance. In the other branch of
removing N [Sv], measure r decreases by at least ρ(G) − ρ(G − N [Sv]) ≥ 20 by the definition of
effective vertices.

11

Input: An instance G.
Output: The size of a maximum independent set in G.

1. If {G has a component H = (VH , EH) that has at most 20 vertices or is the line
graph of a 3-regular graph}, return MIS(G−VH) + η(H).

2. Elseif {there is a degree-1 vertex}, return MIS(G′) + 1 for the instance G′ ob-
tained by folding a degree-1 vertex.

3. Elseif {there is a degree-2 vertex}, return MIS(G′) + 1 for the instance G′ ob-
tained by folding a degree-2 vertex.

4. Elseif {there is an unconfined vertex v}, return MIS(G− v).

5. Elseif {there is a twin}, return MIS(G′) + 2 for the instance G′ obtained by
folding a twin.

6. Elseif{there is a short funnel or a desk}, return MIS(G†) for the instance G†

obtained by folding a short funnel or a desk.

7. Elseif {there is an effective vertex v} max{MIS(G− v),MIS(G−N [Sv]) + |Sv|}.
8. Elseif {there is a 3- or 4-funnel}, pick up an optimal funnel b-a-(N(a) − b) and

return max{MIS(G−N [a]) + 1,MIS(G−N [Sb]) + |Sb|}.
9. Elseif {there is a 4-cycle}, pick up an optimal 4-cycle abcd and return

max{MIS(G−{a, c}),MIS(G−{b, d})}.
10. Else pick up an optimal vertex v of maximum degree, and return max{MIS(G−

v),MIS(G−N [Sv]) + |Sv|}.

Note: The algorithm can be easily modified to deliver a maximum independent set of
G.

Figure 3: The Algorithm MIS(G)

Lemma 10 Let G be a reduced instance that has no effective vertex. Branching on an optimal
funnel in G in Step 8 decreases the measure r with one of the following recurrences:

C(r) ≤ C(r − 10) + C(r − 12), (4)

C(r) ≤ C(r − 8) + C(r − 12), (5)

C(r) ≤ C(r − 10) + C(r − 10), and (6)

C(r) ≤ C(r − 8) + C(r − 10), (7)

where instance G1 in (5) is a fine instance, at least one of G1 and G2, say G1, in (6) is a fine
instance, and both G1 and G2 in (7) are fine instances.

Proof. First observe properties on a funnel b-a-(N(a)− b) in G:
(P1): N(b) ∩N(a) = ∅ (otherwise a would be dominated);
(P2): each neighbor b′ ∈ N(b) has a neighbor w ∈ N2(b) (otherwise b′ would dominate b).
We branch on an optimal funnel b-a-(N(a) − b) by removing either N [a] or N [Sb] from G. We

distinguish five cases according to cases (i)-(v) in the definition of optimal funnels.

12

Case (i). b-a-(N(a)− b) is a 4-funnel b-a-{c, d, e}: In the branch of removing N [a], the measure r
of G will decrease by at least 11 (hence by at least 12 after folding any resulting degree-1 vertices)
by N [a] → 9 and N(b) − a → 2. By (P2), in the other branch of removing N [Sb], measure r will
decrease by at least 10 by N [b] → 5 and {w}∪{c, d, e} → 4 (note that ρ(w) ≥ 2 when w ∈ {c, d, e}).

In the following, let b-a-{c, d} be the optimal 3-funnel called by the algorithm. Let c′ and d′

denote the third neighbor of c and d not in {a, b, c}, and c′′ and d′′ denote the fourth neighbor (if
any) of c and d. We here observe the following properties:

(P3): If δ(c) = 3 then c′ ̸∈ N(d) and N [c] ∩N(d)− {a, c} = ∅ (otherwise c would dominate d);
(P4): If δ(c) = 3 and (N(c′) − c) ∩ N(d) ̸= ∅, then δ(c′) ≥ 4 (otherwise c′-c-{a, d} would be a

short funnel);
(P5): If δ(c) = δ(d) = 3 then no two of c′, d′ and b are adjacent (otherwise {a, b, c} would

contain a roof), and hence N(N(b)−a)−b) ∩ {c, d} = ∅; and
(P6): at least two neighbors of N(b)− a are not adjacent to any of c and d, and hence N2(b)−

{c, d} ̸= ∅: This is because a non-short funnel b-a-{c, d} has at least δ(b) + 1 pairs of nonadjacent
vertices between N(b) − a and {c, d} (i.e., it has at most 2(δ(b) − 1) − (δ(b) + 1) = δ(b) − 3 edges
between them).

