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Abstract

We present a simple algorithm for the maximum independent set problem in an n-vertex
graph with degree bounded by 4, which runs in O∗(1.1446n) time and improves all previous
algorithms for this problem. The algorithm is analyzed by using the “Measure and Conquer”
method. We use some good reduction and branching rules with a new idea on setting weights
to obtain the improved time bound without increasing the number of branching rules in the
algorithm.
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1 Introduction

Themaximum independent set problem (MIS), to find a maximum set of vertices in a graph such that
there is no edge between any two vertices in the set, is not only a basic problem introduced in Garey
and Johnson’s work [10] on NP-completeness, but also one of the most important problems in the line
of research on worst-case analysis of algorithms for NP-hard optimization problems. Since Tarjan
and Trojanowski [16] published the first nontrivial O∗(2n/3)-time algorithm in 1977, the bound of
the running time to exactly solve the problem has been improved frequently [11, 14, 15, 7, 12, 3].
One of the most important results among them is that due to Fomin et al. [7], in which they use
a new method called “Measure and Conquer” to analyze simple algorithms. By using this method
together with other techniques, recently Kneis et al. [12] and Bourgeois et al. [3] improved the
running time bound to O∗(1.2132n) and O∗(1.2127n), respectively. Up to till now, these are the
best published results for MIS.

One of the most important subcases to solve MIS is the problem in low-degree graphs. Since
we can simply branch on a high-degree vertex by including it into the independent set or excluding
it from the independent set, and then reduce the graph greatly in the subbranches, sometimes the
problem in degree-i graphs (graphs with maximum degree i) for small i will become the bottleneck
for solving the problem in general graphs. Bourgeois et al. [3] also used a bottom-up method to get
improvements on MIS. In this method, the running time bounds for MIS in degree-3 graphs (MIS3)
and MIS in degree-4 graphs (MIS4) will directly affect the algorithms and running time bounds for
the problem in other degree bounded graphs and general graphs. Motivated by these, researchers
have great interests in designing fast algorithms for MIS3 and MIS4. For MIS3, we quote the
O∗(1.1259n)-time algorithm by Beigel [1], the O∗(1.1225n)-time algorithm by Fomin and Høie [8],
the O∗(1.1120n)-time algorithm by Fürer [9], the O∗(1.1034n)-time algorithm by Xiao et al. [19],
the O∗(1.0892n)-time algorithm by Razgon [13], the O∗(1.0885n)-time algorithm by Xiao [18], the
O∗(1.0854n)-time algorithm by Bourgeois et al. [2], and and finally the recent O∗(1.0836n)-time
algorithm by Xiao and Nagamochi [20]. For MIS4, MIS in degree-5 graphs (MIS5) and MIS in
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degree-6 graphs (MIS6), the best previous results are O∗(1.1571n), O∗(1.1918n) and O∗(1.2071n),
respectively [3], which are designed by using a bottom-up method based on a fast algorithm for MIS3.
In this paper, we will design a simple O∗(1.1446n)-time algorithm for MIS4 by using “Measure and
Conquer,” which improves the previous best bound O∗(1.1571n) on MIS4.

Most fast exponential-time algorithms are based on a branch-and-reduce paradigm, which con-
tains two main steps. We first check whether we can get partial solution and reduce the current
problem directly according the reduction rules, and then branch the problem instance into several
smaller instances according to the branching rules. To scale the size of the instance, we may need
to use a parameter, such as the number of vertices or edges for graph problems, as a measure of
the size of the instance. By bounding the size of the search tree to a function of the parameter,
we will get a running time bound relating to the parameter for the problem. For MIS, we branch
on the current graph G into several graphs G1, G2, . . . , Gl such that the parameter wi of each
graph Gi is less than the parameter w of graph G, and a maximum independent set in G can be
found in polynomial time if a maximum independent set in each of the l graphs G1, G2, . . . , Gl is
known. Usually, Gi (i = 1, 2, . . . , l) are obtained by deleting some vertices in G. We can build up
a search tree according to our branching rules, and the exponential part of the running time of the
algorithm corresponds to the size of the search tree. The running time analysis leads to a linear
recurrence for each node in the search tree that can be solved by using standard techniques. By
letting C(w) denote the worst-case size of the search tree when the parameter of graph G is w, we
get the recurrence relation C(w) ≤

∑l
i=1C(w − w′

i), where w − w′
i = wi. Solving the recurrence,

we get C(w) = [α(w′
1, w

′
2, . . . , w

′
l)]

w, where α(w′
1, w

′
2, . . . , w

′
l) is the largest root of the function

f(x) = 1 −
∑l

i=1 x
−w′

i . As for the measure (the parameter w), we should guarantee that when
parameter w ≤ 0 the problem can be solved directly and the parameter will not increase in each
step (applying reduction rules or branching rules). A natural measure is the number of vertices or
edges in the graph. Note that to get fast algorithms by this method, we hope that the decrease w′

i

(i = 1, 2, . . . , l) in the above recurrence are as large as possible. To get large values of them, some
proposed algorithms check a large number of local structures of the graph and get numerous branch-
ing rules. However, the “Measure and Conquer” method tries to improve the recurrences in another
way. In this method, we set a weight to each vertex in the graph according to the degree of the
vertex (usually vertices of the same degree receive the same weight) and use the sum of the weights
in the graph as the measure. Note that when a vertex v is deleted, we may decrease the measure
not only from v but also from the neighbors of v (the degrees of the neighbors will decrease by 1).
Compared to traditional measures, the weighted measure may catch more structural information
of the graph and may yield a further improvement without modifying the algorithms. Currently,
the best exact algorithms for many NP-hard problems are designed by this method. However, we
should choose a good weight setting on vertices, which is an important step in this method. To do
this, we may need to solve a quasiconvex program. In this paper we also use the branch-and-reduce
paradigm and the “Measure and Conquer” method to design our algorithm.

The rest of the paper is organized as follows. Section 2 gives the notation that may be used in the
paper. Sections 3 and 4 introduce the reduction rules and branching rules, respectively. Section 5
presents our simple algorithm. Section 6 analyzes the running time bound. Finally Section 7 makes
some concluding remarks.

2 Notation System

Given a graph G = (V,E), the total number of vertices in the graph is denoted by n. For a vertex
v in a graph, d(v) is the degree of v, N(v) the set of all neighbors of v, and N2(v) the set of vertices
with distance exactly 2 from v. Denote N [v] = N(v) ∪ {v} and N2[v] = N2(v) ∪ N [v]. We may
also use N(V ′) to denote the neighbors of a set V ′ of vertices, i.e., N(V ′) = ∪v∈V ′N(v) − V ′. For
k ≥ 3 vertices v1, v2, . . . , vk in G, we say that v1v2 · · · vk is a k-cycle in G if for each i = 1, 2, . . . , k
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vi and vi+1 are adjacent, where we interpret vk+1 = v1. A line graph of graph G is the graph
whose vertices are corresponding to the edges of G, and two vertices are adjacent if and only if the
corresponding two edges sharing a same endpoint in G. In our algorithm, when we remove a set
of vertices, we also remove all the edges that are incident on it. Throughout the paper we use a
modified O notation that suppresses all polynomially bounded factors. For two functions f and g,
we write f(n) = O∗(g(n)) if f(n) = g(n)poly(n), where poly(n) is a polynomial in n.

