
Linear Layouts in Submodular Systems

Hiroshi Nagamochi

Department of Applied Mathematics and
Physics, Graduate School of Informatics,

Kyoto University, Japan,
nag@amp.i.kyoto-u.ac.jp

Abstract

Linear layout of graphs/digraphs is one of the classical and important optimization problems
that have many practical applications. Recently Tamaki proposed an O(mnk+1)-time and O(nk)-
space algorithm for testing whether the pathwidth (or vertex separation) of a given digraph with
n vertices and m edges is at most k. In this paper, we show that linear layout of digraphs
with an objective function such as cutwidth, minimum linear arrangement, vertex separation (or
pathwidth) and sum cut can be formulated as a linear layout problem on a submodular system
(V, f) and then propose a simple framework of search tree algorithms for finding a linear layout
(a sequence of V) with a bounded width that minimizes a given cost function. According to our
framework, we obtain an O(kmn2k)-time and O(n+m)-space algorithm for testing whether the
pathwidth of a given digraph is at most k.

Key words. Linear Layout, Submodular Functions, Optimization, Pathwidth, Cutwidth,
Search Tree Algorithm

1 Introduction

Let G = (V,E) stand for an undirected or directed graph with a set V of n vertices and a set E of
m edges. Linear layout of graphs is a problem of finding a linear arrangement (a sequence of V)
σ = (v1, . . . , vn) of the vertex set V of G so that a prescribed cost function cost(σ) is minimized.
The problem is one of the classical and important optimization problems that have many practical
applications (e.g., see [4]). From practical point of views, there have been introduced several different
choices of cost functions, among which the following ones can be described by vertex/edge-cut
functions of digraphs (where we regard an undirected graph as a symmetric digraphi i.e., treat each
undirected edge uv as two oppositely directed edges (u, v) and (v, u)):

• Cutwidth: costCW(σ) = max{d+G({v1, . . . , vi}) | 1 ≤ i ≤ n − 1}, where d+G(X) denotes the
number of directed edges with a tail in X and a head in V −X;

• Minimum Linear Arrangement: costMLA(σ) =
∑

{d+G({v1, . . . , vi}) | 1 ≤ i ≤ n− 1};

• Vertex Separation (or Pathwidth): costVS(σ) = max{Γ+
G({v1, . . . , vi}) | 1 ≤ i ≤ n− 1},

where Γ+
G(X) denotes the number of out-neighbors of a subset X (the vertices v ∈ X that

have directed edges from v to a vertex in V −X); and

• Sum Cut: costSC(σ) =
∑

{Γ+
G({v1, . . . , vi}) | 1 ≤ i ≤ n− 1}.

In these functions, directed edges with the backward direction in a sequence σ are ignored. The
cutwitdh (resp., vertex veparation) of G is defined to be the minimum of costCW(σ) (resp., costVS(σ))
over all sequences σ of V . The vertex separation of a digraph G is equal to the “pathwidth” of G
(e.g., [11]), which is a width of a path-decomposition of G.

1Technical report 2012-004, June 13, 2012.

1

Bodlaender et al. [3] showed that a class of linear layout problems including the above four can
be solved (i) in O∗(2n) time and O∗(2n) space by a dynamic programming; and (ii) in O∗(4n) time
and polynomial space by a search tree algorithm (where the O∗-notation suppresses factors that are
polynomial in n).

When a problem is parameterized by value k of its cost function, it is known that Cutwidth
and Vertex Separation admit faster exact algorithms. We let Cutwidth(k) (resp., Vertex
Separation(k)) stand for the problem of testing whether a given graph/digraph G has a sequence
σ of V such that costCW(σ) ≤ k (resp., costVS(σ) ≤ k) or not. Gurari and Sudborough [8]
presented an O(nk)-time and exponential-space dynamic programming algorithm for Cutwidth(k)
in undirected graphs, and Makedon and Sudborough [12] later improved the time bound to O(nk−1).
For Cutwidth(k) in undirected graphs with a fixed k, Fellows and Langston [6] obtained an O(n2)-
time algorithm, and the time bound is improved to linear by Abrahamson and Fellows [1] and
Thilikos et al. [19]. For Vertex Separation(k) in undirected graphs with a fixed k, Fellows
and Langston [6] designed an O(n3)-time algorithm, and afterwards Bodlaender [2] gave a linear
time algorithm. For undirected graphs, it is known that the graph minor theorem by Robertson
and Seymour [16] implies polynomial-time algorithms for problems Cutwidth(k) and Vertex
Separation(k) with fixed k and that the theorem, however, cannot be applied to the directed case
(e.g., see [18, 19])

Recently Tamaki [18] proposed anO(mnk+1)-time andO(nk)-space algorithm for testing whether
the pathwidth (or vertex separation) of a given digraph with n vertices and m edges is at most k.
Although it remains open whether Vertex Separation(k) in digraphs is fixed-parameter tractable
or not, it is the first nontrivial step toward design of efficient exact algorithms for computing graph
parameters of digraphs. His algorithm is a search tree algorithm equipped with a pruning pro-
cedure that tries to discard one of two partial sequences with the same length by a dominance
relationship. It is proven that the number of all partial sequences with the same length during an
execution is always O(nk), which ensures the claimed time and space complexities of the algorithm.
More interestingly, although the submodularity of function Γ+

G is used to derive the upper bound
O(nk), the mechanism of the algorithm is self-contained in the sense that it never relies on any
other optimization mechanism such as submodular minimization and dynamic programming to at-
tain the nontrivial upper bound. In fact, recently Nagamochi [13] proved that the new mechanism
can be conversely used to solve the submodular minimization problem, the most representative
optimization problem.

