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Abstract

In this paper, we focus on the mathematical program with second-order cone (SOC) complementar-

ity constraints, which contains the well-known mathematical program with nonnegative complementarity

constraints as a subclass. For solving such a problem, we propose a smoothing-based sequential quadratic

programming (SQP) methods. We first replace the SOC complementarity constraints with equality con-

straints using the smoothing natural residual function, and apply the SQP method to the smoothed problem

with decreasing the smoothing parameter. We show that the proposed algorithm possesses the global con-

vergence property under the Cartesian P0 property and the nondegeneracy assumptions. We finally observe

the effectiveness of the algorithm by means of numerical experiments.
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1 Introduction

In this paper, we focus on the following mathematical program with second-order cone (SOC) complementarity
constraints, abbreviated as MPSOCC:

Minimize
x,y,z

f(x, y)

subject to Ax ≤ b,

z = Nx + My + q,

K 3 y ⊥ z ∈ K,

(1.1)

where f : Rn+m → R is a continuously differentiable function, A ∈ Rp×n, b ∈ Rp, N ∈ Rm×n, M ∈ Rm×m

and q ∈ Rm are given matrices and vectors, ⊥ denotes the perpendicularity, and K is the Cartesian product of
second-order cones, that is, K := Km1 ×Km2 × · · · × Km` ⊆ Rm1 × Rm2 × · · · × Rm` = Rm with

Kmi =
{{

u = (u1, u2) ∈ R × Rmi−1|‖u2‖ ≤ u1

}
(mi ≥ 2),

R+ = {u ∈ R | u ≥ 0} (mi = 1).

Throughout the paper, we suppose that mi ≥ 2 for each i.
Mathematical program with equilibrium constraints (MPEC) [15] has been studied extensively, since it finds

wide application such as design problems in engineering, the equilibrium problems in economics, and game-
theoretic multi-level optimization problems. Particularly, equilibrium constraints in MPECs are often written
as linear or nonlinear complementarity constraints. Such an MPEC is also called a mathematical program
with complementarity constraints (MPCC). When mi = 1 for all i, i.e., K = Rm

+ , MPSOCC (1.1) reduces to the
MPCC, for which there have been proposed many algorithms. For example, Fukushima and Tseng [12] proposed
an active set algorithm, and proved that any accumulation point of the sequence generated by the algorithm
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is a B-stationary point under the uniform linear inequality constraint qualification (LICQ) on the ε-feasible
set. Luo, Pang, and Ralph [15] proposed a piece-wise sequential quadratic programming (SQP) algorithm, and
showed that the generated sequence converges to a B-stationary point locally superlinearly or quadratically
under the LICQ and the second order sufficient conditions. Fukushima, Luo, and Pang [10] proposed an SQP-
type algorithm, and showed that the sequence generated by the algorithm globally converges to a B-stationary
point under the nondegeneracy condition at the limit point.

Problems with SOC constraints also attract much attention of many researchers. One of the typical problems
is the second-order cone program (SOCP) [1]. The SOCP has a lot of applications such as the antenna array
weight design, the finite response impulse (FIR) filter design, the portfolio optimization, and the magnetic shield
design optimization. Moreover, SOCP includes many classes of problems such as linear program (LP), convex
quadratic program (QP), etc. The second-order cone complementarity problem (SOCCP) [5, 7, 11] is another
type of problems involving SOC constraints. Fukushima, Luo and Tseng [11] studied smoothing functions for
the Fischer-Burmeister function and the natural residual function with respect to the SOC complementarity
condition. Using those smoothing functions, Hayashi, Yamashita and Fukushima [14] proposed a globally and
quadratically convergent algorithm based on the smoothing and regularization methods. As an application of
the SOCCP, Nishimura, Hayashi and Fukushima [16] studied the SOCCP reformulation of the robust Nash
equilibrium problem in an N-person non-cooperative game.

As mentioned in the last two paragraphs, there have been many researches on the MPECs with “nonnegative”
complementarity constraints and the optimization/complementarity problems with SOC constraints. However,
there are only a few studies on MPECs with SOC complementarity constraints. For example, Yan and Fukushima
[20] proposed a smoothing method for solving such problems. To show convergence of the algorithm, they assume
that smoothed subproblems are solved exactly. However, it can hardly be expected in practice. To overcome
such a difficulty, we propose to combine an SQP-type method with the smoothing method. The proposed
method replaces the SOC complementarity condition of MPSOCC (1.1) with a certain vector equation by using
a smoothed natural residual function, thereby yielding convex quadratic programming subproblems which can
be solved efficiently by any state-of-the-art method such as the active method and interior point method.
Although our method may be viewed as an extension of the SQP method in [10], the convergence analysis
is quite different since it exploits the particular properties of the natural residual associated with the SOC
complementarity condition.

This paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we reformulate
MPSOCC (1.1) as a nonlinear programming problem by replacing the second-order cone complementarity con-
straints by equivalent nonsmooth equality constraints. In Section 4, we introduce a smoothing technique to deal
with the nonsmooth constraints. In Section 5, we propose an SQP-type algorithm for solving problem (1.1) and
show that the proposed method is well-defined under the Cartesian P0 property. In Section 6, we show that
the proposed algorithm possesses the global convergence property under the nondegeneracy assumptions. In
Section 7, we give some numerical examples. In Section 8, we conclude the paper with some remarks.

Throughout the paper, we use the following notations. For a given vector z ∈ Rm, zi denotes the i-th element
of z ∈ Rm, while zi ∈ Rmi denotes the i-th column subvector conforming to the given Cartesian structure of
K. For subvectors z1 ∈ Rm1 , z2 ∈ Rm2 , . . . , z` ∈ Rm` , we often let (z1, z2, . . . , z`) denote the column vector
((z1)>, · · · , (z`)>) ∈ Rm1+···+m` . For a vector z ∈ Rm, we denote ‖z‖1 :=

∑m
i=1 |zi|, ‖z‖ :=

√
z>z and ‖z‖∞ :=

max1≤i≤m |zi|. For a matrix M ∈ Rm×m, ‖M‖ denotes the operator norm defined by ‖M‖ = max‖x‖=1 ‖Mx‖.
For matrices M,N ∈ Rm×m, M � (�)N denotes that M − N is a positive (semi)-definite matrix. We denote
the interior and the boundary of K by intK and bdK, respectively.*1 For vectors y, z ∈ Rm, y �K z and y �K z

mean y − z ∈ K and y − z ∈ intK, respectively. We denote the nonnegative cone in Rm and its interior by
Rm

+ := {z ∈ Rm | zi ≥ 0 (i = 1, 2, . . . , m)} and Rm
++ := {z ∈ Rm | zi > 0 (i = 1, 2, . . . , m)}, respectively. Finally,

for a set C ⊆ Rm and a vector z ∈ C, we denote the normal cone [18] of C at z by NC(z).

2 Preliminaries

2.1 Spectral factorization and natural residual

The proposed algorithm relies on the fact that the SOC complementarity condition K 3 y ⊥ z ∈ K can be

*1Note that intK = {(z1, z2) ∈ R × Rm−1 | z1 > ‖z2‖} and bdKm = {(z1, z2) ∈ R × Rm−1 | z1 = ‖z2‖}. In addition, for
K = Km1 × · · · × Km` , we have intK = intKm1 × · · · × intKm` and bdK = K \ intK.

2



rewritten as a system of equations by means of the natural residual. To be specific, we first recall the spectral
factorization of a vector with respect to the SOC, Km.

Definition 2.1. For any vector z := (z1, z2) ∈ R × Rm−1, we define the spectral factorization with respect to
Km as

z = λ1c
1 + λ2c

2,

where λ1 and λ2 are the spectral values given by

λj = z1 + (−1)j‖z2‖, j = 1, 2,

and c1 and c2 are the spectral vectors given by

cj =


1
2

(
1, (−1)j z2

‖z2‖

)
if z2 6= 0

1
2
(1, (−1)jv) if z2 = 0

j = 1, 2,

respectively, where v ∈ Rm−1 is an arbitrary vector such that ‖v‖ = 1.

By using the spectral factorization, we can write the Euclidean projection onto Km explicitly as follows [11]:

PKm(z) := argminz′∈Km‖z′ − z‖
= max{0, λ1}c1 + max{0, λ2}c2,

where λj and cj (j = 1, 2) are the spectral values and the spectral vectors of z, respectively. Now, let us define
the natural residual for the SOC complementarity condition by using the Euclidean projection.

Definition 2.2. Let y := (y1, y2, · · · , y`) and z := (z1, z2, · · · , z`) ∈ Rm1 × Rm2× · · · × Rm` = Rm be arbitrary
vectors. Then, the natural residual function Φ : Rm × Rm → Rm with respect to K = Km1 × Km2 × · · · × Km`

is defined as

Φ(y, z) := y − PK(y − z) (2.1)

=

 ϕ1(y1, z1)
...

ϕ`(y`, z`)

 ∈ Rm1 × · · · × Rm` ,

where
ϕi(yi, zi) = yi − PKmi (yi − zi), i = 1, 2, . . . , `.