3 Reduction Rules

Reduction rules are used to decrease the size of instances of the problem directly before applying
the branching rules. Reduction rules will not exponentially increase the size of our search tree.
Furthermore, the reduction operations will reduce some special local structures of the graph, and
then the branching rules can apply effectively in the resulted graphs. Some of the reduction rules
used here are well-known in the literature. Some of them are newly introduced.

Let η(G) denote the size of a maximum independent set of graph G. Clearly if there are degree-0
vertices, then any maximum independent set includes all these vertices and we remove them from
the graph. Thus for the set V0 of degree-0 vertices in G, η(G) = η(G− V0) + |V0|.

Dominance
We say that a vertex u dominates another vertex v if N [u] ⊆ N [v]. If there is a vertex v dominated
by another vertex, we remove v from the graph.

We say that a vertex is a dominated vertex if it is dominated by another vertex. It is easy to
see that we can remove a dominated vertex without losing a solution.

Lemma 1 For a dominated vertex v in graph G,

η(G) = η(G− {v}).

Next we assume that the above rule has been applied in the graph and then there is no dominated
vertex. Note that the neighbor of any degree-1 vertex is a dominated vertex. If there is a triangle
with a degree-2 vertex v in it, then the other two vertices in the triangle are dominated by v. When
a graph has no dominated vertex, it will have neither degree-1 vertex nor a degree-2 vertex with
two adjacent neighbors.

Roofs
A vertex v is called a roof, if it is in a 5-cycle vabcd such that a and d are two adjacent degree-3
vertices. If there is a roof, we remove it from the graph.

Lemma 2 Let v be a roof in graph G, then

η(G) = η(G− {v}).

Proof. We only need to prove that there is a maximum independent set that does not contain v.
Assume that v is in a maximum independent set S where a, d ̸∈ S. Since there is an edge between b
and c, at least one of b and c, say b without loss of generality, is not in S. Therefore, we can replace
v with a in S to get another maximum independent set that does not contain v.

Folding degree-2 vertices
Folding a degree-2 vertex v (with two nonadjacent neighbors a and b) means contracting v, a and b
into a single vertex s.

Fig. 1 illustrates the operation of folding a degree-2 vertex.

A vertex v together with its neighbors N(v) is called a funnel (or a d(v)-funnel) if N [v] − {a}
induces a complete graph for some a ∈ N(a), and is denoted by a-v-(N(v) − {a}). In particular,
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Figure 1: Illustrations of folding operations

for a degree-3 vertex v with N(v) = {a, b, c} such that b and c are adjacent, the 3-funnel is denoted
by a-v-{b, c}, where N(a) ∩ N(v) = ∅ holds when v dominates none of its neighbors. Note that
3-funnels are also called bottles in [18]. For a 3-funnel, we have the following reduction rule.

Folding funnels
In the operation of folding a 3-funnel a-v-{b, c}, we add edges between N(a) and {b, c} and remove
{a, v}.

Fig. 1 illustrates the operation of folding a funnel. Let G⋆(v) denote the graph after folding a
degree-2 vertex v or a 3-funnel a-v-{b, c} in G. Then we have the following lemma.

Lemma 3 For a degree-2 vertex v or a funnel a-v-{b, c} in graph G, we have η(G) = 1+ η(G⋆(v)).

The correctness of the reduction rules has been discussed in many references [4, 7]. In fact, folding
a funnel is a special case of a reduction rule introduced in [7]. We gave the new name of the local
structure just for the convenience of the analysis. In general, folding a short funnel may increase
our measure (defined in Section 6), which is unexpected in our algorithm. We call a 3-funnel a-v-
{b, c} in a graph with minimum degree 3 a short funnel if there are at least d(a)− 2 edges between
N(a) − {v} and {b, c}. In our algorithm, we will reduce short funnels only and leave some other
funnels.

In our algorithm, we will also use the following reduction rules. If two independent degree-3
vertices v and u have three common neighbors a, b and c, then we say that the five vertices compose
a 2-3 structure (see Fig. 1), and denote it by {v, u}-{a, b, c}. If there are three independent vertices
v, u and z of degree ≥ 3 such that |N(v) ∪N(u) ∪N(z)| = 4, then we say that the seven vertices
compose a 3-4 structure and denote it by {v, u, z}-N(v) ∪N(u) ∪N(z).

Folding 2-3 and 3-4 structures
Let A-B be a 2-3 structure or 3-4 structure in graph G. Folding A-B means
(a) removing A ∪B from the graph, when B is not an independent set in G; and
(b) contracting A ∪ B into a singe vertex and deleting parallel edges and self-loops from the graph,
when B is an independent set in G.

Lemma 4 If graph G has a k-(k + 1) structure (k = 2 or 3), then η(G) = k + η(G⋆), where G⋆ is
the graph obtained from G by folding the k-(k + 1) structure in G.
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The above reduction rule is a special case of the crown reduction introduced in [5]. The cor-
rectness of folding an A-B structure follows from this observation: When B is not an independent
set, there is a maximum independent set that contains A. When B is an independent set, there is
a maximum independent set that contains either B or A.

Line graphs
If graph G is a line graph of graph G′, we find a maximum independent set of G directly by finding
a maximum matching in G′ and taking the corresponding vertex set in G as the solution.

Not every graph is a line graph. There are several good methods to check whether a graph is
a line graph or not, which depend on characterizations of line graphs [17]. In this paper, we only
need to check whether a graph is a line graph of a 3-regular graph, which can be easily done (note
that a graph is a line graph of a 3-regular graph if and only if the graph has only degree-4 vertices
and each of them is contained in two edge-disjoint triangles).

Bipartite graphs
If graph G is a bipartite graph, we find a maximum independent set of G in polynomial time by
Hungarian Algorithm.

Definition 5 A graph is called a reduced graph, if it contains none of dominated vertices, roofs,
degree-2 vertices, short funnels, 2-3 structures, and 3-4 structures, and has no connected component
which is a line graph of a 3-regular graph or a bipartite graph.

4 Branching Rules

In the algorithm, we may branch on a vertex v of maximum degree by including it into the indepen-
dent set or excluding it from the independent set. That is, in the first branch we will delete N [v]
from the graph and in the second branch we will delete v from the graph. Besides this branching
rule, we also use two other branching rules, branching on a funnel and branching on a 4-cycle,
introduced in [18].

We have introduced a reduction rule that can reduce 3-funnels. However, we just use the rule
to reduce short funnels. For other kinds of funnels, we may use some branching rules to deal with
them. A vertex s ∈ N2(u) is called a satellite of vertex u if there is a vertex s′ ∈ N(u) such that
N [s′] − N [u] = {s}, where s′ is also called the parent of satellite s. The concept of satellites is
introduced in [12] and extended in [20]. We use Su to denote the set of vertex u and all of its
satellites.

Lemma 6 Let a-v-(N(v) − {a}) be a funnel in graph G. Then there is a maximum independent
set S in G such that either v ∈ S or Sa ⊆ S.