From these observations, it would be natural to find a way of applying submodular minimization
to the pathwidth problem in digraphs. Our research group has implemented Tamaki’s algorithm to
investigate the distribution of pathwidth of chemical graphs, and it turned out that the O(nk)-space
algorithm easily uses up the memory allowed for graphs with over 100 vertices [9]. This is another
motivation for us to develop a more space-efficient algorithm for the problem.

In this paper, we show that linear layout of digraphs with an objective function such as cutwidth,
minimum linear arrangement, vertex separation (or pathwidth) and sum cut can be formulated as a
linear layout problem on a submodular system (V, f) and then propose a simple framework of search
tree algorithms for finding a linear layout (a sequence of V) with a bounded width that minimizes a
given cost function. Also our framework can handle precedent relations such that a certain element
u is required to precede some other element v in an output sequence.

The paper is organized as follows. Section 2 reviews basic results on submodular functions and
introduces a layout problem in submodular systems. Section 3 presents a key property on sequences
in submodular systems, based on which a search tree algorithm is designed. Section 4 analyzes the
time complexity of the algorithm applied to the problem of testing whether the cutwidth/pathwidth
of a given digraph is at most k. Finally Section 5 makes concluding remarks.

2

2 Preliminaries

Submodular Systems Let V denote a given finite set with n ≥ 1 elements. A set function f on
V is called submodular if f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) for every pair of subsets X,Y ⊆ V .
There are numerous examples of submodular set functions such as cut function of digraphs and
hypergraphs, matroid rank function, and entropy function. The problem of finding a subset X that
minimizes f(X) over a submodular set function f is one of the most fundamental and important
issues in optimization. Grotschel, Lovasz, and Schrijver gave the first polynomial time [7] algorithm
for minimizing a submodular set function [7]. Schrijver [17] and Iwata, Fleischer, and Fujishige [10]
independently developed strongly polynomial time combinatorial algorithms for the submodular
minimization. Currently an O(n6 + n5θ)-time minimization algorithm is obtained by Orlin [14],
where n = |V | and θ is the time to evaluate f(X) of a specified subset X.

For two disjoint subsets S, T ⊆ V , an (S, T)-separator is defined to be a subset X such that
S ⊆ X ⊆ V − T , and let fmin(S, T) denote the minimum f(X) of an (S, T)-separator X, where
such a set X is called a minimum (S, T)-separator. We denote (S, T) with S = {s} and T = {t} by
(s, t).

We here remark that the problem of finding a subset X with minimum f(X) in a submodular
system (V, f) is essentially equivalent to that of finding a minimum (S, T)-separator in a submodular
system. The problem of finding a subset X with minimum f(X) in a submodular system (V, f)
is essentially equivalent to that of finding a minimum (S, T)-separator in a submodular system in
the following sense. A given submodular system (V, f) can be extended to a submodular system
(V ′ = V ∪ {s, t}, g) by defining g(X) = f(X −{s, t}) for each subset X ⊆ V ∪ {s, t}. Note that g is
submodular, since for every two sets X,Y ⊆ V ∪{s, t}, g(X)+g(Y) = f(X−{s, t})+f(Y −{s, t}) ≥
f((X − {s, t}) ∩ (Y − {s, t})) + f((X − {s, t}) ∪ (Y − {s, t})) = g(X ∩ Y) + g(X ∪ Y). Hence a
minimum (s, t)-separator X in (V ′, g) gives a subset X − {s, t} ⊆ V with minimum f(X). Now we
show the converse. To find a minimum (S, T)-separator in a given submodular system (V, f) and
S, T ⊆ V , we consider a submodular system (V ′ = V − S− T, g) by defining g(X) = f(X ∪ S) for
each subset X ⊆ V − S− T . Note that g is submodular, since for every two sets X,Y ⊆ V − S− T ,
g(X)+g(Y) = f(X∪S)+f(Y ∪S) ≥ f((X∪S)∩(Y ∪S))+f((X∪S)∪(Y ∪S)) = g(X∩Y)+g(X∪Y).
Hence a subset X ⊆ V ′ with minimum g(X) gives a minimum (S, T)-separator X ∪ S in (V, f).