By (P6), removing N [a] decreases r by at least N [a] → δ(b) + δ(c) + δ(d) − 5 , N(b) − a → 2
and N({c, d})− a → |N({c, d})− a| ≥ 2. Note that |N({c, d})− a| ≥ 3 if δ(c)+ δ(d) ≥ 7 (otherwise
{c, d} would contain a dominated vertex). Hence removing N [a] decreases r by at least 11 (hence
12) if “δ(c) + δ(d) ≥ 8” or “δ(b) ≥ 4 and δ(c) + δ(d) ≥ 7.”

Case (ii). δ(b) ≥ 4: We branch by removing N [a] or N [Sb].
(ii-1) δ(b) ≥ 4 and δ(c) + δ(d) ≥ 7: As observed in the above, the first branch of removing N [a]

decreases r by at least 12 in this case. By (P6), we get N2(b)− {c, d} ̸= ∅. In the second branch of
removing N [Sb], measure r decreases by at least 10 (ρ(N [b])+ |N2(b)−{c, d}|+ |{c, d}| ≥ 7+2 = 9).
In this case, (4) holds.

(ii-2) δ(b) ≥ 4 and δ(c) = δ(d) = 3: Analogously with (ii-1), we see that the first branch of
removing N [a] decreases r by at least 10. We show that the second branch of removing N [Sb]
decreases r by at least 12 to obtain (4). By (P5), N(N(b) −a) − b) ∩ {c, d} = ∅. Note that
ρ(N [b]) ≥ 6 and |N(N(b) −a) − b)| ≥ 2. If ρ(N [b]) + |N(N(b) −a) − b)| ≥ 9, then the second
branch decreases r by at least ρ(N [b]) + |N(N(b) −a) −b)| + |{c, d}| ≥ 9 + 2 = 11. Assume that
ρ(N [b]) + |N(N(b)−a)−b)| ≤ 8, i.e., δ(b) = 4, |N(N(b)−a)−b)| = 2 and N(b)− a consists of three
degree-3 vertices, where there are a triangle bxx′ and two 3-funnels z-x-{b, x′} and z′-x′-{b, x} for
some x, x′ ∈ N(b)−a and {z, z′} = N(N(b)−a)−b). Then δ(z), δ(z′) ≥ 4 (otherwise these 3-funnels
would be short). Now removing N [b] decreases r by at least 12 (ρ(N [b]) → 6, N(N(b)−a)−b) → 4
and {c, d} → 2).

In Cases (iii)-(v), it holds δ(b) = 3, and we denote N(b) = {a, b′, b′′}, which always satisfies:
(P7): N({b′, b′′}) ∩ {c, d} = ∅ (otherwise b-a-{c, d} would be a short funnel).

By the definition of optimal funnels, if δ(c) = 3 (resp., δ(d) = 3) then δ(c′) = 3 (resp., δ(d′) = 3).

Case (iii). δ(b) = δ(a) = 3 and b is in a triangle: Note that a-b-{b′, b′′} is also a 3-funnel. For
notational convenience, we analyze branching on funnel a-b-{b′, b′′} by removing (A) N [Sa] or (B)
N [b] without loss of generality.

(A) The first branch of removing N [Sa]: We show that r decreases by at least 11 after removing
N [Sa] (hence by 12 by folding degree-1 vertices). As already observed, removing N [a] decreases r
by at least 12 if δ(c) + δ(d) ≥ 8. We distinguish the two remaining cases.

(A-1) δ(c) + δ(d) = 7, say δ(d) = 4: Then {a, c′} ⊆ Sa. We see that {b′, b′′} − N(c′) ̸= ∅
(otherwise child b of S = {a, c′} ⊆ Sa would satisfy N(b) − N [S] = ∅, contradicting that a is
confined). Recall that δ(c′) = 3 and N [c′]∩N(d)−{a, c} = ∅ by (P3) and (P4). In the first branch,

13

we remove N [{a, c′}] ⊆ N [Sa] from G and r decreases by at least ρ(N [a]) + ρ(N [c′] − N(d)) +
|{b′, b′′} −N(c′)|+ |N(d)− {a, c}| ≥ 5 + 3 + 1 + 2 = 11.

(A-2) δ(c) = δ(d) = 3: Then {a, c′, d′} ⊆ Sa. We distinguish two subcases.
(A-2-i) One of b′ and b′′ (say b′′) is adjacent to one of c′ and d′ (say c′): Now {a, c′, d′, b′} ⊆ Sa

holds and hence b′ is not adjacent to d′. Also δ(b′′) ≥ 4 (otherwise child b′′ of S = {c, b, d′} ⊆ Sc

would satisfyN(b′′)−N [S] = ∅). Then r decreases by at least ρ(N [{a, c′, d′, b′}]) ≥ ρ({a, b, c, d, c′, d′, b′′}∪
(N(d′)− d)) ≥ 10 (note ρ(b′′) ≥ 2) and |N(N [{a, c′, d′, b′}])| ≥ |{b′}| = 1.

