
A Refined Algorithm for Maximum Independent Set
in Degree-4 Graphs

Mingyu Xiao

School of Computer Science and
Engineering, University of Electronic

Science and Technology of China, China,
myxiao@gmail.com

Hiroshi Nagamochi

Department of Applied Mathematics and
Physics, Graduate School of Informatics,

Kyoto University, Japan,
nag@amp.i.kyoto-u.ac.jp

Abstract

The maximum independent set problem is one of the most important problems in worst-
case analysis for exact algorithms. Improvement on this problem in low-degree graphs can be
used to get improvement on the problem in general graphs. In this paper, we show that the
maximum independent set problem in an n-vertex graph with degree bounded by 4 can be
solved in O∗(1.1376n) time and polynomial space, improving all previous exact algorithms for
this problem. As most fast exact algorithms, this algorithm is a branch-and-search algorithm
and analyzed by using the measure and conquer method. To effectively analyze the running
time bound, we use the idea of ‘shift’ to save some decreasing on the measure from some good
branches to some bad branches. After treating cycles of length 3 and 4 in the graph, we check
carefully what will happen after branching on a degree-4 vertex (without any local structure),
and then we can get the claimed improvement.

Key words. Exact Algorithm, Independent Set, Measure and Conquer

1 Introduction

The famous maximum independent set problem (MIS), to find a vertex set of maximum cardinality
in a graph such that the induced subgraph on the vertex set has no edge, is one of the most important
problems in the line of research on worst-case analysis of exact algorithms for NP-hard problems.
The trivial algorithm of checking all possible vertex subsets will get running time bound of O∗(2n).
In 1977, Tarjan and Trojanowski [14] designed the first nontrivial algorithm with running time
O∗(2n/3). The bound of the running time to exactly solve the problem has been further improved
for many times [10, 13, 6, 11, 2]. Currently, the fastest algorithms are Robson’s O∗(1.2109n)-
time exponential-space algorithm [13] and Bourgeois et al.’s O∗(1.2114n)-time polynomial-space
algorithm [2].

Almost all previous algorithms for MIS take MIS in low-degree graphs as the most important
subcases and analyze them carefully. In fact, MIS in degree-i graphs (graphs with maximum degree
i) for small i will become one of the crucial bottlenecks for solving MIS in degree-(i+1) graphs (and
then in general graphs). With improved running time bounds on MIS3 (MIS in degree-3 graphs)
and MIS4 (MIS in degree-4 graphs), Bourgeois et al. [2] get improvements on MIS5 (MIS in degree-5
graphs), MIS6 (MIS in degree-6 graphs) and MIS in general graphs by using a bottom-up method.
Due to the importance of the problems in low-degree graphs, we can find a long list of contributions
to fast exact algorithms for MIS in low-degree graphs in the literature [7, 9, 17, 12, 16, 1, 18] . Now
MIS3 can be solved in O∗(1.0836n) time and polynomial space [18]. For MIS4, Kneis et al. [11] got
a running time bound of O∗(1.2132n) by using a computer-aided method to check a huge number of
cases, and finally MIS4 will not be the bottleneck case in their algorithm for MIS in general graph.
Bourgeois et al. [2] carefully checked some local structures and then got a bound of O∗(1.1571n).

1Technical report 2013-002, April 8, 2013

1

We further improved the bound to O∗(1.1447n) in [19], which can be regarded as a previous version
of this paper. Compared with [19], this paper carefully checks what will happen after branching on
a degree-4 vertex by including it to the solution or not, which is the worst case in [19]. We find that
the worst case will not always occur, and then we can save some decreasing of the measure from
the following ‘good’ branches to this ‘bad’ branch. Therefore, we can further improve the running
time bound to O∗(1.1376n). To get this improvement, we also need to refine the analysis of treating
vertices of degree ≥ 5 vertices (it is possible to create vertices of degree ≥ 5 in our algorithm even
when the degree of the initial graph is bounded by 4), cycles of length 3 and 4, and other local
structures.

The rest of the paper is organized as follows. Section 2 gives the notations used in the paper.
Sections 3 and 4 introduce reduction and branching rules, respectively, which will be used in our
algorithm. Section 5 presents our algorithm, a framework of the analysis and the main result, while
the detailed analysis and proofs are discussed in Section 6. Finally Section 7 makes some concluding
remarks.