It can be shown [11] that

ϕi(yi, zi) = 0 ⇐⇒ Kmi 3 yi ⊥ zi ∈ Kmi ,

Φ(y, z) = 0 ⇐⇒ K 3 y ⊥ z ∈ K.

The following proposition states the property of function Φ(y, z) when y − z /∈ bd (K ∪−K).

Proposition 2.1. Let y, z ∈ Rm be chosen so that y−z /∈ bd (K∪−K). Then, the function Φ : Rm×Rm → Rm

defined by (2.1) is continuously differentiable at (y, z), and the following equality holds:

∇yΦ(y, z) + ∇zΦ(y, z) = Im,

where Im ∈ Rm×m denotes the identity matrix.

Proof. It suffices to consider the case where K = Km. Let λ1, λ2 ∈ R be the spectral values of y − z defined as
in Definition 2.1. Note that, from y−z /∈ bd (Km∪−Km), we have λ1, λ2 6= 0. Then, from [14, Proposition 4.8],
the Clarke subdifferential ∂PKm(y − z) is explicitly given as

∂PKm(y − z) =


Im (λ1 > 0, λ2 > 0),

λ2

λ2 − λ1
Im + W (λ1 < 0, λ2 > 0),

O (λ1 < 0, λ2 < 0),
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where

W :=
1
2

(
−r1 r>2
r2 −r1r2r

>
2

)
, (r1, r2) :=

(y1 − z1, y2 − z2)
‖y2 − z2‖

.

Thus PKm is differentiable at y − z. This fact readily implies the continuous differentiability of Φ at (y, z) since
Φ(y, z) = y − PKm(y − z). We next show the second half of the proposition. By an easy calculation, we have

∇yΦ(y, z) = Im −∇PKm(y − z).

Similarly, we have ∇zΦ(y, z) = ∇PKm(y − z). Hence we obtain the desired equality.

2.2 Cartesian P0 and P matrices

In this subsection, we introduce the Cartesian P0 and the Cartesian P matrices. The concept of the Cartesian
P0 (P ) matrix is a natural extension of the well-known P0 (P ) matrix [8]. Although the Cartesian P0 (P ) matrix
can be defined not only for the SOC but also for the semidefinite cone [6] and the symmetric cone [13], we
restrict ourselves to the case of the SOCs.

Definition 2.3. Suppose that the Cartesian structure of K ⊆ Rm is given as K := Km1 × Km2 × · · · × Km` .
Then, M ∈ Rm×m is called

(a) a Cartesian P0 matrix if, for every nonzero z = (z1, . . . , z`) ∈ Rm = Rm1 × · · · ×Rm` , there exists an index
i ∈ {1, . . . , `} such that (zi)>(Mz)i ≥ 0;

(b) a Cartesian P matrix if, for every nonzero z = (z1, . . . , z`) ∈ Rm = Rm1 × · · · × Rm` , there exists an index
i ∈ {1, . . . , `} such that (zi)>(Mz)i > 0.

Here, (Mz)i ∈ Rmi denotes the i-th subvector of Mz ∈ Rm conforming to the Cartesian structure of K.

Notice that the definition of the Cartesian P0 (P ) property depends on the Cartesian structure of K. In
what follows, we assume that the Cartesian structure of K is always given as K = Km1 ×Km2 × · · · ×Km` . The
definition of the “classical” P0 (P ) matrix corresponds to the case where K = Rm

+ . It is easily seen that every
Cartesian P0 (P ) matrix is a P0 (P ) matrix [17].

The following proposition implies that the Cartesian P0 (P ) property is preserved under a nonsingular block-
diagonal transformation.

Proposition 2.2. Let M ∈ Rm×m be any matrix, and Hi ∈ Rmi×mi(i = 1, 2, . . . , `) be arbitrary nonsingular
matrices. Let the matrix M ′ ∈ Rm×m be defined by

M ′ :=H>MH, H :=

H1 0. . .
0 H`

 .

Then, the following statements hold.

(a) If M is a Cartesian P0 matrix, then M ′ is a Cartesian P0 matrix.

(b) If M is a Cartesian P matrix, then M ′ is a Cartesian P matrix.

Proof. We first show (b). Let z = (z1, . . . , z`) ∈ Rm = Rm1 × · · · × Rm` be an arbitrary nonzero vector. We
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show that there exists an i ∈ {1, 2, . . . , `} such that (zi)>(M ′z)i > 0. Note that

(M ′z)i =


H1 0. . .
0 H`


>

M

H1 0. . .
0 H`

 z


i

=


H1 0. . .
0 H`


>

M

H1z
1

...
H`z

`




i

=


H>

1

∑̀
k=1

M1kHkzk

...

H>
`

∑̀
k=1

M`kHkzk



i

=

(
H>

i

∑̀
k=1

MikHkzk

)
.

where (·)i and (·)ik denote the i-th subvector and the (i, k)-th block entry, respectively, conforming to the
Cartesian structure of K. Hence, we have

(zi)>(M ′z)i = (zi)>H>
i

∑̀
k=1

MikHkzk =
(
Hiz

i
)> ∑̀

k=1

MikHkzk = ((Hz)i)>(MHz)i.

Since M is a Cartesian P matrix and Hz 6= 0 from the nonsingularity of H, we have (zi)>(M ′z)i = ((Hz)i)>(MHz)i >

0 for some i. Hence, M ′ is a Cartesian P matrix.
We omit the proof of (a) since it can be shown in a similar manner to (b).

3 Reformulation of MPSOCC and relationship between the KKT

conditions and B-stationary points

In the previous section, we introduce the natural residual function Φ and observed that second-order cone
complementarity condition K 3 y ⊥ z ∈ K can be represented as Φ(y, z) = 0 equivalently. In this section, we
rewrite MPSOCC (1.1) as the following problem where the SOC complementarity constraint is replaced by the
equivalent equality constraint involving the natural residual function Φ:

Minimize
x,y,z

f(x, y)

subject to Ax ≤ b,

z = Nx + My + q,

Φ(y, z) = 0.

(3.1)

We also call this problem MPSOCC. MPSOCC (3.1) is a nonsmooth optimization problem since Φ is not
differentiable everywhere. However, as is claimed by the next proposition, Φ is continuously differentiable at
any (y, z) satisfying the following nondegeneracy condition:

Definition 3.1 (Nondegeneracy). Suppose that (y, z) ∈ Rm ×Rm satisfies the SOC complementarity condition
K 3 y ⊥ z ∈ K. Moreover, decompose y and z as y = (y1, y2, . . . , y`) and z = (z1, z2, . . . , z`) ∈ Rm1 × Rm2 ×
· · · × Rm` = Rm conforming to the Cartesian structure of K. Then, (y, z) is said to be nondegenerate if, for
every i = 1, 2, . . . , `, one of the following three conditions holds:

(i) yi ∈ intKmi , zi = 0;

(ii) yi = 0, zi ∈ intKmi ;

(iii) yi ∈ bdKmi \ {0}, zi ∈ bdKmi \ {0}, (yi)>zi = 0.

Proposition 3.1. Let (y, z) ∈ Rm × Rm satisfy the nondegeneracy condition. Then, Φ is continuously differ-
entiable at (y, z).
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Proof. The nondegeneracy condition readily yields y− z /∈ bd (K∪−K). Hence, Φ is continuously differentiable
at (y, z) by Proposition 2.1.

Now, let X := {x ∈ Rn | Ax ≤ b}, and let w := (x, y, z) ∈ Rn × Rm × Rm be a feasible point of
MPSOCC (1.1) that satisfies the nondegeneracy condition. By Proposition 3.1, MPSOCC (3.1) can be viewed
as a smooth optimization problem in a small neighborhood of w. Then, the Karush-Kuhn-Tucker (KKT)
conditions on w are represented as∇xf(x, y)

∇yf(x, y)
0

+

 NT

MT

−I

u +

 0
∇yΦ(y, z)
∇zΦ(y, z)

 v ∈ −NX(x) × {0}2m,

Φ(y, z) = 0, Ax ≤ b, z = Nx + My + q, (3.2)

where {0}2m := {0} × {0} × · · · × {0} ⊆ R2m, and u ∈ R`, v ∈ Rm and η ∈ Rm are Lagrange multipliers.
We next consider the stationarity of MPSOCC (1.1) or (3.1). So far, several kinds of stationary points have

been studied in the literature of MPECs, e.g., see [19]. Among them, a Bouligand- or B-stationary point is the
most desirable, since it is directly related to the first order optimality condition. Specifically, a B-stationary
point for MPSOCC (1.1) is defined as follows:

Definition 3.2 (B-stationarity). Let F ⊆ Rn+2m denote the feasible set of MPSOCC (1.1). We say that
w := (x, y, z) ∈ F is a B-stationary point of MPSOCC (1.1) if (−∇f(x, y), 0) ∈ NF (w) holds.

In what follows, we show that a point satisfying KKT conditions (3.2) is a B-stationary point. For this
purpose, we give three useful lemmas.

Lemma 3.1. [18, Proposition 6.41] Let C := C1 × C2 × · · · × Cs for nonempty closed sets Ci ⊆ Rni . Choose
ζ := (ζ1, ζ2, . . . , ζs) ∈ C1 × C2 × · · · × Cs. Then, we have NC(ζ) = NC1(ζ1) ×NC2(ζ2) × · · · × NCs(ζs).

