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Abstract: A 2-page book embedding of a graph is to place the vertices linearly

on a spine (a line segment) and the edges on the two pages (two half planes

sharing the spine) so that each edge is embedded in one of the pages without

edge crossings. Testing whether a given graph admits a 2-page book embedding

is known to be NP-complete.

In this paper, we study the problem of testing whether a given graph admits a

2-page book embedding with a fixed edge partition. We first show that finding a

2-page book embedding of a given graph can be reduced to the planarity testing

of a graph, which yields a simple linear-time algorithm for solving the problem.

We also characterize the graphs that do not admit 2-page book embeddings

via forbidden subgraphs, and give a linear-time algorithm for detecting the

forbidden subgraph of a given graph.

1 Introduction

For an integer k ≥ 1, a k-page book embedding (or a k-stack layout) of a graph is to place

the vertices linearly on a spine (a line segment) and the edges on k pages (k half planes

sharing the spine) so that each edge is embedded in one of the pages without generating

edge-crossings. The book embedding problem has applications in the routing of multilayer

printed circuit boards and in the design of fault-tolerant processor arrays [3, 19]. See [11]

for numerous applications of book embeddings.

Graphs with 1-page book embeddings are the outerplanar graphs. Yannakakis proved

that every planar graph admits a 4-page book embedding [21]. Bernhart and Kainen [2]

show that a planar graph has a 2-page book embedding if and only if it is sub-Hamiltonian.

A planar graph is sub-Hamiltonian if and only if it is Hamiltonian or can be made Hamil-

tonian by inserting additional edges without violating planarity. The problem of testing

sub-Hamiltonicity is NP-complete [22]. Hence the problem of determining whether a given

planar graph G = (V,E) is a 2-page book embedding or not is NP-complete. See [11, 12]

for a survey on book embeddings and graph linear layouts.

1Technical report 2013-001, February 12, 2013.
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The 2-page book embedding problem contains two combinatorial aspects. One is how to

partition an edge set in two edge subsets, each corresponds to one of the two sides along the

spine. The other is how to decide an ordering of the vertices on the spine. Note that if an

ordering π of all the vertices along the spine is fixed, then we can test whether a given graph

admits a 2-page book embedding with π or not in linear time; the problem can be converted

into a planarity testing problem by adding edges between every two consecutive vertices in

π (where the last vertex is connected by the first one). However, it is not known whether

the problem remains NP-complete or can be solved in polynomial time if a partition of the

edge set is prescribed.

In this paper, we consider the problem of testing whether a given graph admits a 2-page

book embedding for a fixed edge partition. Based on structural properties of biconnected

planar graphs, we show that the problem of finding a 2-page book embedding of a graph

with a partitioned edge set can be solved in linear time.

A preliminary version of this paper appeared as a report [16], which has been recently

used to solve several other graph drawing problems such as simultaneous drawing of two

graphs. In [16], we characterize 2-page book embeddings as “splitter-free” and “disjunctive”

plane embeddings (see Section 6 for the definitions), and show that such an embedding

(if any) can be constructed in linear time by designing three procedures, one for detecting

“rigid” splitters, a special type of splitters, one for computing splitter-free plane embeddings

and the other for computing disjunctive plane embeddings. Recently Angelini et al. [1]

implemented the algorithm in in [16] after they simplified the procedure for computing

“disjunctive” plane embeddings reducing the hidden constant factor in the time bound.

In this paper, we first show that a given instance can be converted into another instance

with a special structure, called a “canonical” instance (see Section 6 for the definition). We

then prove that finding a 2-page book embedding of a given graph can be reduced to the

planarity testing of a modified graph, which yields a simple linear-time algorithm for solv-

ing the problem without using any of the three procedures in [16]. We also characterize

the graphs that do not admit 2-page book embeddings via forbidden subgraphs, and give

a linear-time algorithm for detecting the forbidden subgraph of a given graph. This algo-

rithm is obtained by significantly simplifying the first procedure for detecting rigid splitters

utilizing the restricted structure of canonical instances.

The paper is organized as follows. In Section 2, we review basic terminologies on graph

connectivity and outerplanar graphs In Section 3, we show how to convert a given instance

into a canonical instance, an instance with a special structure. In Section 4, we characterize

a 2-page book embedding as a plane embedding which satisfies two conditions: it has no

splitter and it is disjunctive. In Section 5, we show that the 2-page book embedding of a

canonical instance can be reduced to the planarity testing problem on a modified graph. In

Section 6, after we review SPQR tree representation of triconnected components, we design

a linear-time algorithm for detecting a forbidden subgraph of an infeasible instance.

2 Preliminaries

Let G = (V,E) be a graph. The set of edges incident to a vertex v ∈ V is denoted by

E(v;G). A path with end vertices u and v is called a u, v-path. The degree of a vertex

v in G is denoted by deg(v;G). For a subset X ⊆ E (resp., X ⊆ V ), G − X denotes
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the graph obtained from G by removing the edges in X (resp., the vertices in X together

with the edges in ∪v∈XE(v;G)). Subdividing an edge e = (u, v) is to replace the edge with

a u, v-path u,w1, w2, . . . , uk, v for some k ≥ 1. A graph H is a subdivision of G if H is

obtained by subdividing some edges in G.

A block (biconnected component) of a graph is a maximal biconnected subgraph (which

possibly consists of a single vertex or a single edge). A graph each of whose blocks is a

simple cycle or a single edge is called a cactus, i.e., a graphs in which any two distinct cycles

share at most one vertex. We see that a graph is a cactus if and only if no two vertices are

joined by three vertex-disjoint paths.

A planar graph G = (V,E) with a fixed embedding F of G is called a plane graph. The

set of vertices, set of edges and set of facial cycles of a plane graph H may be denoted by

V (H), E(H) and F (H), respectively. We say that a cycle Q in a plane embedding of a

graph separates a vertex/edge a1 and a vertex/edge a2 (which are not elements in Q) if a1
and a2 are respectively contained in the two regions R1 and R2 obtained by dividing the

plane by Q.

A planar graph is called outerplanar if it admits a plane embedding such that all the

vertices appear along the outer boundary, which we call an outerplane embedding. We see

that each block B of a simple outerplanar graph is a single edge or a cycle Q of length

at least 3 possibly with some chords (see Fig. 1(a) for an example of outerplanar graphs).

Note that such a cycle Q for the block B is uniquely determined, and we call Q the frame

of B (we let Q = B if B is a single edge). We observe the next.

Lemma 1 Let Bi, i = 1, . . . , p be the blocks of a simple outerplanar graph G, and Qi be

the boundary of Bi. Then a plane embedding ΓG of G is an outerplane embedding of G if

and only if each frame Qi appears on the outer boundary of ΓG.

