
Local reduction based SQP-type method for semi-infinite

programs with an infinite number of second-order cone

constraints∗

Takayuki Okuno and Masao Fukushima†

October 29, 2012

Abstract

The second-order cone program (SOCP) is an optimization problem with second-order cone

(SOC) constraints and has achieved notable developments in the last decade. The classical

semi-infinite program (SIP) is represented with infinitely many inequality constraints, and

has been studied extensively so far. In this paper, we consider the SIP with infinitely many

SOC constraints, called the SISOCP for short. Compared with the standard SIP and SOCP,

the studies on the SISOCP are scarce, even though it has important applications such as

Chebychev approximation for vector-valued functions. For solving the SISOCP, we develop an

algorithm that combines a local reduction method with an SQP-type method. In this method,

we reduce the SISOCP to an SOCP with finitely many SOC constraints by means of implicit

functions and apply an SQP-type method to the latter problem. We study the global and

local convergence properties of the proposed algorithm. Finally, we observe the effectiveness

of the algorithm through some numerical experiments.

Keywords. semi-infinite programming; second-order cone constraints; SQP-type method; local
reduction method

1 Introduction

In this paper, we focus on the following semi-infinite program with an infinite number of second-
order cone constraints (SISOCP):

Minimize
x∈Rn

f(x)

subject to g(x, t) ∈ Km for all t ∈ T,
(1.1)

where f : Rn → R and g : Rn × R` → Rm are twice continuously differentiable functions, and T is
a nonempty compact index set given by

T := {t ∈ R` | hi(t) ≥ 0, i = 1, 2, . . . , p},

∗This research was supported in part by Grant-in-Aid for Scientific Research from Japan Society for the Promotion

of Science.
†Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto

606-8501, Japan ({t_okuno, fuku}@amp.i.kyoto-u.ac.jp).

where hi : R` → R are twice continuously differentiable functions for i = 1, 2, . . . , p. Moreover,
Km ⊆ Rm denotes the m-dimensional second-order cone (SOC) defined by

Km :=


{
(z1, z̃>)> ∈ R × Rm−1 | z1 ≥ ‖z̃‖

}
(m ≥ 2)

R+ := {z ∈ R | z ≥ 0} (m = 1).

We consider the problem (1.1) that contains a single SOC with m ≥ 2 for simplicity of expression,
although we can deal with the more general SISOCP that contains multiple SOCs as well as
equality constraints, i.e.,

Minimize
x∈Rn

f(x)

subject to g0(x) = 0,
gs(x, t) ∈ Kms for all t ∈ T s (s = 1, 2, . . . , S),

(1.2)

where g0 : Rn → Rm0 and gs : Rn × R`s → Rms (s = 1, 2, . . . , S) are twice continuously dif-
ferentiable functions, and T s ⊆ R`s (s = 1, 2, . . . , S) are nonempty compact index sets given by
T s := {t ∈ R`s | hs

i (t) ≥ 0, i = 1, 2, . . . , ps} with twice continuously differentiable functions
hs

i : R`s → R (i = 1, 2, . . . , ps). It is possible to extend the subsequent analysis for (1.1) to the
general SISOCP (1.2) in a direct manner. In fact, we will show some numerical results for SISOCPs
that contain multiple SOCs; see Experiment 3 in Section 5.

When T is a finite set, SISOCP (1.1) is nothing but a standard second-order cone program
(SOCP) [14, 1]. Studies on the SOCP have been advanced significantly in the last decade. Espe-
cially, development of research on the linear SOCP (LSOCP) is notable. The primal-dual interior-
point method [14, 1] is well known as an effective algorithm for solving LSOCP, and some software
packages implementing them [22, 24] have been produced. The nonlinear SOCP (NLSOCP) is
more complicated and has been studied not so much as LSOCP [11, 25, 27]. The second-order cone
complementarity problem (SOCCP) is another important problem involving SOCs. The Karush-
Kuhn-Tucker conditions for LSOCP and NLSOCP are particularly represented as SOCCPs. The
smoothing method [8, 4] is one of useful algorithms for solving the SOCCPs.

When m = 1 and K = R+, SISOCP (1.1) reduces to the classical semi-infinite program (SIP)
[5, 10, 12, 15, 21]. The SIP has received much attention of many researchers so far. It has wide
applications in engineering, e.g., the air pollution control, the robot trajectory planning, the stress
of materials, and so on [10, 15].

One of important applications of SISOCP (1.1) is a vector-valued Chebyshev approximation
problem. Let X ⊆ R` be a nonempty set, Y ⊆ Rn be a given compact set, and Φ : Y → Rm and
F : R` × Y → Rm be given functions. Then, the Chebyshev approximation problem is to find a
parameter u ∈ X such that Φ(y) ≈ F (u, y) for all y ∈ Y . One relevant approach is to solve the
following problem:

Minimize
u∈X

max
y∈Y

‖Φ(y) − F (u, y)‖. (1.3)

By introducing the auxiliary variable r ∈ R, we can reformulate the above problem as

Minimize
(u,r)∈X×R

r

subject to

(
r

Φ(y) − F (u, y)

)
∈ Km for all y ∈ Y,

which is of the form (1.1). See also [16] for another application of SISOCP (1.1).
For solving the standard SIP, there exist many algorithms such as the discretization method

[9, 20], the exchange method [7, 12, 26, 16], the local reduction method [6, 23, 17, 18], and others

2

[3, 13, 19, 26]. The discretization method solves a sequence of relaxed SIPs with T replaced by
T k ⊆ T , where T k is a finite index set such that the distance1 from T k to T tends to 0 as k
goes to infinity. While this method is comprehensible and easy to implement, the computational
cost tends to be high since the cardinality of T k grows exponentially in the dimension of T . The
exchange method solves a relaxed subproblem with T replaced by a finite subset T k ⊆ T , where
T k is updated so that T k+1 ⊆ T k ∪{t1, t2, · · · , tr} with some {t1, t2, · · · , tr} ⊆ T \T k. In the local
reduction based method, an infinite number of constraints in the original SIP are rewritten as a
finite number of constraints by using implicit functions. Then, the obtained standard nonlinear
program is solved by existing methods.

In contrast with the SIP, numerical methods for SISOCP (1.1) have not been studied so much.
Recently, Okuno, Hayashi and Fukushima [16] proposed a regularized explicit exchange method
to solve semi-infinite programs with infinitely many conic constraints. Although an exchange-type
algorithm is effective to find an approximate solution, it is not very suitable to obtain an accurate
solution. On the other hand, a local reduction-type method is known to have an advantage in
computing an accurate solution with fast convergence speed [6, 23, 17, 18]. In this paper, for
solving SISOCP (1.1), we propose a local reduction based method combined with a sequential
quadratic programming (SQP) method, where, in each iteration, we replace the SISOCP with an
NLSOCP by means of the local reduction method and then generate a search direction by solving
a quadratic SOCP that approximates the NLSOCP.

This paper is organized as follows. In Section 2, we study the local reduction method for
SISOCP (1.1). We define some concepts and give important propositions to represent the SISOCP
locally as an NLSOCP by using implicit functions. In Section 3, we propose an SQP-type method
combined with the local reduction method for solving SISOCP (1.1). In Section 4, we analyze the
global and local convergence properties of the proposed algorithm. In Section 5, we observe the
effectiveness of the algorithm by some numerical experiments. In Section 6, we conclude the paper
with some remarks.

Throughout the paper, we use the following notations. The 2-norm of a vector z ∈ Rm are
defined by ‖z‖ :=

√
z>z. The symbol ⊥ means the perpendicularity. For any vector z ∈ Rm, we

let (z)+ := max(z, 0), where the maximum is taken componentwise. For zi ∈ Rmi (i = 1, 2, . . . , p),
we often write (z1, z2, · · · , zp) to denote ((z1)>, (z2)>, · · · , (zp)>)> ∈ Rm1 × Rm2 × · · · × Rmp .
For any vector z ∈ Rn and any vector function G : Rn → Rm, we let z = (z1, z̃) ∈ R × Rn−1

and G(z) = (G1(z), G̃(z)) ∈ R × Rm−1. For any twice continuously differentiable vector function
H : Rn → Rm and any vector w ∈ Rm, we denote ∇2H(z)w :=

∑m
i=1 wi∇2Hi(z), where H(z) :=

(H1(z),H2(z), . . . , Hm(z))> ∈ Rm. For any scalar function ψ : Rn → R and z ∈ Rn, we let
ψ+(z) := (ψ(z))+. We denote the n-dimensional identity matrix and the set of n × n symmetric
positive definite matrices by In and Sn

++, respectively. For z ∈ Rn, diag(z) denotes the n × n

diagonal matrix with diagonal elements zi (i = 1, 2, . . . , n).

2 Local reduction of SISOCP to SOCP

In this section, we study the local reduction method for SISOCP (1.1). In relation to the constraints
in SISOCP (1.1), we first consider the problem

P (x) :
Minimize

t∈R`
λ(x, t) := g1(x, t) − ‖g̃(x, t)‖

subject to t ∈ T = {t ∈ R` | hi(t) ≥ 0, i = 1, 2, . . . , p},
(2.1)

1For two sets X ⊆ Y , the distance from X to Y is defined as dist (X, Y) := supy∈Y inf x∈X ‖x − y‖.