(A-2-ii) Neither of b′ and b′′ is adjacent to any of c′ and d′: In this case, if |N({c′, d′}) −
{c, d}| ≥ 3 then the first branch removes N [{a, c′, d′}] and decreases r by at least ρ(N [{a, c′, d′}]) +
|N(N [{a, c′, d′}])| ≥ 9 + |{b′, b′′}| = 11. Assume that |N({c′, d′})− {c, d}| = 2. We show that there
exists a vertex x ∈ N [{a, c′, d′}]−{b′, b′′}, which implies that ρ(N [{a, c′, d′}])+ |N(N [{a, c′, d′}])| ≥
8 + |{b′, b′′, x}| = 11. A neighbor z ∈ N({c′, d′}) − {c, d} is a child of S = {c, d′, b} ⊆ Sc and must
have a neighbor x ∈ N(z)−N [S]. Note that x ̸∈ {b′, b′′} ⊆ N [S] and x ∈ N [{a, c′, d′}]−{b′, b′′}, as
required.

(B) The second branch of removing N [b]: We distinguish two cases.
(B-1) δ(b′)+δ(b′′) ≥ 7: Then the second branch decreases r by at least 10 (ρ(N [b])+|N({b′, b′′})−

b|+ |{c, d}| ≥ 5 + 2 + 2 = 9). In this case, (4) holds.
(B-2) δ(b′) = δ(b′′) = 3: Then |N({b′, b′′}) − b| ≥ 2. Then the second branch decreases r by

at least ρ(N [b]) + |N({b′, b′′}) − b| + |{c, d}| ≥ 4 + 2 + 2 = 8. When r decreases only by 8, no
degree-1 vertex appears in G − N [b] by |N({b′, b′′}) − b| = 2 and the vertices x′ ∈ N(b′) − {b′, b′′}
and x′′ ∈ N(b′′)−{b′, b′′} are degree-3 vertices by the definition of optimality of funnels, which will
form o-paths in G−N [b]. In this case, (5) holds.
Case (iv). δ(b) = 3, vertex b is not in a triangle and one of b′, b′′, c′ and d′ is of degree ≥ 4: It
holds that

(P8): |N({b′, b′′})− b| ≥ 3 (otherwise {b′, b′′} would be in a twin).
In each case, we branch by including either a or Sb, where Sb = b holds. We distinguish three cases.

(iv-1) δ(c) + δ(d) ≥ 8: As observed in the above, the first branch of removing N [a] decreases r
by at least 12 in this case. By (P8) and (P6), the second branch of removing N [b] decreases r by
at least ρ(N [b]) + |N({b′, b′′})− b|+ |{c, d}| ≥ 4 + 3 + 2 = 9 (hence 10). Hence (4) holds in (iv-1).

(iv-2) δ(c) + δ(d) = 7 (say δ(c) = 3 and δ(d) = 4): In the first branch of removing N [a], r
decreases by ρ(N [a])+|N(b)−a|+|N({c, d})−a| = 5+2+3 = 10, leaving no degree-1 vertex by (P3).
In the second branch of removing N [b], r decreases by at least 10 (ρ(N [b]) + |N(b)− a|+ |{c, d}| ≥
4 + 3 + 2 = 9). If r decreases by at least 12 in the second branch, we have (4). When the second
branch decreases r only by 10, it holds δ(b′) = δ(b′′) = 3, and we shall claim that G − N [a] or
G−N [b] is a fine instance, indicating that (6) holds.

Let N(d) = {a, c, d′, d′′}. Note that δ(c′) = 3 holds by δ(c) = 3 and c′ is not adjacent to any of
d′ and d′′ by (P4). Assume that c′ is not an o-path in G−N [a] (otherwise we are done). Then c′ is
adjacent to one of b′ and b′′, say b′′, and we see that Sa ⊇ {a, c′, b′} holds, which implies that c′ is
not adjacent to b′. Also assume that b′ is not an o-path in G−N [a], either. Then b′ is adjacent to
one of d′ and d′′, say d′, and δ(d′) = 3 in G. Let N(d′) = {d, b′, y}, where y ̸= b′′ (otherwise bb′′d′b′

would be a desk). We see that y is not adjacent to b′′, since otherwise Sc ⊆ {c, b, y, b′} would contain
adjacent b and b′, contradicting that c is confined. This implies that d′ is an o-path in G − N [b].
This proves the claim.