Lemma 3.2. [18, Chapter 6-C] For a continuously differentiable function F : Rp → Rq, let D := {ζ ∈ Rp |
F (ζ) = 0}. Choose ζ ∈ D arbitrarily. If ∇F (ζ) has full column rank, then we have

ND(ζ) = ∇F (ζ)Rq:= {ζ ∈ Rp | ζ = ∇F (ζ)v, v ∈ Rq}.

Lemma 3.3. [18, Theorem 6.14] For a continuously differentiable function F : Rp → Rq and a closed set
C ⊆ Rp, let D := {ζ ∈ C | F (ζ) = 0}. Choose ζ ∈ D arbitrarily. Then we have

ND(ζ) ⊇ ∇F (ζ)Rq + NC(ζ).

Now, we show that the KKT conditions (3.2) are sufficient conditions for w = (x, y, z) to be B-stationary.

Proposition 3.2. Let w := (x, y, z) be a feasible point of MPSOCC (3.1). Suppose that the nondegeneracy con-
dition holds at (y, z). If w satisfies the KKT conditions (3.2), then w is a B-stationary point of MPSOCC (1.1).

Proof. Let X := {x ∈ Rn | Ax ≤ b} and Y := {(y, z) ∈ Rm × Rm | Φ(y, z) = 0}. We first note that the
nondegeneracy at (y, z) implies the continuous differentiability of Φ at (y, z) from Proposition 2.1. Choose
v ∈ Rm such that ∇Φ(y, z)v = 0. From Proposition 2.1, we then have ∇yΦ(y, z)v = 0 and ∇zΦ(y, z)v =
(I − ∇yΦ(y, z))v = 0, which readily imply v = 0, and thus ∇Φ(y, z) has full column rank. Therefore, by
Lemma3.2 with p = q := m, D := Y and F := Φ, we have

NY (y, z) = ∇Φ(y, z)Rm. (3.3)

Then, it holds that
NX×Y (w) = NX(x) ×NY (y, z) = NX(x) ×∇Φ(y, z)Rm, (3.4)

where the first equality follows from Lemma 3.1 and the second equality follows from (3.3). Now, let F ⊆ Rn+2m

denote the feasible set of MPSOCC (3.1), i.e., F = {(x, y, z) ∈ X × Y | Nx + My − z + q = 0}. Then, from
Lemma3.3, we have

NF (w) ⊇
(
N>,M>,−I

)> Rm + NX×Y (w). (3.5)

Combining (3.4) with (3.5), we obtain

NF (w) ⊇
(
N>,M>,−I

)> Rm + NX(x) ×∇Φ(y, z)Rm,

which together with the KKT conditions (3.2) implies (−∇f(x, y), 0) ∈ NF (w). Thus, w is a B-stationary
point.
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4 Smoothing function of natural residual

The natural residual function Φ given in Definition 2.2 is not differentiable everywhere, and therefore, we cannot
employ a derivative-based algorithms such as Newton’s method to solve MPSOCC (3.1). To overcome such a
difficulty, we will utilize a smoothing technique.

Definition 4.1. Let Ψ : Rm → Rm be a nondifferentiable function. Then, the function Ψµ : Rm → Rm

parametrized by µ > 0 is called a smoothing function of Ψ if it satisfies the following properties: For any µ > 0,
Ψµ is differentiable on Rm; for any z ∈ Rm, it holds that limµ→0+ Ψµ(z) = Ψ(z).

A smoothing function of the natural residual function can be constructed by means of the Chen-Mangasarian
(CM) function ĝ : R → R [11].

Definition 4.2. A differentiable convex function ĝ : R → R+ is called a CM function if

lim
α→−∞

ĝ(α) = 0, lim
α→∞

(ĝ(α) − α) = 0, 0 < ĝ′(α) < 1 (α ∈ R). (4.1)

Notice that, if function pµ : R → R is defined by pµ(α) := µĝ(α/µ) with a CM function ĝ and a positive
parameter µ, then it becomes a smoothing function for p(α) := max{0, α}. Thanks to this fact, we can next
provide a smoothing function Pµ for the projection operator PK.

Definition 4.3. Let z ∈ Rm be an arbitrary vector decomposed as z = (z1, z2, · · · , z`) ∈ Rm1×Rm2×· · ·×Rm` =
Rm conforming to the given Cartesian structure of K. For an arbitrary CM function ĝ : R → R, let g : Rm → Rm

be defined as

g(z) :=

 g1(z1)
...

g`(z`)

 , (4.2)

gi(z) := ĝ(λi1)ci1 + ĝ(λi2)ci2,

where λij ∈ R and cij ∈ Rmi ((i, j) ∈ {1, 2, · · · , `} × {1, 2}) are the spectral values and the spectral vectors of
subvectors zi with respect to Kmi , respectively. Then, the smoothing function Pµ: Rm → Rm of PK is given as

Pµ(z) := µg(z/µ).

Now, by using the above smoothing function Pµ, we can define the smoothing function for the natural
residual Φ.

Definition 4.4. Let µ > 0 be arbitrary. Let g : Rm → Rm, gi : Rmi → Rmi (i = 1, 2, . . . , `), and Pµ : Rm → Rm

be defined as in Definition 4.3. Then, the smoothing function Φµ : Rm → Rm for the natural residual Φ is given
as

Φµ(y, z) := y − Pµ(y − z)

= y − µg

(
y − z

µ

)

=


y1 − µg1

(
y1 − z1

µ

)
...

y` − µg`

(
y` − z`

µ

)
 . (4.3)

Before closing this subsection, we provide the following propositions which will be used in the subsequent
analyses.

Proposition 4.1. Let Pµ : Rm → Rm be defined as in Definition 4.3, and choose z /∈ bd (K ∪ −K) arbitrarily.
Let {zk} ⊆ Rm and {µk} ⊆ R++ be arbitrary sequences such that zk → z and µk → 0 as k → ∞. Then, we
have

∇PK(z) = lim
k→∞

∇Pµk
(zk). (4.4)
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Proof. For simplicity, we consider the case where K = Km. Let z and zk be decomposed as z = λ1c
1 + λ2c

2

and zk = λk
1c1

k + λk
2c2

k, where λi, λk
i ∈ R are spectral values, and ci, ci

k ∈ Rm (i = 1, 2) are spectral vectors of z

and zk, respectively. Since z /∈ bd (Km ∪ −Km), PKm is differentiable at z and ∇PKm(z) is given as

∇PKm(z) =


Im (λ1 > 0, λ2 > 0),

λ2

λ2 − λ1

Im + W (λ1 < 0, λ2 > 0),

O (λ1 < 0, λ2 < 0),

where

W :=
1
2

(
−r1 r>2
r2 −r1r2r

>
2

)
, (r1, r2) :=

(z1, z2)
‖z2‖

, z := (z1, z2) ∈ R × Rm−1.

On the other hand, by [11, Proposition 5.2], ∇Pµk
(zk) is written as

∇Pµk
(zk) =



ĝ′(zk
1/µk)Im (zk

2 = 0), bµk

cµk
(zk

2 )>

‖zk
2‖

cµk
zk
2

‖zk
2‖

aµk
Im−1 + (bµk

− aµk
)
zk
2zk

2
>

‖zk
2‖2

 (zk
2 6= 0),

where

aµk
=

ĝ(λk
2/µk) − ĝ(λk

1/µk)
λk

2/µk − λk
1/µk

, bµk
=

1
2

(
ĝ′
(

λk
2

µk

)
+ ĝ′

(
λk

1

µk

))
,

cµk
=

1
2

(
ĝ′
(

λk
2

µk

)
− ĝ′

(
λk

1

µk

))
, zk := (zk

1 , zk
2 ) ∈ R × Rm−1,

and ĝ is defined as in Definition 4.3. Note that, from the definition of ĝ, we have ĝ(α) − α → 0, ĝ(−α) → 0,
ĝ′(α) → 1 and ĝ′(−α) → 0 as α → ∞. Then, it follows that

lim
k→∞

aµk
=


1 (0 < λ1 ≤ λ2)
λ2/(λ2 − λ1) (λ1 < 0 < λ2)
0 (λ1 ≤ λ2 < 0)

, lim
k→∞

bµk
=


1 (0 < λ1 ≤ λ2)
1/2 (λ1 < 0 < λ2)
0 (λ1 ≤ λ2 < 0)

, lim
k→∞

cµk
=


0 (0 < λ1 ≤ λ2)
1/2 (λ1 < 0 < λ2)
0 (λ1 ≤ λ2 < 0)

.

From this fact, it is not difficult to observe that ∇PKm(z) = limk→∞ ∇Pµk
(zk).