3

where g1(x, t) is the first component of g(x, t) ∈ Rm and g̃(x, t) is the vector consisting of the re-
maining m−1 components of g(x, t). We call problem (2.1) the lower-level problem of SISOCP (1.1)
and let

ϕ(x) := max
t∈T

(−λ(x, t)) . (2.2)

Obviously, the infinitely many SOC constraints g(x, t) ∈ Km (t ∈ T) are equivalent to the condition
ϕ(x) ≤ 0. Hence, SISOCP (1.1) can be rewritten equivalently as

Minimize
x∈Rn

f(x) subject to ϕ(x) ≤ 0. (2.3)

Though problem (2.3) has only one constraint, treating ϕ(x) ≤ 0 directly is difficult since it is
not differentiable everywhere. As a remedy, we take the local reduction method. In this method,
at any x̄ ∈ Rn, we find an open neighborhood U(x̄) ⊆ Rn of x̄ and continuously differentiable
functions tj : U(x̄) → T (j = 1, 2, . . . , r(x̄)) such that

ϕ(x) = max
1≤j≤r(x̄)

(−λ(x, tj(x)))

holds for all x ∈ U(x̄), where each tj(x) represents a local maximum of −λ(x, t) on T and r(x̄) is a
positive integer. This means that ϕ(x) ≥ 0 may be reduced to the finitely many SOC constraints
g(x, tj(x)) ∈ Km (j = 1, 2, . . . , r) in the set U(x̄), i.e., problem (2.3) can be transformed locally to

Minimize
x∈U(x̄)

f(x)

subject to g(x, tj(x)) ∈ Km (j = 1, 2, . . . , r(x̄)).
(2.4)

Then, we can expect that existing methods such as an SQP-type method [11] work efficiently for
solving the reduced SOCP (2.4).

To give more formal treatment of the local reduction method, let l : Rn ×R` ×Rp → R denote
the Lagrangian of the lower-level problem P (x), i.e.,

l(x, t, α) := λ(x, t) − h(t)>α,

where h(t) := (h1(t), h2(t), . . . , hp(t))>, and α := (α1, α2, . . . , αp)> ∈ Rp is a Lagrange multiplier
vector corresponding to the constraints hi(t) ≥ 0 (i = 1, 2, . . . , p). Let Ia(t) denote the active index
set at t ∈ R`, i.e.,

Ia(t) := {i ∈ {1, 2, . . . , p} | hi(t) = 0}. (2.5)

We define the nondegeneracy of local optima of P (x).

Definition 2.1 (Nondegeneracy). Let x̄ ∈ Rn, and let t̄ ∈ T be a local optimum of P (x̄) such that
the linear independence constraint qualification holds, i.e., {∇hi(t̄)}i∈Ia(t̄) are linearly independent.
Furthermore, suppose that the function λ(·, ·) is twice continuously differentiable at (x̄, t̄). Then,
there exists a Lagrange multiplier vector α := (α1, α2, . . . , αp)> ∈ Rp such that

∇tl(x̄, t̄, α) = 0, 0 ≤ α ⊥ h(t̄) ≥ 0.

We say that t̄ ∈ T is nondegenerate if

(a) the second-order sufficient condition

v>∇2
ttl(x̄, t̄, α)v > 0 for all v ∈ C(t̄) \ {0}

with

C(t) :=

{v ∈ R` | v>∇hi(t) = 0, i ∈ Ia(t)} (Ia(t) 6= ∅),

R` (Ia(t) = ∅)

holds, and

4

(b) the strict complementarity
αi > 0 for all i ∈ Ia(t̄)

holds.

Under the nondegeneracy assumption, we have the following proposition.

Proposition 2.2. Let x ∈ Rn and x̄ ∈ Rn. Assume that t̄ ∈ T is a nondegenerate local optimum
of P (x̄) and ᾱ := (ᾱ1, ᾱ2, . . . , ᾱp)> ∈ Rp

+ is a Lagrange multiplier vector corresponding to the
constraints hi(t) ≥ 0 (i = 1, 2, . . . , p). Furthermore, suppose that λ(·, ·) is twice continuously
differentiable at (x̄, t̄). Then, there exist an open neighborhood U(x̄) of x̄ and twice continuously
differentiable functions t(·) : U(x̄) → T and αi(·) : U(x̄) → R+ (i = 1, 2, . . . , p) such that

(a) t(x̄) = t̄, αi(x̄) = ᾱi (i ∈ Ia(t̄)) and αi(x̄) = 0 (i /∈ Ia(t̄)),

(b) t(x) is a nondegenerate local optimum of P (x) for each x ∈ U(x̄) with a unique Lagrange
multiplier vector (α1(x), α2(x), . . . , αp(x))> ∈ Rp

+,

(c) ∇t(x̄) ∈ Rn×` and ∇αi(x̄) ∈ Rn (i ∈ Ia(t̄)) comprise a unique solution of the linear system(
∇2

ttl(x̄, t̄, ᾱ) ∇ha(t̄)
∇ha(t̄)> 0

)(
∇t(x̄)>

∇αa(x̄)>

)
= −

(
∇2

txλ(x̄, t̄)
0

)
, (2.6)

where

∇αa(x̄) := (∇αi(x̄))i∈Ia(t̄) ∈ Rn×|Ia(t̄)|, ∇ha(t̄) := (∇hi(t̄))i∈Ia(t̄) ∈ R`×|Ia(t̄)|;

in particular, if Ia(t̄) = ∅, then ∇t(x̄) ∈ Rn×` is a unique solution of the linear system

∇2
ttl(x̄, t̄, ᾱ)∇t(x̄)> = −∇2

txλ(x̄, t̄), (2.7)

(d) for any x ∈ U(x̄), letting v(x) := λ(x, t(x)), we have

∇v(x̄) = ∇xλ(x̄, t̄),

∇2v(x̄) = ∇2
xxλ(x̄, t̄) −∇t(x̄)∇2

ttl(x̄, t̄, ᾱ)∇t(x̄)>.

Proof. Apply the implicit function theorem to the following equations:

∇tl(x, t, α) = 0, hi(t) = 0 (i ∈ Ia(t̄)),

which come from the Karush-Kuhn-Tucker (KKT) conditions of P (x). See also [10, 6].

Next, let
Tloc(x) := {t ∈ T | t is a local optimum of P (x)}

and
Tε(x) := Tloc(x) ∩ {t ∈ T | λ(x, t) ≤ min

t∈T
λ(x, t) + ε}

for a given constant ε > 0. Now, we show that the infinitely many SOC constraints g(x, t) ∈
Km (t ∈ T) can locally be represented as finitely many SOC constraints under some assumptions
including the following regularity condition.

Definition 2.3 (Regularity). Let x ∈ Rn and ε > 0 be given. We say that x is regular if any
t ∈ Tε(x) is nondegenerate and |Tε(x)| <∞.

5

Proposition 2.4. Let x̄ ∈ Rn and ε > 0 be given. Suppose that x̄ is regular and let Tε(x̄) :=
{t̄1, t̄2, . . . , t̄rε(x̄)}. Furthermore, suppose that the function λ(·, ·) is twice continuously differen-
tiable at (x̄, t̄j) for all j = 1, 2, . . . , rε(x̄) and that x̄ ∈ Rn is regular. Then, there exist an open
neighborhood Uε(x̄) ⊆ Rn of x̄ and functions t1(·), t2(·), · · · , trε(x̄)(·) : Uε(x̄) → T such that, for
each j = 1, 2, . . . , rε(x̄),

(a) tj(·) is twice continuously differentiable,

(b) tj(x̄) = t̄j, and

(c) ϕ(x) = maxj=1,2,··· ,rε(x̄)(−λ(x, tj(x))) for all x ∈ Uε(x̄), where ϕ(·) is defined by (2.2).

Moreover, SISOCP (1.1) can locally be reduced to the following SOCP:

Minimize
x∈Uε(x̄)

f(x)

subject to g(x, tj(x)) ∈ Km, (j = 1, 2, . . . , rε(x̄)).

Proof. We omit the proof since it can easily be derived from Proposition 2.2 and the implicit
function theorem.

3 Local reduction based SQP-type algorithm for the SISOCP

The Karush-Kuhn-Tucker (KKT) conditions for SISOCP (1.1) are represented as follows [16] : Let
x∗ be a local optimum of SISOCP (1.1). Then, under suitable constraint qualification, there exist
q indices t∗1, t

∗
2, . . . , t

∗
q ∈ Tε(x∗) and Lagrange multipliers η∗1 , η

∗
2 , . . . , η

∗
q ∈ Rm such that q ≤ n and

∇f(x∗) −
q∑

j=1

∇xg(x∗, t∗j)η
∗
j = 0, (3.1)

Km 3 η∗j ⊥ g(x∗, t∗j) ∈ Km (j = 1, 2, . . . , q). (3.2)

In this section, we propose an algorithm for finding a vector x∗ ∈ Rn that satisfies the above
KKT conditions. In the algorithm, we combine the local reduction method with the sequential
quadratic programming (SQP) method. Let ε > 0 be given and let xk ∈ Rn be a current iterate.
Assume that xk satisfies the regularity defined in Definition 2.3. Then, from Proposition 2.4, there
exist some open neighborhood Uε(xk) ⊆ Rn of xk and twice continuously differentiable functions
tkj : Uε(xk) → T (j = 1, 2, . . . , rε(xk)) such that SISOCP (1.1) can locally be reduced to the
following SOCP:

SOCP(xk, ε) :
Minimize
x∈Uε(xk)

f(x)

subject to Gk
j (x) := g(x, tkj (x)) ∈ Km (j = 1, 2, . . . , rε(xk)).