(iv-3) δ(c) = δ(d) = 3 and δ(b′) + δ(b′′) ≥ 7: Note that δ(d′) = 3 holds by δ(d) = 3. In the first
branch of removing N [a], r decreases by at least ρ(N [a]) + |N(b) − a| + |{c′, d′}| = 4 + 2 + 2 = 8.
We show that G−N [a] is a fine instance (without using δ(b′)+ δ(b′′) ≥ 7). In G−N [a], there is no
degree-1 vertex, and c and d are nonadjacent degree-2 vertices. If one of c′ and d′, say c′ is adjacent
to a degree-3 vertex of b′ or b′′, say b′, then b is a child of S = {a, c, d} ⊆ Sa and {a, c, d, b′′} ⊆ Sa

must hold, and b′′ cannot be adjacent to d, implying that d′ (or d′b′c′) is an o-path in G−N [a].

14

In the second branch of removing N [b], we show that r decreases by at least 12. Let δ(b′′) ≥ 4
without loss of generality. Removing N [b] decreases r by at least ρ(N [b]) + |N({b′, b′′}) − b| +
|{c, d}| ≥ 5 + |N({b′, b′′}) − b| + 2, where |N({b′, b′′}) − b| ≥ 3 by (P8). Assume that r decreases
by at most 10, i.e., δ(b′′) = 4, δ(b′) = 3, |N({b′, b′′}) − b| = 3 and the two common neighbors
x1, x2 ∈ N(b′) ∩ N(b′′) − b are both degree-3 vertices. We here claim that r will further decrease
by 2 by folding the degree-1 vertices in G − N [b]. Now each xi is a degree-1 vertex incident to a
vertex yi in G −N [b]. To prove the claim, it suffices to show that y1 ̸= y2, {x1, x2} ∩ {y1, y2} = ∅
and each yi is of degree ≥ 3 in G −N [b]. We see that xi ̸= yj (otherwise xi would be dominated)
and xi ̸= c′, d′ (otherwise, child b of S = {a, c′, d′} ⊆ Sa would satisfy N(b) − N [Sa] = ∅). Also
yi ̸∈ N(b′′) − {x1, x2} (otherwise b′-xi-{b′′, yi} would be a short funnel). Therefore each yi is of
degree ≥ 3 in G−N [b], as required.
Case (v). b is not in a triangle, δ(b) = δ(c) = δ(d) = δ(b′) = δ(b′′) = 3 and G − N [b] is a fine
instance (recall that the definition of optimal funnels and Lemma 8): As observed in Case (iv-3),
removing N [a] decreases r by 8, leaving a fine instance G−N [a]. In the other branch of removing
N [Sb], r decreases by 10 (ρ(N [b])+ |N({b′, b′′})−b|+ |{c, d}| ≥ 4+3+2 = 9), leaving a fine instance
G−N [b]. In this case, we have (7).

Lemma 11 Let G be a reduced instance with no 3-, 4-funnels. Branching on an optimal 4-cycle in
G in Step 9 decreases the measure r at least with (5) leaving a fine instance G1 or (4).

Proof. We branch on an optimal 4-cycle abcd by removing either {a, c} or {b, d} from G. We let a′

denote the third neighbor of a not in the 4-cycle, and a′′ be the fourth neighbor of a (if any). We
use the same notation for b′, b′′, c′, c′′, d′ and d′′. We distinguish three cases

Case (i). There are two nonadjacent degree-3 vertices in the cycle: Let δ(b) ≥ δ(d) ≥ δ(a) =
δ(c) = 3 without loss of generality. Then a′ ̸= c′ (otherwise {a, c} would be a twin). Now no edge of
abcd is in a triangle (since G has no 3-funnel), and it holds that δ(b) ≥ 4 and |N({b, d})−{a, c}| ≥ 3
(otherwise abcd would be a desk). In the branch of removing {b, d}, we remove X = {b, d, a, a′, c, c′}
by folding the degree-1 vertices c and d. If ρ(X) ≥ 8 (hence |N(X)| ≥ 3) or |N(X)| ≥ 4, then
removing X decreases r by at least ρ(X)+ |N(X)| ≥ 8+3 = 11 (or 7+4 = 11). Assume otherwise,
ρ(X) = 7 (i.e., δ(b) = 4 and δ(d) = δ(a′) = δ(c′) = 3) and |N(X)| = |{b′, b′′, d′}| = 3. In this case,
d′ is adjacent to a′ or c′ and hence δ(d′) ≥ 4 (otherwise d′a′ad or d′c′cd would be a desk). This
means that r still decreases by at least 11 (hence 12) (X → 7 and {b′, b′′, d′} → 4).