Sequences For two integers i ≤ j, the set of all integers h with i ≤ h ≤ j is denoted by [i, j]. A
sequence σ consisting of some elements in a finite set V is called non-duplicating if each element of
V occurs at most once in σ. We denote by Σi the set of all non-duplicating sequences of exactly i
elements in V , where Σ0 contains only the null sequence (the sequence of length zero). We denote
∪0≤i≤nΣi by Σ. Let σ ∈ Σ be a sequence. We denote by V (σ) the set of elements constituting σ and
by |σ| = |V (σ)| the length of σ. Let σ(i) denote the ith element in a sequence σ, and Let σi be the
sequence that consists of the first i elements of σ, i.e., σi = (σ(1), σ(2), . . . , σ(i)). Given two disjoint
subsets S, T ⊆ V , a sequence σ is called an (S, T)-sequence if V (σ|S|) = S and V − V (σ|V−T |) = T .

We let X denote V −X.
For two sequences α, β ∈ Σ such that V (α)∩V (β) = ∅, we denote by αβ the sequence σ ∈ Σ|α|+|β|

obtained by appending β to α so that σ(i) = α(i) for i ≤ |α| and σ(i) = β(i− |α|) otherwise.
For a subset X ⊆ V , let σ[X] denote the sequence σ′ ∈ Σ|V (σ)∩X| such that V (σ′) = V (σ) ∩X

and for every two elements u, v ∈ V (σ′), u precedes v in σ′ if and only if u precedes v in σ.

Linear Layouts We consider a cost function cost on sequences σ ∈ Σ. A cost function cost is
called non-decreasing if cost(σ) is determined only by {f(σ1), f(σ2), . . . , f(σℓ−1)} (ℓ = |σ|) and
cost(σ) does not decrease when f(σi) for some i increases, where we regard {f(σ1), . . . , f(σℓ−1)}
as a multiset consisting of exactly ℓ numbers. For example, the following three functions are all
non-decreasing:

fmin(σ) = min{f(σi) | 1 ≤ i ≤ ℓ− 1},

3

fmax(σ) = max{f(σi) | 1 ≤ i ≤ ℓ− 1},

fsum(σ) =
∑

{f(σi) | 1 ≤ i ≤ ℓ− 1}.

We call fmax(σ) the f-width of σ.
For a subset X of a digraph G = (V,E), let Γ−

G(X) denote the number of in-neighbors of a
subset X (the vertices v ∈ V − X that have directed edges from v to a vertex in X), and let
d−G(X) = d+G(V −X). Observe that costCW = fmax and costMLA = fsum for the edge-cut function
f = d+G, and costVS = fmax and costSC = fsum for the vertex-cut function f = Γ+

G.
We are ready formulate a general form of the problems studied in this paper:

Linear Layouts in Submodular Systems Given a nonnegative submodular system
(V, f) with f(∅) = f(V) = 0 (n = |V |), a positive real k > 0 and a non-decreasing cost
function cost, find a sequence σ ∈ Σn with f -width at most k that minimizes cost(σ)
among all sequences with f -width at most k.

Note that there is a chance that a sequence τ ∈ Σn with f -width greater than k attains cost(τ)
smaller than the minimum cost(σ) of the above problem when cost is not given by fmax. However our
main result (Theorem 1) still suggests that for the problem of minimizing costMLA or costSC, fmax

is a useful measure to parameterize these problems, since values of these cost functions in strongly
connected digraphs are not less than n are inadequate to measure the computational tractability.

Precedent Constraint In some application of arrangement of elements such as scheduling prob-
lems (e.g., see section 11.2 in [4]), an output sequence is required to meet a precedent relation among
elements such that an element u precedes another element v, denoted by u ≺ v. The set of such
ordered pairs (u, v) can be given by a poset P on V , where P is represented by a set of directed
edges (u, v) such that u ≺ v and there is no element w with u ≺ w and w ≺ v (in general P is
not necessarily equal to a given digraph G itself). We can naturally include the side constraint as
a penalty function into a given submodular system (V, f). Define the DAG (V, P), and let p be the
submodular function on V by defining p(X) = (k + 1)d−P (X) for each subset X ⊆ V , where d−P (X)
denotes the the number of directed edges of (V, P) with a tail in V −X and a head in X. Clearly
(V, f ′ = f + g) remains a submodular system, and any sequence σ of V with f ′max(σ) ≤ k satisfies
fmax(σi) = f ′max(σi) ≤ k for i = 1, 2, . . . , n− 1, which indicates that there is no edge (u, v) ∈ P such
that i > j for σ(i) = u and σ(j) = v, i.e., the given precedent constraint is met.

Main Result In this paper, we prove the next.

Theorem 1 Given a submodular system (V, f), a real k, and a non-decreasing function cost, a
minimum cost sequence σ with f -width at most k (if any) can be obtained by solving submodular
minimization O(n2∆(k)+2) times using O(|V |) work space except for storage of f , where ∆(k) denotes
the number of distinct values in {f(X) ≤ k | ∅ (X (V }.

In particular, when f is integer-valued and k is a positive integer, it holds ∆(k) ≤ k −
min∅(X(V f(X).

3 Algorithm

This section proves Theorem 1 by presenting a search tree algorithm that solves the problem. All
we need to design our new algorithm is the following observation.