We then generate a search direction dk ∈ Rn by solving the following Quadratic SOCP (QSOCP),
which consists of quadratic and linear approximations of the objective function and constraint
functions of SOCP(xk, ε), respectively:

QSOCP(xk, ε) :
Minimize

d∈Rn
∇f(xk)>d+ 1

2d
>Bkd

subject to Gk
j (xk) + ∇Gk

j (xk)>d ∈ Km (j = 1, 2, . . . , rε(xk)),

6

where Bk ∈ Rn×n is a symmetric positive definite matrix. Note that Gk
j (xk) and ∇Gk

j (xk) are
given by

Gk
j (xk) = g(xk, tkj (xk)), (3.3)

∇Gk
j (xk) = ∇xg(xk, tkj (xk)) + ∇tkj (xk)∇tg(x, tkj (xk)), (3.4)

where tkj (xk) ∈ Tε(xk) and ∇tkj (xk) can be obtained by solving the lower-level problem P (xk) and
by solving (2.6) or (2.7). Under some constraint qualification, the optimum dk of QSOCP(xk, ε)
satisfies the following KKT conditions:

∇f(xk) +Bkd
k −

rε(xk)∑
j=1

∇Gk
j (xk)ηk+1

j = 0, (3.5)

Km 3 ηk+1
j ⊥ Gk

j (xk) + ∇Gk
j (xk)>dk ∈ Km (j = 1, 2, . . . , rε(xk)), (3.6)

where ηk+1
j ∈ Rm (j = 1, 2, . . . , rε(xk)) are Lagrange multiplier vectors corresponding to the SOC

constraints Gk
j (xk)+∇Gk

j (xk)>d ∈ Km (j = 1, 2, . . . , rε(xk)). If dk = 0, then it follows immediately
from (3.5) and (3.6) that the KKT conditions for solving SOCP(xk, ε) are satisfied at xk. If, in
addition, g̃(xk, t) 6= 0 holds for all t ∈ Tε(xk), then it holds that

∇f(xk) −
rε(xk)∑
j=1

∇xg(xk, t̄kj)ηk+1
j = 0,

Km 3 ηk+1
j ⊥ g(xk, t̄kj) ∈ Km (j = 1, 2, . . . , rε(xk)),

where t̄kj := tkj (xk) (j = 1, 2, . . . , rε(xk)), as will be shown by Proposition 4.2. These are actually
regarded as the KKT conditions (3.1) and (3.2) of SISOCP (1.1). In particular, we can see that
xk is feasible for SISOCP (1.1), since g(xk, t̄kj) ∈ Km for all j = 1, 2, . . . , rε(xk) and t̄kj (j =
1, 2, . . . , rε(xk)) contain all minimizers of the lower-level problem P (xk).

To generate the next iterate xk+1 along the direction dk, we need to choose a step size. To this
end, we perform a line search with the following `∞-type penalty function:

Φρ(x) := f(x) + ρϕ+(x), (3.7)

where ϕ(·) is defined by (2.2) and ρ > 0 is a penalty parameter. Notice that the function Φρ(·) is
continuous everywhere. Another plausible choice of a merit function used in the line search is an
`1-type penalty function, i.e., the function (3.7) with ϕ+(x)

(
= maxt∈T (−λ(x, t))+

)
replaced by∑

t∈Tε(x) (−λ(x, t))+. However, in the semi-infinite case, the `1-type penalty function has such a
serious drawback that it may fail to be continuous at a point where the cardinality of Tε(x) changes.
Properties of penalty functions for semi-infinite programs are explained in detail together with a
specific example in [23]. Now, we formally state the SQP-type algorithm for solving SISOCP (1.1).

Algorithm 1

Step 0 (Initialization): Choose x0 ∈ Rn and a matrix B0 ∈ Sn
++. Select parameters α ∈ (0, 1),

β ∈ (0, 1), δ > 0, ε > 0 and ρ−1 > 0. Set k := 0.

Step 1 (Generate a search direction): Solve QSOCP(xk, ε) to obtain dk ∈ Rn and corre-
sponding Lagrange multipliers ηk+1

j ∈ Km (j = 1, 2, . . . , rε(xk)).

Step 2 (Check convergence): If dk = 0, then stop. Otherwise, go to Step 3.

Step 3 (Update penalty parameter): If ρk−1 ≥
∑rε(xk)

j=1 (ηk+1
j)1, then set ρk := ρk−1. Oth-

erwise, set ρk :=
∑rε(xk)

j=1 (ηk+1
j)1 + δ.

7

Step 4 (Armijo line search): Find the smallest nonnegative integer rk ≥ 0 satisfying

Φρk
(xk + αrkdk) − Φρk

(xk) ≤ −αrkβ(dk)>Bkd
k.

Set sk := αrk and xk+1 := xk + skd
k.

Step 5: Update the matrix Bk to obtain Bk+1 ∈ Sn
++. Set k := k + 1 and return to Step 1.

To construct QSOCP(xk, ε) at each iteration k, we need to obtain the set Tε(xk) by computing
all local minimizers of the lower-level problem P (xk). Moreover, we have to compute ∇tkj (xk)
(j = 1, 2, . . . , rε(xk)) by solving the linear system (2.6) or (2.7). In Step 5, we must compute
maxt∈T (−λ(xk + αrdk, t))+ to evaluate Φρk

(xk + αrdk) for each r. In Step 6, we may choose Bk

as

Bk := ∇2f(xk) −
rε(xk)∑
j=1

(ζk
j)1Wkj , (3.8)

where

Wkj := ∇2Gk
j1(x

k) −
∇2G̃k

j (xk)G̃k
j (xk)

‖G̃k
j (xk)‖

(j = 1, 2, . . . , rε(xk))

and ζk
j (j = 1, 2, . . . , rε(xk)) are some estimates of Lagrange multiplier vectors corresponding to

the constraints Gk
j (·) ∈ Km (j = 1, 2, . . . , rε(xk)). A specific choice of ζk

j (j = 1, 2, . . . , rε(xk)) will
be provided later in the section of numerical experiments. The matrix Wkj can be calculated as
follows: Let vk

j : Uε(xk) → R be defined by vk
j (x) := Gk

j1(x) − ‖G̃k
j (x)‖ for j = 1, 2, . . . , rε(xk).

Then, we have

∇2vk
j (xk) = Wkj −

∇G̃k
j (xk)∇G̃k

j (xk)>

‖G̃k
j (xk)‖

+
∇G̃k

j (xk)G̃k
j (xk)G̃k

j (xk)>∇G̃k
j (xk)>

‖G̃k
j (xk)‖3

,

which implies that, for j = 1, 2, . . . , rε(xk),

Wkj = ∇2vk
j (xk) +

∇G̃k
j (xk)∇G̃k

j (xk)>

‖G̃k
j (xk)‖

−
∇G̃k

j (xk)G̃k
j (xk)G̃k

j (xk)>∇G̃k
j (xk)>

‖G̃k
j (xk)‖3

. (3.9)

Notice that the right-hand side of the above formula can be evaluated since we have Gk
j (xk),

∇Gk
j (xk) and ∇2vk

j (xk) by using (3.3), (3.4) and Proposition 2.2(d) with x̄ replaced by xk, respec-
tively. Thus, we can calculate Wkj from (3.9). In the subsequent section, we will show quadratic
convergence of Algorithm 1 in which Bk are chosen as (3.8).

Another plausible choice of Bk is to let Bk = ∇2
xxLk

ε(xk, ηk) for each k, where Lk
ε(·, ·) denotes

the Lagrangian of SOCP(xk, ε). However, to evaluate ∇2
xxLk

ε(xk, ηk), we have to compute ∇2tkj (xk)
(j = 1, 2, . . . , rε(xk)), and it often brings about some numerical difficulties. On the other hand,
computing (3.8) does not require any calculation of ∇2tkj (xk).

4 Convergence analysis

In this section, we study global and local convergence properties of the proposed algorithm.

4.1 Global convergence

To begin with, we make the following assumption:

Assumption 4.1. For each k,

8

(a) xk is regular,

(b) g̃(xk, t) 6= 0 for all t ∈ Tε(xk),

(c) QSOCP(xk, ε) is feasible, and the KKT conditions (3.6) hold at the unique optimum of QSOCP(xk, ε).

By Assumption 4.1 (a), SISOCP (1.1) can locally be reduced to SOCP(xk, ε) around xk for
each k. By Assumption 4.1 (b), we can ensure the continuous differentiability of λ(xk, ·) at each t ∈
Tε(xk), which is required by the regularity of xk. Although Assumption 4.1 (b) may seem restrictive,
g̃(xk, t) = 0 is unlikely to occur in practice at any local minimizer of P (xk), since −‖g̃(xk, ·)‖ attains
its “sharp” maximum at any t ∈ T such that g̃(xk, t) = 0. Under Assumption 4.1 (c), QSOCP(xk, ε)
has a unique optimum dk since Bk ∈ Sn

++.
By the following proposition, we can ensure that our algorithm finds a KKT point of SISOCP (1.1),

when the termination criterion dk = 0 is satisfied.