In the other branch of removing {a, c}, r decreases by {a, c} → 2, {b, d} → δ(b) + δ(d)− 4 and
{a′, c′} → 2, totally δ(b) + δ(d) ≥ 7 (by δ(b) ≥ 4). If δ(b) + δ(d) ≥ 9 then r decreases by at least
10. Assume δ(b) + δ(d) ≤ 8. If δ(d) = 3 and δ(d′) ≥ 4, then r decreases by at least 10 (N [d] → 5,
b → 2 and {a′, c′} → 2). If δ(d) = δ(d′) = 3, then there a neighbor w ∈ N(d′)− d such that w ̸= b,
where δ(w) ≥ 4 if w ∈ {a′, c′} (otherwise wd′da or wd′dc would be a desk). Hence r still decreases
by at least 10 (N [d] → 4, b → 2 and {a′, c′, w} → 3).

In the remaining case of δ(b) = δ(d) = 4, b and d will be o-paths in G− {a, c}, since neither of
b and d in G − {a, c} can be adjacent to other degree-2 vertices (no edge of abcd is contained in a
triangle). When r decreases by only 8, we have a fine instance G1 = G − {a, c}. This proves that
(4) or (5) holds in (i).

Case (ii). The cycle contains a degree-3 vertex, but there is no pair of nonadjacent degree-3
vertices in the cycle: Let δ(b) ≥ δ(d) ≥ δ(a) = 3, and δ(c), δ(b) ≥ 4 without loss of generality. In the
branch of removing {a, c}, r decreases by at least 10 ({a, c} → 3, {b, d} → 4 and N(c)−{b, d} → 2).
In the branch of removing {b, d}, where N [a] will be removed by folding the degree-1 vertex a.
When b is adjacent to a neighbor u ∈ N(d)− {a, c} or u ∈ N(a′)− a, it holds δ(u) ≥ 4 (otherwise
4-cycle badu or baa′w must be optimal). Hence removing N [a] decreases r by at least 12 (N [a] → 5,
c → 2 and N2(a)− c → 4). This proves that (4) holds in (ii).

15

Case (iii). abcd is none of Cases (i)-(ii); i.e, abcd contains no degree-3 vertex: We distinguish
two subcases.

(iii-a). vertices {a, b, c, d} induce a 4-clique: Now δ(u) ≥ 5 for all u ∈ {a, b, c, d} (otherwise
a vertex u with δ(u) = 3, 4 would dominate another vertex or form a 4-funnel). In each of the
two branches, say removing {a, c}, r will decrease by at least 12 ({a, c} → 6, {b, d} → 4 and
N(a)− {b, c, d} → 2). This proves that (4) holds in (iii-a).

(iii-b). {a, b, c, d} contain two independent vertices, say a and c: By optimality of 4-cycles, G
has no 4-cycle containing degree-3 vertices, and δ(u) ≥ 4 for all vertices u ∈ N(a) ∩N(c) − {b, d}.
Hence in the branch of removing {a, c}, measure r decreases by at least 12 ({a, c} → 4, {b, d} → 4
and N({a, c})− {b, d} → 4). In the other branch of removing {b, d}, r will decrease by at least 10
({b, d} → 4, {a, c} → 4 and N({b, d})− {a, c} → 1). This proves that (4) holds in (iii-b).

In Step 10, the algorithm will branch an optimal vertex v of maximum degree. We will consider
two case: either v is of degree ≥ 4 or v is of degree 3 (where G is a bottleneck instance).

Lemma 12 Let G be a reduced instance which has neither 3,4-funnels nor 4-cycles. Then branching
on an optimal vertex of maximum degree d ≥ 4 in G decreases the measure r at least with one of
the following recurrences:

C(r) ≤ C(r − 6) + C(r − 20); (8)

C(r) ≤ C(r − 6) + C(r − 14), (9)

where instance G1 in (9) is a fine instance.

Proof. We branch on v by excluding it from the independent set or including Sv in the independent
set. In the branch of removing v, we can decrease the measure r by d− 2 + d = 2d− 2 ≥ 6.

In the other branch of removing N [v] ⊆ N [Sv], we can decrease the measure r by ρ(N [v]) +
|N2(v)|. Let k be the number of edges between N(v) and N2(v). Since there is no 4-cycle passing
through v, no two of the k edges meet at the same vertex in N2(v), and we have |N2(v)| = k.

Since there is no 4-cycle passing through v, at most ⌊d/2⌋ (disjoint) pairs of neighbors of v can
be adjacent, and both adjacent neighbors must be of degree ≥ 4 (since no triangle contains v and a
degree-3 neighbor). This implies that each neighbor of v has at least two neighbors in N2(v). Hence
removing N [v] decreases r by at least ρ(N [v]) + k ≥ d− 2 + d+ 2d ≥ 14.