Proof. Let k = d(v). First consider the case where G has a maximum independent set that does
not contain a. Then we can directly remove a from G. In the remaining graph v becomes a degree-
(k−1) vertex in a clique of size k. In this case, there is a maximum independent set that contains v.
Next consider the case where every maximum independent set S contains a. We show that S also
contains any satellite s of a. Note that only N [a] ∩ S = {a}. If s is not in S, then N [w′] ∩ S = {a}
holds for the parent s′ of s. We can replace a with s′ in S to get another maximum independent
set S that does not contain a, which is a contradiction. All satellites of a should be in S.

Based on Lemma 6, we get the following branching rule.

Branching on a funnel
Branching on a funnel a-v-(N(v)− {a}) means branching by either including v in the independent
set or including Sa in the independent set.
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Lemma 7 Let abcd be a 4-cycle in graph G. For any independent set S in G, either a, c /∈ S or
b, d /∈ S.

Proof. Since any independent set contains at most two vertices in a 4-cycle and the two vertices
cannot be adjacent, we know the lemma holds.

Based on Lemma 7, we get the following branching rule.

Branching on a 4-cycle
Branching on a 4-cycle abcd means branching by either excluding a and c from the independent set
or excluding b and d from the independent set.

5 The Algorithm for MIS4

The main idea of the algorithm is that: If the graph is not a reduced graph, we apply our reduction
rules to reduce it; Elseif there is a vertex of degree ≥ 5, we branch on it; Elseif there is a 4-funnel or
a triangle containing both degree-3 and degree-4 vertices (implying that there is always a 3-funnel),
we branch on a ‘good’ funnel; Elseif there is a 4-cycle containing a degree-4 vertices, we branch on
a 4-cycle; Elseif the graph still has a degree-4 vertex, we branch on a ‘good’ degree-4 vertex; Last,
the graph is a degree-3 graph and we use a fast algorithm for MIS3 to solve it. Before presenting
our algorithm, we give the definitions of ‘good’ funnels/degree-4 vertices.

A good funnel is defined to be one of the following: (i) a 4-funnel; (ii) a 3-funnel a-v-{b, c} such
that d(a) = 4 and at least one of b and c is of degree 4; and (iii) a 3-funnel a-v-{b, c} such that the
graph has no funnel in (i) or (ii) and at least one of b and c is of degree 4. Also a degree-4 vertex
is called a good degree-4 vertex if it is not contained in two edge-disjoint triangles. Our algorithm
for MIS4 is described in Figure 2.

6 The Analysis

To analyze the running time bound of the algorithm, we introduce a weight to each vertex in the
graph according to the degree of the vertex, w : Z+ → R+ (where Z+ and R+ denote the sets of
nonnegative integers and nonnegative reals, respectively): we denote by wi the weight w(v) of a
vertex v of each degree i ≥ 0. Then we adopt w =

∑
iwini as the measure of the graph, where ni

denotes the number vertices of degree i in the graph. We set wi > 0 for i ≥ 3 and w0 = w1 = w2 = 0.
Then when measure w is 0, the problem can be solved in polynomial time, since the graph with
w = 0 has only degree-0, degree-1 and degree-2 vertices and the maximum independent set problem
can be solved in linear time. We also set

0 ≤ w3, w4 ≤ 1 (1)

so that a given degree-4 graph satisfies 0 ≤ w ≤ n. During our algorithm, a vertex with degree
greater than 4 may be created by some reduction rules, but we set weights wi, i ≥ 3 so that the
entire weight w never increases after any operation of reduction/branching rules. This is necessary
to evaluate the time bound of our algorithm by analyzing how many instances will be generated
until the measure becomes 0. We allow weight wj , j > 4 to be larger than 1 as long as the entire
weight w never increases.

6.1 Setting weights

As observed, we have set weights w0 = w1 = w2 = 0. For the weight of a vertex of degree ≥ 7, we
also set

wi = w6 + (i− 6)(w4 − w3), i ≥ 7.
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Input: A graph G.
Output: The size of a maximum independent set in G.

1. If {The graph has a component P that has at most 15 vertices, or is the line graph
of a 3-regular graph or a bipartite graph}, return t + MIS4(G − P ), where t is
the size of a maximum independent set in P .

2. Elseif {∃v, u ∈ V : N [u] ⊆ N [v] or there is a roof v}, return MIS4(G− {v}).
3. Elseif {There is a degree-2 vertex v or a short funnel a-v-(N(v) − {a}), return

1 +MIS4(G⋆(v)).

4. Elseif {There is a k-(k + 1) structure (k = 2 or 3)}, return k +MIS4(G⋆).

5. Elseif {There is a vertex of degree ≥ 5}, pick up a vertex v of maximum degree,
and return max{MIS4(G− {v}), 1 +MIS4(G−N [v])}.

6. Elseif {There is a good funnel a-v-(N(v) − {a}), return max{1 + MIS4(G −
N [Sa]), 1 +MIS4(G−N [v])}.

7. Elseif{There is a 4-cycle abcd that contains a degree-4 vertex}, return
max{MIS4(G− {a, c}),MIS4(G− {b, d})}.

8. Elseif {There are two adjacent degree-4 vertices}, pick up a good degree-4 vertex
v that is adjacent to at least one degree-4 vertex, and return max{MIS4(G −
{v}), 1 +MIS4(G−N [v])}.

9. Elseif {There are still some degree-4 vertices}, pick up a degree-4 vertex v such that
the number of degree-3 vertices inN2(v) is maximized, and returnmax{MIS4(G−
{v}), 1 +MIS4(G−N [v])}.

10. Else {The graph is a 3-regular graph}, we use a fast algorithm for MIS3 to solve
the problem and return a solution.

Note: With a few modifications, the algorithm can provide a maximum independent
set itself.

Figure 2: The Algorithm MIS4(G)

We only need to assign the value to w3, w4, w5 and w6, which will decide the value of wi for all
other i’s.

We here introduce several conditions on weights w3, w4, w5 and w6, where some conditions are
necessary ones for analysis using measure while the other simplify our analysis. We will use ∆wi to
denote wi − wi−1 for i ≥ 1. To simplify our analysis, we assume that

0 ≤ ∆w4 ≤ ∆wi ≤ ∆w3, i ≥ 5, (2)

w3 + w4 ≥ 4max{∆w5,∆w6} −∆w4. (3)

This and w0 = w1 = w2 = 0 imply

wi ≥ (i− 2)(w4 − w3), i ≥ 0.
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To obtain the next lemma, we assume that

wi + wj ≥ wi+j−2, 3 ≤ i, j ≤ 5. (4)

Lemma 8 wi + wj ≥ wi+j−2 holds for all i, j ≥ 1

Proof. If one of i and j, say i is at most 2, then wi+wj = wi ≥ wi+j−2. Let i, j ≥ 3. For 3 ≤ i, j ≤ 5,
we have wi + wj ≥ wi+j−2 by (4). Finally consider the case when at least one of i and j, say i, is
greater than 5. Then we have that wi+j−2 = wi + (j − 2)(w4 − w3) by the definition of wi (i ≥ 7).
Since wj ≥ (j − 2)(w4 − w3), this implies wi+j−2 = wi + (j − 2)(w4 − w3) ≤ wi + wj .