Proposition 4.2. [11, Proposition 5.1] Let Φµ : Rm ×Rm → Rm and Φ : Rm ×Rm → Rm be defined by (2.1)
and (4.3), respectively. Let ρ := ĝ(0). Then, for any y, z ∈ Rn and µ > ν > 0, we have

ρ(µ − ν)e �K Φν(y, z) − Φµ(y, z) �K 0,

ρµe �K Φ(y, z) − Φµ(y, z) �K 0,

where e := (e1, e2, . . . , e`) ∈ Rm1 × Rm2 × · · · × Rm` with ei := (1, 0, 0, . . . , 0)> ∈ Rmi for i = 1, 2, . . . , `.

Proposition 4.3. [11, Corollary 5.3 and Proposition 6.1] Let Φµ : Rm × Rm → Rm and Φ : Rm × Rm → Rm

be defined by (2.1) and (4.3), respectively. Let g : Rm → Rm be defined by (4.2). Then, the following statements
hold.

(a) Function g is continuously differentiable and ∇g(z) = diag(∇g1(z1), . . . ,∇g`(z`))) ∈ Rm×m is symmetric
for any z ∈ Rm, where the latter matrix denotes the block-diagonal matrix with block-diagonal elements
∇gi(zi), i = 1, 2, . . . , `.

(b) For any y, z ∈ Rm, we have

∇yΦµ(y, z) = Im −∇g

(
y − z

µ

)
, ∇zΦµ(y, z) = ∇g

(
y − z

µ

)
,

where Im ∈ Rm×m denotes the identity matrix.
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(c) For any y, z ∈ Rm, we have

O ≺ ∇yΦµ(y, z) ≺ Im, O ≺ ∇zΦµ(y, z) ≺ Im, O ≺ ∇g

(
y − z

µ

)
≺ Im.

Proposition 4.4. Let Φµ : Rm×Rm → Rm and Φ : Rm×Rm → Rm be defined by (2.1) and (4.3), respectively.
Let ρ := ĝ(0). Then, ‖Φµ(y, z) − Φ(y, z)‖ ≤

√
2ρµ for any (µ, y, z) ∈ R++ × Rm × Rm.

Proof. For simplicity, we only consider the case where K = Km. Let Φ(y, z) − Φµ(y, z) = λ1c
1 + λ2c

2, where
λi ∈ R and ci ∈ Rm (i = 1, 2) are the spectral values and spectral vectors of Φ(y, z)−Φµ(y, z). Since e = c1 +c2

and ρµe �Km Φ(y, z) − Φµ(y, z) �Km 0 from Proposition 4.2, we have ρµ(c1 + c2) �Km λ1c
1 + λ2c

2 �Km 0,
which implies 0 < λ1 ≤ λ2 ≤ ρµ. Hence, we obtain

‖Φ(y, z) − Φµ(y, z)‖ = ‖λ1c
1 + λ2c

2‖ ≤ λ1‖c1‖ + λ2‖c2‖ ≤
√

2ρµ,

where the first inequality is due to the triangle inequality and 0 < λ1 ≤ λ2, and the last inequality follows from
‖c1‖ = ‖c2‖ = 1/

√
2 and λ1 ≤ λ2 ≤ ρµ. This completes the proof.

Proposition 4.5. Let Φµ : Rm×Rm → Rm be defined by (4.3). Then, for any µ > ν > 0 and (y, z) ∈ Rm×Rm,
it holds that

‖Φν(y, z)‖1 − ‖Φµ(y, z)‖1 ≤ mρ(µ − ν),

where ρ = ĝ(0).

Proof. We first assume K = Km. From Proposition 4.2, we have

ρ(µ − ν)e − (Φν(y, z) − Φµ(y, z))∈ Km, (4.5)

Φν(y, z) − Φµ(y, z)∈ Km, (4.6)

where e = (1, 0, . . . , 0)> ∈ Rm. Moreover, for any w = (w1, w2, . . . , wm)> ∈ Km, we have

w1 ≥ |wi| (i = 1, . . . ,m), (4.7)

since w1 ≥
√

w2
2 + · · · + w2

m. Therefore, for each i = 1, 2, . . . ,m, we have

ρ(µ − ν) ≥
(
Φν(y, z) − Φµ(y, z)

)
1

≥
∣∣(Φν(y, z) − Φµ(y, z)

)
i

∣∣
≥ |Φν(y, z)i| − |Φµ(y, z)i|, (4.8)

where the first inequality holds from (4.3) and (4.5), the second equality holds from (4.6) and (4.7), and the
last equality holds from the triangle inequality. Summing up (4.8) for all i, we obtain the desired conclusion.
When K = Km1 × · · · × Km` , we can prove it in a similar way.

5 Algorithm

In this section, we propose an SQP type algorithm for MPSOCC (1.1). The SQP method solves a quadratic
programming (QP) problem in each iteration to determine the search direction. This method is known as one
of the most efficient methods for solving nonlinear programming problems. In the remainder of the paper, to
apply the SQP method, we mainly consider MPSOCC (3.1) equivalent to MPSOCC (1.1). We should notice,
however, that the SQP method cannot be applied directly to MPSOCC (3.1), since Φ(y, z) is not differentiable
everywhere. We thus consider the following problem where the smooth equality constraint Φµ(y, z) = 0 replaces
Φ(y, z) = 0 in each iteration

Minimize
x,y,z

f(x, y)

subject to Ax ≤ b,

z = Nx + My + q,

Φµ(y, z) = 0.

(5.1)
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Given a current iterate (xk, yk, zk) satisfying Axk ≤ bk and zk = Nxk + Myk + q, we then generate the search
direction (dxk, dyk, dzk) by solving the following QP subproblem, which consists of quadratic and linear approx-
imations of the objective and constraint functions of problem (5.1) with µ = µk, respectively, at (xk, yk, zk):

Minimize
dx,dy,dz

∇f(xk, yk)>
(

dx

dy

)
+

1
2

 dx

dy

dz

>

Bk

 dx

dy

dz


subject to Adx ≤ b − Axk,(

N M −Im

0 ∇yΦµk
(yk, zk)> ∇zΦµk

(yk, zk)>

) dx

dy

dz

 = −
(

0
Φµk

(yk, zk)

)
,

(5.2)

where Bk∈ R(n+2m)×(n+2m) is a positive definite symmetric matrix. In the numerical experiments in Section 7,
Bk will be updated by using the modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula. Note that the
Karush-Kuhn-Tucker (KKT) conditions of QP (5.2) can be written as∇xf(xk, yk)

∇yf(xk, yk)
0

+ Bk

 dx

dy

dz

+

 N>

M>

−Im

u +

 0
∇yΦµk

(yk, zk)
∇zΦµk

(yk, zk)

 v +

A>

0
0

 η = 0,

(
N M −Im

0 ∇yΦµk
(yk, zk)> ∇zΦµk

(yk, zk)>

) dx

dy

dz

 = −
(

0
Φµk

(yk, zk)

)
,

0 ≤ (b − Axk − Adx) ⊥ η ≥ 0,

(5.3)

where (η, u, v) ∈ Rp × Rm × Rm denotes the Lagrange multipliers.
For simplicity of notation, we denote

w := (x, y, z) ∈ Rn × Rm × Rm, dw := (dx, dy, dz) ∈ Rn × Rm × Rm.

Also, we define the `1 penalty function by

θµ,α(w) := f(x, y) + α‖Φµ(y, z)‖1, (5.4)

where α > 0 is the penalty parameter. Note that this function has the directional derivative θ′µ,α(w; dw) for
any w and dw.

Algorithm 1.

Step 0: Choose parameters δ ∈ (0,∞), β ∈ (0, 1), ρ ∈ (0, 1), σ ∈ (0, 1), µ0 ∈ (0,∞), α−1 ∈ (0,∞) and a
symmetric positive definite matrix B0 ∈ R(n+2m)×(n+2m). Choose w0 = (x0, y0, z0) ∈ Rn ×Rm × Rm such
that Nx0 + My0 + q = z0 and Ax0 ≤ b. Set k := 0.

Step 1: Solve QP subproblem (5.2) to obtain the optimum dwk = (dxk, dyk, dzk) and the Lagrange multipliers
(ηk, uk, vk).

Step 2: If dwk = 0, then let wk+1 := wk, αk := αk−1 and go to Step 3. Otherwise, update the penalty parameter
by

αk :=
{

αk−1 if αk−1 ≥ ‖vk‖∞ + δ,

max{‖vk‖∞ + δ, αk−1 + 2δ} otherwise.
(5.5)

Then, set the step size τk := ρL, where L is the smallest nonnegative integer satisfying the Armijo condition

θµk,αk
(wk + ρLdwk) ≤ θµk,αk

(wk) + σρLθ′µk,αk
(wk; dwk). (5.6)

Let wk+1 := wk + τkdwk, and go to Step 3.

Step 3: Terminate if a certain criterion is satisfied. Otherwise, let µk+1 := βµk and update Bk to determine a
symmetric positive definite matrix Bk+1. Return to Step 1 with k replaced by k + 1.
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In the remainder of this section, we establish the well-definedness of Algorithm 1. We first show the feasibility
of QP subproblem (5.2). In general, a QP subproblem generated by the SQP method may not be feasible, even
if the original nonlinear programming problem is feasible. However, in the present case, we can show that QP
subproblem (5.2) is always feasible under the Cartesian P0 property of the matrix M . To this end, the following
lemma will be useful.