2 Notation System

Let G = (V,E) stand for a simple undirected graph with a set V of vertices and a set E of edges. Let
n denote the total number of vertices in a given graph G. For simplicity, we may denote a singleton
set {v} by v. For a vertex v in a graph, N(v) denotes the set of all neighbors of v, δ(v) (= |N(v)|) the
degree of v, and N2(v) the set of vertices with distance exactly 2 from v. Denote N [v] = N(v)∪{v}
and N2[v] = N2(v)∪N [v]. Let X be a subset of vertices in G. We may also use N(X) to denote the
neighbors of a set X of vertices, i.e., N(X) = ∪v∈XN(v)−X, and let N [X] = X∪N(X). Let G−X
be the graph obtained from G by removing the vertices in X together with any edges incident to
a vertex in X, G[X] = G− (V −X) be the graph induced from G by the vertices in X, and G/X
denote the graph obtained from G by contracting X into a single vertex (removing self-loops and
parallel edges). A k-cycle C is a simple cycle of length k ≥ 3, which is denoted by a sequence of
the k vertices v1, v2, . . . , vk in C such that, for each i = 1, 2, . . . , k, vi and vi+1 are adjacent, where
we interpret vk+1 = v1. The line graph of a graph G is the graph whose vertices correspond to the
edges of G, and two vertices are adjacent if and only if the corresponding two edges share a same
endpoint in G. Throughout the paper we use a modified O notation that suppresses all polynomially
bounded factors. For two functions f and g, we write f(n) = O∗(g(n)) if f(n) = g(n)poly(n) holds
for a polynomial poly(n) in n.

3 Reduction Rules

When the instance has some special structures, we may apply our reduction rules to decrease the
size of instance directly by finding a partial solution. Reduction operations will not exponentially
increase the running time bound. After reducing some special structures by applying the reduction
rules, we can effectively search the solution in the resulting graph by applying our branching rules.
Next, we introduce our reduction rules, all of which are known in the literature.

Let α(G) denote the size of a maximum independent set of a graph G. Clearly if there are
degree-0 vertices in a graph, then any maximum independent set of the graph includes all these
vertices and we remove them from the graph. Thus for the set V0 of degree-0 vertices in G, it holds
α(G) = α(G− V0) + |V0|.

Dominance
We say that a vertex u dominates another vertex v if N [u] ⊆ N [v]. A vertex is called dominated if
it is dominated by some other vertex. If there is a dominated vertex v in a graph, then we remove
v from the graph.

2

The following lemma is folklore and has been used in most previous algorithms for MIS and
related problems [3, 6].

Lemma 1 For a dominated vertex v in graph G,

α(G) = α(G− v).

In particular, folding a degree-1 vertex u means to remove the unique neighbor v of u. Next we
assume that the above rule has been repeatedly applied until there is no dominated vertex. Note
that if the neighbor set N(u) of a vertex u induces a complete graph, then every neighbor v of u
is dominated by u. From this observation we see that there exists no longer a degree-1 vertex or a
degree-2 vertex with two adjacent neighbors when a graph has no dominated vertex.

Unconfined Vertices
A satellite of a vertex u is a vertex s ∈ N2(u) which has a neighbor s′ ∈ N(u) ∩ N(s) such that
N [s′] − N [u] = {s}, where s′ is also called the parent of satellite s. We use Su to denote the set
of vertex u and all satellites of u. The concept of satellites was first introduced in [11] and has
been extended to “confining sets” in [18]. We can easily observe that when there is no maximum
independent set containing u (i.e., every maximum independent set contains u), every maximum
independent set contains Su [11]. A vertex u is called unconfined if some two satellites in Su − {u}
are adjacent1. It is shown that an unconfined vertex u can be removed without losing a maximum
independent set [18].

Lemma 2 [18] For an unconfined v in graph G,

α(G) = α(G− v).

A vertex v is called a roof, if it is in a 5-cycle vu1u2u3u4 such that u1 and u4 are degree-3
vertices adjacent each other. If there is a roof, we remove it from the graph. We see that roofs are
unconfined vertices.

Folding degree-2 vertices
Folding a degree-2 vertex v (with two nonadjacent neighbors a and b) means contracting v, a and b
into a single vertex s.