Lemma 2 For a submodular system (V, f), let τ be an (S, T)-sequence τ ∈ Σn of V . For a minimum
(S, T)-separator A in (V, f), let σ = τ [A]τ [A] ∈ Σn, and ψ be a bijection on [|S| + 1, n − |T |] such
that ψ(i) is the index j such that σ(i) = τ(j). Then

f(σi) ≤ f(τψ(i)) for all i ∈ [|S|+ 1, n− |T |]. (1)

4

Pproof. Fix i ∈ [|S| + 1, n − |T |], and let j = ψ(i). Since V (τj) ∪ A and V (τj) ∩ A are (S, T)-
separators, we have f(A) = fmin(S, T) ≤ min{f(V (τj) ∪ A), f(V (τj) ∩ A)}. Hence by the sub-
modularity of f , it holds f(A) + f(τj) ≥ f(V (τj) ∩ A) + f(V (τj) ∪ A), from which we have
f(τj) ≥ max{f(V (τj) ∩A), f(V (τj) ∩A)}.

We first consider the case where |S| + 1 ≤ i ≤ |A|. In this case it holds V (σi) = V (τj) ∩ A
and we have f(σi) = f(V (τj) ∩ A) ≤ f(τj). On the other hand (|A| + 1 ≤ i ≤ n − |T |), it holds
V (σi) = V (τj) ∪A and we have f(σi) = f(V (τj) ∪A) ≤ f(τj).

Note that (1) implies that cost(σ[V − S− T]) ≤ cost(τ [V − S− T]) for any non-decreasing cost
function cost.

Fix a nonnegative submodular system (V, f) with f(∅) = f(V) = 0 and a real number k, an
instance of our problem is specified by an ordered pair (S, T) of disjoint subsets S, T ⊆ V , to which
we wish to find an (S, T)-sequence σ such that the f -width of the subsequence σ[V − S− T] is at
most k and cost(σ[V − S− T]) is minimized among all such sequences σ. Such an (S, T)-sequence
σ is called a solution to the instance (S, T).

To find a solution to a given instance (S, T) by a search tree algorithm, we introduce branch
operations based on Lemma 2.

For every two elements s, t ∈ V in a given submodular system (V, f), we first genetare an instance
(S = {s}, T = {t}). There are at most n2 such instances. Let f∗ = min{f(X) | ∅ (X (V }.

An instance (S, T) with |V−S−T | ≤ 1 is trivial since it has a uniqe solution (if any). Let |V−S−
T | ≥ 2 Compute fmin(S, T) invoking submodular minimization on f . Assume that fmin(S, T) ≤ k,
since otherwise there is no (S, T)-sequence σ such that the f -width of σ[V − S− T] is at most k.

Case 1. fmin(S, T) = k: In this case, we can reduce (S, T) into trivial one. Choose an arbitrary
element u ∈ V − S− T such that f(S ∪ {u}) = k (if no such element u ∈ V − S− T exits then
the instance (S, T) has no solution either). By Lemma 2, a solution to (S, T) can be obtained by
combining solutions to (S, T ′ = V−S−{u}) and (S′ = S∪{u}, T). Since (S, T ′ = V−S−{u}) has a
unique solution, this reduces the current instance (S, T) to (S′ = S ∪{u}, T), where fmin(S

′, T) = k
still holds. Hence we can apply the above procedure until the intance becomes trivial (or we find
out infeasibility of (S, T)).
Case 2. fmin(S, T) < k: We furhter test whether there is a minimum (S, T)-separator A with
S (A (V −T (this can be done by computing fmin(S ∪{u}, T ∪{v}) for all pairs u, v ∈ V−S−T ,
thus O(|V − S− T |2) times of submodular minimization).

Case 2a. A minimum (S, T)-separator A with S (A (V − T exists: We split the current
instance into two instances (S, T ′ = V −A) and (S′ = A, T). By Lemma 2, a solution to (S, T) can
be obtained by combining solutions to (S, T ′ = V −A) and (S′ = A, T).

Case 2b. No minimum (S, T)-separator A with S (A (V − T exists; i.e., only S or V − T is a
minimum (S, T)-separator:

(i) Exactly one of S and V −T , say S is a minimum (S, T)-separator: We branch into |V−S−T |
instances Iu = (Su = S ∪ {u}, T), u ∈ V − S− T , and select an (S, T)-sequence with minimum cost
among solutions to Iu, u ∈ V − S− T as a solution to (S, T). Note that fmin(Su, T) > fmin(S, T).

(ii) Both of S and V −T are minimum (S, T)-separators: We branch into |V−S−T |(|V−S−T |−1)
instances Iuv = (Su = S ∪ {u}, Tv = T ∪ {v}), u, v ∈ V − S− T , and select an (S, T)-sequence
with minimum cost among solutions to Iuv, u, v ∈ V − S− T as a solution to (S, T). Note that
fmin(Su, Tv) > fmin(S, T).

The above branching rules give our search tree algorithm. See Appendix A for an entire descrip-
tion of the algorithm.

We now analyze the time and space complexities of our algorithm.
For each instance (S, T), we solve submodular minimization O(|V−S−T |2) times to generate a

set of instances in Case 2. Let ∆(a, b) denote the number of distinct values in {f(X) | a ≤ f(X) <
b, X ⊆ V }. It is not difficult to see that the number of instances in the search tree rooted at an

5

instance (S, T) is at most |V − S− T |2∆(fmin(S,T),k) since the number of branches is |V − S− T | and
the depth of the rooted tree is ∆(fmin(S, T), k). Hence we have the next.