(a) outerplanar graph

B3

B2

(b) the catus of frames

B4

B1

C3

C2

C4

C1

Figure 1: (a) An outerplanar graph; (b) The cactus obtained from the outerplanar graph

in (a) by deleting the chords, where Ci denote the frame of each block Bi of the graph in

(a).

Throughout the paper, we denote an instance of two-page book embedding problem

by a graph G = (V,E1 ∪ E2) with a partition of E into E1 and E2 (i.e., E1 ∪ E2 = E

and E1 ∩ E2 = ∅), where two vertices may be joined by two edges e ∈ E1 and e′ ∈ E2.

We call the edges in E1 (resp., E2) red edges (resp., blue edges). A subgraph H in G is

called red (resp., blue) if E(H) consists of only red (resp., blue) edges. A vertex to which

only red (resp., blue) edges are incident is called an r-vertex (resp., b-vertex). A vertex to

which both red and blue edges are incident is called a br-vertex. A 2-page book embedding
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(2PB-embedding, for short) π of a graph G = (V,E1∪E2) is a linear ordering of the vertices

such that all vertices are placed in this order on a spine and all red edges are drawn above

the spine and all blue edges are drawn below the spine without any edge-crossings. See

Fig. 2(a) and (b) for examples of 2-page book embeddings of the same graph G.

In a 2PB-embedding π of a graph G = (V,E1 ∪E2), if we join the first and last vertices

on the spine with a new curve so that the spine together with the curve forms a simple

closed curve which encloses all red edges but no blue edges (see Fig. 2(a)). Thus, a 2PB-

embedding π can be regarded as a plane embedding Γ of G in which a simple closed curve

λ visits each vertex exactly once without intersecting any edge and encloses all red edges

but no blue edges. We call such a curve λ a separating curve of the embedding Γ. Note

that the first and last vertices appear on the outer facial cycle in the plane embedding Γ.

However by choosing a new outer face, any vertex v can appear along the outer facial cycle.

This does not change the combinatorial embedding, and thereby the vertex v can appear

as the first vertex on the spine in the 2PB-embedding obtained from the resulting plane

embedding Γ′. See Fig. 2(b), where the vertices v3 and v2 are chosen as the first and last

vertices on the spine.

v3

v1 v2
v3

v1
v2

(a) π1

E1

E2

(b) π2

Figure 2: (a) A 2PB-embedding π1 of a planar graph G = (V,E1 ∪ E2); (b) A 2PB-

embedding π2 of G obtained from π1 by choosing the vertices v3 and v2 as the first and last

vertices on the spine.

3 Canonical Instances

In this subsection, we give a linear-time algorithm for converting a given instance into

another instance with a special structure, called a “canonical” instance, without changing

the 2PB-embdedability.

Clearly an instance G = (V,E1 ∪ E2) admits a 2PB-embedding only when G is planar,

and each Ei induces an outerplanar graph. If E1 = ∅ or E2 = ∅, then G has a 2PB-

embedding if and only if G is outerplanar. In what follows, we assume that E1 ̸= ∅ ̸= E2.

Also we assume that G is not a simple cycle (otherwise it always admits a 2PB-embedding).

An instance G = (V,E1 ∪ E2) is canonical if

(i) G is a simple, biconnected and planar graph, but G is not a simple cycle;

(ii) Each Ei induces a cactus (V,Ei ̸= ∅); and

(iii) Each br-vertex of G is of degree 2.

We first show how G can be assumed to be biconnected.
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Lemma 2 A planar graph G = (V,E1 ∪ E2) admits a 2PB-embedding π with partition

E1 and E2 if and only if each block H of G has a 2PB-embedding πH for the partition

E(H) ∩ E1 and E(H) ∩ E2 of E(H).

Proof. Since the only if part is trivial, we consider the if part. Let H1,H2, . . . , Hp be the

blocks of G indexed so that each Hi, i = 2, 3, . . . , p has a common vertex vHi with some

block Hj with j < i, where such vHi is unique to Hi and is called the parent of Hi. Assume

that each block Hi of G has a 2PB-embedding πHi with the partition E(Hi) ∩ E1 and

E(Hi)∩E2. As we have observed, we can regard each embedding πHi as a plane embedding

of Hi, and by choosing the outer face so that the parent vHi appears on the boundary,

we can obtain a 2PB-embedding π′Hi
of Hi in which vHi appears as the first vertex on the

spine. Let π := π′H1
. For each i = 2, 3, . . . , p, we place the 2PB-embedding π′Hi

in the space

between vertex vHi and the vertex next to vHi in the current 2PB-embedding π, letting π′Hi

share the vertex vHi with π. In this way, we can construct a desired 2PB-embedding π of

G. 2

Now we can assume that an instance G = (V,E1 ∪ E2) is biconnected. We next show

how each induced graph (V,Ei) from G is assumed to be a cactus. Let Γi be an outerplane

embedding of (V,Ei) (where all vertices in V appear along the outer boundary). In Γ, each

block of (V,Ei) is either a single edge or a cycle Q with some chords, where each chord is

drawn within the cycle. By Lemma 1, in any such embedding of (V,Ei), chords are drawn

inside the corresponding cycle and no other edges/vertices are included within the cycle.

On the other hand, in any 2PB-embedding of G, such a cycle (frame) C with E(Q) ⊆ Ei

is drawn without surrounding any edge in Ej (j ̸= i) in its interior. This means that we

can remove all the chords in the embedding Γi (i = 1, 2) in the sense that we can put

back them into any 2PB-embedding of the resulting instance without creating any edge

crossings. Hence we can assume that each (V,Ei) is a simple cactus.

We transform a biconnected graph G = (V,E = E1 ∪ E2) into a canonical instance of

2PB-embedding problem as follows.

Definition 1.

Step 1. For each outerplanar graph (V,Ei), i = 1, 2, remove the chords of each block B to

obtain a cactus (V,E′
i) in the resulting instance G′ = (V,E′

1 ∪ E′
2) (see Fig. 3(a) and

(b)).

Step 2. Let Vbr be the set of br-vertices v ∈ V of degree ≥ 3 in G′.

(i) Replace each v ∈ Vbr of degree ≥ 3 with three vertices v1, wv and v2 joined by a

new red edge (v1, wv) and a new blue edge (v2, wv); and

(ii) For each i = 1, 2, change the end vertices of each edge (u, v) ∈ E′
i to (ui, vi) (see

Fig. 3(b) and (c)). Let G′′ = (V ′′, E′′
1 ∪ E′′

2 ) be the resulting graph.