Fig. 1(a) illustrates the operation of folding a degree-2 vertex. Note that the operation of
folding a degree-2 vertex may create a vertex of high degree. Therefore, even if the initial graph is
of maximum degree 4, our algorithm may create vertices of degree ≥ 5 during an execution of it.

A vertex v together with its neighbors N(v) is called a funnel (or a δ(v)-funnel) if N [v] − {a}
induces a complete graph for some a ∈ N(v), and is denoted by a-v-(N(v) − {a}). Note that
v dominates a vertex in N(a) ∩ N(v) if any. We have that N(a) ∩ N(v) = ∅, when there is no
dominated vertex.

Folding funnels
Folding a 3-funnel a-v-{b, c} meas that we add an edge between every non-adjacent pair (x, y) of
vertices x ∈ N(a)− {v} and y ∈ N(v)− {a} = {b, c} and then remove vertices a and v.

Fig. 1(b) illustrates the operation of folding a 3-funnel. Let G⋆(v) denote the graph after folding
a degree-2 vertex v or a 3-funnel a-v-{b, c} in G. Then we have the following lemma.

Lemma 3 For a degree-2 vertex v or a funnel a-v-{b, c} in graph G, we have α(G) = 1+α(G⋆(v)).

1Unconfined vertices in [11] are defined in a more general way.

3

v

ba

s

Folding

a degree-2

vertex

c

Folding

a 3-funnel

u

Folding

a 2-3 structure

v

b

a

c

v

ba

s

t1
t2

c

bt1
t2

t3

t3

(a) (b) (c)

Figure 1: Illustrations of folding operations

The correctness of Lemma 3 has been discussed in many references [3, 6]. In fact, folding a funnel is
also a special case of a reduction rule introduced in [6]. In general, folding a funnel may increase our
measure (defined in Section 6), which is unexpected in our algorithm. We call a 3-funnel a-v-{b, c}
in a graph with minimum degree 3 a short funnel if δ(a) ≤ 4 and there are at least δ(a)− 2 edges
between N(a)− {v} and {b, c}. In our algorithm, we will reduce short funnels only and leave some
other funnels.

In our algorithm, we will also use the following reduction rules. A 2-3 structure is a subgraph
induced by two independent degree-3 vertices v and u and their three common neighbors a, b and
c (see Fig. 1(c)), and is denoted by {v, u}-{a, b, c}. Similarly a 3-4 structure is a subgraph induced
by three independent vertices v, u and z of degree ≥ 3 and the union of their neighbors such that
|N(v) ∪N(u) ∪N(z)| = 4, and is denoted by {v, u, z}-N(v) ∪N(u) ∪N(z).

Folding 2-3 and 3-4 structures
Let A-B be a 2-3 structure or 3-4 structure in graph G. Folding A-B means
(a) removing A ∪B from the graph, when B is not an independent set in G; or
(b) contracting A ∪ B into a singe vertex and deleting parallel edges and self-loops from the graph,
when B is an independent set in G.

Lemma 4 Let G⋆ be the graph obtained from a graph G by folding a k-(k + 1) structure (k = 2 or
3) in G. Then α(G) = k + α(G⋆).

The above reduction rule is a special case of the crown reduction introduced in [4]. The correct-
ness of folding an A-B structure follows from the next observation: When B is not an independent
set, there is a maximum independent set that contains A. When B is an independent set, there is
a maximum independent set that contains either B or A.

Line graphs
If graph G is the line graph of a graph G′, then we obtain a maximum independent set of G directly
by finding a maximum matching M in G′ and taking the corresponding vertex set VM in G as a
solution.

Not every graph is a line graph. There are several methods to check whether a graph is a line
graph or not, which depend on characterizations of line graphs [15]. In this paper, we only need to
check whether a graph is the line graph of a 3-regular graph, which can be easily done (note that a

4

graph is the line graph of a 3-regular graph if and only if the graph has only degree-4 vertices and
each of them is contained in two edge-disjoint triangles).

A set X of vertices is called a reducible vertex set if |N(X)| ≤ 2, 2 ≤ |X| ≤ 26 and X induces a
connected subgraph from G. The following lemmas provide reduction rules to eliminate reducible
vertex sets.