Lemma 3 From an instance (S, T), at most |V−S−T |2∆(fmin(S,T),k) instances that invoke submod-
ular minimization will be generated.

Proof. From an instance (S, T), at most |V−S−T |2∆(fmin(S,T),k) instances that invoke submodular
minimization will be generated.

In Case 1, the current instance (S, T) will be reduced to a trivial instance without branching.
Thus an instance (S, T) with fmin(S, T) = k can be solved without generating an instance that
invokes submodular minimization. Hence the claim holds since ∆(fmin(S, T), k) = 0.

In Case 2a, the current instance (S, T) is split into two instances. It holds 1 + |V − A −
T |2∆(fmin(S,T

′),k) + |A− S|2∆(fmin(S
′,T),k) ≤ |V − S− T |2∆(fmin(S,T),k).

We consider Case 2b(ii) (Case 2b(i) can be treated analogously). The current instance (S, T) is
split into |V−S−T |(|V−S−T |−1) instances (Su, Tv) (u, v ∈ V−S−T) with fmin(Su, Tv) > fmin(S, T).
Hence it holds 1+

∑
u,v∈V−S−T |V −Su−Tv|2∆(fmin(Su,T),k) ≤ |V−S−T |2·|V−S−T |2(∆(fmin(S,T),k)−1) ≤

|V − S− T |2∆(fmin(S,T),k).
From the above argument, the lemma holds.

It always holds fmin(S, T) ≥ f∗ for any generated instances (S, T). By Lemma 3, our algorithm
generates from each instance (S = {s}, T = {t}), at most n2∆(f∗,k) = n2(∆(k)−1) instances that
invokes submodular minimization, where ∆(k) = |{f(X) ≤ k | ∅ (X (V }|. Since there are at
most n2 pairs of (s, t) and each instance invokes at most n2 submodular minimization, the number
of times for solving submodular minimizations is at most n2n2∆(k)−2n2 = n2∆(k)+2. This proves
Theorem 1.

4 Digraph Case

In this section, we consider layout of a digraph G = (V,E) with cost functions costCW, costMLA,
costVS and costSC, and analyze upper bounds on the time and space complexities of our algorithm
applied to these problems using flow technique. We consider the problem of finding a minimum cost
of an (S, T)-sequence σ with f -width at most k.

4.1 Cutwidth and Minimum Linear Arrangement

We here show how to find a minimum cost layout of a digraph under a fixed cutwidth. First consider
the case where there is no precedent constraint, i.e., we set f = d+G; we assume that G is connected
and m ≥ n − 1. Let λ denote the edge-connectivity of G, i.e., λ = min∅(X(V d

+(X). In this case,
fmin(S, T) and a minimum (S, T)-separator can be obtained by computing a maximum (s′, t′)-flow
φ in a directed network G′ obtained from G by contracting S and T into single vertices s′ and
t′, where the capacity of each directed edge is 1. From a maximum (s′, t′)-flow φ, we can find a
minimum (S, T)-separator A with S (A (V − T in G in linear time (if any) by constructing
a DAG representation of all minimum (S, T)-separators in linear time [15] without newly solving
O(n2) minimization problems. Hence for each instance (S, T), we need to solve a single maximum
flow problem, which takes O(k(m+ n)) time and O(n+m) space [5], where we do not need to find
any minimum (S, T)-separator when the flow value exceeds k. Since the total number of instances to
be generated is at most n2n2∆(k)−2 ≤ n2n2(k−λ+1)−2, the entire time complexity is O(kmn2(k−λ+1)).

Theorem 4 Given a digraph G = (V,E) with n vertices and m edges and an integer k ≥ 1, whether
there is a sequence of V with pathwidth at most k can be tested in O(kmn2(k−λ+1)) time and O(n+m)
space. When such a sequence exists, a sequence σ ∈ Σn with pathwidth at most k that minimizes
costCW can be found in the same time and space complexities.

6

We next consider the case where a precedent constraint is imposed as a poset P ⊆ V × V i.e.,
we set f = d+G + (k+1)d−P (note that f -width at most k is equal to d+G-width in any sequences). In
this case, let P = {(v, u) | (u, v) ∈ P}, and augment G by adding all edges (v, u) ∈ P to obtain a
directed network, where the capacity of each directed edge in E is 1 and we treat each (v, u) ∈ P as
k+1 multiple edges with capacity 1. Hence the number m′ of edges in the augmented multigraph is
at mostm+(k+1)|P |. For a given (S, T), we can obtain fmin(S, T) and a minimum (S, T)-separator
in a similar way; we compute a maximum (s′, t′)-flow in the directed network after contracting S
and T into single vertices s′ and t′, taking O(km′n2(k−λ+1)) = O(k(m + n + k|P |)n2(k−λ+1)) time
and O(n+m+ |P |) space.