(i) v has a degree-3 neighbor: In G − v, all degree-3 neighbors of v become degree-2 vertices,
and no two of them are adjacent or share a common neighbor, since no triangle contains v and a
degree-3 neighbor. Hence each degree-2 vertex in G− v separately forms an o-path, and G− v is a
fine instance. This proves that (9) holds.

(ii) v has no degree-3 neighbor: For d ≥ 5, it holds ρ(N [v])+k ≥ d−2+1+d+2d+1 ≥ 20, where
at least one neighbor of v needs to have at least three neighbors in N2(v) since there is no degree-3
neighbor of v. For d = 4, it suffices to show that k ≥ 10, which implies ρ(N [v])+k ≥ 2+8+10 = 20
and (8). Since the reduced graph G has no component of the line graph of a 3-regular graph, there
always exists a degree-4 vertex that is adjacent to a degree-3 vertex or not contained in two edge-
disjoint triangles. Hence in this case, we see that at most one pair of its neighbors are adjacent by
the optimality of v. This shows k ≥ 10, as required.

Lemma 13 Let v be an optimal vertex in a bottleneck instance. Then branching on it decreases the
measure r of G at least with (2) so that both G1 = G− v and G2 = G−N [v] are fine instances.

Proof. We branch on v by excluding it from the independent set or including it in the independent
set. In the branch where v is removed, three independent degree-2 vertices (three o-paths) are
created. The remaining graph G − v is always a fine instance. In the other branch where N [v] is

16

removed, the remaining graph G − N [v] has exactly six degree-2 vertices and no degree-1 vertex.
Since G has neither a triangle nor a 4-cycle, we see that G−N [v] has no o-path if and only if the six
degree-2 vertices form three e-paths, and this is possible only when vertex v is contained in three
5-cycles each pair of which shares exactly two vertices. It can be shown that any 3-regular connected
graph with at least 21 vertices contains at least one vertex v for which the above condition does not
hold (see Lemma 15 in Appendix for a proof). Since G is a reduced instance whose component has
at least 21 vertices, an optimal vertex v has an o-path in G−N [v].

Finally we make an entire analysis over all branching operations. As we remarked, the key idea
is how to prevent the “bottleneck branching” with recurrence (2) from successively occurring during
an execution of our algorithm. Although our algorithm is described so that it starts from applying
reduction rules, we evaluate the changes of measure based on the instant when instances become
fine instances during the execution. Consider branching on an optimal funnel in a fine instance
G. In this case, G is first reduced to a reduced instance G′ (possibly without any decrease in the
measure), and two instances G1 and G2 are generated with recurrence (4). For each i = 1, 2, Gi

may not be a fine instance and possibly is reduced to a bottleneck instance G′
i. In G′

i, we are forced
to branch on a degree-3 vertex vi in G′

i with (2) generating two instances G′
i − vi and G′

i −N [vi],
which are both shown to be fine instances by Lemma 13. In total, from a fine instance G, four fine
instances are generated with recurrence

C(r) ≤ C(r −10−4) + C(r −10−10) + C(r −12−4) + C(r −12−10).

Analogously for (8), four fine instances are generated with recurrence

C(r) ≤ C(r − 6− 4) + C(r − 6− 10) + C(r − 20− 4) + C(r − 20− 10).

For (3), (5), (6) and (9), the resulting instance G1 is shown to be a fine instance, and we only
branch on G′

2 with (2), and three fine instances are generated with recurrences: C(r) ≤ C(r −
4) + C(r − 20 − 4) + C(r − 20 − 10); C(r) ≤ C(r − 8) + C(r − 12 − 4) + C(r − 12 − 10); C(r) ≤
C(r − 10) + C(r − 10− 4) + C(r − 10− 10); and

C(r) ≤ C(r − 6) + C(r − 14− 4) + C(r − 14− 10). (10)

Note that the resulting instances G1 and G2 in (7) are both fine instances.
We now consider the remaining branching of an optimal degree-3 vertex with (2). Recall that we

are given a fine instance G. Then G is reduced to a bottleneck instance G′. Hence ρ(G)−ρ(G′) ≥ 2
by Lemma 7. Therefore branching on an optimal degree-3 vertex in G′ generates two fine instances
G1 = G − v and G2 = G − N [v]. Hence from a fine instance, we can generate two fine instances
with recurrence

C(r) ≤ C(r − 2− 4) + C(r − 2− 10). (11)

Among all above recurrences, the worst recurrences are (10) and (11), which solves to C(r) =
1.0836r.

Theorem 14 A maximum independent set in a graph with maximum degree 3 can be found in
O∗(1.0836n) time.

6 Concluding Remarks

In this paper, we have presented an O∗(1.0836n)-time algorithm for the maximum independent set
problem in degree-3 graphs, which improves all previous results on this problem without increasing
the number of branching rules. The maximum independent set problem is one of the most extensively

17

studied problems in exact algorithms. The best worst-case behavior of exact exponential solutions
to it is an important issue in this area.