A partition (V1, Z, V2) of the vertex set of G is called a separation if N(V1) ⊆ Z ⊇ N(V2). Let
v be a vertex cut in a graph G, which gives a separation (V1, {v}, V2). Let Gi = G[Vi], i = 1, 2, and
V v
1 = V1 −N(v). The induced graph G[V v

1] is denoted by Gv
1.

Lemma 5 For subgraphs G1 and Gv
1 defined on a separation (V1, {v}, V2) in a graph G, it holds

α(G) = α(G1) + α(G⋆),

where G⋆ = G − V1 if α(G1) =α(Gv
1), and G⋆ = G2 otherwise. A maximum independent set in a

graph G can be constructed from any maximum independent sets to G1, G
v
1 and G⋆.

(See Appendix for a proof.)

For a separation (V1, {u, v}, V2) of a graph G, let Gi = G[Vi] (i = 1, 2), V v
1 = V1 −N(v),

V u
1 = V1 −N(u) and V uv

1 = Vi −N({u, v}), i ∈ {1, 2}. The induced graphs G[V v
1], G[V u

1] and

G[V uv
1] are simply denoted by Gv

1, G
u
1 and Guv

1 respectively. Let G̃2 denote the graph obtained from
G[V2∪{u, v}] by adding an edge uv if v and u are not adjacent.

Lemma 6 For subgraphs G1, G
v
1, G

u
1 and Guv

1 defined on a separation (V1, {u, v}, V2) in a graph
G, it holds

α(G) = α(G1) + α(G⋆),

where

G⋆=



G[V2∪{u,v}] if α(Guv
1)=α(G1),

G̃2 if α(Guv
1)<α(Gu

1)=α(Gv
1)=α(G1),

G[V2∪{v}] if α(Gu
1)<α(Gv

1)= α(G1),
G[V2∪{u}] if α(Gv

1)<α(Gu
1)= α(G1),

G/(V1∪{u, v}) if α(Guv
1)+1 = α(G1) and α(Gv

1)<α(G1),
G2 otherwise (α(Guv

1)+2 ≤ α(G1) and α(Gv
1)<α(G1)).

A maximum independent set in a graph G can be constructed from any maximum independent sets
to G1, G

v
1, G

u
1 , G

uv
1 and G⋆.

(See Appendix for a proof.)

Given a reducible vertex set X in a graph G, let V1 = X and V2 = V −N(V1), where Z = N(V1)
is a cut-vertex or a cut-pair. We convert G into G⋆ according to Lemma 5 or Lemma 6. Note that
we can compute α(G1) and α(Gv

1) in Lemma 5 or α(G1), α(G
v
1), α(G

u
1) and α(Guv

1) in Lemma 6 in
constant time since |X| is bounded by a constant.

Definition 7 A graph is called a reduced graph, if it contains none of dominated vertices, uncon-
fined vertices, degree-2 vertices, short funnels, 2-3 structures, 3-4 structures, and reducible vertex
sets, and has no connected component which is the line graph of a 3-regular graph, or a graph of at
most 23 vertices.

When a graph G is not a reduced graph, we use the algorithm RG(G, s) in Figure 2 to find a
partial solution in polynomial time before a reduced graph is obtained. The algorithm in Figure 2
is a collection of all above reduction operations. Note that for the purpose of analysis, we apply
the rule of folding degree-2 vertices in Step 2 before removing dominated vertices and unconfined
vertices.

5

Input: A graph G = (V,E) and the size s of the current partial solution (initially
s = 0).
Output: A reduced graph G′ = (V ′, E′) and the size s of a partial solution S′ with
(S′ ∪N(S′)) ∩ V ′ = ∅ in G.

1. If {Graph G has a component P that has at most 23 vertices, or is the line graph
of a 3-regular graph}, return (G′, s′) := RG(G− P, s+ α(P)).