Lemma 3 Let G′′ be the canonical instance obtained from a biconnected instance G =

(V,E1 ∪ E2) by Definition 1. Then G admits a 2PB-embedding if and only if G′′ admits

a 2PB-embedding. Furthermore a 2PB-embedding of G′′ can be converted into a 2PB-

embedding of G in linear time.
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(a) G

v1 v2

wv
v

(c) G”

C

(b) G’

v

Figure 3: (a) a biconnected instance G = (V,E1 ∪ E2); into a canonical instance G̃ in (d)

by ; (b) a biconnected instance G′ = (V,E′
1 ∪ E′

2) with cactus (V,E′
i), i = 1, 2; and (c) a

canonical instance G′′ = (V ′′, E′′
1 ∪ E′′

2 ) with cactus (V,E′′
i ), i = 1, 2;

Proof. The correctness of Step 1 of Definition 1 has been discussed. We show the correct-

ness of Step 2.

Only if part: Assume that G′ admits a 2PB-embedding Γ. In Γ, we replace each

vertex v with three vertices v1, wv and v2 in this order on the spine, adding a red edge

(v1, wv) on the red edge page and a blue edge (v2, wv) on the blue edge page, and changing

the end vertices of each edge (u, v) ∈ Ei to (ui, vi). By taking a sufficiently small space for

the replacement for each vertex v, we can modify Γ into a 2PB-embedding of G′′.

If part: Assume that G′′ admits a 2PB-embedding Γ. See Fig. 4(a). We modify Γ into

another a 2PB-embedding of G′′ so that the three vertices v1, wv and v2 for each v ∈ V

appear consecutively (possibly in a different order) in Γ. Then the resulting embedding can

be converted into a 2PB-embedding of G′ by contacting the three vertices v1, wv and v2 for

each v ∈ V into a single vertex v. Suppose that there is some other vertex x (̸= v2) between

v1 and wv on the spine. Then we change the position of v1 to a new position between the

current positions of v1 and wv such that no other vertex x ( ̸= v2) appears between v1 and

wv. Since v1 and wv are joined by a red edge before the change, the red edge page has

a space for the rest of red edges incident to v1 to be drawn without creating any crossing

with other edges. See Fig. 4(b). We can change the position of vertex v2 analogously. By

applying the method for all v ∈ V , we can obtain a desired embedding for G′. Note that

the modification can be executed just by tracing the red edge (v1, wv) (resp., (v2, wv)) and

the other red (resp., blue) edges incident to v1 for each v ∈ V , and it can be implemented

to run in linear time. 2

A canonical instance G is simple, since G is not a cycle and it has no pair of blue and

red multiple edges. Also, if there are a red u, v-path and a blue u, v-path for some vertices

u, v ∈ V , then u and v are br-vertices of degree 2. In the following two sections, a given

instance is assumed to be canonical.
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(a) (b) 

v1

wv

v1

wv

Figure 4: (a) A 2PB-embedding Γ of G′′; (b) A modified 2PB-embedding so that v1 is

placed next to wv.

4 Disjunctive and Splitter-free Plane Embeddings

In a plane embedding Γ of G, a red (resp., blue) cycle Q of G is called a splitter if each of

the two regions obtained by the cycle Q contains a vertex v ∈ V − V (Q) or a blue (resp.,

red) edge.

In Γ, a vertex v is called disjunctive if for each i = 1, 2, all the edges in Ei(v;G) appear

consecutively around v. We call Γ disjunctive if all vertices in V are disjunctive.

Theorem 4 Let G = (V,E1 ∪ E2) be a biconnected planar graph with E1 ̸= ∅ ̸= E2

(not necessarily canonical). Then G admits a 2PB-embedding π if and only if G admits a

disjunctive and splitter-free plane embedding Γ. Moreover, a 2PB-embedding π of G can be

obtained from a disjunctive and splitter-free plane embedding Γ of G in linear time.

Proof. As observed above, a 2PB-embedding π of G can be regarded as a plane embedding

which admits a separating curve λ, where we treat λ as an oriented curve so that the red

edges appear on our left hand side when we traverse λ along its orientation. Conversely, if

a plane embedding admits such a separating curve λ, then we can obtain a 2PB-embedding

π of G.

Only if part: Assume that G has a 2PB-embedding π. Let λ be a separating curve of π.

The curve λ visits each vertex exactly once and it encloses only red edges. Hence the plane

embedding π is disjunctive at any vertex. If the plane embedding π has a red splitter, then

λ cannot visit a vertex (or a blue edge) enclosed by the splitter and a vertex (or a blue

edge) outside the splitter, because λ cannot intersect the splitter due to the disjunctive

condition on the vertices in the splitter. Hence π has no red splitter. Similarly, π has no

blue splitter.

If part: Assume that G has a disjunctive and splitter-free plane embedding Γ. It suffices to

show that Γ admits a separating curve λ. For this, we construct an Eulerian plane digraph

G∗ and its Eulerian trail λ by the following procedure.

Since G is biconnected, the facial cycle of each face in Γ is a simple cycle.

Step 1. Let Fbr be the set of faces of Γ whose facial cycles contain both red and blue edges.

Place a new vertex vf inside each face f in Fbr.

Step 2. Let Vbr be the set of br-vertices of G. For each br-vertex v ∈ Vbr, there exists

a unique pair of faces f and f ′ sharing the vertex v such that all the red (resp.,

blue) edges incident to v appear in the clockwise order after visiting face f (resp., f ′)

around v, because Γ is disjunctive. We join such two vertices vf and vf ′ via a new

directed edge (vf , v) and (v, vf ′) (see Fig. 5(b)).
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Step 3. We call all the new edges introduced in Steps 2 green edges. Let G∗ = (Vbr∪V ′, Eg)

be the Eulerian plane bipartite digraph that consists of all the green edges and their

end vertices, where V ′ denotes the set of the end vertices vf of all green edges; G∗ is

a plane, bipartite and Eulerian digraph which has no isolated vertices.

Step 4. Convert G∗ into a simple directed cycle λ consisting of all the green edges without

self-intersection in the plane, by splitting each vertex vf ∈ V ′ into deg(vf ;G
∗)/2

vertices of indegree 1 and outdegree 1. Such a cycle λbr visits each vertex v ∈ Vbr
exactly once and encloses all the red edges but no blue edges (see Fig. 5(c)).

Step 5. Each b-vertex u ∈ V − Vbr is on the facial cycle of a face fu ∈ Fbr, because

otherwise the union of the faces that contain v would include a blue splitter Q that

separates v from a vertex or a red edge outside the region Q. Symmetrically, each

r-vertex u ∈ V − Vbr is on the facial cycle of a face fu ∈ Fbr. We let the cycle λbr
visit each b-, or r-vertex u ∈ V −Vbr while λbr passes through the face fu ∈ Fbr. The

resulting cycle λbr will be a separating cycle of Γ (see Fig. 5(d)).