Based on the new result on MIS3, we recently improved our algorithm for MIS4 [20] to an
O∗(1.1446n)-time algorithm [21]. Combining our results on low-degree graphs with the bottom-up
method in [2], we can also improve the best exact algorithm for the maximum independent set
problem in general graphs.

In this paper, we use some reduction rules and branching rules, such as confining sets, alternative
sets, and branching on a funnel/4-cycle, to avoid tedious examinations of the local structures. These
rules catch the structural properties of small cycles in graphs, and simplify the algorithm. It is easy
to see that many previous algorithms can apply the new rules to simplify the description and
analysis.

Most previous exact algorithms got improvements by carefully checking what will happen next
after a worst case. To get a light improvement, we may need to consider a large number of cases,
which may make the algorithm too complicated and hard to check. In this paper, we get improve-
ments by avoiding the cases instead of checking what after worst cases. This idea can also be used
to design fast algorithms for other problems.

References

[1] Beigel, R., Finding maximum independent sets in sparse and general graphs, SODA, ACM
Press, 1999.

[2] Bourgeois, N., Escoffier, B., Paschos, V. T., van Rooij, J. M. M., Fast algorithms for max
independent set, Algorithmica 62(1-2), (2012) 382–415

[3] Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M., A bottom-up method and fast
algorithms for max independent set, SWAT 2010, LNCS 6139. (2010) 62–73.

[4] Bourgeois, N., Escoffier, B., Paschos, V. T., An O∗(1.0977n) exact algorithm for max indepen-
dent set in sparse graphs,

[5] Chen, J. Kanj, I., Xia, G., Labeled search trees and amortized analysis: Improved upper bounds
for NP-hard problems, Algorithmica 43 (4) (2005) 245–273.

[6] Chor, B., Fellows, M., Juedes, D., Linear kernels in linear time, or how to save k colors in
O(n2) steps, WG2004, LNCS 3353, Springer, 2005.

[7] Fomin, F. V., Grandoni, F., Kratsch, D., Measure and conquer: a simple O(20.288n) independent
set algorithm, SODA, ACM Press, 2006.

[8] Fomin, F. V., Høie, K., Pathwidth of cubic graphs and exact algorithms, Inf. Process. Lett.
97 (5) (2006) 191–196.

[9] Fürer, M., A faster algorithm for finding maximum independent sets in sparse graphs,
LATIN2006, LNCS 3887, Springer, 2006.

[10] Jian, T., An O(20.304n) algorithm for solving maximum independent set problem, IEEE Trans-
actions on Computers 35 (9) (1986) 847–851.

[11] Kneis, J., Langer, A., Rossmanith, P., A fine-grained analysis of a simple independent set
algorithm, FSTTCS 2009. V. 4 LIPIcs., Dagstuhl, Germany, (2009) 287–298.

18

[12] Razgon, I., A faster solving of the maximum independent set problem for graphs with maximal
degree 3, in: H. Broersma, S. S. Dantchev, M. J. 0002, S. Szeider (eds.), ACiD, vol. 7 of Texts
in Algorithmics, King’s College, London, 2006.

[13] Razgon, I., Faster computation of maximum independent set and parameterized vertex cover
for graphs with maximum degree 3, J. of Discrete Algorithms 7 (2) (2009) 191–212.

[14] Robson, J., Algorithms for maximum independent sets, Journal of Algorithms 7 (3) (1986)
425–440.

[15] Robson, J., Finding a maximum independent set in time O(2n/4), Technical Report 1251-01,
LaBRI, Univsersite Bordeaux I (2001).

[16] Tarjan, R., Trojanowski, A., Finding a maximum independent set, SIAM Journal on Computing
6 (3) (1977) 537–546.

[17] West, D., Introduction to Graph Theory, Prentice Hall, 1996.

[18] Xiao, M., A simple and fast algorithm for maximum independent set in 3-degree graphs, WAL-
COM 2010, LNCS 5942, Springer, (2010) 281–292.

[19] Xiao, M.-Y., Chen, J.-E., Han, X.-L., Improvement on vertex cover and independent set prob-
lems for low-degree graphs, Chinese J. Computers 28 (2) (2005) 153–160.

[20] Xiao, M., Nagamochi, H., Further improvement on maximum independent set in degree-4
graphs. Wang, W., Zhu, X., and Du, D. (Eds.): COCOA’11. LNCS 6831 (2011) 163-178.

[21] Xiao, M., Nagamochi, H., Further improvement on maximum independent set in
graphs with maximum degree 4, Technical Report 2012-003, May 8 (2012) url:

http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical report/TR2012-003.pdf

19

Appendix

Lemma 15 Let G be a 3-regular connected graph with neither a triangle nor a 4-cycle. If every
two adjacent edges are contained in a 5-cycle, then the number of vertices in G is either 10 or 20.