2. Elseif {There is a degree-2 vertex v whose neighbors are not adjacent}, return
(G′, s′) := RG(G⋆(v), s+ 1).

3. Elseif {There is a dominated or unconfined vertex v ∈ V }, return (G′, s′) :=
RG(G− v, s).

4. Elseif {There is a reducible vertex subset V1}, return (G′, s′) := RG(G⋆, s+α(G1))

5. Elseif {There is a k-(k+1) structure (k = 2 or 3)}, return (G′, s′) := RG(G⋆, s+k).

6. Elseif {There is a short funnel a-v-(N(v)−{a})}, return (G′, s′) := RG(G⋆(v), s+
1).

7. Else return (G′, s′) := (G, s).

Figure 2: The Algorithm RG(G, s)

4 Branching Rules

If the current graph is a reduced graph, then we use the branch-and-search method to find a
solution. In our algorithm, we use three kinds of branching rules. The simplest branch rule is to
branch on a vertex by including it to the solution set or not. This simplest branch rule has been
extended in [11, 18]. We can branch on a vertex v by excluding it from the solution set or including
Sv to the solution set (Sv is defined in unconfined vertices). That is, in the first branch we will
delete v from the graph and in the second branch we will delete N [Sv] from the graph. This is our
first branching rule. We will choose a vertex v to branch on such that a reducible subset is created
by removal of v or v has the maximum degree. Besides this branching rule of branching on a single
vertex, we also two other branching rules, branching on a funnel and branching on a 4-cycle.

We use reduction rules to short funnels only. For other kinds of funnels, we may use the following
branching rules to treat them.

Lemma 8 [18] Let a-v-(N(v)−{a}) be a funnel in graph G. Then there is a maximum independent
set S in G such that either v ∈ S or Sa ⊆ S.

Based on Lemma 8, we get the following branching rule.

Branching on a funnel
Branching on a funnel a-v-(N(v) − {a}) means branching by either including v in the solution set
or including Sa in the solution set.

Lemma 9 [18] Let abcd be a 4-cycle in graph G. For any independent set S in G, either a, c /∈ S
or b, d /∈ S.

6

Based on Lemma 9, we get the following branching rule.

Branching on a 4-cycle
Branching on a 4-cycle abcd means branching by either excluding a and c from the independent set
or excluding b and d from the independent set.

5 The Algorithm, Basic Analysis and Results

The main idea of our algorithm is follows. While the current graph is not a reduced graph, we call
RG(G, s) to reduce the graph and find a partial solution; otherwise we invoke our branching rules
to search a solution. By branching on vertices of maximum degree, we can find a solution. However,
this simple branching rule is not always good enough for achieving an improved time bound. We
will apply the other two branching rules: branching on a funnel and branching on a 4-cycle, to
eliminate certain types of triangles and all 4-cycles, which appear in the worst cases in the simple
branching. Before giving the detailed algorithm, we introduce the idea to analyze the time bound
of our algorithm.

5.1 Framework for Analysis

We use the measure and conquer method [6] to analyze the running time bound of our algorithm.
By this method, we introduce a weight to each vertex in the graph according to the degree of the
vertex, w : Z+ → R+ (where Z+ and R+ denote the sets of nonnegative integers and nonnegative
reals, respectively): we denote by wi the weight w(v) of a vertex v of degree i ≥ 0. A vertex of
higher degree may receive a larger weight. Then we adopt w(G) =

∑
iwini as the measure of the

graph G, where ni denotes the number vertices of degree i in the graph. We will set vertex weight
such that the measure w = w(G) satisfies the measure condition: (i) when w ≤ 0 the instance
can be solved in polynomial time; (ii) the measure w will never increase after each application of
the reduction/branching rules in the algorithm; and (iii) the measure w will decrease in each of
the subinstances generated by applying a branching rule. This is important for us to construct
recurrences for each branching operation in the algorithm.

For each branch operation, we will generate two subinstances G1 and G2 by deleting some
vertices from the graph. After deleting some vertices, we can reduce the measure from two parts:
the weight of the vertices being deleted and partial weight of the vertices adjacent to the deleted
vertices since their degree will decrease. Let t(i) (i = 1, 2) be a lower bound on the decrease of the
measure in the subinstance (i.e., w(G)− w(Gi) ≥ t(i)). Then we get the recurrence

C(w)≤C(w − t(1)) + C(w − t(2)),

where C(w) is the worst size of the search tree when our algorithm runs on any graph with measure
w. The unique positive real root of the function f(x) = 1 − x−t(1) − x−t(2) is called the branching
factor of the above recurrence. Let τ be the maximum branching factor among all branching factors
in the search tree. Then C(w) = τw. Readers are referred to the monograph on exact algorithms [8]
for more details about the analysis of the size of the search tree.