Proposition 4.2. Suppose that Assumption 4.1 holds. If dk = 0, then the KKT conditions (3.1)
and (3.2) for SISOCP (1.1) are satisfied at xk with some Lagrange multiplier vectors ηk+1

1 , ηk+1
2 , . . . ,

ηk+1
rε(xk)

∈ Rm. In particular, xk is feasible for SISOCP (1.1).

Proof. From the regularity of xk, t̄kj := tkj (xk) ∈ Tε(xk) (j = 1, 2, . . . , rε(xk)) are nondegenerate
local optima of P (xk) and then satisfy the KKT conditions of the lower-level problem P (xk). Thus,
we have, for each j = 1, 2, . . . , rε(xk),

∇tg1(xk, t̄kj) −
∇tg̃(xk, t̄kj)g̃(xk, t̄kj)

‖g̃(xk, t̄kj)‖
−

∑
i∈Ia(t̄k

j)

αj
i∇hi(t̄kj) = 0, (4.1)

where Ia(t̄kj) is defined by (2.5) and αj
i (i ∈ Ia(t̄kj)) are Lagrange multipliers. Using the fact that

∇tkj (xk)∇hi(t̄kj) = 0 holds for each i ∈ Ia(t̄kj) by Proposition 2.2 (c), (4.1) yields

∇tkj (xk)∇tg1(xk, t̄kj) −
∇tkj (xk)∇tg̃(xk, t̄kj)g̃(xk, t̄kj)

‖g̃(xk, t̄kj)‖
= 0, j = 1, 2, . . . , rε(xk). (4.2)

From the KKT conditions (3.6) of QSOCP(xk, ε) with dk = 0 and (3.4), we obtain

∇f(xk) −
rε(xk)∑
j=1

(
∇xg(xk, t̄kj) + ∇tkj (xk)∇tg(xk, t̄kj)

)
ηk+1

j = 0, (4.3)

Km 3 ηk+1
j ⊥ g(xk, t̄kj) ∈ Km (j = 1, 2, . . . , rε(xk)). (4.4)

Notice that (4.4) implies ηk+1
j = (ηk+1

j)1(1,−g̃(xk, t̄kj)>/‖g̃(xk, t̄kj)‖)> since ‖g̃(xk, t̄kj)‖ 6= 0 by
Assumption 4.1 (b), which together with (4.2) yields

∇tkj (xk)∇tg(xk, t̄kj)ηk+1
j = 0, j = 1, 2, . . . , rε(xk).

Hence, from (4.3), we have ∇f(xk) −
∑rε(xk)

j=1 ∇xg(xk, t̄kj)ηk+1
j = 0. Combining this and (4.4), we

obtain the desired result.
The feasibility of xk readily follows, since we have g(xk, t̄kj) ∈ Km (j = 1, 2, . . . , rε(xk)) from

(4.4) and t̄kj (j = 1, 2, . . . , rε(xk)) contain global optima of P (xk).

We next show that the search direction dk ∈ Rn obtained from QSOCP(xk, ε) is a descent
direction for Φρ(·) at xk as long as the penalty parameter ρ is sufficiently large, which ensures that
the line search in Step 4 terminates finitely at each iteration. To this end, we begin with proving
the following lemma.

9

Lemma 4.3. Suppose that Assumption 4.1 holds. Then, we have

ϕ+(xk) + ϕ′
+(xk; dk) ≤ 0, (4.5)

where ϕ(·) is defined by (2.2).

Proof. By the regularity of xk and Proposition 2.4, there exist an open neighborhood Uε(xk) of xk

and C2 functions tkj (·) : Uε(xk) → T (j = 1, 2, . . . , rε(xk)) such that

ϕ(x) = max
t∈T

(−λ(x, t)) = max
j=1,2,··· ,rε(xk)

(−λ(x, tkj (x)) = max
j=1,2,··· ,rε(xk)

(
‖G̃k

j (x)‖ −Gk
j1(x)

)
for all x ∈ Uε(xk), whereGk

j (x) = (Gk
j1(x), G̃

k
j (x)) := (g1(x, tkj (x)), g̃(x, tkj (x))) for j = 1, 2, . . . , rε(xk).

Then, by letting J(xk) :=
{
j ∈ {1, 2, . . . , rε(xk)} | −λ(xk, tkj (xk)) = ϕ(xk)

}
, we have

ϕ(xk) = −λ(xk, tkj (xk)) = ‖G̃k
j (xk)‖ −Gk

j1(x
k) (j ∈ J(xk)). (4.6)

In addition, since G̃k
j (xk) 6= 0 from Assumption 4.1 (b), it is not difficult to show

ϕ′
+(xk; dk) =



0 if ϕ(xk) < 0,

max
j∈J(xk)

(
G̃k

j (xk)>∇G̃k
j (xk)>dk

‖G̃k
j (x)‖

− ∇Gk
j1(x

k)>dk

)
+

if ϕ(xk) = 0,

max
j∈J(xk)

(
G̃k

j (xk)>∇G̃k
j (xk)>dk

‖G̃k
j (x)‖

− ∇Gk
j1(x

k)>dk

)
if ϕ(xk) > 0.

(4.7)

Moreover, since dk is feasible for QSOCP(xk, ε), we have Gk
j (xk) + ∇Gk

j (xk)>dk ∈ Km (j =
1, 2, . . . , rε(xk)), which implies that

Gk
j1(x

k) + ∇Gk
j1(x

k)>dk −
∥∥∥G̃k

j (xk) + ∇G̃k
j (xk)>dk

∥∥∥ ≥ 0 (j = 1, 2, . . . , rε(xk)). (4.8)

Notice that, for any u ∈ Rn and v ∈ Rn,

‖u‖ +
u>v

‖u‖
≤ ‖u+ v‖ (4.9)

holds since

‖u+ v‖2 −
(
‖u‖ +

u>v

‖u‖

)2

= ‖v‖2 − (u>v)2

‖u‖2
≥ ‖v‖2 − ‖u‖2‖v‖2

‖u‖2
= 0.

Hence, by setting u := G̃k
j (x), v := ∇G̃k

j (xk)>dk in (4.9), we have

G̃k
j (xk)>∇G̃k

j (xk)>dk

‖G̃k
j (x)‖

+ ‖G̃k
j (xk)‖ ≤

∥∥∥G̃k
j (xk) + ∇G̃k

j (xk)>dk
∥∥∥ (j ∈ J(xk)). (4.10)

To show (4.5), we consider three cases (i) ϕ(xk) < 0, (ii) ϕ(xk) = 0, (iii) ϕ(xk) > 0. In case
(i), (4.7) implies ϕ+(xk) + ϕ′

+(xk; dk) = ϕ+(xk) = 0. In case (ii), since ‖G̃k
j (xk)‖ − Gk

j1(x
k) =

−ϕ(xk) = 0, it holds that, for j ∈ J(xk),

G̃k
j (xk)>∇G̃k

j (xk)>dk

‖G̃k
j (x)‖

− ∇Gk
j1(x

k)>dk

= ‖G̃k
j (xk)‖ −Gk

j1(x
k) +

G̃k
j (xk)>∇G̃k

j (xk)>dk

‖G̃k
j (x)‖

− ∇Gk
j1(x

k)>dk

≤
∥∥∥G̃k

j (xk) + ∇G̃k
j (xk)>dk

∥∥∥−Gk
j1(x

k) −∇Gk
j1(x

k)>dk

≤ 0, (4.11)

10

where the first inequality follows from (4.10) and the second inequality does from (4.8). Then, we
obtain from (4.7) and (4.11)

ϕ+(xk) + ϕ′
+(xk; dk) = max

j∈J(xk)

(
G̃k

j (xk)>∇G̃k
j (xk)>dk

‖G̃k
j (x)‖

− ∇Gk
j1(x

k)>dk

)
+

= 0.

In case (iii), since ϕ+(xk) = ϕ(xk), we have

ϕ+(xk) + ϕ′
+(xk; dk) = ϕ(xk) + max

j∈J(xk)

(
G̃k

j (xk)>∇G̃k
j (xk)>dk

‖G̃k
j (x)‖

− ∇Gk
j1(x

k)>dk

)

= max
j∈J(xk)

(
G̃k

j (xk)>∇G̃k
j (xk)>dk

‖G̃k
j (x)‖

+ ϕ(xk) −∇Gk
j1(x

k)>dk

)

= max
j∈J(xk)

(
G̃k

j (xk)>∇G̃k
j (xk)>dk

‖G̃k
j (x)‖

+ ‖G̃k
j (xk)‖ −Gk

j1(x
k) −∇Gk

j1(x
k)>dk

)
≤ max

j∈J(xk)

(∥∥∥G̃k
j (xk) + ∇G̃k

j (xk)>dk
∥∥∥−Gk

j1(x
k) −∇Gk

j1(x
k)>dk

)
≤ 0,

where the first and third equalities are obtained from (4.7) and (4.6), respectively, the first in-
equality follows from (4.10), and the last inequality is derived from (4.8). Consequently, we have
the desired result.

Proposition 4.4. Suppose that Assumption 4.1 holds. If ρ ≥
∑rε(xk)

j=1 (ηk+1
j)1, then we have

Φ′
ρ(x

k; dk) ≤ −(dk)>Bkd
k. (4.12)

Furthermore, Φ′
ρ(xk; dk) < 0 holds when dk 6= 0.