Lemma 9 The measure w of a graph will not increase, if we apply the reduction rules of folding a
degree-2 vertex, a short funnel, a 2-3 structure or a 3-4 structure, or removing a dominated vertex,
a roof, a connected component of a line graph of a 3-regular graph or a bipartite graph.

Proof. In the operation of removing a dominated vertex, a roof, a connected component of a line
graph of a 3-regular graph or a bipartite graph, we just delete some vertices from the graph, and
this never increase the total weight w of the graph.

To fold a degree-2 vertex, we delete a degree-2 vertex v and contract the two nonadjacent
neighbors a and b of v into a new vertex s, i.e., we delete two vertices of degree x and y from the graph
and introduce a new vertex of degree at most x+ y − 2. By Lemma 8, we have wx +wy ≥ wx+y−2,
and the measure w does not increase.

To fold a 2-3 structure of Case (b), we delete vertices {v, u, a, b, c} with d(v) = d(u) = 3
and introduce a new vertex s with d(s) ≤ d(a) + d(b) + d(c) − 6. By Lemma 8, we have that
wd(s) ≤ wd(a)+d(b)+d(c)−6 ≤ wd(a)+d(b)−4+wd(c) ≤ wd(a)−2+wd(b)+wd(c) ≤ wd(a)+wd(b)+wd(c). For
folding a 3-4 structure, we can prove it in the same way.

To fold a short funnel a-v-{b, c}, we delete vertices {v, a} with d(v) = 3. Let d′(u) denote the
degree of a vertex u after folding the funnel. Then it suffices to show that δ = [wd′(b) + wd′(c) +∑

t∈N(a)−{v} d
′(t)]− [wd(b) +wd(c) +

∑
t∈N(a)−{v} d(t)] is at most w3 +wd(a). First consider the case

of d(a) = 3. Let N(a) = {v, t1, t2}, where t1 is adjacent to b or c, say b. Then d′(b) ≤ d(b),
d′(c) ≤ d(c) + 1, d′(t1) = d(t1) and d′(t2) ≤ d(t2) + 1 (see Fig. 1). Since the minimum degree in
a reduced graph is 3 and ∆wi ≤ w3, i ≥ 3 holds by (2), we have δ ≤ 2w3. Next let d(a) = 4 and
Let N(a) = {v, t1, t2, t3}, where there are at least two edges between {t1, t2, t3} and {b, c}. We only
consider the case where one of t1, t2 and t3, say t1, is adjacent to both b and c, and show that
δ ≤ 4max{∆w5,∆w6}−∆w4 holds in this case (we can show that δ ≤ 3max{∆w5,∆w6} holds for
the other case). Then d′(b) ≤ d(b) + 1, d′(c) ≤ d(c) + 1, d′(t1) = d(t1) − 1, d′(t2) ≤ d(t2) + 1 and
d′(t3) ≤ d(t3)+1. Therefore δ ≤ 4max{∆w5,∆w6}−∆w4 (recall that ∆wi = ∆w4 ≤ ∆wj for i ≥ 7
and j = 5, 6). By (3), we have δ ≤ 4max{∆w5,∆w6} −∆w4 ≤ w3 + w4, as required.

We have considered all cases and then finished the proof.

Note that folding non-short funnels may increase w, which is not contained in our reduction
rules.

To evaluate the weight decrease in folding degree-2 vertices, we define

β = min
3≤i,j≤4

wi + wj − wi+j−2.

Lemma 10 Let v be a degree-2 vertex with two nonadjacent neighbors a and b such that 3 ≤
d(a), d(b) ≤ 4. Then folding a degree-2 vertex v decreases the measure w by at least β.

Proof. Contracting a and b into a new vertex decreases w by at least wd(a)+wd(b)−wd(a)+d(b)−2 ≥ β.
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To simplify our analysis, we further assume that

w3 ≤ 2(w4 − w3). (5)

Recall that w0 = w1 = w2 = 0, ∆wi ≥ w4 − w3, 3 ≤ i ≤ 4, and w3 ≤ 2(w4 − w3) by (5). Let X
be a subset of vertices in a reduce graph G = (V,E) and p be the number of edges between X and
V − X. When we remove X, the total weight in the remaining set V − X decreases by at least
kw3 + (w4 − w3)δ for the integers k with p = 3k + i (i ∈ {−1, 0, 1}) and δ such that δ = 1 when
i = 1, or δ = 0 otherwise. In addition, if no degree-0 vertex is created in G[V −X], then the total
weight in the remaining set V −X decreases by at least k′w3 + (w4 − w3)r for the integers k′ and
r ∈ {0, 1} such that p = 2k′ + r. In our analysis, we also use the following properties on a degree-3
vertex v in a reduced graph: (i) Removing N [v] creates no degree-0 vertex u (otherwise {v, u}-N(v)
would be a 2-3 structure); and (ii) If there is no edge between two neighbors of degree-3 vertex v,
then |N2(v)| ≥ 4 (otherwise N(v)-N2(v) ∪ {v} would be a 3-4 structure).

In the following subsections, we focus on the analysis for branching rules.

6.2 Step 5

After Step 4, the graph is a reduced graph where the minimum degree is at least 3. In Step 5,
the algorithm will branch on a vertex v of maximum degree by excluding it from the independent
set or including it into the independent set. In the first branch, we will delete v from the graph.
In the second branch, we will delete N [v] from the graph. We use ∆out(v) and ∆in(v) to denote
the decreased amount of w in the corresponding two branchings, respectively. Assume that v is of
degree d ≥ 5 and has di neighbors of degree i. Then d =

∑d
i=3 di. Note that each vertex u ∈ N(v)

is adjacent to a vertex in N2(v) (otherwise u would dominate v), and there are at least |N(v)| edges
between N [v] and N2(v). To analyze how much w can decrease in each branch, we consider two
cases.

(i) First let d ≥ 6. Then we have

∆out(v) = wd +

d∑
i=3

di∆wi ≥ wd + d(w4 − w3) ≥ w6 + 6(w4 − w3).

In the branch where v is included into the independent set, we will remove all vertices in N [v],
which decreases the degree of the vertices in N2(v). There are at least |N(v)| ≥ 6 edges between
N [v] and N2(v), and deleting N [v] decreases the weight of vertices in N2(v) by at least 2w3. Hence
we get

∆in(v) ≥ wd +
d∑

i=3

diwi + 2w3 ≥ w6 + 8w3.

Let C(w) denote the worst-case size of the search tree when the parameter of the graph is w. We
have the following recurrence

C(w) = C(w −∆out(v)) + C(w −∆in(v))
≤ C(w − (w6 + 6w4 − 6w3)) + C(w − (w6 + 8w3)).

(6)

(ii) Next let d = 5. It holds d = d5 + d4 + d3, and we get:

∆out(v) = w5 + d5(w5 − w4) + d4(w4 − w3) + d3w3.