To ease amortization on our analysis, we introduce “shift” σ for some recurrences which are
not bottlenecks in our algorithm. Suppose that there are two branching operations A and B with
recurrences C(w)≤C(w − t(A1)) + C(w − t(A2)) and C(w)≤C(w − t(B1)) + C(w − t(B2)), and that
branching operation B is always applied to the subinstance G1 generated by the first branch of A in
the algorithm. The branching operation B may lead to a better recurrence (with smaller branching
factor) than A does. To improve the recurrence for operation A, we will save some decreasing of
the measure in operation B to A. Instead, we save σB ≥ 0 from B by evaluating the branch rule B

7

with a worse recurrence

C(w)≤C(w − (t(B1) −σB)) + C(w − (t(B2) −σB)).

The saved weight σB will be included to the recurrence for operation A to obtain

C(w)≤C(w − (t(A1) +σB)) + C(w − t(A2)).

The amount of save is also called shift. In our algorithm, we introduce four shifts σi (i = 1, 2, 3, 4)
in four recurrences: σ1 for branching on good vertices or vertices with maximum degree d ≥ 6 and
σ2 for branching on vertices with maximum degree d = 5 in Section 6.2.1; σ3 for branching on a
certain type of good funnels in Section 6.2.2; and σ4 for branching on a certain type of optimal
degree-4 vertices in Section 6.2.4.

Once the algorithm is designed, we can get a best value for each vertex weight by solving a qua-
siconvex program [5]. The quasiconvex program is generated by all the recurrences in the algorithm.
In our algorithm, we will carefully select our branching rules to avoid some bad recurrences. This
step is important to get further improvement. We need to check the graph and show that there is
always a good structure, branching on which can get a good recurrence. We describe how to select
the local structures and branching rules in the next subsection.

5.2 The Algorithm

We are ready to describe the detailed steps of our algorithm. Now we assume that the graph is a
reduced graph and we begin to select our branching rules. Note that a reduce graph has minimum
degree at least 3.

A subset X ⊆ V is called good if |N(X)| = 3, 6 ≤ |X| ≤ 26, X induces a connected subgraph and
contains at least one vertex of degree ≥ 5, and X is maximal subject to these conditions. A vertex
v is called good if it is a neighbor of a good subset X ⊆ V (i.e., v ∈ N(X)). Our algorithm will first
branch good vertices in the graph. We can see that when a good vertex is removed, we get some
reducible vertex sets, which can be further reduced by applying reduction rules. This branching
rule will be good enough in our analysis. After this, the algorithm will branch on a vertex v of
degree ≥ 5 if it exits (recall that a high-degree vertex may be created by folding a degree-2 vertex
and other reduction rules). Simply branching a vertex of maximum degree ≥ 5 can get a good
recurrence since a vertex of high degree will have a large weight and a large number of neighbors.
However, we assume that N2(v) ≥ 4 (since there is not good vertex now) and then get much better
recurrences by deep analysis. In fact, we will save some shifts in this step. When the maximum
degree of the graph is 3, we can also invoke previously known fast algorithms for MIS3 to solve the
current instance. Thus we only need to consider the case where the maximum degree of the graph
is 4.

Next, we assume the graph is a reduced graph with maximum degree 4. A triangle containing
both degree-3 and degree-4 vertices is called irregular. When there is an irregular triangle (there
is also a 3-funnel), we apply the rule of branching on a funnel to reduce them. The funnels to be
selected first will be defined as “good funnels” (see the last paragraph of this subsection). Note that
we do not deal with triangles containing only degree-4 vertices in a special way. When a degree-
4 vertex v is contained in a 4-cycle, the algorithm will branch on an optimal 4-cycle (a 4-cycle
containing a degree-4 vertex is called optimal if the number of degree-3 vertices in it is maximized
among all such 4-cycles). When there is neither an irregular triangle nor a 4-cycle containing a
degree-4 vertex, we have no good branch rules but simply branch on a degree-4 vertex. We will
distinguish several cases by considering the degrees of the neighbors of the degree-4 vertex. It
turns out that the worst branch is to branch on a degree-4 vertex with four degree-4 neighbors (not
containing in any triangle or 4-cycle). We can select a degree-4 vertex with maximum number of
degree-3 neighbors in the algorithm. But when the component of the graph is a 4-regular graph

8

we may not be able to avoid this case. It can be regarded as one of the hardest cases, since there
is no local structure. In this algorithm, we observe that after branching a degree-4 vertex, we may
not get a 4-regular graph again (at least in the branch of removing this vertex). Then we can
further branch with some good branches with shifts. This idea can help us to reduce this worst case
and get further improvement. The degree-4 vertices to be selected first in the algorithm are called
“optimal”, which are defined as follows.