Proof. Let N3(v) denote the set of vertices whose distance from a vertex v is 3. For each vertex
v in G, |N(v)| = 3 and |N2(v)| = 6 hold by the assumption. We fix a vertex v, and denote
N(v) = {a, b, c} and N2(v) = {ac, ab, ba, bc, cb, ca}, where vertex xy ∈ N2(v) is adjacent to vertex
x ∈ N(v) and vertex yx ∈ N2(v) for symbols x, y ∈ {a, b, c}. Let x′y be the third neighbor of each
vertex xy ∈ N2(v), i.e., N(xy) = {x, yx, x′y}. The assumption implies that a shortest path Pa,b in
the graph G−v between two neighbors a, b ∈ N(v) is of length 3 and unique, and the three shortest
paths Pa,b, Pb,c and Pa,c form a 9-cycle aabbabbccbccaac.

Case 1. There is a vertex v such that N2(v) contains a pair of adjacent vertices s, t ∈ N2(v)
other than abba, bccb and caac: Assume s = ac without loss of generality. Since t ∈ {ab, ba, cb}
implies that it would be in a 3- or 4-cycle, it holds t = bc. Then the third 5-cycle C containing a
other than aaccacv and aabbabv must pass through vertices abaacbc and one of cb and b, and the
9-cycle containing N(a) ∪N2(a) must be accacvbbaabcbbc, indicating that ab and cb also need to be
adjacent. Therefore by symmetry, ca and ba must be adjacent too. Now each vertex in N [v]∪N2(a)
already receives three edges, and the graph G has only 10 vertices in N [v] ∪N2(v).

Case 2. There is no vertex v of Case 1: In this case, for each vertex u, N(v) ∪ N2(u) induces
a chordless 9-cycle. We first show that |N3(v)| = 6. Assume that |N3(v)| < 6, where a′c is equal
to a vertex in {a′b, b′a, b′c, c′b, c′a} without loss of generality. If a′c = c′a or a′b then it would be in a
3- or 4-cycle. If a′c = c′b or b′a, say, a

′
c = c′b, then cbc would be a chord of the 9-cycle induced by

N(ac)∪N2(ac). If a
′
c = b′c then the distance a and a′c in the graph G−ac is at least 4, contradicting

the assumption. Therefore |N3(u)| = 6 for all vertices u in G in Case 2. Since N(v) ∪ N2(u)
induces a chordless 9-cycle for each vertex u, G has edges a′ca

′
b, b

′
cb

′
a and c′bc

′
a. Let a′′b (resp., a′′c)

be the third neighbor of a′b (resp., a′c), i.e., N(a′b) = {ab, a′c, a′′b} and N(a′c) = {ac, a′b, a′′c}. We
prove a′′b , a

′′
c ̸∈ N [v] ∪ N2(v) ∪ N3(v). Assume that a′′b ∈ N [v] ∪ N2(v) ∪ N3(v). Since (N [v] ∪

N2(v) ∪ N3(v)) − (N [a] ∪N2(a) ∪N3(a)) = {b′c, c′b}, we see that a′′b is equal to b′c or c′b. If a′′b = c′b
then b′a is also adjacent to c′b (since N(ab) ∪ N2(ab) induces a chordless 9-cycle) and c′b would be
adjacent to four vertices cb, c

′
a, a

′
b and b′a, a contradiction. If a′′b = b′c, then the 9-cycle induced

by N(ba) ∪ N2(ba) would have a chord a′bb
′
c. Hence a′′b ̸∈ N [v] ∪ N2(v) ∪ N3(v). Symmetrically we

have a′′c ̸∈ N [v] ∪ N2(v) ∪ N3(v). Now N(a′b) ∪ N2(a
′
b) induces a 9-cycle a′′b b

′
abaabaaca

′
ca

′′
ca

∗ for a
vertex a∗, and N(bc) ∪N2(bc) induces a 9-cycle c′bcbcvbbab

′
ab

′
cv

∗ for a vertex v∗, where a∗ ̸= v∗ and
a∗, v∗ ̸∈ N [v]∪N2(v)∪N3(v)∪N [a]∪N2(a) (otherwise such a vertex would be of degree 4). Finally
N(b′c) ∪ N2(b

′
c) must induce the 9-cycle baaba

′
ba

′′
ba

∗v∗b′cbcb. Then no more edge can be incident to
any vertex in {a∗, v∗} ∪N [v] ∪N2(v) ∪N3(v) ∪N [a] ∪N2(a), and G has only these 20 vertices.

20