To complete the proof, it suffices to show that Step 4 can be executed. For this, we first

show that the plane Eulerian digraph G∗ is connected.

By the construction of the plane digraph G∗, for each vertex vf ∈ V ′, the incoming and

outgoing green edges incident to vf appear alternately around vf . Hence we can traverse

the boundary of G∗ following the edge directions. Thus the boundary of each component

of G∗ is a directed cycle.

To derive a contradiction, assume that G∗ has two components H and H ′ (as shown in

Fig. 5(a)), and let B and B′ denote the boundary of H and H ′, respectively, where H ′ is

not contained in the interior of B without loss of generality. Let the direction along B be

the clockwise order (the other case can be treated symmetrically). By the construction of

G∗, only red edges are adjacent to B outside B (as shown in Fig. 5(a)), and each vertex

vf in B has no blue edges on the corresponding facial cycle f ∈ Fbr. This implies that the

union of these facial cycles contain a red cycle Q of G that separates a blue edge in E(H)

and a vertex v′ ∈ V (H ′). Hence Q is a splitter of Γ, contradicting that G is splitter-free.

Therefore G∗ is connected (see Fig. 5(b)). Since G∗ is a connected Eulerian digraph, it has

an Eulerian trail (a simple directed cycle consisting of all the green edges). We show that

there is an Eulerian trail which has no self-intersection in the plane.

Based on this observation, we partition the set Eg of green edges into Eg
1 , E

g
2 , . . . , E

g
p as

follows. Let Eg
1 be the set of the edges in the boundary, and G∗

1 = G∗ − Eg
1 . Analogously

we can traverse the boundary of each component of G∗
1 following the edge directions. We

repeatedly define Eg
i as the set of edges in the boundaries of the components of G∗− (Eg

1 ∪
· · · ∪ Eg

i−1) until G∗ − (Eg
1 ∪ · · · ∪ Eg

i ) has no edge for some i = p. Each set Eg
i gives a

collection of Eulerian trail with no self-intersection. The set of all these trails forms a rooted

tree structure in which the trail in Eg
1 is the root and a trail in Eg

i is a child of a trail Eg
i−1

if these trails share a vertex vf . We can combine all these trails into a single Eulerian trail

λbr with no self-intersection by traversing the trails in a DFS manner in the tree structure.

The above procedure can be implemented to run in linear time by maintaining trails as

doubly-linked lists so that two trails with a common vertex can be merged in constant

time. This proves the if part.

It is not difficult to see that Steps 1-5 can be implemented to run in linear time to
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(a) Γ1 
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v8

v9

v5

v4
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(b) Γ2 

(c) Γ2 (d) Γ2 

v10

v11

v1

v6

v7

v8

v9

v5

v4
v3

v2

v10

v11

v1

v6

v7

v8

v9

v5

v4
v3

v2

v10

v11

v1

v6

v7

v8

v9

v5

v4
v3

v2

v10

v11

Figure 5: Two embeddings of a planar graph G = (V,E1∪E2); (a) a plane embedding Γ1 of

G which has no separating curve λ; (b) A disjunctive and splitter-free plane embedding Γ2

of G, where the circles represent the vertices in G, the squares represent the new vertices

vf for the faces f ∈ Fbr, and the dashed arrows represent the green edges defined in the

proof of Theorem 4; (c) A closed curve λbr visiting all br-vertices of G; (d) A closed curve

λ visiting all vertices of G.

obtain a separating curve λ, from which a 2PB-embedding of G can be obtained in linear

time. This proves the second statement in the theorem. 2

Notice that any plane embedding of a canonical instance is disjunctive, since red and

blue edges meet at a br-vertex of degree 2.

5 Reduction to Planarity Test

Let G = (V,E1 ∪ E2) be a canonical instance. In a plane embedding Γ of a canonical

instance G, a red cycle Q of G is a splitter if and only if Q is not a facial cycle of Γ.

The only-if part is immediate, since no facial cycle can separate two vertices/edges. The

if part follows from that each of the two regions R1 and R2 by a non-facial red cycle Q

must contain a blue edge, because otherwise Ri contains a red path joining two vertices on

Q, contradicting that (V,E1) is a cactus. Symmetrically a blue cycle becomes a splitter in

Γ whenever it is not a facial cycle of Γ. We call a plane embedding Γ of G proper if any

red/blue cycle of G appears as a facial cycle of Γ.
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Detecting a proper embedding Γ of G can reduced to the standard planarity testing of

an augmented graph as follows. For each cycle C in the cactus (V,Ei), i = 1, 2, we subdivide

each edge e in C with a new vertex we, create a new vertex vC , and add new edges (vC , we),

e ∈ E(C). Fig. 6(a) shows the graph G̃ obtained from the canonical instance in Fig. 3(c).

Let G̃ = (Ṽ , Ẽ1 ∪ Ẽ2) denote the resulting graph, where Ẽi is the set of edges obtained by

subdividing an edge in Ei or introduced to augment a cycle in the cactus (V,Ei).

Lemma 5 A canonical instance G = (V,E1 ∪ E2) admits a proper embedding if and only

if G̃ is planar. A proper embedding of G can be obtained from a plane embedding of G̃ in

linear time.

Proof. Only-if part: Let ΓG be a proper embedding of G. Then each cycle block C of

the cactus (V,Ei) surrounds no edge in Ej (j ̸= i). Hence, we can draw the newly added

vertices vC , and we, e ∈ E(C) and edges between them inside the empty region of C without

creating edge crossings. Thus the resulting embedding is a plane embedding of G̃.

If part: Since G is biconnected, G̃ is also biconnected. Let Γ
G̃

be a plane embedding

of G̃, where without loss of generality that the outer facial cycle fo contains a br-vertex

z of G. Note that z is not in any cycle of a cactus (V,Ei). Let Γ
Ẽi

denote the plane

embedding induced from Γ
G̃

by the edges in Γ
Ẽi
. We first show that for each block C

in (V,E) augmented with vertex vC , the vertex vC is surrounded by the cycle C (i.e., C

separates vC from fo) in Γ
Ẽi
. If for some C, both vC and fo are outside C, then by the

way of augmentation, only one vertex u ∈ V (C) can be adjacent to vertices outside C

(see Fig. 6(b)), and u would be a cut-vertex separating vC and z in G̃, contradicting the

biconnectivity of G̃. Now vC of each cycle is located inside the subdivided cycle C in Γ
Ẽi
.

Next we show that no other vertex than vC is located inside the subdivided cycle C in Γ
G̃
.

Assume that for some C, a vertex y (̸= vC) is inside the subdivided C in Γ
G̃
(see Fig. 6(c)).