Hence there are at least |N(v)| ≥ 5 edges between N [v] and N2(v), and deleting N [v] the weight of
vertices in N2(v) by at least 2w3. We get

∆in(v) ≥ wd +
∑5

i=3 diwi + 2w3 ≥ w5 + d5w5 + d4w4 + d3w3 + 2w3.
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Therefore, we get the recurrence for the case d = 5:

C(w) = C(w −∆out(v)) + C(w −∆in(v))
≤ C(w − (w5 + d5(w5 − w4) + d4(w4 − w3) + d3w3))

+C(w − (w5 + d5w5 + d4w4 + d3w3 + 2w3))
for 0 ≤ d3, d4, d5 ≤ 5 with d5 + d4 + d3 = 5.

(7)

This generates 21 recurrences.

6.3 Step 6

In this step, the graph is a reduced graph where there is no short funnel and each vertex is of
degree 3 or 4. A triangle containing both degree-3 and degree-4 vertices is called irregular. If the
graph contains an irregular triangle, then there exists a good funnel a-v-(N(v)−{a}), on which the
algorithm will branch by removing either N [Sa] or N [v].

Case 1. The good funnel is a 4-funnel a-v-{b, c, d}: Since there is no dominated vertex, a is not
adjacent to any of b, c and d. Note that v ∈ N(a) and there are at least 5 edges between N(a) and
N2(a). After removing N [a], the total weight of vertices in N [a] decreases by at least 3w3+w4, that
in {b, c, d} by at least 3(w4 − w3), and that in the other vertices in N2(a) by at least 2(w4 − w3).
Note that N [a] ⊆ N [Sa]. In the branching of removing N [Sa], the measure w decreases by at least
6w4 − 2w3 in total. In the other branch of removing N [v], the total weight in V ′ = {v, b, c, d, a}
decreases by at least w3 + 4w4 . There are at least 5 edges between V ′ and V − V ′, and the total
weight in V − V ′ decreases by at least 2w3. Totally the measure w decreases by at least 4w4 +3w3.
In Case 1, we get recurrence

C(w) ≤ C(w − (6w4 − 2w3)) + C(w − (4w4 + 3w3)). (8)

In the rest of cases, let a-v-{b, c} be a good 3-funnel. Note that a is not adjacent to any of
b and c, otherwise v would dominate b or c. Assume without loss of generality that d(b) ≥ d(c).
Then d(b) ≥ 4. Let pa (resp., pv) be the number of edges between N [a] and N2(a) (resp., N [v] and
N2(v)). We distinguish three cases.

Case 2. d(a) = 4: First we look at the branch where N [Sa] is removed. In this branch at
least N [a] ⊆ N [Sa] is removed. Each neighbor t ∈ N(a) of a is adjacent to a vertex in N2(a),
otherwise t would dominate a. Hence pa ≥ 5 and |N2(a)| ≥ 4 (otherwise a-v-{b, c} would be a short
funnel). Removing N [a] decreases the weights of vertices in N [a] and N2(a) by at least w4+4w3 and
5(w4−w3), respectively. Then this branch decreases w by at least w4+4w3+5(w4−w3) = 6w4−w3.

For the other branch where N [v] is removed, we consider two cases: the degree of c is 3 or 4.
When c is a degree-3 vertex, there are pv ≥ 6 edges between N(v) and N2(v). Note that b and
c have no common neighbor in N2(v), otherwise c would dominate b. Hence it is impossible to
create a degree-0 vertex after removing N [v]. Then removing N [v] decreases the weight of vertices
in N2(v) by at least 3w3 (note that w3 ≤ 2(w4 − w3)). Then this branch decreases w by at least
2w4+2w3+3w3 = 2w4+5w3 in total. When c is a degree-4 vertex, there are pv ≥ 7 edges between
N(v) and N2(v). Note that b and c can have at most one common neighbor in N2(v), otherwise c
would dominate b. Hence it is impossible to create two degree-0 vertices after removing N [v]. Then
removing N [v] decreases the total weight in N2(v) by at least 3w3. Totally this branch decreases w
by at least 3w4 + w3 + 3w3 = 3w4 + 4w3 > 2w4 + 5w3.

In Case 2, we can branch with the following recurrence

C(w) ≤ C(w − (6w4 − w3)) + C(w − (2w4 + 5w3)). (9)

Case 3. d(a) = 3: Let N(a) = {v, t, t′}, where d(t) ≤ d(t′) is assumed without loss of generality.
Let 0 ≤ γ1 ≤ 2 be the number of degree-4 neighbors of a and 1 ≤ γ2 ≤ 2 be the number of degree-4
vertices in {b, c}.
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First, we look at the first branch where N [v] is removed. This decreases the total weight of
vertices in {a, v} by 2w3 and that in {b, c} by γ2w4 + (2 − γ2)w3. Next we analyze how much
weight in N2(v) decreases after removing N [v]. There are 4 + γ2 edges between N [v] and N2(v).
We consider two cases on the first branch: the degree of c is 3 or 4.

(1-i) c is a degree-3 vertex (now γ2 = 1): Let c′ (̸= v, b) be the third neighbor of c. Then
c′ ̸= t, t′ (otherwise b would be a roof) and the degree of c′ is 3 (otherwise c′-c-{v, b} would be a
good funnel of Case (ii)). Let b′ and b′′ be the third and fourth neighbors b. Note that b′, b′′ ̸= c′

otherwise c would dominate b. If {b′, b′′}∩{t, t′} = ∅, then the weight of vertices in N2(v) decreases
by at least WN2(γ1) = γ1(w4 − w3) + (2 − γ1)w3 + w3 + 2(w4 − w3) = (2 + γ1)w4 + (1 − 2γ1)w3

after removing N [v]. Next consider the case of {b′, b′′} ∩ {t, t′} ̸= ∅. There is at most one edge
between {t, t′} and {b, c} (otherwise a-v-{b, c} would be a short funnel), and {b′, b′′}∩{t, t′} contains
at most one vertex, say b′ = t. Then removing N [v] decreases the weight in N2(v) by at least
γ1(w4 − w3) + (2 − γ1)w3 + w3 + (w4 − w3) + w3 ≥ WN2(γ1) (when b′ is a degree-4 vertex) or by
γ1(w4 − w3) + (2 − γ1)w3 + w3 + (w4 − w3) (when b′ is a degree-3 vertex) leaving b′ as only one
degree-1 vertex in the graph. For the latter case, we can further decrease w by at least w4 −w3 by
folding degree-1 vertices and the first branch decreases the measure w by at least WN2(γ1) in total.
Then in Case (1-i) removing N [v] decreases the weight in V −N [v] by at least WN2(γ1).

(1-ii) c is a degree-4 vertex (now γ2 = 2): Let c′′ be the fourth neighbor of c. Note that
{c′, c′′} ̸= {b′, b′′} since otherwise c would dominate b. If {t, t′} ∩ {c′, c′′, b′, b′′} = ∅, then the weight
of vertices in {t, t′} decreases by at least γ1(w4 − w3) + (2 − γ1)w3 and that in {c′, c′′} ∩ {b′, b′′}
by at least 2(w4 − w3) + w3. Then removing N [v] decreases the total weight of vertices in N2(v)
by at least WN2(γ1). If there is an edge between {t, t′} and {b, c}, then we see that the measure
w decreases by at least WN2(γ1) by the same argument for c being a degree-3 vertex. Therefore
removing N [v] always decreases the weight in V −N [v] by at least WN2(γ1).