Theorem 5 Given a digraph G = (V,E) with n vertices and m edges, a poset P ⊆ V × V and an
integer k ≥ 1, whether there is a sequence of V with pathwidth at most k which meets the precedent
constraint by P can be tested in O(k(m+n+k|P |)n2(k−λ+1)) time and O(n+m+ |P |) space. When
such a sequence exists, a sequence σ ∈ Σn with pathwidth at most k that minimizes costCW under
the precedent constraint by P can be found in the same time and space complexities.

For the layout of digraphs with sum cut costCW, the same statements of Theorems 4 and 5 hold
by replacing costCW with costMLA.

4.2 Vertex Separation and Sum Cut

We here show how to find a minimum cost layout of a digraph under a fixed pathwidth (or vertex
separation). We consider the case where a precedent constraint where a precedent constraint is
imposed as a poset P ⊆ V ×V i.e., we set f = Γ+

G+(k+1)d−P (note that f -width at most k is equal
to Γ+

G-width in any sequences).
In this case, we can compute a minimum (S, T)-separator by computing a maximum flow apply-

ing the standard technique of converting vertex-cuts into edge-cuts (however min∅(X(V Γ+(X) ≤
minv∈V Γ+(V − {v}) ≤ 1 is not the vertex-connectivity of G). For this, we construct a digraph
GP = (V ′ ∪V ′′, AE ∪AV ∪AP) as follows. Let P = {(v, u) | (u, v) ∈ P}. Replace each vertex v ∈ V
with two copies v′ and v′′ with a new directed edge (v′, v′′), and let AV = {(v′, v′′) | v ∈ V }. For each
directed edge (u, v) ∈ E, we set a directed edge (u′′, v′) in GP , and let AE = {(u′′, v′) | (u, v) ∈ E}.
For each directed edge (v, u) ∈ P , we set a directed edge (v′′, u′′), and let AP = {(v′′, u′′) | (v, u) ∈
P}, where we treat each edge (v′′, u′′) in GP as k + 1 multiple edges. The number m′ of edges in
the multigraph GP is at most m + n + (k + 1)|P |. The next lemma verifies that we can obtain a
minimum (S, T)-separator A with Γ+(A) ≤ k (if any) by computing a minimum (Ŝ, T̂)-separator in
GP for Ŝ = {u′, u′′ | u ∈ S} and T̂ = {u′′ | u ∈ T}.

Lemma 6 For the vertex-cut function Γ+
G of a digraph G = (V,E), and the penalty function p =

(k + 1)d−P defined by a poset P on V , let f = Γ+
G + p be a set function on V . Let g be the edge-cut

function d+GP
of GP = (V ′ ∪ V ′′, AE ∪ AV ∪ AP) defined from (G,P, k) in the above. Given two

disjoint subsets S, T ⊆ V , let Ŝ = {u′, u′′ | u ∈ S} and T̂ = {u′′ | u ∈ T}. Then fmin(S, T) > k if
and only if gmin(Ŝ, T̂) > k; and if fmin(S, T) ≤ k, then gmin(Ŝ, T̂) = fmin(S, T).

Proof. (i) First we show that fmin(S, T) ≤ k implies fmin(S, T) ≥ gmin(Ŝ, T̂). Let X be an (S, T)-
separator attaining f(X) = fmin(S, T) ≤ k. Since f(X) ≤ k, there is no edge (v, u) ∈ P such that
v ∈ X and u ∈ V −X. Hence f(X) = Γ+

G(X). From X, we construct a subset X ′ ⊆ V ′ ∪ V ′′ by
X ′ = {v′, v′′ | v ∈ X} ∪ {v′ | (u, v) ∈ E, u ∈ X, v ∈ V − X}. Then the set of directed edges
outgoing from X ′ in GP is {(v′, v′′) | v ∈ V −X with some u ∈ X and (u, v) ∈ E}, where S′ ⊆ X ′

and X ′ ∩ T ′ = ∅. Hence fmin(S, T) = f(X) = Γ+
G(X) = g(X ′). Since X ′ is an (Ŝ, T̂)-separator in

GP , we have fmin(S, T) = g(X ′) ≥ gmin(Ŝ, T̂), as required.

7

(ii) Next we show that gmin(Ŝ, T̂) ≤ k implies gmin(Ŝ, T̂) ≥ fmin(S, T). Let Y be an (Ŝ, T̂)-
separator attaining g(Y) = gmin(S

′, T ′) ≤ k. Since g(Y) ≤ k, there is no edge (v′′, u′′) ∈ AP such
that v′′ ∈ Y and u′′ ̸∈ Y . From Y , we construct a subset Y ′ ⊆ V by VY = {v | v′′ ∈ Y }, where
S ⊆ VY and VY ∩ T = ∅. Note that there is no edge (v, u) ∈ P such that v ∈ Y ′ and u ̸∈ Y ′,
since otherwise there would be an edge (v′′, u′′) ∈ P with v′′ ∈ Y and u′′ ̸∈ Y which leaves from Y
in GP , a contradiction. Hence Γ+(VY) = f(VY). For each edge (u′′, v′) ∈ AE outgoing from VY ,
(u, v) ∈ E will be an edge outgoing from VY in G, where the edge (u′′, v′) ∈ AE corresponds to the
out-neighbor v of VY . For each edge (v′, v′′) ∈ AV outgoing from VY , there is an edge (u′′, v′) ∈ AE
(otherwise Y − {v′} would satisfy g(Y − {v′}) < g(Y)), and (u, v) ∈ E will be an edge outgoing
from VY in G, where the edge (v′, v′′) ∈ AV corresponds to the out-neighbor v of VY . Since any
edge outgoing from Y corresponds to an out-neighbor of VY , we have g(Y) ≥ Γ+(VY). Therefore
gmin(Ŝ, T̂) = g(Y) ≥ Γ+(VY) = f(VY) ≥ fmin(S, T), as required.