Proof. First note that, for each j = 1, 2, . . . , rε(xk), we have

Gk
j (xk)>ηk+1

j = (ηk+1
j)1(Gk

j (xk))1 + (η̃k+1
j)>G̃k

j (xk)

≥ (ηk+1
j)1(Gk

j (xk))1 − ‖η̃k+1
j ‖‖G̃k

j (xk)‖

≥ (ηk+1
j)1(Gk

j (xk))1 − (ηk+1
j)1‖G̃k

j (xk)‖

= (ηk+1
j)1λ(xk, tkj (xk))

≥ (ηk+1
j)1 min

t∈T
λ(xk, t),

≥ −(ηk+1
j)1ϕ+(xk), (4.13)

where the second and third inequalities hold since (ηk+1
j)1 ≥ ‖η̃k

j ‖ by ηk+1
j ∈ Km, and the last

inequality follows from ϕ+(xk) ≥ ϕ(xk) = −mint∈T λ(xk, t). Then, by noting the KKT conditions
(3.5) and (3.6) of QSOCP(xk, ε), we obtain

∇f(xk)>dk = −(dk)>Bkd
k +

rε(xk)∑
j=1

(
∇Gk

j (xk)ηk+1
j

)>
dk

= −(dk)>Bkd
k −

rε(xk)∑
j=1

Gk
j (xk)>ηk+1

j ,

≤ −(dk)>Bkd
k +

rε(xk)∑
j=1

(ηk+1
j)1ϕ+(xk)

≤ −(dk)>Bkd
k + ρϕ+(xk), (4.14)

11

where the first equality holds since (ηk+1
j)>(Gk

j (xk)+∇Gk
j (xk)>dk) = 0 for each j = 1, 2, . . . , rε(xk)

by the SOC complementarity conditions in (3.6), the first inequality is derived from (4.13), and
the last inequality is implied by ρ ≥

∑rε(xk)
j=1 (ηk+1

j)1 ≥ 0 and ϕ+(xk) ≥ 0. By using these facts, we
have

Φ′
ρ(x

k; dk) = ∇f(xk)>dk + ρϕ′
+(xk; dk)

≤ −(dk)>Bkd
k + ρ(ϕ+(xk) + ϕ′

+(xk; dk))

≤ −(dk)>Bkd
k,

where the first inequality follows from (4.14) and the last inequality does from Lemma 4.3. There-
fore, (4.12) holds.

The latter claim is obvious from (4.12), dk 6= 0 and Bk ∈ Sn
++.

Assumption 4.5. (a) There exist 0 < γ1 ≤ γ2 such that γ1‖d‖2 ≤ d>Bkd ≤ γ2‖d‖2 for all
d ∈ Rn and k = 0, 1, 2, . . .,

(b) {xk} is bounded, and

(c) {dk} is bounded.
For an arbitrary accumulation point x∗ ∈ Rn of {xk}, it holds that

(d) x∗ is regular, and

(e) g̃(x∗, t̄) 6= 0 for any t̄ ∈ Tε(x∗).

Furthermore, let Uε(x∗) ⊆ Rn and tj(·) : Uε(x∗) → T (j = 1, 2, . . . , rε(x∗)) be an open neighborhood
of x∗ and functions, respectively, such that the conditions (a)-(c) in Proposition 2.4 hold with x̄

replaced by x∗. Then,

(f) there exists an open neighborhood Vε(x∗)(⊆ Uε(x∗)) of x∗ such that {tj(x)}rε(x∗)
j=1 = Tε(x)

holds for any x ∈ V (x∗), and

(g) Slater’s constraint qualification holds for QSOCP(x∗, ε), i.e., there exists d0 ∈ Rn such that
Gj(x∗) + ∇Gj(x∗)>d0 ∈ intKm for all j = 1, 2, . . . , rε(x∗), where Gj(x) := g(x, tj(x)) (j =
1, 2, . . . , rε(x∗)).

Assumption 4.5 (f) implies that, when xk ∈ Vε(x∗), we have Gk
j (x) ≡ Gj(x) := g(x, tj(x)) (j =

1, 2, . . . , rε(x∗)), and hence SISOCP (1.1) can locally be reduced to the following SOCP around xk:

min
x∈Vε(x∗)

f(x) s.t. Gj(x) ∈ Km, j = 1, 2, . . . , rε(x∗). (4.15)

In other words, the constraint functions of SOCP(xk, ε) coincide with those of SOCP(x∗, ε), when-
ever xk ∈ Vε(x∗). Note that Assumption 4.5 (f) holds when Tε(x) contains all local optima of the
lower-level problem P (x).

Under the above assumptions, we have the following proposition:

Proposition 4.6. Suppose that Assumptions 4.1 and 4.5 hold. Let ηk+1
1 , ηk+1

2 , . . . , ηk+1
rε(xk)

∈ Km

be Lagrange multiplier vectors satisfying the KKT conditions (3.5) and (3.6), and denote ηk :=
(ηk

1 , η
k
2 , . . . , η

k
rε(xk)). Then, it holds that

(a) {ηk} is bounded, and

(b) there exist some k0 ≥ 0 and ρ̄ > 0 such that ρk = ρ̄ for all k ≥ k0.

12

Proof. We first show (a). For contradiction, suppose that {ηk} is not bounded. Then, there exists
some subsequence {ηk+1}k∈K such that limk∈K, k→∞ ‖ηk+1‖ = ∞. We may assume, without loss
of generality, that ηk+1 6= 0 for all k ∈ K. By Assumption 4.5(b), {xk}k∈K is bounded and has
at least one accumulation point, say, x∗ ∈ Rn. Again, without loss of generality, we can assume
that limk∈K, k→∞ xk = x∗. From Assumption 4.5(d), x∗ is regular. Then, by Proposition 2.4,
there exist some open neighborhood Uε(x∗) ⊆ Rn of x∗ and C2 functions tj(·) : Uε(x∗) → T (j =
1, 2, . . . , rε(x∗)) such that SISOCP (1.1) can locally be reduced to SOCP(x∗, ε) around x∗:

min
x∈Uε(x∗)

f(x) s.t. Gj(x) ∈ Km (j = 1, 2, . . . , rε(x∗))

where Gj(x) := g(x, tj(x)) (j = 1, 2, . . . , rε(x∗)). From Assumption 4.5 (f), the constraint functions
of SOCP(xk, ε) for k(∈ K) ≥ k̄ are identical to those of SOCP(x∗, ε) for some k̄ ∈ K large enough.
Therefore, QSOCP(xk, ε) can be represented as

min
d∈Rn

1
2
d>Bkd+ ∇f(xk)>d s.t. Gj(xk) + ∇Gj(xk)>d ∈ Km, j = 1, 2, . . . , rε(x∗),

and its optimum dk satisfies the following KKT conditions:

∇f(xk) +Bkd
k −

rε(x∗)∑
j=1

∇Gj(xk)ηk+1
j = 0,

Km 3 ηk+1
j ⊥ Gj(xk) + ∇Gj(xk)>dk ∈ Km (j = 1, 2, . . . , rε(x∗)),

from which it follows that

1
‖ηk+1‖

∇f(xk) +
Bkd

k

‖ηk+1‖
−

rε(x∗)∑
j=1

∇Gj(xk)ηk+1
j

‖ηk+1‖
= 0, (4.16)

Km 3
ηk+1

j

‖ηk+1‖
⊥ Gj(xk) + ∇Gj(xk)>dk ∈ Km (j = 1, 2, . . . , rε(x∗)) (4.17)

for all k(∈ K) ≥ k̄.
Note that {dk}k∈K ⊆ Rn is bounded from Assumption 4.5(c) and {ηk+1/‖ηk+1‖}k(∈K)≥k̄ ⊆

Rmrε(x∗) is also bounded. Let (d∗, η∗) := (d∗, η∗1 , η
∗
2 , . . . , η

∗
rε(x∗)) ∈ Rn×Km×Km×· · ·×Km be an

arbitrary accumulation point of {
(
dk, ηk+1/‖ηk+1‖

)
}k(∈K)≥k̄. Without loss of generality, we can

assume that

lim
k∈K,k→∞

(
ηk+1

‖ηk+1‖
, dk, xk

)
= (η∗, d∗, x∗) . (4.18)

Then, letting k ∈ K, k → ∞ in (4.16) and (4.17) yields

rε(x∗)∑
j=1

∇Gj(x∗)η∗j = 0, (4.19)

Km 3 η∗j ⊥ Gj(x∗) + ∇Gj(x∗)>d∗ ∈ Km (j = 1, 2, . . . , rε(x∗)), (4.20)

since {Bk} is bounded from Assumption 4.5(a). Furthermore, from Assumption 4.5(g), QSOCP(x∗, ε)
satisfies Slater’s constraint qualification, i.e., there exists some d0 ∈ Rn such that

Gj(x∗) + ∇Gj(x∗)>d0 ∈ intKm (j = 1, 2, . . . , rε(x∗)). (4.21)

Now observe that

rε(x∗)∑
j=1

(η∗j)>
(
Gj(x∗) + ∇Gj(x∗)>d0

)
=

rε(x∗)∑
j=1

(
∇Gj(x∗)η∗j

)> (d0 − d∗) = 0, (4.22)

13

where the first equality holds since (η∗j)>
(
Gj(x∗) + ∇Gj(x∗)>d∗

)
= 0 (j = 1, 2, . . . , rε(x∗)) by

(4.20), and the second equality follows from (4.19). Combining (4.22) with (4.21) and η∗j ∈ Km (j =
1, 2, . . . , rε(x∗)), we obtain η∗j = 0 for j = 1, 2, . . . , rε(x∗). This is a contradiction since ‖η∗‖ = 1
from (4.18). Therefore, {ηk} is bounded.