A good funnel is defined to be a funnel that satisfies one of the following: (i) a 4-funnel; (ii) a
3-funnel a-v-{b, c} such that at least one of b and c is of degree 4 and δ(a) = 4; (iii) when no funnel
in (i) or (ii) exists, a 3-funnel a-v-{b, c} such that both of b and c are of degree 4; and (iv) when no
funnel in (i), (ii) or (iii) exists, a 3-funnel a-v-{b, c} such that one of b and c is of degree 4.

Also a degree-4 vertex v is called optimal if v is not in two edge-disjoint triangles, and satisfies
one of the following:
(a) v is adjacent to a degree-3 vertex in a triangle;
(b) no such vertices in (a) exist, and v is adjacent to a degree-3 vertex which has a degree-4 neighbor;
(c) no such vertices in (a) or (b) exist, v has a degree-4 neighbor u that is in a triangle disjoint with
v but not in any other triangle, and the number of degree-3 neighbors of v is maximized; and
(d) no such vertices in (a), (b) or (c) exist, and the number of degree-3 neighbors of v is maximized.

Our algorithm for MIS4 is described in Figure 3.

Input: A graph G.
Output: The size of a maximum independent set in G.

1. Let (G, s) := RG(G, 0).

2. If {G has a vertex of degree ≥ 5}, pick up a good vertex v or a vertex v of
maximum degree (when no good vertex exists), and return s + max{MIS4(G −
v), |Sv|+MIS4(G−N [Sv])}.

3. Elseif {G has a good funnel a-v-(N(v)− {a}), return s+max{|Sa|+MIS4(G−
N [Sa]), 1 +MIS4(G−N [v])}.

4. Elseif{G has a 4-cycle that contains a degree-4 vertex}, select an optimal 4-cycle
abcd, and return s+max{MIS4(G− {a, c}),MIS4(G− {b, d})}.

5. Elseif {G has a degree-4 vertex}, select an optimal degree-4 vertex v, and return
s+max{MIS4(G− v), 1 +MIS4(G−N [v])}.

6. Else {G is a 3-regular graph}, use the algorithm for MIS3 in [18] to solve the
problem, and return s+ α(G).

Note: With a few modifications, the algorithm can deliver a maximum independent set.

Figure 3: Algorithm MIS4(G)

9

5.3 The Result

In our algorithm, we set vertex weight as follows

wi =



0 for i = 0, 1 and 2
0.6222 for i = 3

1 for i = 4
1.3937 for i = 5
1.7715 for i = 6

w6 + (i− 6)(w4−w3) for i ≥ 7.

Lemma 10 With the above vertex weight setting, the recurrences generated by the algorithm in
Figure 3 have a branching factor not greater than 1.1376 in average (with shifts).

We derive a proof of this analytical lemma in Section 6. From the lemma we know that the size
of the search tree generated by our algorithm is not greater than 1.1376w, where w is not greater
than the number n of vertices in the initial graph since it has maximum degree 4.

Theorem 11 A maximum independent set in a degree-4 graph of n vertices can be found in
O∗(1.1376n) time.

6 Detailed Analysis

We still have two questions: why vertex weight is set as above and how Lemma 10 is proven. In
fact, we predecide wi for i = 0, 1, 2, and ≥ 7 as above, and determine the best values for the other
weights w3, w4, w5 and w6, after generating all recurrences in the algorithm. When setting vertex
weight, we also need to guarantee that the measure condition mentioned above will be satisfied.

6.1 Setting Weights

We set wi > 0 for i ≥ 3 and w0 = w1 = w2 = 0. Then when measure w is 0, the problem can
be solved in polynomial time, since the graph with w = 0 has only degree-0, degree-1 and degree-2
vertices and the maximum independent set problem can be solved in linear time. We also set

0 ≤ w3 ≤ w4 ≤ 1 (1)

so that a given degree-4 graph satisfies 0 ≤ w ≤ n.
During an execution of our algorithm, a vertex with degree greater than 4 may be created by

some reduction rules, but we set weights wi, i ≥ 3 so that the entire weight w never increases after
any operation of reduction/branching rules. This is necessary to evaluate the time bound of our
algorithm by analyzing how many instances will be generated until the measure becomes 0.