Since G is connected, y is connected to a vertex u in the the subdivided C. Let u be the

one closest to y among such u. Then in G, u ∈ V (C), and u is adjacent to two edges

e, e′ ∈ E(C). Now in the plane embedding Γ
G̃
, the cycle (u,we, vC , we′) surround the set Y

of all vertices reachable from y without passing through u. This, however, implies that u is

a cut-vertex separating y and z in G̃, a contradiction. Hence, each subdivided C encloses

no other vertex than vC in Γ
G̃
.

Let Γ be the plane embedding of G induced from Γ
G̃
by G; i.e., remove the augmented

vertices vC and ignore the introduced vertices we for all cycles C in cacti (V,E1) and (V,E2).

Clearly, each C of a cactus (V,Ei) encloses no edges/vertices in Γ. Since each red (resp.,

blue) cycle Q in G is a (facial) cycle of (V,E1) (resp., (V,E2)), the resulting embedding Γ

is proper. 2

Since testing planarity and constructing a plane embedding if any can be done in linear

time, we can find a 2PB-embedding of a given instance if any in linear time. When Γ
G̃

is not planar, it contains a subdivision of K5 or K3,3. However, such a subgraph is not a

direct evidence of a given infeasible instance due to the augmentation. In the next section,

we give an algorithm that detects a forbidden subgraph of a given instance.

6 Forbidden Subgraphs to Two-page Book Embeddings

In this paper, we also characterize the instances G that do not admit 2PB-embeddings.
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Figure 6: Illustration for a plane embedding of the augmented graph G̃; (a) Graph G̃

obtained from the graph in Fig. 3(c) by augmenting each cycle in red and blue cacti with

stars; (b) fo and vC are outside the subdivided cycle C; (c) other vertex y than vC is inside

the subdivided cycle C.

A graph H is called pseudo-triconnected if a subdivision of a triconnected graph G.

Observe that a graph H is pseudo-triconnected if and only if H has at least three vertices

of degree ≥ 3 and every two vertices u and v of degree ≥ 3 in H has three internally disjoint

paths. We call a pseudo-triconnected subgraph S of G a forbidden subgraph if a cycle Q

with Ei in a plane embedding of S separates two edges e1, e2 ∈ Ei (i ∈ {1, 2} − {j}). By

the uniqueness of plane embedding of S, such a subgraph S (and hence G) cannot admit a

2PB-embedding. In this paper, we show that the converse is true establishing the following

result.

Theorem 6 Let G = (V,E1 ∪ E2) be a planar graph with a partition E1 and E2 of E(G)

such that each Ei induces a simple and outerplanar subgraph (V,Ei). Then G admits a

2PB-embedding if and only if there is no forbidden subgraph in G. Furthermore, either a

2PB-embedding or a forbidden subgraph of G can be found in linear time.

A completer characterization of forbidden subgraphs is useful since it can answer the

solution to restricted graph classes. For example, when each of E1 and E2 induces a forest,

G cannot have a forbidden subgraph. Hence the theorem implies the next.

Corollary 7 Let G = (V,E1 ∪ E2) be a graph with a partition E1 and E2 of E(G) such

that each Ei induces a forest (V,Ei). Then G admits a 2PB-embedding if and only if G is

planar. Furthermore, a 2PB-embedding of G if any can be found in linear time.

To prove Theorem 6, we first design a linear-time algorithm for detecting a forbidden

subgraph of a given canonical instance. It is not difficult see that even if a canonical

instance G is obtained from the original instance G∗ by Definition 1, a forbidden subgraph

S of G gives a forbidden subgraph of G∗. We then prove that a canonical instance with no

forbidden subgraphs admits a proper embedding (and hence a 2PB-embedding) by designing

a linear-time algorithm for constructing a proper embedding for such an instance.
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6.1 SPQR tree representations

To consider the all possible plane combinatorial embeddings of a biconnected graph, we use

the SPQR tree by di Battista and Tamassia [9, 10] (see Appendix 1 for detail). The SPQR

tree T of a biconnected graph G represents the adjacency of the triconnected components

of G. Each node ν in T corresponds to a triconnected component of G, and is associated

with a graph σ(ν) called the skeleton of ν, such that a subdivision of appears as a subgraph

of G (hence V (σ(ν)) ⊆ V (G)). For each edge e = (u, v) ∈ Eν , G has an induced subgraph

Ge which shares {u, v} as a cut-pair with the complementary part G − (V (Ge) − {u, v}).
Hence the skeleton σ(ν) provides an abstract structure of the entire graph G; there is a

subgraph S of G that is a subdivision of σ(ν), which is obtained by replacing each virtual

edge (u, v) with a u, v-path of G. For each R-node ν, its skeleton σ(ν) is triconnected and

its plane embedding is unique up to choices of outer faces.

For each edge of the skeleton of a node ν of the SPQR treeT of a canonical instance

G = (V,E1 ∪ E2), the graph Ge is called an r-graph (resp., b-graph) if it has a red (resp.,

blue) u, v-path. Note that Ge cannot have both a red u, v-path and a blue u, v-path, since

u and v are br-vertices of degree 2 and cannot be adjacent to other vertices in V − V (Ge).

A virtual edge e is called an r-edge (resp., b-edge) if Ge is an r-graph (resp., b-graph). Again

no virtual edge can be an r-edge and b-edge at the same time. We also treat a red (resp.,

blue) real edge as an r-edge (resp., b-edge). Fig. 7(b) shows the skeleton σ(ν) of the R-node

ν with V (σ(ν)) = {v1, v3, v5, v7, z1, z2, z3} of the graph in Fig. 7(a). For a subgraph H of

the skeleton σ(ν) of a node ν, let Er(H) (resp., Eb(H)) denote the set of r-edges (resp.,

b-edges) in H. Note that each of Er(H) and Eb(H) induces a cactus, since each (V,Ei) is

a cactus. Hence each P-node ν of T satisfies

|Er(σ(ν))|+ |Eb(σ(ν))| ≤ 2. (1)

6.2 Splitters and forbidden subgraphs

Now we examine the structure of red/blue splitters in canonical instances. A cycle Q′ in

the skeleton σ(ν) of a node ν is called an r-cycle (resp., b-cycle) if E(Q′) ⊆ Er(σ(ν)) (resp.,

E(Q′) ⊆ Eb(σ(ν))).

For example, Q′ = (v1, v2, v3, v4, v5, v6, v7, v8) in Fig. 7(b) is a non-facial r-cycle in the

skeleton σ(ν) of the R-node ν.

In fact, splitters and forbidden subgraphs are equivalent in the following sense.

Lemma 8 Let G = (V,E1 ∪ E2) be a canonical instance.