Lemma 5.1. Let M ∈ Rm×m be a Cartesian P0 matrix. Let Hi ∈ Rmi×mi (i = 1, 2, . . . , `) be positive
definite matrices with m =

∑`
i=1 mi, and H ∈ Rm×m be a block diagonal matrix with block diagonal elements

Hi (i = 1, . . . , `). Then, H + M is nonsingular.

Proof. The matrix H + M can easily be shown to be a Cartesian P matrix, which is nonsingular.

The next proposition shows the feasibility and solvability of QP subproblem (5.2). In the proof, the matrix

Dk :=
(

M −Im

∇yΦµk
(yk, zk)> ∇zΦµk

(yk, zk)>

)
(5.7)

plays an important role.

Proposition 5.1 (Feasibility of QP subproblem). Let M be a Cartesian P0 matrix, and {wk} be a sequence
generated by Algorithm 1. Then, (i) Axk ≤ b and zk = Nxk+Myk+q hold for all k, and (ii) QP subproblem (5.2)
is feasible and hence has a unique solution for all k.

Proof. Since (i) can be shown easily, we only show (ii). Since the objective function of QP (5.2) is strongly
convex, it suffices to show the feasibility. We first show that the matrix Dk defined by (5.7) is nonsingular.
Note that, by Proposition 4.3(c), ∇zΦµk

(yk, zk) is nonsigular. Let D̃k be the Schur complement of the matrix
∇zΦµk

(yk, zk)> with respect to Dk, that is,

D̃k := M +
(
∇zΦµk

(yk, zk)>
)−1 ∇yΦµ(yk, zk)>

= M +

(
∇g

(
yk − zk

µk

)>)−1(
Im −∇g

(
yk − zk

µk

)>)

= M + diag

(∇gi

(
yi,k − zi,k

µk

)>)−1

− Imi

`

i=1

,

where yi,k and zi,k denote the i-th subvectors of yk and zk, respectively, conforming to the Cartesian structure
of K, and each equality follows from Proposition 4.3. Since M is a Cartesian P0 matrix and (∇gi((yi,k −
zi,k)/µk)>)−1 − Imi ∈ Rmi×mi is positive definite from Proposition 4.3 (c), Lemma 5.1 ensures that D̃k is
nonsingular, and hence Dk is nonsingular. It then follows from (i) that

dx = 0,

(
dy

dz

)
= −D−1

k

(
0

Φµk
(yk, zk)

)
comprise a feasible solution to (5.2). This completes the proof.

The following proposition shows that the search direction dwk produced in Step 1 of Algorithm 1 is a descent
direction of the penalty function θµk,αk

defined by (5.4). It guarantees the well-definedness of the line search in
Step 2 in the sense that there exists a finite L satisfying the Armijo condition (5.6).

Proposition 5.2 (Descent direction). Let {wk} and {dwk} be sequences generated by Algorithm 1. Then, we
have

(a) θ′µk,αk
(wk; dwk) = ∇xf(xk, yk)>dxk + ∇yf(xk, yk)>dyk − αk‖Φµk

(yk, zk)‖1,

(b) θ′µk,αk
(wk; dwk) ≤ −(dwk)>Bkdwk

for each k. Moreover, if Φµk
(yk, zk) 6= 0, then the inequality in (b) holds strictly.
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Proof. We first show (a). Let Jk
+, Jk

0 , and Jk
− ⊆ {1, 2, . . . , m} be the index sets defined by

Jk
+ = {j | Φµk

(yk, zk)j > 0},
Jk

0 = {j | Φµk
(yk, zk)j = 0},

Jk
− = {j | Φµk

(yk, zk)j < 0},

where Φµk
(yk, zk)j ∈ R denotes the j-th component of Φµk

(yk, zk) ∈ Rm. Then, we have

θ′µk,αk
(wk; dwk) = ∇f(xk, yk)>

(
dxk

dyk

)
+ αk

∑
j∈Jk

+

[
∇Φµk

(yk, zk)
]>
j

(
dyk

dzk

)

+ αk

∑
j∈Jk

0

∣∣∣∣[∇Φµk
(yk, zk)

]>
j

(
dyk

dzk

)∣∣∣∣− αk

∑
j∈Jk

−

[
∇Φµk

(yk, zk)
]>
j

(
dyk

dzk

)
, (5.8)

where [∇Φµk
(yk, zk)]j denotes the j-th column vector of ∇Φµk

(yk, zk). Since

[
∇Φµk

(yk, zk)
]>
j

(
dyk

dzk

)
= −Φµk

(yk, zk)j

from the constraint of QP subproblem (5.2), we have

θ′µk,αk
(wk; dwk) = ∇xf(xk, yk)>dxk + ∇yf(xk, yk)>dyk − αk‖Φµk

(yk, zk)‖1. (5.9)

We next show (b). Taking the inner product of dwk = (dxk, dyk, dzk) and both sides of the first equality in the
KKT conditions (5.3) with dw = dwk, η = ηk, u = uk, v = vk for the subproblem (5.2), we obtain

∇f(xk, yk)>
(

dxk

dyk

)
+ (dwk)>Bkdwk + (uk)>(Ndxk + Mdyk − dzk)

+ (vk)>∇Φµk
(yk, zk)

(
dyk

dzk

)
+ (ηk)>Adxk = 0. (5.10)

Moreover, from the constraints of the subproblem (5.2) and the KKT conditions (5.3), we have

Ndxk + Mdyk − dzk = 0, (5.11)

∇Φµk
(yk, zk)>

(
dyk

dzk

)
= −Φµk

(yk, zk), (5.12)

and

0 = (ηk)>(b − Axk − Adxk) = −(ηk)>Adxk + (ηk)>(b − Axk) ≥ −(ηk)>Adxk, (5.13)

where the inequality is due to ηk ≥ 0 and b − Axk ≥ 0 from (5.3). Substituting (5.11)–(5.13) into (5.10), we
have

∇f(xk, yk)>
(

dxk

dyk

)
+ (dwk)>Bkdwk − (vk)>Φµk

(yk, zk) ≤ 0.

Furthermore, from (5.9), we obtain

θ′µk,αk
(wk; dwk) ≤ −(dwk)>Bkdwk + (vk)>Φµk

(yk, zk) − αk‖Φµk
(yk, zk)‖1

= −(dwk)>Bkdwk +
∑

j∈Jk
+

(vk
j − αk)

[
Φµk

(yk, zk)
]
j

+
∑

j∈Jk
−

(vk
j + αk)

[
Φµk

(yk, zk)
]
j

≤ −(dwk)>Bkdwk,

where the last inequality follows from αk > ‖vk‖∞ and the definitions of Jk
+ and Jk

−. Moreover, if Φµk
(yk, zk) 6= 0,

then the last inequality holds strictly since Jk
+ ∪ Jk

− 6= ∅. This completes the proof of (b).
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6 Convergence analysis

In this section, we study the convergence property of the proposed algorithm. To begin with, we make the
following assumption.

Assumption 1. Let sequences {wk} and {Bk} be produced by Algorithm 1.

(a) {wk} is bounded.

(b) There exist constants γ1, γ2 > 0 such that γ1‖d‖2 ≤ d>Bkd ≤ γ2‖d‖2 for any d ∈ Rn+2m and k.

(c) There exists a constant c > 0 such that ‖D−1
k ‖ ≤ c for any k, where Dk is the matrix defined by (5.7).

Assumption 1 (b) means that {Bk} is bounded and uniformly positive definite. Assumption 1 (c) holds if and
only if any accumulation point of {Dk} is nonsingular. The next proposition provides a sufficient condition
under which Assumption 1 (c) holds.

Proposition 6.1. Suppose that M is a Cartesian P matrix and Assumption 1 (a) holds. Then, Assumption 1 (c)
holds.

Proof. Let (Ey, Ez) be an arbitrary accumulation point of {(∇yΦµk
(yk, zk),∇zΦµk

(yk, zk))}. Then, it suffices
to show that the matrix

D∞ :=
(

M −Im

Ey Ez

)
is nonsingular. By Proposition 4.3, Ey and Ez satisfy the following three properties:

(a) Ey + Ez = Im;

(b) 0 � Ey � Im and 0 � Ez � Im;

(c) Ey and Ez are symmetric and have the block-diagonal structure conforming to the Cartesian structure of
K = Km1 × · · · × Km` .

From (a) and (b), there exists an orthogonal matrix H ∈ Rm×m,

HEyH> = diag(αi)m
i=1, HEzH

> = diag(1 − αi)m
i=1, 0 ≤ αi ≤ 1 (i = 1, 2, . . . , m), (6.1)

where αi (i = 1, 2, . . . ,m) are the eigenvalues of Ey. Moreover, from (c), H has the same block-diagonal
structure as Ey and Ez. Hence, M̃ := HMH> is a Cartesian P matrix by Proposition 2.2.