Therefore, the first branch decreases the measure w by at least

W1(γ1, γ2) = 2w3 + γ2w4 + (2− γ2)w3 +WN2(γ1)
= (2 + γ1 + γ2)w4 + (5− 2γ1 − γ2)w3.

For the second branch where N [Sa] is removed, we consider two subcases.
Case 3.1. Vertex a is not in a triangle: For this case, we analyze how much we measure w will

decrease by removing only N [a] (⊆ N [Sa]). Removing N [a] decreases the weight of vertices in {a, v}
by 2w3 and that in {t, t′} by γ1w4 + (2− γ1)w3. We consider weight decrease of vertices in N2(a).
There are 6+γ1 edges between N [a] and N2(a). If no degree-1 vertex is created after removing N [a],
then the weight of vertices in N2(a) decreases by at least W ′

N2
(γ1, γ2) = (6 + γ1 − (2 − γ2))(w4 −

w3) + (2− γ2)w3 = (4 + γ1 + γ2)w4 − (2 + γ1 + 2γ2)w3 (note that there are at least 2− γ2 degree-3
vertices in N2(a)). If a degree-1 vertex v′ is created after removing N [a], then the neighbor v′′ of v′

is a vertex of degree ≥ 3 in G′ = G−N [a], since otherwise v′, v′′ and a vertex in {t, t′} (say t) will
form a triangle and then t′-v′-{v′′, t} would be a short funnel. In this case, we can further decrease
w by at least w3 by removing dominated vertex v′′; in total the measure w decreases by more than
W ′

N2
(γ1, γ2). Hence the second branch decreases w by at least

W2(γ1, γ2) = 2w3 + γ1w4 + (2− γ1)w3 +W ′
N2

(γ1, γ2)

= (4 + 2γ1 + γ2)w4 + (2− 2γ1 − 2γ2)w3.

We get recurrences:

C(w) ≤ C(w −W1(γ1, γ2)) + C(w −W2(γ1, γ2)), (10)

where γ1 ∈ {0, 1, 2} and γ2 ∈ {1, 2}.
Case 3.2. Vertex a is in a triangle: Note that now v-a-{t, t′} is also a 3-funnel. After removing

N [Sa] ⊇ N [a], by the above analysis (1-i) and (1-ii) of the branch where N [v] is removed, we know
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that w will decrease by at least

W ′
2(γ1, γ2) = W1(γ2, γ1) = (2 + γ1 + γ2)w4 + (5− γ1 − 2γ2)w3.

However, when γ1 = 0 this is not good enough for our analysis. In fact, for this case vertex a
has at least two satellites and we can show that the measure decreases more. Assume that γ1 = 0
(i.e., d(t) = d(t′) = 3). Let s and s′ be the third neighbor of t and t′, respectively. Note that s
and s′ are not adjacent otherwise a would be a roof. There are at least four edges between {s, s′}
and N({s, s′}) − {t, t′}. It is impossible to have N({s, s′}) − {t, t′} = {b, c} otherwise the graph
would contain only 8 vertices. Let x ∈ N({s, s′}) be a vertex different from t, t′, b and c. If one
of b and c (say b) is in N({s, s′}), then after removing N [Sa], the degree of c will decrease by
at least 2. In this case, removing N [Sa] decreases the weight of vertices in {v, a, t, t′, s, s′, x, b, c}
by at least 7w3 + γ2w4 + (2 − γ2)w3 = γ2w4 + (9 − γ2)w3. If none of b and c is in N({s, s′}),
then N({s, s′}) − {t, t′} contains at least two vertices x and x′ different from t, t′, b and c, and
removing N [Sa] decreases the weight of vertices in {v, a, t, t′, s, s′, x, x′} by at least 8w3 and that
in {b, c} by γ2(w4 − w3) + (2− γ2)w3; in total w decreases by at least γ2w4 + (10− 2γ2)w3 (where
γ2w4 + (10 − 2γ2)w3 ≤ γ2w4 + (9 − γ2)w3 by γ2 ≥ 1). Hence the second branch decreases w by at
least γ2w4 + (10− 2γ2)w3.

For Case 3.2, we get recurrences:

C(w) ≤ C(w −W1(γ1, γ2)) + C(w −W ′
2(γ1, γ2)), (11)

where γ1 ∈ {1, 2} and γ2 ∈ {1, 2}, and

C(w) ≤ C(w −W1(0, γ2)) + C(w − γ2w4 − (10− 2γ2)w3), (12)

where γ2 ∈ {1, 2}.
Note that after Step 6, the graph has no triangle that contains both degree-3 and degree-4

vertices.

6.4 Step 7

In this step, we will branch on 4-cycles that contain at least one degree-4 vertex. Without loss of
generality, we assume that the algorithm will branch on 4-cycle abcd, where a is a degree-4 vertex.
Note that if there is a degree-3 vertex in the cycle, a and c (b and d) are not adjacent, otherwise
there would be an irregular triangle. According to the branching rule, our algorithm will branch by
removing either {a, c} or {b, d} from the graph. We distinguish the following five cases.

Case 1. The other vertices than a in the 4-cycle are of degree 3: We assume that a′ and a′′

are the third and fourth neighbors of a, b′ is the third neighbor of b, c′ is the third neighbor of c,
and d′ is the third neighbor of d (see Fig. 3(a) for an illustration). Note that b′ ̸= d′, otherwise
{b, d}-{a, c, b′ = d′} would be a 2-3 structure. Also {a′, a′′, c′} ∩ {b′, d′} = ∅, otherwise there would
be an irregular triangle or a roof.

In the branch where {a, c} is removed, b and d will become degree-1 vertices. The algorithm will
apply the reduction rules to reduce degree-1 vertices immediately. Then b′ and d′ will be removed.
Totally, at least 6 vertices a, b, c, d, b′ and d′ are removed from the graph. There are also at least
5 edges between V ′ = {a, b, c, d, b′, d′} and V − V ′ (there may not be 7 edges when b′ and d′ are
adjacent). We consider how much weight of vertices in V − V ′ decreases after removing V ′. If
|N(V ′)| ≥ 3, then the weight in V − V ′ decreases by at least w3 + 2(w4 − w3) = 2w4 − w3. If
|N(V ′)| = 2, then after removing V ′ the weight in V − V ′ decreases either by w4 + (w4 − w3)
(at least one vertex in N(V ′) is a degree-4 vertex) or by at least 2w3 (both vertices in N(V ′) are
degree-3 vertices) together with some degree-1 vertex created. For the latter case, we can further
decrease w by at least w4 − w3 by removing dominated vertices adjacent to degree-1 vertices, and
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Figure 3: Branching on 4-cycles

thereby the weight in V − V ′ decreases by at least 2w3 + (w4 − w3) = w4 + w3. For any case, the
weight in V − V ′ by at least 2w4 − w3 after removing V ′ (recall that w3 ≥ w4 − w3). Then in the
branch of removing {a, c} the measure w decreases by at least

w4 + 5w3 + 2w4 − w3 = 3w4 + 4w3.