(i) Let Q′ be a non-facial r-cycle in the skeleton σ(ν) of an R-node ν. Then the subgraph

S of G obtained from σ(ν) by replacing each virtual edge e = (u, v) ∈ E(Q′) (resp., e =

(u, v) ∈ E(σ(ν))− (Q′)) with a u, v-path of Q (resp., G) is a forbidden subgraph of G.

(ii) Let S be a forbidden subgraph such that a red cycle Q in S separates two blue edges

e1, e2 of G. Then for the R-node ν such that V (ν) contains all the veritces of degree ≥ 3

of S, the set of r-edges e ∈ Eb(σ(ν)) with E(Ge) ∩Q ̸= ∅ is a non-facial r-cycle Q′ in the

skeleton σ(ν).

Proof. (i) It suffices to show that the r-cycle Q′ in σ(ν) corresponding to Q separates two

blue edges of G. Since Q′ is a non-facial r-cycle in σ(ν), Q′ separates two non-r-edges e1, e2
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Figure 7: (a) A graph G which has a non-facial r-cycle Q′ = (v1, v2, v3, v4, v5, v6, v7, v8); (b)

The skeleton σ(ν) of the R-node ν with V (σ(ν)) = {v1, v3, v5, v7, z1, z2, z3} of G in (a).

in the two regions R1 and R2 in a plane embedding γν of σ(ν). This means that Ri contains

at least one blue edge of G.

(ii) Since S is a pseudo-triconnected subgraph of G, there is an R-node ν in which all

vertices of degree ≥ 3 of S appear. Then σ(ν) has the r-cycle Q′ corresponding to Q. By

the uniqueness of embedding of S and σ(ν), Q′ still separates the blue edges e1 and e2, and

this means that Q′ is not a facial cycle in a plane embedding γν of σ(ν). This shows that

Q′ is a non-facial r-cycle in the skeleton σ(ν) of the R-node ν. 2

Lemma 9 Given Er(σ(ν)) (resp., Eb(σ(ν))) for the skeleton σ(ν) of an R-node ν, testing

if there is a non-facial r-cycle (b-cycle) in a plane embedding γν of σ(ν) can be done in

O(|E(σ(ν))|) time.

Proof. We consider the case of r-cycles (the case of b-cycles can be treated symmetri-

cally). Since the red graph (V,E1) is a cactus and no two vertices in V are joined by three

vertex-disjoint paths. This means that the r-edges in the skeleton σ(ν) induce a cactus

(V (σ(ν)), Er(σ(ν))). Since no two cycles share an edge in a cactus, the total size of all

r-cycles in the cactus (V (σ(ν)), Er(σ(ν))) is O(|E(σ(ν))|). Hence even if we test whether

each r-cycle in σ(ν) is a facial cycle of γν or not, the total time complexity is O(|E(σ(ν))|).
2

Lemma 9 implies that once we know Er(σ(ν)) (resp., Eb(σ(ν))) for all nodes ν in the

SPQR tree, a non-facial r-/b-cycle in the skeleton of an R-node can be found in linear time.

In the rest of the section, we show how to compute the r-edges and b-edges in the skeletons

of all nodes in the SPQR tree.

6.3 Rooted SPQR trees

When a node in the SPQR tree of G is designated as the root, the SPQR tree is treated as

a rooted tree, which defines a parent-child relationship among the nodes of the tree. For a

node ν, a node µ adjacent to ν in SPQR tree is called the parent of ν if µ is closer to the
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root than ν is, and is called a child of ν otherwise. Let Ch(ν) denote the set of all children

of ν. We denote the graph formed from σ(ν) by deleting its parent virtual edge pe(ν) as

σ−(ν), if ν is not the root of T . Let G−(ν) denote the subgraph induced from G by the set

of all vertices in the graphs σ−(µ) for all descendants µ of ν, including ν itself. For each

virtual edge e ∈ E(σ(ν)), let µe ∈ Ch(ν) denote the corresponding child node. For each

non-root node ν, we denote by G(ν) the graph G − (V (G−(µ)) − {u, v}). See Fig. 8 for

illustrations of the skeleton of a node nu and its children.
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Figure 8: The skeleton σ(ν) of a ν and the skeletons σ(µei) of its children µei ∈ Ch(ν),

where ν is a P-node in (a), an S-node in (b) and an R-node (c).

6.4 Computing the color of edges in the skeletons of all nodes along

rooted SPQR trees

We first give an overview of the algorithm for computing the r-edges in the skeletons of all

nodes in the SPQR tree of G (computing b-edges can be done symmetrically):

1. First choose a node as the root of the SPQR tree of G, which introduces a parent-child

relationship among the nodes of the tree.

2. By traversing the rooted SPQR tree in a bottom-up manner, compute the r-edges in

the skeleton σ−(ν) of each node ν (except for the parent virtual edge pe(ν)), based on the

computation of r-edges in the skeletons of children of ν.

3. By traversing the rooted SPQR tree in a top-down manner, identify the children µ ∈
Ch(ν) of each node ν such that the parent virtual edge pe(µ) is an r-edge.

Since G is not a simple cycle, the SPQR tree of G has an R- or P-node. We choose an

R- or P-node ν∗ as the root of the SPQR tree T . For a leaf node ν in the rooted SPQR

tree T , we know that Er(σ−(ν)) is the set of the red edges in the subgraph G−(ν). The

next lemma says that the r-edges in the skeletons σ−(ν) of all other nodes in the SPQR

tree T can be computed in linear time.

Lemma 10 Given Er(σ−(µ)) for a node ν in T , the set Er(σ−(ν)) of all r-edges in the

skeleton σ−(ν) except pe(ν) can be computed in O(|E(σ(ν))|+
∑

µ∈Ch(ν) |E(σ(µ))|) time.
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Proof. An edge e = (u, v) in σ−(ν) is an r-edge if and only if G−(µe) of the corresponding

child µe ∈ Ch(ν) has a red u, v-path, which is equivalent to that skeleton σ−(µe) has a u, v-

path Puv that consists of r-edges. Finding such a path Puv in σ−(µe) takes O(|E(σ(µe))|)
time. A real edge e in σ−(ν) is an r-edge if and only if it is a red edge. Therefore, the set

Er(σ−(ν)) of all r-edges can be obtained in the claimed time bound. 2

For the root ν∗, we know Er(σ(ν∗). The next lemma says that the parent virtual r-edges

of the skeletons σ(ν) of all other nodes in the SPQR tree T can be computed in linear time.

Lemma 11 Given Er(σ−(ν)) for a node ν in T , the set of all children µ ∈ Ch(ν) such

that pe(µ) is an r-edge can be computed in O(|E(σ(ν))|) time.