Now, let D̃∞ ∈ R2m×2m be defined as

D̃∞ :=
(

H 0
0 H

)
D∞

(
H> 0
0 H>

)
=
(

M̃ −Im

diag(αi)m
i=1 diag(1 − αi)m

i=1

)
, (6.2)

and let (ζ, η) ∈ Rm × Rm be an arbitrary vector such that D̃∞
(

ζ
η

)
= 0. Then, we have

M̃ζ = η, (6.3)

αiζi + (1 − αi)ηi = 0 (i = 1, 2, . . . , m). (6.4)

If αi = 0, then we have (M̃ζ)i = ηi = 0 from (6.3) and (6.4). If αi = 1, then we have ζi = 0 from (6.4). If
0 < αi < 1, then we have ζi(M̃ζ)i = ζiηi = −αi(1 − αi)−1ζ2

i ≤ 0. Thus, for all i, we have ζi(M̃ζ)i ≤ 0. Since
M̃ is a Cartesian P matrix and every Cartesian P matrix is a P matrix, we must have ζ = η = 0. Hence, D̃∞
is nonsingular. From (6.2) and the nonsingularity of H, matrix D∞ is also nonsingular.

The following three lemmas play crucial roles in establishing the convergence theorem for the algorithm.
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Lemma 6.1. Let {wk} be a sequence generated by Algorithm 1, and dwk := (dxk, dyk, dzk) ∈ Rn ×Rm ×Rm be
the unique optimum of QP subproblem (5.2) for each k. Let {(µk, τk)} ⊆ R++ × R++ be a sequence converging
to (0, 0) and α > 0 be a fixed scalar. Suppose that {wk} satisfies Assumption 1(a). In addition, assume that
{dwk} has an accumulation point, and w := (x, y, z) and dw := (dx, dy, dz) are arbitrary accumulation points
of {wk} and {dwk}, respectively. Then we have

lim sup
k→∞

(
θµk,α(wk + τkdwk) − θµk,α(wk)

τk
− θ′µk,α(wk; dwk)

)
≤ 0

provided y − z /∈ bd (K ∪−K) and dw 6= 0.

Proof. Taking subsequences if necessary, we may suppose wk → w and dwk → dw. Moreover, we have
θ′µk,α(wk; dwk) = ∇xf(xk, yk)>dxk + ∇yf(xk, yk)>dyk − α‖Φµk

(yk, zk)‖1 as shown in (5.9). Thus, we have
only to show

lim sup
k→∞

(
θµk,α(wk + τkdwk) − θµk,α(wk)

τk

)
≤ ∇f(x, y)>

(
dx

dy

)
− α‖Φ(y, z)‖1.

From the mean-value theorem and the continuity of ∇f , we have

lim
k→∞

f(xk + τkdxk, yk + τkdyk) − f(xk, yk)
τk

= ∇f(x, y)>
(

dx

dy

)
.

Therefore, it suffices to show that

lim sup
k→∞

|Φµk
(yk + τkdyk, zk + τkdzk)j | − |Φµk

(yk, zk)j |
τk

≤ −|Φ(y, z)j | (6.5)

for each j. By Definition 5 and Proposition 4.3, we have ∇yΦµk
(yk, zk) = Im−∇Pµk

(yk−zk) and ∇zΦµk
(yk, zk) =

∇Pµk
(yk − zk), which together with the constraints of QP subproblem (5.2) yield

−Φµk
(yk, zk) = ∇yΦµk

(yk, zk)>dyk + ∇zΦµk
(yk, zk)>dzk

= (I −∇Pµk
(yk − zk)>)dyk + ∇Pµk

(yk − zk)>dzk

= dyk −∇Pµk
(yk − zk)>(dyk − dzk). (6.6)

Hence, we have

Φµk
(yk + τkdyk, zk + τkdzk) − Φµk

(yk, zk)

= τkdyk −
(
Pµk

(yk + τkdyk − (zk + τkdzk)) − Pµk
(yk − zk)

)
= τk

(
−Φµk

(yk, zk) + ∇Pµk
(yk − zk)>(dyk − dzk)

)
−Pµk

(yk − zk + τk(dyk − dzk)) + Pµk
(yk − zk)

= −τkΦµk
(yk, zk) + τkδk, (6.7)

where the first equality is due to (4.3), the second equality follows from (6.6), and δk := (δk
1 , δk

2 , . . . , δk
m) ∈ Rm

is given by

δk
j := ∇Pµk

(yk − zk)>j (dyk − dzk) − τ−1
k

(
Pµk

(yk − zk + τk(dyk − dzk))j − Pµk
(yk − zk)j

)
. (6.8)

To show (6.5), we consider three cases: (i) Φ(y, z)j = 0, (ii) Φ(y, z)j > 0 and (iii) Φ(y, z)j < 0. In case (i), we
first notice that

|Φµk
(yk + τkdyk, zk + τkdzk)j | − |Φµk

(yk, zk)j |
τk

≤ |Φµk
(yk + τkdyk, zk + τkdzk)j − Φµk

(yk, zk)j |
τk

= |Φµk
(yk, zk)j − δk

j |, (6.9)
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where the equality follows from (6.7). By applying the mean-value theorem in (6.8), we can find ζkj ∈ (0, 1) for
each k such that

δk
j =

(
∇Pµk

(yk − zk) −∇Pµk

(
yk − zk + ζkjτk(dyk − dzk)

))>
j

(dyk − dzk). (6.10)

Since Proposition 4.1 and the boundedness of {dwk} imply

lim
k→∞

∇Pµk
(yk − zk) −∇Pµk

(yk − zk + ζkjτk(dyk − dzk)) = 0, (6.11)

we obtain limk→∞ δk
j = 0. Moreover, by Proposition 4.4, we have limk→∞ Φµk

(yk, zk)j = Φ(y, z)j = 0. Then,
by letting k → ∞ in (6.9), we obtain (6.5). In case (ii) and case (iii), we have

|Φµk
(yk + τkdyk, zk + τkdzk)j | − |Φµk

(yk, zk)j | = −Φµk
(yj , zk)j + δk

j

and
|Φµk

(yk + τkdyk, zk + τkdzk)j | − |Φµk
(yk, zk)j | = Φµk

(yj , zk)j − δk
j ,

respectively. Then, a similar argument to that in case (i) leads to the desired inequality (6.5).

Lemma 6.2. Let {wk} be a sequence generated by Algorithm 1. Suppose that Assumption 1 holds. Then, we
have the following statements.

(i) {dwk} and {(uk, vk)} are bounded.

(ii) There exists k0 such that αk = αk0 for all k ≥ k0.

(iii) The sequences {θµk,αk
(wk)} and {θµk,αk

(wk+1)} converge to the same limit.

Proof. We first prove (i). Let (
dỹk

dz̃k

)
:= −D−1

k

(
0

Φµk
(yk, zk)

)
(6.12)

and dw̃k := (0, dỹk, dz̃k), where Dk is defined by (5.7). Then, dw̃k is a feasible point of QP subproblem (5.2).
Note that the objective function of QP subproblem (5.2) is rewritten as

1
2
(dw − B−1

k gk)>Bk(dw − B−1
k gk) + constant,

where gk := (∇f(xk, yk), 0). Since dwk is the optimum of QP subproblem (5.2), we have

(dw̃k − B−1
k gk)>Bk(dw̃k − B−1

k gk) ≥ (dwk − B−1
k gk)>Bk(dwk − B−1

k gk).

This together with Assumption 1 (b) implies

γ2‖dw̃k − B−1
k gk‖2 ≥ γ1‖dwk − B−1

k gk‖2. (6.13)

Now, notice that {dw̃k} is bounded from (6.12), Assumption 1 (a), (c) and Proposition 4.4. In addition, {B−1
k }

and {gk} are also bounded from Assumption 1 (a), (b). Thus, we have the boundedness of {dwk} from (6.13).
On the other hand, from the first equality of the KKT conditions (5.3), we have(

uk

vk

)
= −(D>

k )−1

((
∇yf(xk, yk)

0

)
+ B̃kdwk

)
,

where B̃k is the 2m × (n + 2m) matrix consisting of the last 2m rows of Bk. This equation together with
Assumption 1 and the boundedness of {dwk} yields the boundedness of {(uk, vk)}.

We next prove (ii). From the update rule (5.5), we can easily see that {αk} is nondecreasing. Moreover, if

‖vk‖∞ > αk−1 − δ, (6.14)

then we have αk = max{‖vk‖∞ + δ, αk−1 + 2δ} ≥ αk−1 + 2δ, that is, αk increases at least by 2δ at a time. Let
K̂ := {k|‖vk‖∞ > αk−1 − δ}. If |K̂| = ∞, then αk → ∞ as k → ∞ and hence {‖vk‖∞} is unbounded from
(6.14). However this contradicts (i). Thus we have (ii).
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We finally show (iii). Since we have (ii), there exist α and k0 such that α = αk for all k ≥ k0. In what
follows, we suppose k ≥ k0. Since µk+1 ≤ µk, Proposition 4.5 together with (5.4) implies

θµk+1,α(wk+1) + αmρµk+1 ≤ θµk,α(wk+1) + αmρµk (6.15)

≤ θµk,α(wk) + αmρµk, (6.16)

where the last inequality follows from the Armijo condition (5.6) and Proposition 5.2 (b). From (6.16),
{θµk,α(wk)+αmρµk} is a monotonically nonincreasing sequence. In addition, {θµk,α(wk)+αmρµk} is bounded,
since {θµk,α(wk)} is bounded from Assumption 1 (a). Therefore, {θµk,α(wk) + αmρµk} is convergent. This fact
together with limk→∞ µk = 0 and (6.16) yields that {θµk,α(wk+1)} and {θµk,α(wk)} must converge to the same
limit.