We next show (b). For contradiction, we suppose that such ρ̄ > 0 and k0 ≥ 0 do not exist.
Then, by the update rule in Step 3 of Algorithm 1, there exists an infinite subsequence {ρk}k∈K′

of penalty parameters such that, for all k ∈ K ′,

ρk−1 <

rε(x∗)∑
j=1

(ηk+1
j)1 and ρk =

rε(x∗)∑
j=1

(ηk+1
j)1 + δ,

from which we have ρk ≥ ρk−1 + δ for all k ∈ K ′. This implies limk→∞ ρk = ∞, since {ρk} is
nondecreasing by the update rule. We thus obtain limk∈K′,k→∞ ‖ηk+1‖ = ∞ since

∑rε(xk)
j=1 (ηk

j)1 >
ρk−1 → ∞ as k(∈ K ′) → ∞. This contradicts the boundedness of {ηk}.

Now, we establish the global convergence of Algorithm 1.

Theorem 4.7. Suppose that Assumptions 4.1 and 4.5 hold. Let x∗ ∈ Rn be an arbitrary accu-
mulation point of {xk} ⊆ Rn. Then, the KKT conditions (3.1) and (3.2) of SISOCP (1.1) hold at
x∗.

Proof. First, from Proposition 4.6, there exists some ρ̄ > 0 such that ρk = ρ̄ for all k sufficiently
large. For simplicity of expression, we assume that ρk = ρ̄ for all k.

Choose a subsequence {xk}k∈K such that limk∈K,k→∞ xk = x∗. Since {dk}k∈K is bounded
from Assumption 4.5 (c), it has at least one accumulation point, say, d∗ ∈ Rn. To prove the
desired result, from Proposition 4.2, it suffices to show d∗ = 0. Due to Assumption 4.5 (d), (e)
and (f), SISOCP (1.1) can locally be reduced to SOCP (4.15) around xk for all k ∈ K sufficiently
large. Then, using the facts that {Bk} ⊆ Sn

++ is uniformly bounded by Assumption 4.5 (a), dk is
a descent direction of Φρ̄(·) at xk by Proposition 4.4 and Φρ̄(·) is continuous everywhere, we can
deduce that d∗ = 0 in a way similar to the convergence analysis for the SQP-type method for
solving the NLSOCP [11].

4.2 Local Convergence

Now, we analyze the convergence rate of Algorithm 1. In the remainder of this section, we assume
that a sequence {(xk, ηk)} generated by Algorithm 1 converges to (x∗, η∗) ∈ Rn ×Rmrε(x∗). More-
over, we let x∗ ∈ Rn be a regular point such that SISOCP (1.1) is locally reduced to the following
SOCP(x∗, ε) around x∗:

min
x∈Uε(x∗)

f(x) s.t. Gj(x) ∈ Km (j = 1, 2, . . . , rε(x∗)),

where, for j = 1, 2, . . . , rε(x∗), Gj(x) := g(x, tj(x)) with C2 functions tj(·) : Uε(x∗) → T and an
open neighborhood Uε(x∗) ⊆ Rn of x∗ satisfying conditions (a)-(c) in Proposition 2.4. We suppose
that G̃j(x∗) 6= 0 (j = 1, 2, . . . , rε(x∗)) and (x∗, η∗) satisfies the KKT conditions for SOCP(x∗, ε):

∇f(x∗) −
rε(x∗)∑
j=1

∇Gj(x∗)η∗j = 0,

Km 3 Gj(x∗) ⊥ η∗j ∈ Km (j = 1, 2, . . . , rε(x∗)),

14

where η∗ := (η∗1 , η
∗
2 , . . . , η

∗
rε(x∗)) ∈ Rm ×Rm × · · · ×Rm. Furthermore, we define the Lagrangian of

SOCP(x∗, ε) by

Lε(x, η) := f(x) −
rε(x∗)∑
j=1

Gj(x)>ηj ,

where η := (η1, η2, . . . , ηrε(x∗)) ∈ Rm × Rm × · · · × Rm.
Before discussing the convergence rate of the algorithm, we recall the constraint nondegener-

acy and second order sufficient condition for SOCP(x∗, ε). We say that x∗ ∈ Rn is constraint
nondegenerate [2, Definition 16] if

∇Gj(x∗)>Rn + linTKm(Gj(x∗)) = Rm

holds for each j = 1, 2, . . . , rε(x∗), where TKm(z) denotes the tangent cone of Km at z ∈ Km and
linTKm(z) stands for the largest linear subspace contained by TKm(z). The second order sufficient
condition (SOSC) for general NLSOCP is studied in [2, 11, 25]. Under the assumption G̃j(x∗) 6=
0 (j = 1, 2, . . . , rε(x∗)), the SOSC can be simplified as follows: For all d ∈ CKm(x∗, η∗) \ {0},

d>∇2
xxLε(x∗, η∗)d+ d>

rε(x∗)∑
j=1

Hj
ε(x

∗, η∗)

 d > 0,

where

Hj
ε(x

∗, η∗) :=


−

(η∗j)1
Gj1(x∗)

∇Gj(x∗)

1 0

0 −Im−1

∇Gj(x∗)> if Gj(x∗) ∈ bdKm \ {0},

0 otherwise,

CKm(x∗, η∗) :=
{
d ∈ Rn

∣∣d>∇Gj(x∗)η∗j = 0 for all j such that Gj(x∗) ∈ bd Km \ {0}
}
.

Under the above conditions, we can show that the sequence {(xk, ηk)} converges to (x∗, η∗) quadrat-
ically, by using an argument in [25, Theorem 4.2].

Proposition 4.8. Let B : Rn×Rrε(x∗) → Rn×n be a function such that B(x∗, η∗) = ∇xxLε(x∗, η∗)
and B(·, ·) is continuously differentiable at (x∗, η∗). Suppose that Assumption 4.1 and Assump-
tion 4.5 (d)-(g) hold. Moreover, let the constraint nondegeneracy condition and SOSC hold at
(x∗, η∗). If (xk0 , ηk0) is sufficiently close to (x∗, η∗) for some k0 ≥ 0, and if sk = 1, Bk = B(xk, ηk)
and Bk ∈ Sn

++ for all k ≥ k0, then {(xk, ηk)} converges to (x∗, η∗) quadratically.

Proof. From Assumption 4.5 (f)-(g), if xk is sufficiently close to x∗, then we can locally reduce
SISOCP (1.1) to SOCP(x∗, ε) around xk. Then, by [25, Theorem 4.2], we obtain the desired
result.

Using the above theorem, we can establish quadratic convergence of Algorithm 1 in which Bk

are chosen as (3.8).

Theorem 4.9. Suppose that the assumptions in Proposition 4.8 hold. If (xk0 , ηk0) is sufficiently
close to (x∗, η∗) for some k0 ≥ 0, and if sk = 1, Bk is chosen as (3.8) with ζk

j := ηk
j (j =

1, 2, . . . , rε(x∗)) and Bk ∈ Sn
++ for all k ≥ k0, then {(xk, ηk)} converges to (x∗, η∗) quadratically.

Proof. From Assumption 4.5 (f)-(g), if xk is sufficiently close to x∗, then we can locally reduce
SISOCP (1.1) to SOCP(x∗, ε) around xk. Then, by letting

B(x, η) := ∇2f(x) −
rε(x∗)∑
j=1

(ηj)1

(
∇2Gj1(x) −

∇2G̃j(x)G̃j(x)
‖G̃j(x)‖

)
,

15

we have B(xk, ηk) = Bk for all k sufficiently large. Hence, from Proposition 4.8, we have only
to show that B(·, ·) is continuously differentiable at (x∗, η∗) and B(x∗, η∗) = ∇2

xxLε(x∗, η∗). The
first claim is obvious since G̃j(x∗) 6= 0 (j = 1, 2, . . . , rε(x∗)). We prove the second claim. Notice
that η∗j = (η∗j)1(1,−G̃j(x∗)>/‖G̃j(x∗)‖)> for j = 1, 2, . . . , rε(x∗) since G̃j(x∗) 6= 0 and Km 3 η∗j ⊥
Gj(x∗) ∈ Km for j = 1, 2, . . . , rε(x∗). Thus, we have

∇2
xxLε(x∗, η∗) = ∇2f(x∗) −

rε(x∗)∑
j=1

∇2Gj(x∗)η∗j

= ∇2f(x∗) −
rε(x∗)∑
j=1

(η∗j)1∇2Gj(x∗)

 1

− G̃j(x∗)
‖G̃j(x∗)‖


= B(x∗, η∗).

This completes the proof.