Proof. Observe that for each edge e = (u, v) ∈ E(σ−(ν)), its parent virtual edge pe(µe) is

an r-edge if and only if σ(ν) − {e} contains a path that consists of r-edges. We compute

the connected components C1, . . . , Ck of the graph (V (σ(ν)), Er(σ(ν))) induced from σ(ν)

by the r-edges, and identify all bridges in the components Ci, i = 1, . . . , k (where Ci may

consists of a single vertex). This can be done in linear time by the depth-first search

algorithm. Then for each non-r-edge e = (u, v) ∈ E(σ−(ν)), pe(µe) is an r-edge if and

only if u and v belong to the same component Ci. On the other hand, for each r-edge

e = (u, v) ∈ E(σ−(ν)), pe(µe) is an r-edge if and only if e is not a bridge of the same

component Ci to which u and v belong. Based on these characterizations, we can find all

children µ ∈ Ch(ν) such that pe(µ) is an r-edge in O(|E(σ(ν))|) time. 2

By Lemma 8, any forbidden subgraph can be found as a non-facial r- or b-cycle in the

skeleton of an R-node. After we compute the r-edges in the skeletons of all nodes in the

SPQR tree in linear time by Lemmas 10 and 11, we test if each R-node has a non-facial

r-cycle in its skeleton in time linear of the size of the skeleton by Lemma 9, which takes

O(|V |+|E|) time in total over all R-nodes. Symmetrically we can find a non-facial b-cycle in

the skeleton of an R-node in linear time. Hence finding a forbidden subgraph of a canonical

instance, if any can be done in linear time.

To prove the theorem 6, the remaining task is to design a linear-time algorithm for

constructing a proper embedding for a canonical instance with no forbidden subgraphs.

7 Constructing Proper Embeddings

In this section, we assume that a given canonical instance G = (V,E1∪E2) has no forbidden

subgraph, i.e., no non-facial r- or b-cycle in the skeleton of any R-node, and present a

procedure for constructing a proper plane embedding.

In what follows, for a graph H = σ−(ν) or H = G−(ν) of each non-root node ν in T , an

embedding ψ of H means a plane embedding of the graph such that the both end vertices

u and v of the parent virtual edge pe(ν) = (u, v) of ν appear in the boundary of the plane

embedding. When we traverse the boundary of ψ, we denote the path along the boundary

from u to v (resp., from v to u) by Bu,v(ψ) (resp., Bv,u(ψ)). The path Bu,v(ψ) is called

r-rimmed Bu,v(ψ) is the unique r-u, v-path. We define b-rimmed boundaries symmetrically.

Fig. 9(a) and (b) shows an embedding γν of the skeleton σ(ν) and an embedding Γν of the

graph G−(ν) for an R-node ν, where Bu,v(γν) and Bu,v(Γν) are r-rimmed while Bv,u(γν)

and Bv,u(Γν) are both no r-rimmed.
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An embedding ψ of H is called proper if (i) every r-cycle/b-cycle in ψ is a facial cycle;

and (ii) Bu,v(ψ) or Bv,u(ψ) is r-rimmed (resp., b-rimmed) when pe(ν) is an r-edge (resp.,

b-edge). A plane embedding ψ of H = G or H = σ(ν) for the root node ν is called proper

if every r-cycle/b-cycle in ψ is a facial cycle.

Assuming that each edge e ∈ E(σ−(ν)) of a node ν admits a proper embedding Γe of

Ge, we show that a proper embedding Γν of G−(ν) can be obtained from these embeddings

Γe. For this, we first observe that the skeleton of each node admits a proper embedding.
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Figure 9: (a) A proper embedding γν of the skeleton σ(ν) of an R-node ν, where e1, . . . , e8
are the virtual edges of σ(ν); (b) A proper embedding Γei of subgraph Ge of each virtual

edge ei, i = 1, 2, . . . , 8; and (c) A proper embedding Γν of subgraph G−(ν) obtained from

γν by replacing each virtual edge ei with Γei .

Lemma 12 Let G be a canonical graph with no forbidden subgraph, and ν be a node in the

SPQR tree. Then:

(i) When ν is an S- or R-node or a P-node with |Er(σ(ν))| + |Eb(σ(ν))| ≤ 1, any plane

embedding γν of the skeleton σ(ν) of the root ν or of σ−(ν) of a non-root ν is proper.

(ii) When ν is a P-node with |Er(σ(ν))| = 2 (resp., |Eb(σ(ν))| = 2), a plane embedding γν
of the skeleton σ(ν) of the root ν or of σ−(ν) of a non-root ν is proper if one of the two

edges in Er(σ(ν)) (resp., Eb(σ(ν))) appear consecutively (possibly one appears as Bu,v(γν)

and the other as the parent virtual edge pe(ν)).

Proof. (i) The lemma is immediate for a P-node ν with |Er(σ(ν))|+ |Eb(σ(ν))| ≤ 1 in (1)

or an S-node.

Let ν be a non-root R-node (the case of root R-node can be treated analogously). Let

γν be a plane embedding of σ−(ν) Since G has no forbidden subgraph, any r-/b-cycle of

σ(ν) is a facial cycle of any plane embedding of σ(ν). Assume that the parent virtual edge

pe(ν) of ν is an r-edge (the case where the parent virtual edge of ν is a b-edge can be

shown symmetrically). Hence the parent virtual edge pe(ν)) = (u, v) is an r-edge in σ(ν).

If σ−(ν) has an r-u, v-path P , then pe(ν) and P form an r-cycle Q′, which again must be
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a facial cycle in a plane embedding of σ(ν); i.e., P is Bu,v(γν) or Bv,u(γν), and σ
−(ν) has

no r-u, v-path other than P . This proves that γν is proper.

(ii) For a P-node ν with |Er(σ(ν))| = 2 or |Eb(σ(ν))| = 2, the embedding stated in the

lemma is proper, since σ(ν) has exactly one r-cycle or b-cycle. 2

Based on proper embeddings of all nodes in the SPQR tree, we show how to construct a

proper embedding for H = G traversing the rooted SPQR tree T in a bottom-up manner.

We first construct proper embeddings for leaf nodes of T . Then we construct a proper

embedding of a non-leaf node ν by assembling the proper embeddings of all children of ν.

Leaf nodes: For each leaf S- or R-node ν of T , any plane embedding of G−(ν) = σ−(ν)

is proper by Lemma 12. Note that there is no leaf P-node since G is simple.

Internal nodes: Let ν be an internal node of T , pe(ν) = (u, v) be the parent virtual

edge of ν, and γν be a proper embedding of σ−(ν) in Lemma 12. For each virtual edge

e ∈ E(σ−(ν)), let Γe denote a proper embedding of Ge.