Finally, we show that a sequence generated by the algorithm globally converges to B-stationary point of
MPSOCC (3.1) under the assumption that any accumulation point w = (x, y, z) satisfies y − z /∈ bd (K ∪
−K), which is equivalent to the nondegeneracy condition given in Definition 3.1 if y and z satisfy the SOC
complementarity condition.

Theorem 6.1. Let {wk} be a sequence generated by Algorithm 1. Suppose that {wk} satisfies Assumption 1.
Let w = (x, y, z) be an arbitrary accumulation point of {wk}. If (y, z) satisfies y − z /∈ bd (K ∪ −K), then w is
a B-stationary point of MPSOCC (1.1).

Proof. By Lemma 6.2(ii), there exists some constant α > 0 and k0 such that αk = α for all k ≥ k0. In this
proof, we suppose without loss of generality that αk = α holds for all k.

We first show that
lim

k→∞
‖dwk‖ = 0. (6.17)

From Proposition 5.2 (b) and Assumption 1 (b), we have

θ′µk,α(wk; dwk) ≤ −(dwk)>Bkdwk ≤ −γ1‖dwk‖2, (6.18)

which together with Armijo condition (5.6) yields

θµk,α(wk+1) ≤ θµk,α(wk) + στkθ′µk,α(wk; dwk)

≤ θµk,α(wk) − γ1στk‖dwk‖2.

Hence, from Lemma 6.2 (iii), we obtain
lim

k→∞
τk‖dwk‖2 = 0.

Now, assume for contradiction that (6.17) does not hold. Then, there exists an infinite index set K ⊆ {0, 1, . . .}
such that

lim
k→∞
k∈K

‖dwk‖ > 0, (6.19)

and hence
lim

k→∞
k∈K

τk = 0.

Let `k be the smallest nonnegative integer L satisfying (5.6), i.e., ρ`k = τk. Then, from the definition of `k, we
have

θµk,α(wk + ρ`k−1dwk) > θµk,α(wk) + σρ`k−1θ′µk,α(wk; dwk),

which implies

ξk :=
θµk,α(wk + ρ`k−1dwk) − θµk,α(wk)

ρ`k−1
− θ′µk,α(wk; dwk) > −(1 − σ)θ′µk,α(wk; dwk). (6.20)

By Lemma 6.1 together with limk→∞, k∈K ρ`k−1=0 and y − z /∈ bd (K∪−K), we have lim supk→∞, k∈Kξk ≤ 0.
Moreover, we have from (6.18)

−(1 − σ)θ′µk,α(wk; dwk) ≥ (1 − σ)γ1‖dwk‖2. (6.21)
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From (6.20) and (6.21), we must have limk→∞, k∈K ‖dwk‖ = 0. However, this contradicts (6.19), and hence we
have (6.17).

Next, we show that w satisfies the KKT conditions (3.2) of MPSOCC (3.1). Let {(ηk, uk, vk)} be the sequence
of multipliers corresponding to {dwk}. Then, {(uk, vk)} is bounded from Lemma 6.2 (i). Hence, there exist
vectors u, v and an index set K ′ such that limk→∞,k∈K′(wk, uk, vk) = (w, u, v). By (5.3) and letting X := {x ∈
Rn | Ax ≤ b} we have

ζk ∈ −NX(xk) × {0}2m, (6.22)(
N M −Im

0 ∇yΦµk
(yk, zk)> ∇zΦµk

(yk, zk)>

) dxk

dyk

dzk

 = −
(

0
Φµk

(yk, zk)

)
, (6.23)

0 ≤ b − Axk − Adxk, (6.24)

where

ζk :=

∇xf(xk, yk)
∇yf(xk, yk)

0

+ Bk

 dxk

dyk

dzk

+

 N>

M>

−Im

uk +

 0
∇yΦµk

(yk, zk)
∇zΦµk

(yk, zk)

 vk, (6.25)

and (6.22) follows from the first equation of (5.3) with NX(xk) = {A>η | η ≥ 0, η>(Axk − b) = 0}. By letting
k ∈ K ′ tend to ∞ in (6.23) and (6.24), we have

0 ≤ b − Ax, Φ(y, z) = 0. (6.26)

Note that (6.26) implies x ∈ X. In addition, note that {ζk}k∈K′ is a convergent sequence satisfying (6.22), since
{Bk} is bounded from Assumption 1 and limk→∞ ∇Φµk

(yk, wk) = ∇Φ(y, w) from the nondegeneracy condition.
Then, these facts together with (6.17) and the closedness of the point-to-set map NX(·) yield∇xf(x, y)

∇yf(x, y)
0

+

 NT

MT

−Im

u +

 0
∇yΦ(y, z)
∇zΦ(y, z)

 v = lim
k→∞,k∈K′

ζk ∈ −NX(x) × {0}2m.

This together with (6.26) means that w satisfies the KKT conditions (3.2) of MPSOCC (3.1). By Proposition 3.2,
w is a B-stationary point of MPSOCC (1.1).

7 Numerical experiments

In this section, we implement Algorithm 1 for solving problem (1.1) and report some numerical results. The
program is coded in Matlab 2008a and run on a machine with an IntelrCore2 Duo E6850 3.00GHz CPU and
4GB RAM. In Step 0 of the algorithm, we set the parameters as

δ := 1, α−1 := 10, σ := 10−3, ρ := 0.9.

The choice of smoothing parameters {µk}, i.e., µ0 and β, and a starting point w0 vary with the experiment.
We let B0 be the identity matrix, and update Bk by the modified BFGS formula:

Bk+1 := Bk − Bksk(Bksk)>

(sk)>Bksk
+

ζk(ζk)>

(sk)>ζk

with sk = wk+1−wk and ζk = θk ζ̃k+(1−θk)Bksk, where ζ̃k := ∇wLµk+1(w
k+1, uk, vk, ηk)−∇wLµk

(wk, uk, vk, ηk),
Lµ denotes the Lagrangian function defined by Lµ(w, u, v, η) := f(x, y) + Φµ(y, z)v + (Nx + My + q − z)u +
(Ax − b)η, and θk is determined by

θk :=


1 if (sk)>ζ̃k ≥ 0.2(sk)>Bksk

0.8(sk)>Bksk

(sk)>(Bksk − ζ̃k)
otherwise.
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In Step 1, we use the quadprog solver in Matlab Optimization Toolbox for solving the QP subproblems. In
Step 3, we terminate the algorithm if the following condition is satisfied:

‖Φ(yk, zk)‖∞ + ‖dwk‖∞ ≤ 10−7. (7.1)

The rationale for using (7.1) is as follows. If Φ(yk, zk) = 0, i.e., K 3 yk ⊥ zk ∈ K holds, then wk = (xk, yk, zk) is
feasible to MPSOCC (1.1), since the remaining constraints Axk ≤ b and zk = Nxk + Myk + q always hold from
Proposition 5.1. Moreover, if ‖dwk‖∞ = 0, then wk satisfies the KKT conditions (3.2) of MPSOCC (3.1). Thus,
by Theorem 6.1, ‖Φ(yk, zk)‖∞ + ‖dwk‖∞ = 0 indicates that wk is a B-stationary point under the assumption
yk − zk /∈ bd (K∪−K), which is equivalent to the nondegeneracy condition in Definition 3.1 if K 3 yk ⊥ zk ∈ K.
Hence, (7.1) is appropriate for a stopping criterion of the algorithm. As the CM function, we choose ĝ(α) :=
((α2 + 4)1/2 + α)/2.

Experiment 1

In the first experiment, we solve the following test problem of the form (1.1):

Minimize ‖x‖2 + ‖y‖2

subject to Ax ≤ b,

z = Nx + My + q,

K 3 y ⊥ z ∈ K,

(7.2)

where (x, y, z) ∈ R10 ×Rm ×Rm, and each element of A ∈ R10×10, N ∈ Rm×10 is randomly chosen from [−1, 1].
Moreover, each element of b ∈ R10 is randomly chosen from [0, 1]. In addition, M ∈ Rm×m is a positive semi-
definite symmetric matrix generated by M = M1M

>
1 + 0.01I, and M1 ∈ Rm×m is a matrix whose entries are

randomly chosen from [−1, 1]. The vector q ∈ Rm is set to be q := ξz −Mξy with ξy ∈ Rm and ξz ∈ Rm, whose
components are randomly chosen from [−1, 1]. We choose different Cartesian structures for K, and generate
50 problems for each K. In applying Algorithm 1, we set an initial point w0 = (x0, y0, z0) := (0, ξy, ξz) ∈
R10 ×Rm ×Rm, so that Ax0 ≤ b and z0 = Nx0 +My0 + q are satisfied. We choose smoothing parameters {µk}
as µk := 100 × 0.8k.