In the other branch where {b, d} is removed, c will become a degree-1 vertex and we will further
remove c′ from the graph. Thus the branch will remove N [c]. Let us see how much weight in
V − N [c] will decrease by removing N [c]. There are at least 6 edges between N [c] and V − N [c].
Note that |N2(c)| ≥ 3 since {a, d, d′} ⊆ N2(c). Note that no pair of neighbors of c are adjacent.
If |N2(c)| = 3, then N(c)-N2(c) ∪ {c} would be a 3-4 structure. We know that |N2(c)| ≥ 4. No
degree-0 vertex u is created after removing N [c] otherwise {c, u}-N(c) would be a 2-3 structure. If
|N2(c)| ≥ 5, then the measure w decreases by at least w4 + 4(w4 − w3) (w4 from a and 4(w4 − w3)
from the other 4 vertices in N2(c)). Now let |N2(c)| = 4. If no degree-1 vertex is created after
removing N [c], then the weight in N2(c) still decreases by at least w4 + 4(w4 − w3). If a degree-1
vertex u is created, then the weight in N2(c) may only decrease by w4+2(w4−w3)+w3. Note that
u is the unique degree-1 vertex in the graph, and we can further decrease w by at least (w4 − w3)
by removing the dominated vertices adjacent to degree-1 vertices. Then for any case, the weight
in V − N [c] decreases by at least w4 + 4(w4 − w3). Totally, in the branch of removing {b, d} the
measure w decreases by at least

4w3 + w4 + 4(w4 − w3) = 5w4.

In Case 1, we can always branch with the following recurrence

C(w) ≤ C(w − (3w4 + 4w3)) + C(w − 5w4). (13)

Case 2. a and c are the two degree-4 vertices in the 4-cycle: Let b′ and d′ be the third neighbor
of b and d, respectively. Note that b′ ̸= d′ holds, otherwise {b, d}-{a, c, b′ = d′} would be a 2-3
structure. Also b′ (d′) is not adjacent to a or c, otherwise there would be an irregular triangle. See
Fig. 3(b) for an illustration of this case. Let 0 ≤ k ≤ 2 be the number of vertices of degree 4 in
{b′, d′}.

It is easy to see that in the branch where {b, d} is removed, the weight of b and d decreases by
2w3, that of a and c by 2w4, and that of b′ and d′ by at least k(w4 − w3) + (2 − k)w3; totally the
measure w decreases by 2w3 + 2w4 + k(w4 − w3) + (2− k)w3 = (2 + k)w4 + (4− 2k)w3.

In the other branch where {a, c} is removed, b and d become degree-1 vertices and we will also
further remove b′ and d′. Let V ′ = {a, b, c, d, b′, d′}. Removing V ′ decreases the sum of weights of
vertices in V ′ by (2+k)w4+(4−k)w3. We consider how much weight of vertices in V −V ′ decreases
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after removing V ′. Note that there are at least 6+k edges between V ′ and V −V ′ (b′ and d′ may be
adjacent) and |N(V ′)| ≥ 4. Then the weight in V − V ′ decreases by at least w3 + (3 + k)(w4 −w3)
for k = 0, 1 and by 2w3 + 2(w4 − w3) = 2w4 for k = 2. In Case 2, we can branch with at least one
of the following recurrences:

C(w) ≤ C(w−(2 + k)w4−(4−2k)w3) + C(w−(5 + 2k)w4−(2−2k)w3) (14)

for k ∈ {0, 1}; and

C(w) ≤ C(w − 4w4) + C(w − (6w4 + 2w3)) for k = 2. (15)

Case 3. a and b (or a and d) are the two degree-4 vertices in the 4-cycle: Assume without
loss of generality that a and b are the degree-4 vertices in the cycle. Define a′, a′′, b′, c′ and d′

as in Case 1, and let b′′ be the fourth neighbor of b (see Fig. 3(c) for an illustration). Since the
graph has no irregular triangle, vertex c′ (d′) is different from any of b′ and b′′ (a′ and a′′) whereas
d′ ∈ {b′, b′′} and {a′, a′′} ∩ {b′, b′′, c′} ≠ ∅. Also c′ ̸= d′, otherwise 5-cycle c′cabd would contain a
roof c′. We look at the branch where {a, c} is removed. Vertex d will become a degree-1 vertex and
we will further remove the dominated vertex d′ and the degree-0 vertex d. Then in this branch we
will remove N [d]. We consider how much weight of vertices in V − N [d] decreases after removing
N [d]. Note that no pair of vertices in N(d) can be adjacent, otherwise there would be an irregular
triangle or a roof. There are at least 7 edges between N(d) and N2(d). It is impossible to create
a degree-0 vertex v after removing N [d], otherwise {d, v}-{a, c, d′} would be a 2-3 stricture. Since
a′, a′′, b ∈ N2(d), it holds |N2(d)| ≥ 3. If |N2(d)| ≥ 4, then the weight in N2(d) decreases by at least
w4 + w3 + 2(w4 − w3) (w4 from b and w3 + 2(w4 − w3) from the other vertices in N2(d)). For the
other case of |N2(d)| = 3, there are at least two degree-4 vertices in N2(d) (because no degree-0
vertex is created after removing N [d]), and the weight in N2(d) decreases by at least w4 +w4 +w3

(w4 from b and w4 + w3 from the other vertices in N2(d)); the weight in V − N [d] still decreases
by at least w4 + w3 + 2(w4 − w3) = 3w4 − w3. Therefore, the branch of removing {a, c} decreases
the measure w by at least w4 + 3w3 + 3w4 − w3 = 4w4 + 2w3. This also holds for the other branch
where {b, d} is removed. In Case 3, we can branch with recurrence

C(w) ≤ 2C(w − (4w4 + 2w3)). (16)

Case 4. There are exactly three degree-4 vertices in the 4-cycle: Without loss of generality, we
assume that the three degree-4 vertices are a, b and c. Note that the third neighbor d′ of d is not
adjacent to a or c. In the branch where {a, c} is removed, vertex d becomes a degree-1 vertex and
we will further remove {d′}. This decreases the weight of vertices in {a, b, c} by 3w4, that in {d, d′}
by at least 2w3, and that in V − {a, b, c, d, d′} by at least 3w3 (note that there are at least 6 edges
between {a, c, d, d′} and V − {a, b, c, d, d′} and no degree-0 vertices will be created after removing
N [d]). Totally the measure w decreases by at least 3w4 + 5w3.