5 Numerical Experiments

In this section, we report some numerical results. The program was coded in Matlab 2008a and
run on a machine with an IntelrCore2 Duo E6850 3.00GHz CPU and 4GB RAM. Throughout the
experiments, we let the index set be given by T := {t ∈ R | h(t) ≥ 0}, where h(t) := (t+1, 1− t)>,
i.e., T = [−1, 1]. The actual implementation of Algorithm 1 was carried out as follows. To
obtain Tε(xk), we compute local minimizers of the lower-level problem P (xk). For this purpose,
we first compute λ(xk, t) for t = −1,−0.98,−0.96, . . . , 0.98, 1, where λ(·, ·) is defined as in (2.1).
We then find local minimizers among λ(xk,−1), λ(xk,−0.98), . . . , λ(xk, 1) and apply Newton’s
method with them as starting points. In Step 0, we set the parameters as α = 0.5, β = 10−5,
δ = 5, ε = 0.1 and ρ−1 = 10. The initial point x0 ∈ Rn and the initial matrix B0 ∈ Rn×n are
chosen as x0 := (10, 10, 10, . . . , 10)> and the identity matrix In, respectively. In Step 1, we make
use of the smoothing method [4, 8] to solve QSOCP(xk, ε). In Step 2, we stop the algorithm when
‖dk‖ ≤ 10−7 is satisfied. In Step 5, we update the matrix Bk ∈ Rn×n by (3.8), where the vectors
ζk
j (j = 1, 2, . . . , rε(xk)) are set as

ζk
j :=

ηk
i if we find i ∈ {1, 2, . . . , rε(xk)} such that tkj (·) = tk−1

i (·)

0 otherwise.
(5.1)

In (5.1), we regard tkj (·) = tk−1
i (·) when

j ∈ argminl=1,2,...,rε(xk−1)‖tkl (xk) − tk−1
i (xk−1) −∇tk−1

i (xk−1)>(xk − xk−1)‖

and
‖tkj (xk) − tk−1

i (xk−1) −∇tk−1
i (xk−1)>(xk − xk−1)‖ ≤ 10−4.

Moreover, to ensure positive definiteness of Bk, we modify Bk as follows. Let αki ∈ R (i =
1, 2, . . . , n) and Vk ∈ Rn×n be scalars and a matrix such that Bk = Vkdiag(αki)n

i=1V
>
k , respectively.

Then, for each i, we replace αki by 10−4 if αki ≤ 10−5, and redefine Bk as Bk = Vkdiag(αki)n
i=1V

>
k .

Experiment 1

In the first experiment, we examine the convergence behavior of Algorithm 1 by solving the vector-
valued Chebyshev approximation problem (1.3). Let Q : R → R3 and q : Rn × R → R3 be defined

16

by

Q(t) :=

 et2 + cos t2

2tet2 − 2t sin t2

(4t2 + 2)et2 − 2 sin t2 − 4t2 cos t2

 , q(u, t) :=


∑n

ν=1uνt
ν−1∑n

ν=2(ν − 1)uνt
ν−2∑n

ν=3(ν − 1)(ν − 2)uνt
ν−3

 .

To find a u ∈ Rn such that q(u, t) ≈ Q(t) over t ∈ T , we solve the following problem:

Minimize
u∈Rn

max
t∈T

‖Q(t) − q(u, t)‖ . (5.2)

As in (1.3), by using an auxiliary variable v ∈ R, we can reformulate (5.2) as the following SISOCP
with the four-dimensional SOC:

Minimize
(v,u)∈R×Rn

v

subject to


1 0 0 0 · · · 0
0 1 t t2 · · · tn

0 0 1 2t · · · ntn−1

0 0 0 2 · · · n(n− 1)tn−2


(
v

u

)
−


0

et2 + cos t2

2tet2 − 2t sin t2

(4t2 + 2)et2 − 2 sin t2 − 4t2 cos t2

 ∈ K4

for all t ∈ T.

(5.3)

We then apply Algorithm 1 to SISOCP (5.3) with n = 6 and n = 8. The obtained results are
shown in Tables 1 and 2, where cpu(s) denotes the running time of Algorithm 1 in seconds, and
KKT(xk, ηk) is given by

KKT(xk, ηk) :=


∇f(xk) −

∑rε(xk)
j=1 ∇xg(xk, t̄kj)ηk

i

ηk
1 − ProjKm

(
ηk
1 − g(xk, t̄k1)

)
...

ηk
rε(xk) − ProjKm

(
ηk

rε(xk) − g(x, t̄krε(xk))
)


with ProjKm(z) := argminw∈Km‖z − w‖, and ηk = (ηk

1 , . . . , η
k
rε(xk)) ∈ Rm × · · · × Rm is a La-

grange multiplier vector satisfying the KKT conditions (3.5) and (3.6) for QSOCP(xk, ε). Note
that KKT(xk, ηk) = 0 if and only if (xk, ηk) satisfies the KKT conditions (3.1) and (3.2) for
SISOCP (1.1). From the tables, we can observe that Algorithm 1 succeeds in getting an optimal
solution for SISOCP (5.3). Indeed, xk and ηk satisfy the KKT conditions for SISOCP (5.3) accu-
rately, since ‖KKT(xk, ηk)‖ ≤ 10−10 at the last iteration. Also, we can observe that the step size
sk equals 1 in the final stage and {xk} converges to a solution rapidly. In addition, we confirm that
|Tε(xk)| becomes constant and the implicit functions {tkj (·)}rε(xk)

j=1 remain unchanged eventually,
and hence Assumption 4.5 (f) holds.

17

k sk ‖dk‖ ‖KKT(xk, ηk)‖ |Tε(xk)|
1 1.0 1.73e+01 1.47e+02 1
2 0.5 1.47e+01 7.06e-01 2
...

...
...

...
...

6 1.0 9.18e-04 5.99e-04 5
7 1.0 4.92e-07 2.63e-07 5
8 1.0 7.83e-11 4.20e-11 5

cpu(s): 5.8 seconds

Table 1: Results for Experiment 1 (n = 6)

k sk ‖dk‖ ‖KKT(xk, ηk)‖ |Tε(xk)|
1 1.0 2.23e+01 5.03e+02 1
2 0.5 1.46e+01 7.06e-01 1
...

...
...

...
...

10 0.5 7.94e-07 2.51e-06 7
11 1.0 3.97e-07 1.26e-06 7
12 1.0 1.78e-12 5.64e-12 7

cpu(s): 22.4 seconds

Table 2: Results for Experiment 1 (n = 8)

Experiment 2

In Experiment 1, we have observed that Algorithm 1 obtains accurate solutions with a rapid
convergence rate. Thus, if a starting point is chosen near an optimal solution, Algorithm 1 is
expected to find a solution more efficiently. In this experiment, to produce such a starting point,
we use the regularized explicit exchange method (REEM) from [16], and then use Algorithm 1
with an approximate solution computed by the REEM. The REEM was implemented as described
in Experiment 3-1 of [16]. The computational results for SISOCP (5.3) with n = 6 and n = 8 are
shown in Table 3 and Table 4, respectively, where

• cpu(s) (REEM): the running time of the REEM

• cpu(s) (Algorithm 1): the running time of Algorithm 1

• cpu(s) (REEM+Algorithm 1): the total running time of the REEM and Algorithm 1.

From the tables, we observe that the total computational times are much less than those in Exper-
iment 1. In particular, when n = 8, Algorithm 1 combined with the REEM took only 15.3 seconds
in total, while Algorithm 1 alone spent 22.4 seconds in Experiment 1.

cpu(s) (REEM) 2.0 seconds
cpu(s) (Algorithm 1) 0.49 seconds
cpu(s) (REEM+Algorithm 1) 2.49 seconds

Table 3: Results for Experiment 2 (n = 6)

18

cpu(s) (REEM) 4.0 seconds
cpu(s) (Algorithm 1) 11.3 seconds
cpu(s) (REEM+Algorithm 1) 15.3 seconds

Table 4: Results for Experiment 2 (n = 8)

Experiment 3

In the third experiment, we implemented another SQP-type algorithm, which is also expected to
find accurate solutions rapidly, and compared it with Algorithm 1 by solving the following SISOCP
that contains multiple SOCs:

Minimize
x∈R10

1
2x

>Mx+ c>x

subject to As(t)x− bs(t) ∈ Kms for all t ∈ T,

s = 1, 2, . . . , S,

(5.4)

where c ∈ R10, As(t) := (As
ij(t)) ∈ Rms×10 with As

ij(t) :=
∑5

`=0 α
s
ij`t

` (i = 1, 2, . . . ,ms, j =
1, 2, . . . , 10) and bs(t) := (bsi (t)) ∈ Rms with bs1(t) := −

∑ms

i=2

∑5
`=0 |βs

i`| and bsi (t) :=
∑5

`=0 β
s
i`t

`

(i = 2, . . . ,ms). The SOCs K := Km1 ×Km2 × · · · KmS are chosen as in Table 5. For each type of
SOC K, we generate 50 problems as follows: The problem data αs

1j`, α
s
ij`, β

s
i` (i = 2, . . . ,ms, j =

1, 2, . . . , 10, ` = 0, 1, 2, . . . , 5, s = 1, 2, . . . , S) are chosen randomly from the interval [2,−2]. All
components of c are randomly chosen from the interval [5,−5]. The matrix M is set to be M :=
M>

1 M1 +0.1In, where M1 ∈ Rn×n is a matrix whose entries are randomly chosen from the interval
[1,−1]. Notice that, by the choice of bs1(t), we can ensure that (5.4) is feasible.2 In Step 3, we use
the following penalty function for SISOCP (5.4) with multiple SOCs, which is a natural extension
of the function defined by (3.7):

Φρ(x) := f(x) + ρ
S∑

s=1

ϕs
+(x), (5.5)

where ϕs(x) := maxt∈T

(
−As

1(t)x+ bs1(t) + ‖Ãs(t)(x) − b̃s(t)‖
)

for s = 1, 2, . . . , S. Accordingly,
we extend the update rule of the penalty parameters {ρk} in Step 5 as follows:

ρk :=


ρk−1 if ρk−1 ≥ max

s=1,2,...,S

rs
ε(xk)∑
j=1

(ηk+1
sj)1

δ + max
s=1,2,...,S

rs
ε(xk)∑
j=1

(ηk+1
sj)1 otherwise,

where δ > 0 is a given constant and ηk+1
sj (j = 1, 2, . . . , rs

ε(x
k), s = 1, 2, . . . , S) are Lagrange

multiplier vectors obtained by solving QSOCP(xk, ε) for SISOCP (5.4).
We next explain another SQP-type algorithm, which we call the QP-based method. For sim-

plicity of expression, we consider the case of SISOCP (1.1) with a single SOC. In the QP-based
method, we reformulate SOCP(xk, ε) as the following nonlinear program that does not contain
SOC constraints explicitly:

min
x∈U(xk)

f(x) s.t. vk
j (x) ≥ 0 (j = 1, 2, . . . , rε(xk)), (5.6)

2The origin x = 0 always lies in the interior of the feasible region, since we have −bs(t) ∈ intKms from

−bs
1(t) − ‖(−bs

2(t), . . . ,−bs
ms

(t))>‖ > 0 for all t ∈ T .