The obtained results are shown in Tables 1 and 2, where (Kν)κ := Kν × Kν × · · · × Kν ⊆ Rνκ and each
column represents the following:

• ] ite: the average number of iterations among 50 test problems for each K;

• cpu(s): the average cpu-time in second among 50 test problems for each K;

• non(%): percentage of test problems whose solutions obtained by Algorithm 1 satisfy the nondegeneracy
condition in Definition 3.1.

Recall that convergence to a B-stationary point is proved under the nondegeneracy condition. Hence, the value
of “non” represents the percentage of problems for which the algorithm successfully finds B-stationary points.
From Table 1, we can observe that ] ite does not change so much although the values of cpu(s) tends to be larger
as m increases. From Table 2, we can see that non(%) tends to be less than 100 if K includes K1 or K2. Indeed,
when K = (K1)100 and (K2)50, the values of “non(%)” is 74 and 86, respectively, whereas it becomes 100 when
the dimension of all SOCs in K is larger than 10.
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m K ]ite cpu(s) non(%)
10 K10 57.42 0.400 100
20 K20 56.30 0.471 100
30 K30 55.78 0.568 100
40 K40 55.44 0.726 100
50 K50 55.06 0.987 100
60 K60 54.96 1.388 100
70 K70 54.74 1.797 100
80 K80 54.66 2.130 100
90 K90 54.40 2.437 100
100 K100 54.20 2.930 100

Table 1: Results for problems with a single SOC complementarity constraint (Experiment 1)

m K ]ite cpu(s) non(%)
100 K100 54.20 2.930 100
100 (K50)2 55.18 3.037 100
100 K50 ×K20 ×K30 56.28 3.016 100
100 (K10)10 64.10 3.687 100
100 K50 ×K20 × (K10)2 ×K5 × (K1)5 78.22 4.558 98
100 (K2)50 78.68 6.012 86
100 (K1)100 87.84 6.685 74

Table 2: Results for problems with multiple SOC complementarity constraints (Experiment 1)

Experiment 2.

In the second experiment, we apply Algorithm 1 to a bilevel programming problem with a robust optimization
problem in the lower-level. Bilevel programming has wide application such as network design and production
planning [2, 9]. On the other hand, robust optimization is known to be a powerful methodology to treat
optimization problems with uncertain data [3, 4]. In this experiment, we solve the following problem:

Minimize
(x,y)∈R4×R4

‖x − Cy‖2 +
∑4

i=1 xi

subject to 0 ≤ xi ≤ 5 (i = 1, 2, 3, 4),
1 ≤ −x1 + 2x2 + x4 ≤ 3,

1 ≤ x2 + x3 − x4 ≤ 2,

y solves P (x),

(7.3)

with
P (x) : Minimize

y∈R4
max

x̃∈Ur(x)
x̃>y +

1
2
y>My,

where r ≥ 0 is an uncertainty parameter, Ur(x) ⊆ R4 is an uncertainty set defined by Ur(x) := {x̃ ∈ R4 |
‖x̃ − x‖ ≤ r}, and

M :=


2 2 0 −1
2 4 −2 0
0 −2 2 0
−1 0 0 6

 , C :=


−1 1 0 1
0 2 2 3
0 0 3 2
0 0 0 −1

 .

For solving problem (7.3), we introduce an auxiliary variable γ ∈ R to reformulate the lower-level minimax
problem P (x) as the following SOCP:

Minimize
(γ,y)∈R×R4

1
2y>My + x>y + rγ

subject to
(

γ

y

)
∈ K5.
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Furthermore, the above SOCP can be rewritten as the following SOC complementarity problem:

K5 3
(

γ

y

)
⊥
(

r

My + x

)
∈ K5.

Thus, we can convert problem (7.3) to the following problem:

Minimize
(x,y,z,γ)∈R4×R4×R5×R

‖x − Cy‖2 +
∑4

i=1 xi

subject to 0 ≤ xi ≤ 5 (i = 1, 2, 3, 4),
1 ≤ −x1 + 2x2 + x4 ≤ 3,

1 ≤ x2 + x3 − x4 ≤ 2,

z =
(

r

My + x

)
, K5 3

(
γ

y

)
⊥ z ∈ K5,

(7.4)

which is of the form (1.1). For the sake of comparison, problem (7.4) is solved not only by Algorithm 1, but
also by the smoothing method [20], which is described as follows:

Smoothing method

Step 0. Choose a positive sequence {τ`} such that τ` → 0. Set ` := 0.

Step 1. Find a stationary point w` = (x`, y`, z`) of the smoothed problem (5.1) with µ = τ`.

Step 2. If w` is feasible for MPSOCC (1.1), then stop. Otherwise, set ` := ` + 1 and go to Step 1.

Each algorithm is implemented in the following way: In Step 0 of Algorithm 1, we set smoothing parameters
µk := 0.8k (k ≥ 0) and a starting point x0 := (1, 1, 1, 1), (γ0, y

0, z0) := (0, 0, 0) ∈ R × R4 × R5. The choice of
the other parameters is the same as in Experiment 1. In Step 0 of the smoothing method, we set τ` := 0.8` for
` ≥ 0. In Step 1, for solving problem (5.1) with µ = τ`, we apply Algorithm 1 with slight modification, where
the smoothing parameter µk is fixed to τ` for all k and the termination criterion is replaced by ‖dwk‖∞ ≤ 10−7.
In Step 2, we stop the smoothing method when ‖Φ(y`, z`)‖∞ ≤ 10−7 is satisfied.*2

We then test both the methods to problem (7.4) with r = 0.02, 0.04, 0.06, 0.08 and 0.10. The obtained results
are shown in Tables 3 and 4, whose columns represent the following:

• (x∗, y∗, γ∗): the value of x, y, γ obtained by Algorithm 1;

• (λ∗
1, λ

∗
2): spectral values of ( γ∗

y∗ )+z∗ with respect to K5 defined as in Definition 2.1, where z∗ := (r,M( γ∗

y∗ )+
x∗);

• ]iteout: the number of outer iterations;

• ]QP: the number of QP-subproblems (5.2) solved in each trial.

From Table 3, for all r, we can observe (λ∗
1, λ

∗
2) > 0, which means ( γ∗

y∗ ) + z∗ ∈ intK5, i.e., the nondegeneracy
condition holds at the obtained solution. Hence, Algorithm 1 finds a B-stationary point of problem (7.4)
successfully. From Table 4, we cannot find a significant difference between the values of ]iteout for the two
methods. However, it is observed that the value of ]QP in the smoothing method tends to be much larger
than that in Algorithm 1. Indeed, when r = 0.02, the smoothing method has ]QP = 218, which is almost five
times larger than ]QP = 44 in Algorithm 1. This fact suggests that the smoothing method needs to solve a
number of QP-subproblems in Step 1 for solving each smoothed problem (5.1) with fixed µ, while Algorithm 1
only solves one QP subproblem (5.2) for each smoothed problem (5.1). As a result, the computational cost in
the smoothing method tends to be larger than Algorithm 1.

*2The remaining constraints Ax` ≤ b and z` = Nx` + My` + q are automatically satisfied since w` is feasible to the smoothed
problem (5.1).
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r x∗ y∗ γ∗ (λ∗
1, λ

∗
2)

0.02 (0.9236, 0.9618, 0.0382, 0.0000) (−0.6152, 0.1120, 0.0915, 0.1020) 0.6402 (0.040, 1.280)
0.04 (0.9495, 0.9747, 0.0253, 0.0000) (−0.6170, 0.1106, 0.0950, 0.1018) 0.6421 (0.080, 1284)
0.06 (0.9754, 0.9877, 0.0123, 0.0000) (−0.6189, 0.1092, 0.0985, 0.1016) 0.6442 (0.120, 1.288)
0.08 (1.0021, 1.0007, 0.0000, 0.0007) (−0.6218, 0.1084, 0.1021, 0.1014) 0.6474 (0.160, 1.295)
0.10 (1.0416, 1.0139, 0.0000, 0.0139) (−0.6356, 0.1123, 0.1044, 0.1011) 0.6616 (0.200, 1.323)

Table 3: Results for Algorithm 1 (Experiment 2)

Algorithm 1 smoothing method
r cpu(s) ]iteout ]QP cpu(s) ]iteout ]QP

0.02 0.207 45 44 1.005 43 218
0.04 0.213 43 42 0.941 42 205
0.06 0.213 43 41 0.908 41 199
0.08 0.214 42 40 0.873 40 188
0.10 0.209 41 40 0.875 40 188

Table 4: Comparison of Algorithm 1 and the smoothing method

8 Conclusion

In this paper, we have considered the mathematical program with second-order cone (SOC) complementarity
constraints. We have proposed an algorithm based on the smoothing and the sequential quadratic programming
(SQP) methods, in which we replace the SOC complementarity constraints with smooth equality constraints
by means of the natural residual and its smoothing function, and apply the SQP method while decreasing the
smoothing parameter gradually. We have shown that the proposed algorithm possesses the global convergence
property under the Cartesian P0 and the nondegeneracy assumptions. We have further confirmed the efficiency
of the algorithm through numerical experiments.
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