In the other branch, the measure w decreases by at least 3w4+w3+w3+(w4−w3) = 4w4+w3.
In Case 4, we get recurrence

C(w) ≤ C(w − (3w4 + 5w3)) + C(w − (4w4 + w3)). (17)

Case 5. All the vertices in the 4-cycle are degree-4 vertices: Note that for this case, a and c
(also, b and d) may be adjacent to each other. Since no 4-funnels in a reduced graph, the vertices
abcd do not induce a clique of size 4. Assume without loss of generality a and c are not adjacent.
The branch of removing {b, d} decreases the weight of vertices in {a, b, c, d} by 4w4 and that in
V − {a, b, c, d} by at least 2(w4 −w3). The other branch of removing {a, c} decreases the weight of
vertices a, b, c and d by at least 4w4 and that in V − {a, b, c, d} by at least 2w3. In Case 5 we get
recurrence

C(w) ≤ C(w − (6w4 − 2w3)) + C(w − 6w4). (18)

Note that after Step 7, no degree-4 vertex is contained in a 4-cycle.
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6.5 Step 8

First of all, we show that there is always a good degree-4 vertex adjacent to another degree-4 vertex
if the graph has two adjacent degree-4 vertices in this step. Note that if all vertices in a connected
component are degree-4 vertices none of which is a good degree-4 vertex, then this component is
the line graph of a 3-regular graph, which must have been reduced in Step 4. Otherwise, there
is a degree-4 vertex v adjacent to both degree-3 and degree-4 vertices. If v is contained in two
edge-disjoint triangles, then there is an irregular triangle, which will form a short funnel or a funnel
satisfying the condition in Step 6. Then v is a good degree-4 vertex. Note that there is at least one
degree-4 vertex in N(v).

Note that when we remove v, a degree-3 neighbor u ∈ N(v) becomes a degree-2 vertex, which
will be removed by a reduction rule (folding or domination) and decreases the weight w by at least
β by Lemma 10. Since v is not in any 4-cycle and no degree-3 neighbor is adjacent to another
neighbor of v, each vertex in N2(v) is adjacent to exactly one neighbor of v, and if v has l degree-3
neighbors then after deleting N [v], the weight of the vertices can decrease by at least lβ by folding
these degree-2 vertices.

Let v be the good degree-4 vertex selected in this step. We will branch by either deleting v from
the graph or deleting N [v] from the graph. We distinguish the following five cases according to the
number of degree-4 vertices in N(v).

Case 1: There is only one degree-4 vertex in N(v). Then |N2(v)| = 9, otherwise there would be
a 4-cycle containing a degree-4 vertex or a triangle containing both degree-3 and degree-4 vertices.
The possible local structure in this case is showed in Fig. 4. In the branch where v is removed, the
measure w decreases by w4 + 3w3 + (w4 − w3) + 3β = 2w4 + 2w3 + 3β. In the other branch where
N [v] is removed, the measure w decreases by at least 2w4 + 3w3 + 9(w4 − w3) = 11w4 − 6w3. We
get recurrence

C(w) ≤ C(w − (2w4 + 2w3 + 3β)) + C(w − (11w4 − 6w3)). (19)

Figure 4: Some cases of branching on a degree-4 vertex

Case 2: There are two degree-4 vertices in N(v). We have two subcases: the two degree-4
vertices are adjacent or not. It is easy to see that the case of adjacent will cover the other case. We
assume that the two degree-4 vertices are adjacent to each other (see Fig. 4). Then |N2(v)| = 8.
When v is removed, the measure w decreases by w4 + 2w3 + 2(w4 − w3) + 2β = 3w4 + 2β. When
N [v] is removed, the measure w decreases by at least 3w4 + 2w3 + 8(w4 − w3) = 11w4 − 6w3. We
get recurrence

C(w) ≤ C(w − (3w4 + 2β)) + C(w − (11w4 − 6w3)). (20)

Case 3: There are three degree-4 vertices in N(v). There is also at most one edge with two
endpoints in N(v). Then |N2(v)| ≥ 9. When v is removed, the measure w decreases by w4 + w3 +
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3(w4 − w3) + β = 4w4 − 2w3 + β. When N [v] is removed, the measure w decreases by at least
4w4 + w3 + 9(w4 − w3) = 13w4 − 8w3. We get recurrence

C(w) ≤ C(w − (4w4 − 2w3 + β)) + C(w − (13w4 − 8w3)). (21)

Case 4: All vertices in N(v) are degree-4 vertices. Since v is a good degree-4 vertex that is not
contained in any 4-cycles. There is also at most one edge with two endpoints inN(v) (see Fig. 4). For
this case, |N2(v)| ≥ 10. When v is removed, the measure w decreases by w4+4(w4−w3) = 5w4−4w3.
When N [v] is removed, the measure w decreases by at least 5w4 +10(w4 −w3) = 15w4 − 10w3. We
get recurrence

C(w) ≤ C(w − (5w4 − 4w3)) + C(w − (15w4 − 10w3)). (22)

6.6 Step 9

In this step, the set of degree-4 vertices is an independent set. Let v be a degree-4 vertex selected
in this step. Then the neighbors of v are four degree-3 vertices. We show that there is at least
one degree-3 vertex in N2(v). Assume to the contrary that for each vertex v′, N2(v

′) contains only
degree-4 vertices. Then the graph is a bipartite graph with one side of degree-3 vertices and the
other degree-4 vertices, which must have been reduced by our reduction rules. Now we branch on
v. In the branching where v is removed, the measure w decreases by w4 + 4w3 + 4β. Note that
|N2(v)| = 8 (v is not contained in any 3-cycle or 4-cycle). Then the other branching of removing
N [v] decreases the weight of vertices in N2(v) by at least 7(w4 −w3) +w3 = 7w4 − 6w3 and that in
N [v] by w4 + 4w3; totally the measure w decreases by at least 8w4 − 2w3. We get recurrence

C(w) ≤ C(w − (w4 + 4w3 + 4β)) + C(w − (8w4 − 2w3)). (23)

6.7 Step 10

It is easy to see that if none of the first 9 steps can be executed, the graph is a 3-regular graph. We
will use a fast algorithm for MIS3 to solve it. Here we use the O∗(1.0836n)-time algorithm by Xiao
and Nagamochi [20], and then this step will not be the bottleneck of our algorithm. For this step,
we get running time bound

C(w) = O(1.0836
w
w3 ), (24)

which will generate the last constraint in our quasiconvex program.

6.8 Putting All Together

Recurrences (6) to (24) generate the constraints in our quasiconvex program. By solving this
quasiconvex program under conditions (1), (2), and (4) according to the method introduced in [6],
we get a running time bound of O(1.14459w) by setting w3 = 0.59933, w4 = 1, w5 = 1.40066,
w6 = 1.80132, and β = 0.19867 for our problem. Now the bottlenecks are (1) with w4 ≤ 1,
β ≤ w3 + w3 − w4, β ≤ w4 + w3 − w5, (20), and (22).

Theorem 11 A maximum independent set in a degree-4 graph of n vertices can be found in
O∗(1.1446n) time.
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7 Concluding Remarks

In this paper, we have designed a fast algorithm for the maximum independent set problem in graphs
with degree bounded by 4, which is analyzed by the “Measure and Conquer” method. Different
from most previous “Measure and Conquer” algorithms, our algorithm allows the weight of vertices
greater than 1 and we carefully choose the weight of such vertices so that the measure w effectively
decreases by the reduction rule for degree-2 vertices after branching on degree-4 vertices. In this
paper, we have clearly listed out all constraints in our quasiconvex program and pointed out the
bottlenecks of the algorithm.
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