(1) S-node: Let ν be an S-node. In this case, γν is a single path joining u and v. Let Γν

be an embedding of G−(ν) obtained from γν by replacing each virtual edge e ∈ E(σ−(ν))

with Γe. If G
−(ν) is not an r-graph or a b-graph, then the resulting embedding Γν of G−(ν)

is already proper. Assume that G−(ν) is an r-graph (the case of a b-graph can be treated

symmetrically). Then, (α) for each edge e in Bu,v(ξν), we flip each Γe if necessary so that

the r-rimmed boundary of ψe appears along the outer face of γν . The resulting embedding

Γν of G−(ν) is now proper.

(2) R-node: Let ν be an R-node, and γν be a proper embedding of σ−(ν), where we

assume without loss of generality that Bu,v(γν) is the unique r-u, v-path of σ−(ν). See

Fig. 9, where (a) shows a proper embedding γν of σ−(ν) of the R-node ν, and (b) shows

a proper embedding Γei of Gei of each virtual edge ei ∈ E(σ(ν)). Consider the case where

G−(ν) is an r-graph and the parent virtual edge of ν is an r-edge (the other case can be

treated analogously). We replace each virtual edge e in σ−(ν) so that (α) for each edge e

in Bu,v(γν), the r-rimmed boundary of Γe of appears along the outer face of γν ; and (β) for

each edge e in a facial r-cycle Q′ of γν , the r-rimmed boundary of Γe of appears facing the

interior of Q′. Let Γν be the resulting embedding of G−(ν). See Fig. 9(c) for the resulting

embedding Γν obtained from the embeddings in Fig. 9(a) and (b). We see that Γν is proper,

since γν and all ψe are proper.

(3) P-node: Let ν be a P-node. Let γν be a proper embedding of σ−(ν). That is, two

edges in Er(σ(ν)) (resp., Er(σ(ν))), if any, appear consecutively (possibly one as Bu,v(γν)

and the other as the parent edge pe(ν)). We replace each virtual edge e in σ−(ν) by Γe

according to the same rules (α) and (β). We easily see that the resulting embedding Γν of

G−(ν) is proper.

Root nodes: For the root R- or P-node ν, we can obtain a proper embedding Γ of G by

replacing each virtual edge e in a proper embedding γν of σ(ν) with a proper embedding

Γe according to the same rule (β).
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This completes an inductive proof for the existence of proper embeddings in canonical

instances when there is no forbidden subgraph. It is not difficult see that the above proce-

dure for constructing a proper embedding of G can be implemented to run in linear time.

Therefore, this completes the proof of Theorem 6.
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Appendix 1: SPQR tree

We review the definition of triconnected components [17] (or 3-blocks) and a variation

of the SPQR tree [9, 10] of a biconnected graph.

First we review the definition of triconnected components [17]. If G is triconnected, then

G itself is the unique triconnected component of G. Otherwise, let u, v be a cut-pair of G.

We split the edges of G into two disjoint subsets E1 and E2, such that |E1| > 1, |E2| > 1,

and the subgraphs G1 and G2 induced by E1 and E2 only have vertices u and v in common.

Form the graph G′
1 from G1 by adding an edge (called a virtual edge) between u and v

that represents the existence of the other subgraph G2; similarly form G′
2. We continue the

splitting process recursively on G′
1 and G′

2. The process stops when each resulting graph

reaches one of three forms: a triconnected simple graph, a set of three multiple edges (a

triple bond), or a cycle of length three (a triangle).

The triconnected components of G are obtained from these resulting graphs:

• a triconnected simple graph;

• a bond, formed by merging the triple bonds into a maximal set of multiple edges;

• a polygon, formed by merging the triangles into a maximal simple cycle.

The triconnected components of G are unique. See [17] for further details.

One can define a tree structure, sometimes called as the 3-block tree, using triconnected

components as follows. The nodes of the 3-block tree are the triconnected components of G.

The edges of the 3-block tree are defined by the virtual edges, that is, if two triconnected

components have a virtual edge in common, then the nodes that represent the two tricon-

nected components in the 3-block tree are joined by an edge that represents the virtual

edge.

There are many variants of the 3-block tree in the literature; the first was defined by

Tutte [20]. In this paper, we use the terminology of the SPQR tree, as defined by di Battista

and Tamassia [9, 10]. We now briefly review this terminology.

Each node ν in the SPQR tree is associated with a graph G = (V,E) called the skeleton

of ν, denoted by σ(ν) = (Vν , Eν) (Vν ⊆ V ). For each edge e = (u, v) ∈ Eν , G has

an induced subgraph Ge which shares {u, v} as a cut-pair with the complementary part

G − (V (Ge) − {u, v}). Hence the skeleton σ(ν) corresponds to a triconnected component,

providing an abstract structure of the entire graph G. There are four types of nodes in the

SPQR tree. The node types and their skeletons are:

1. Q-node: the skeleton consists of two vertices connected by two multiple edges. Each

Q-node corresponds to an edge of the original graph.

2. S-node: the skeleton is a simple cycle with at least three vertices (this corresponds to

a polygon triconnected component).

3. P-node: the skeleton consists of two vertices connected by at least three edges (this

corresponds to a bond triconnected component).

4. R-node: the skeleton is a triconnected graph with at least four vertices.
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The SPQR tree as developed by di Battista and Tamassia is a data structure with

efficient operations. In this paper, we use the SPQR tree only as a convenient way to

traverse the 3-blocks of a biconnected graph. In fact, we use a slight modification of the

SPQR tree: we omit the Q-nodes and we root the tree as described below. We will refer

the (modified) SPQR tree as the SPQR tree throughout this paper.

In this paper, a given graph G is assumed to be canonical and it has no multiple edges

or a pair of red and blue edges with the same end vertices.

The SPQR tree is unique [9, 10]. We treat the SPQR tree of a graph G as a rooted tree

T by choosing an arbitrary node ν∗ as its root.

Some further notation for the SPQR tree is required. Suppose that G is a biconnected

(but not triconnected) planar graph, and T is the rooted SPQR tree of G. Let ν be a

non-root node in T , and µ be the parent of ν. The graph σ(µ) has one virtual edge e in

common with σ(ν). The edge e is the parent virtual edge in σ(ν), and it is a child virtual

edge in σ(µ). For each non-root node v of the SPQR tree, σ(ν) has precisely one parent

virtual edge, and for each non-leaf node ν ′, σ(ν ′) has at least one child virtual edge. A

node ν which is neither the root or a leaf node is called an internal node.

We denote the graph formed from σ(ν) by deleting its parent virtual edge as σ−(ν), if

ν is not the root of T . If σ(ν) is a non-root R-node, then σ−(ν) is internally triconnected.

The union of the graphs σ−(µ) for all descendants µ of ν, including ν itself, is denoted

by G−(ν); i.e., G(ν) is the graph obtained from G by inducing the vertex set ∪{Vµ |
descendants µ of ν}.
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