Note that (i) implies that if gmin(Ŝ, T̂) > k then fmin(S, T) > k, while (ii) means that if
fmin(S, T) > k then gmin(Ŝ, T̂) > k. Hence fmin(S, T) > k if and only if gmin(Ŝ, T̂) > k. Assume
that fmin(S, T) ≤ k, which now implies gmin(Ŝ, T̂) ≤ k. Hence from (i) and (ii), we have gmin(Ŝ, T̂) ≤
fmin(S, T) and gmin(Ŝ, T̂) ≥ fmin(S, T); i.e., gmin(Ŝ, T̂) = fmin(S, T). This completes the proof.

Since a minimum (Ŝ, T̂)-separator in GP can be obtained by computing a maximum (s′, t′)-
flow after contracting Ŝ and T̂ into single vertices s′ and t′. The single maximum flow problem
can be solved in O(km′) = O(k(m + n + |P |)) time and O(n + m′) = O(m + n + |P |) space
analogously with the case of cutwidth. Hence the time bound is O(k(m + n + |P |)n2n2∆(k)−2) =
O(k(m+n+|P |)n2n2(k+1)−2). In particular, when no precedent constraint is imposed, we can assume
that G is strongly connected (otherwise a solution is easily obtained) and we can set ∆(k) ≤ k and
|P | = 0 in these bounds. Therefore we obtain the following results.

Theorem 7 Given a digraph G = (V,E) with n vertices and m edges and an integer k ≥ 1, whether
there is a sequence of V with pathwidth at most k can be tested in O(kmn2k) time and O(n +m)
space. When such a sequence exists, a sequence σ ∈ Σn with pathwidth at most k that minimizes
costVS can be found in the same time and space complexities.

Theorem 8 Given a digraph G = (V,E) with n vertices and m edges, a poset P ⊆ V × V and an
integer k ≥ 1, whether there is a sequence of V with pathwidth at most k which meets the precedent
constraint by P can be tested in O(k(m + n + k|P |)n2k+2) time and O(n +m + |P |) space. When
such a sequence exists, a sequence σ ∈ Σn with pathwidth at most k that minimizes costVS under
the precedent constraint by P can be found in the same time and space complexities.

For the layout of digraphs with sum cut costSC, the same statements of Theorems 7 and 8 hold
by replacing costVS with costSC.

5 Concluding Remarks

In this paper, we introduced a linear layout in submodular systems (V, f), which includes several
linear layout problems in graphs/digraphs, defining non-decreasing cost functions and f -width. We
proposed a framework for search tree algorithms of finding a minimum cost layout with a bounded
f -width. In particular, we obtained O(kmn2k)-time and O(n + m)-space algorithms for testing
whether the cutwidth/pathwidth of a given digraph is at most k or not. Our result in contrast
to Tamak’s algortihm has a similar trade-off between the O∗(2n)-time and space algorithm and
the O∗(4n)-time and polynomial-space algorithms; reducing the space complexity to polynomial
one increases the time complexity up to the square of it (the work complexity). Theorem 1 would
indicate that f -width is a useful parameter to investigate the tractability of layout problems with
cost functions whose value is as large as n.

8

Acknowledgment

The author would like to thank Prof. Hisao Tamaki for useful discussions.

References

[1] K. Abrahamson, M. Fellows. Finite automata, bounded treewidth and well-quasiordering. in:
Contemp. Math., 147: Amer. Math. Soc., Providence, RI, 539–563, 1993.

[2] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput. 25:(6) 1305–1317, 1996.

[3] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, D. M. Thilikos. A note on
exact algorithms for vertex ordering problems on graphs. Theory Comput. Syst. 50: 420–432,
2012.

[4] J. Dı́az, J Petit, M. Serna. A survey of graph layout problems. ACM Computing Surveys
(CSUR) 34(3): 313–356, 2002.

[5] S. Even, R. E. Tarjan. Network flow and testing graph connectivity. SIAM J. Comput., 4:
507–518, 1975.

[6] M. R. Fellows, M. A. Langston. Layout permutation problems and well-partially ordered sets.
In Advanced Research in VLSI. MIT Press, Cambridge, MA, 315–327, 1988.

[7] M. Grötschel, L. Lovász, A. Schrijver. The ellipsoid algorithm and its consequences in combi-
natorial optimization. Combinatorica 1: 499–513, 1981.