19

where vk
j (x) := λ(x, tkj (x)) for j = 1, 2, . . . , rε(xk), and then generate a search direction dk by

solving the following Quadratic Program3 (QP):

QP(xk, ε) :
Minimize ∇f(xk)>d+ 1

2d
>B̃kd

subject to vk
j (xk) + ∇vk

j (xk)>d ≥ 0 (j = 1, 2, . . . , rε(xk)),

where B̃k ∈ Sn
++. We make use of the Hessian of the Lagrangian of (5.6). Specifically, we first

compute

D̃k := ∇2f(xk) −
rε(xk)∑
j=1

ξk
j ∇2vk

j (xk),

with

ξk
j :=

ξ̃k
i if we find i ∈ {1, 2, . . . , rε(xk)} such that tkj (·) = tk−1

i (·)

0 otherwise,

where ξ̃k
i ∈ R (i = 1, 2, . . . , rε(xk−1)) are Lagrange multipliers satisfying the KKT conditions of

QP(xk−1, ε). Note that ∇vk
j (xk) and ∇2vk

j (xk) for j = 1, 2, . . . , rε(xk) can be calculated from
Proposition 2.2 (d). Similarly to the matrix Bk for Algorithm 1, we also ensure the positive defi-
niteness of B̃k as follows: Let α̃ki ∈ R (i = 1, 2, . . . , n) and Ṽk ∈ Rn×n be scalars and a matrix such
that B̃k = Ṽkdiag(α̃ki)n

i=1Ṽ
>
k , respectively. Then, for each i, we replace α̃ki by 10−4 if α̃ki ≤ 10−5,

and redefine B̃k as B̃k = Ṽkdiag(α̃ki)n
i=1Ṽ

>
k . We use the penalty function defined by (3.7) (by (5.5)

for problem (5.4)) and determine a step size by the Armijo line search. We update the penalty
parameters {ρk} as follows: If ρk−1 ≥

∑rε(xk)
j=1 ξ̃k+1

j , then we set ρk := ρk−1. Otherwise, we set

ρk :=
∑rε(xk)

j=1 ξ̃k+1
j + δ, where δ > 0 is a given constant.

We extend the above QP-based method to (5.4) and implement it. The choice of parameters
in the QP-based method is the same as in Algorithm 1. Moreover, we solve QP(xk, ε) with the
solver quadprog in MATLAB Optimization Toolbox.

The obtained results are shown in Table 5, where each column represents the following:

• itemax: the maximum number of iterations among 50 problems for each K

• itemin: the minimum number of iterations among 50 problems for each K

• iteave: the average number of iterations over 50 problems for each K

• cpu(s): the average time in seconds over 50 problems for each K

For all the generated problems, both algorithms successfully obtain optimal solutions. From the
table, we can observe that Algorithm 1 tends to perform better than the QP-based method. In
particular, when K = 10, both the number of iterations and the computational time for Algorithm 1
are less than half of those for the QP-based method. This fact suggests that Algorithm 1 may
exploit the structure of SOC more effectively than the QP-based method.

6 Concluding Remarks

For solving the semi-infinite program with an infinite number of SOC constraints, we proposed the
local reduction based SQP-type method. We studied the global and local convergence properties
of the proposed algorithm. Finally, in the numerical experiments, we actually implemented and
examined its effectiveness. For the sake of comparison, we also implemented another SQP-type
method and observed good performance of the proposed algorithm.

3We also suppose that Assumption 4.1 (b) holds.

20

Algorithm 1 QP-based method
K itemax itemin iteave cpu(s) itemax itemin iteave cpu(s)
K10 19 3 6.22 1.04 49 6 13.28 1.91
K30 12 3 5.34 2.06 41 6 12.52 4.09
K50 11 3 5.54 2.66 31 7 13.36 4.04

K20 ×K30 17 3 5.56 2.95 24 7 11.48 4.55
K20 ×K15 ×K15 13 3 5.95 5.91 23 7 11.46 6.36

Table 5: Comparison of Algorithm 1 and the QP-based method (Experiment 3)

References

[1] Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

[2] Bonnans, J.F., Ramı́rez, C.H.: Perturbation analysis of second-order cone programming prob-
lems. Math. Program. 104, 205–227 (2005)

[3] Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for
semi-infinite programming. SIAM J. Optim. 18, 1187–1208 (2007)

[4] Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order cone complemen-
tarity problems. SIAM J. Optim. 12, 436–460 (2001)

[5] Goberna, M.A., López, M.A.: Semi-Infinite Programming—Recent Advances. Kluwer Aca-
demic Publishers, Dordrecht (2001)

[6] Gramlich, G., Hettich, R., Sachs, E.W.: Local convergence of SQP methods in semi-infinite
programming. SIAM J. Optim. 5, 641–658 (1995)

[7] Hayashi, S., Wu, S.-Y.: An explicit exchange algorithm for linear semi-infinite programming
problems with second-order cone constrains. SIAM J. Optim. 20, 1527–1546 (2009)

[8] Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization
method for monotone second-order cone complementarity problems. SIAM J. Optim. 15,
593–615 (2005)

[9] Hettich, R.: An implementation of a discretization method for semi-infinite programming.
Math. Program. 34, 354–361 (1986)

[10] Hettich, R., Kortanek, K.O.: Semi-infinite programming: Theory, methods, and applications.
SIAM Rev. 35(3), 380–429 (1993)

[11] Kato, H., Fukushima, M.: An SQP-type algorithm for nonlinear second-order cone programs.
Optim. Lett. 1, 129–144 (2007)

[12] Lai, H.C., Wu, S.-Y.: On linear semi-infinite programming problems. Numer. Funct, Anal.
Optim. 13, 287–304 (1992)

[13] Li, D.H., Qi, L., Tam, J., Wu, S.-Y.: A smoothing Newton method for semi-infinite program-
ming. J. Global Optim. 30, 169–194 (2004)

[14] Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone pro-
gramming. Linear Algebra Appl. 284, 193–228 (1998)

21

[15] López, M.A., Still, G.: Semi-infinite programming. European J. Oper. Res. 180, 491–518
(2007)

[16] Okuno, T., Hayashi, S., Fukushima, M.: A regularized explicit exchange method for semi-
infinite programs with an infinite number of conic constraints. SIAM J. Optim. 22, 1009–1028
(2012)

[17] Pereira, A., Costa, M., Fernandes, E.: Interior point filter method for semi-infinite program-
ming problems. Optimization 60, 1309–1338 (2011)

[18] Pereira, A., Fernandes, E.: A reduction method for semi-infinite programming by means of a
global stochastic approach. Optimization 58, 713–726 (2009)

[19] Qi, L., Wu, S.-Y., Zhou, G.: Semismooth Newton methods for solving semi-infinite program-
ming problems. J. Global Optim. 27, 215–232 (2003)

[20] Reemtsen, R.: Discretization methods for the solution of semi-infinite programming problems.
J. Optim. Theory Appl. 71, 85–103 (1991)

[21] Reemtsen, R., Rückmann, J.-J.(eds.): Semi-Infinite Programming. Kluwer Academic Publish-
ers, Boston (1998)

[22] Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optim. Methods Softw. 11, 625–653 (1999)

[23] Tanaka, Y., Fukushima, M., Ibaraki, T.: A globally convergent SQP method for semi-infinite
nonlinear optimization. J. Comput. Appl. Math. 23, 141–153 (1988)

[24] Toh, K.C., Todd, M.J., Tütüncü, R.H. (1999): SDPT3—a MATLAB software package for
semidefinite programming, version 2.1. Optim. Methods Softw. 11, 545–581 (1999)

[25] Wang, Y., Zhang, L.: Properties of equation reformulation of the Karush–Kuhn–Tucker con-
dition for nonlinear second order cone optimization problems. Math. Meth. Oper. Res. 70,
195–218 (2009)

[26] Wu, S.-Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the
semi-infinte programming. Optim. Methods Softw. 20, 629–643 (2005)

[27] Yamashita, H., Yabe, H.: A primal-dual interior point method for nonlinear optimization over
second-order cones. Optim. Methods Softw. 24, 407–426 (2009)

22