[8] E. Gurari, I. H. Sudborough. Improved dynamic programming algorithms for the bandwidth
minimization and the mincut linear arrangement problem. J. Algorithm 5, 531–546, 1984.

[9] M. Ikeda, H. Nagamochi. A method for computing the pathwidth of chemical graphs. The 15th
Japan-Korea Joint Workshop on Algorithms and Computation, July 10 - 11, 2012, National
Institute of Informatics, Tokyo, Japan (to appear).

[10] S. Iwata. L. Fleischer, S. Fujishige. A combinatorial, strongly polynomial-time algorithm for
minimizing submodular functions. J. ACM 48: 761–777, 2001.

[11] N. G. Kinnersley. The vertex separation number of a graph equals its path-width. Inf. Proc.
Lett. 42: 345-350, 1992.

[12] F. Makedon, I. H. Sudborough. On minimizing width in linear layouts. Dis. Appl. Math. 23:(3),
243–265, 1989.

[13] H. Nagamochi. Submodular minimization via pathwidth. TAMC2012, LNCS 7287, 584–593,
2012.

[14] J. B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization.
Math. Program., Ser. A 118: 237–251, 2009.

[15] J. -C. Picard, M. Queyranne. On the structure of all minimum cuts in a network and applica-
tions, Math. Prog. Study, 13: 8–16, 1980.

[16] N. Robertson, P. Seymour. Graph Minors. XX. Wagner’s conjecture. J. Combin. Theory Ser.
B 92(2): 325–35, 2004.

9

[17] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polyno-
mial time. J. Combin. Theory Ser. B 80: 346–355, 2000.

[18] H. Tamaki. A polynomial time algorithm for bounded directed pathwidth. LNCS 6986, 331-342,
2012.

[19] D. M. Thilikos, M. Serna, H. L. Bodlaender. Cutwidth I: A linear time fixed parameter algo-
rithm. J. of Algorithms 56: 1–24, 2005.

Appendix A
We here present of an entire description of our algorithm stated in Section 3. Let (V, f) be a

nonnegative submodular system with f(∅) = f(V) = 0, k be a positive number and s, t ∈ V be
and two distinct elements. We execute the following algorithm Arrange(S, T) with S = {s} and
T = {t} to find an (s, t)-sequence σ with f -width at most k that minimizes a given non-decreasing
cost function cost among (s, t)-sequences with f -width at most k.

Algorithm Arrange(S, T)
Input: An ordered disjoint subsets (S, T) of V .
Output: An (S, T)-sequence σ with fmax(σ) ≤ k that minimizes cost among all
such (S, T)-sequences, or a message “none” when there is no (S, T)-sequence
σ with fmax(σ) ≤ k.

if |V − S− T | ≤ 1 then

Halt returning the unique (S, T)-sequence if f(S), f(T) ≤ k or
returning message “none” otherwise

endif;
/* |V − S− T | ≥ 2 */
if fmin(S, T) > k then halt returning message “none”
endif;
/* fmin(S, T) ≤ k */
if fmin(S, T) = k then
Let η be the null sequence;
while |S|+ |η|+ |T | < |V | do
Choose any element u ∈ V − S− T such that f(S ∪ V (ηu)) = k; η := ηu
(if no such u exists then halt returning message “none”)

endwhile;
Halt returning the (S, T)-sequence η

endif;
/* fmin(S, T) < k */

if There is a minimum (S, T)-separator A with A ̸= S, T then

S′ := A; T ′ := A;
if one of Arrange(S, T ′) and Arrange(S′, T) is “none” then
halt returning message “none”

else
σ :=Arrange(S, T ′); τ :=Arrange(S′, T);

Halt returning η := σ[A]τ [A]
endif

else /* only S or T is a minimum (S, T)-separator */

if T is not a minimum (S, T)-separator then
for each u ∈ V − S− T do
Su := S ∪ {u}; cu := cost(Arrange(Su, T))
(let cu := ∞ if Arrange(Su, T) =“none”)

10

endfor;
Halt returning η :=Arrange(Su∗ , T) for
u∗ = argmin{cu <∞ | u ∈ V − S− T}
or returning “none” if no such u∗ exists

elseif S is not a minimum (S, T)-separator then
for each v ∈ V − S− T do
Tv := T ∪ {v}; cv := cost(Arrange(S, Tv))
(let cv := ∞ if Arrange(S, Tv) =“none”)

endfor;
Halt returning η :=Arrange(S, Tv∗) for
v∗ = argmin{cv <∞ | v ∈ V − S− T}
or returning “none” if no such v∗ exists

else /* both of S and T are a minimum (S, T)-separators */
for each ordered pair (u, v) with u, v ∈ V − S− T do
Su := S ∪ {u}; Tv := T ∪ {v}; cuv := cost(Arrange(Su, Tv))
(let cuv := ∞ if Arrange(Su, Tv) =“none”)

endfor;
Halt returning η :=Arrange(Su∗ , Tv∗) for
(u∗, v∗) = argmin{cuv <∞ | u, v ∈ V − S− T}
or returning “none” if no such (u∗, v∗) exists

endif

11