Let ∆wi denote wi − wi−1 for i ≥ 1. We let ∆wi ≥ 0 hold for each i, since the measure should
not increase when the degree of a vertex decreases. To simplify some arguments for deriving all
recurrences in the algorithm, we further assume that

0 ≤ ∆w4 ≤ ∆wi ≤ ∆w3, i ≥ 5. (2)

Many of the previous algorithms, such as the algorithm in [6], require that ∆wi ≤ ∆wj for i ≥ j
to simply the argument and also to impose some upper/lower bounds on the vertex weight. In our
algorithm, we rather require ∆w4 ≤ ∆w3, which allows us to find a better vertex weight setting.
With Assumption (2), we see that the measure will decrease by at least ∆w4 when the degree of a
vertex v decreases by 1, where v is of degree at least 3.

10

We set the vertex weight of a vertex of degree ≥ 7 to be

wi = w6 + (i− 6)∆w4, i ≥ 7.

We only need to assign the value to w3, w4, w5 and w6, which will decide the value of wi for all
other i’s. Next we will introduce several conditions on weights w3, w4, w5 and w6, where some
conditions are necessary ones for analysis using measure while the others simplify our analysis.

One of the most important operations in the algorithm is folding a degree-2 vertex. When we
fold a degree-2 vertex with two neighbors of degree i and j respectively, we delete three vertices
with degree 2, i and j respectively and create a new vertex of degree i+ j − 2. So we need to have
w2 + wi + wj (= wi + wj) ≥ wi+j−2 for all i, j ≥ 1. To get this, we assume that

wi + wj ≥ wi+j−2, 3 ≤ i, j ≤ 5. (3)

Under the assumption, we can prove

Lemma 12 wi + wj ≥ wi+j−2 holds for all i, j ≥ 1.

Proof. If one of i and j, say i is at most 2, then wi+wj = wi ≥ wi+j−2. Let i, j ≥ 3. For 3 ≤ i, j ≤ 5,
we have wi + wj ≥ wi+j−2 by (3). Finally consider the case when at least one of i and j, say i, is
greater than 5. Then we have that wi+j−2 = wi + (j − 2)(w4−w3) by the definition of wi (i ≥ 7).
Since wj ≥ (j − 2)(w4−w3), this implies wi+j−2 = wi + (j − 2)(w4−w3) ≤ wi + wj .

To simplify our analysis, we also assume that

w4 + w3 ≥ 4max{∆w5,∆w6}. (4)

This and w0 = w1 = w2 = 0 imply

wi ≥ (i− 2)(w4−w3), i ≥ 0.

Now we can prove the following lemma, which implies that measure condition (ii) holds.

Lemma 13 The measure never increases after applying the reduction operation in any step of RG.
In particular, the following holds:
(i) Each application of the reduction operation in Step 1, 3, 4 or 5 of RG decreases the measure by
at least w4 + 2∆w4 when the minimum degree of G is at least 3; and
(ii) Each application of the reduction operation in Step 6 of RG decreases the measure by at least
(ℓ+ 1)∆w4 when the degree of ℓ vertices of maximum degree ≥ 5 decreases (possibly ℓ = 0).

Proof. Steps 1, 3 and 4: It is clear that the reduction operation in Steps 1, 3 and 4 in RG(G, s)
removes some vertices without increase the degree of any other vertex, and this never increases
the total weight w of the graph since weights are monotone increasing with respect to the degree.
When the minimum degree of G is at least 3, each component contains at least four vertices,
and removing a vertex v in Step 1 or 3 decreases the weight of v and its neighbors by at least
w3+3mini∆wi ≥ w4+2∆w4 by (2). In Step 4, any reducible vertex set V1 with |N(V1)| = 1 (resp.,
|N(V1)| = 2) contains at least three (resp., two) vertices. If |V1| ≥ 3, then the measure decreases
by 3w3, where 3w3 ≥ w4 + 2∆w4 by (5). On the other hand if |V1| = 2 then |N(V1)| = 2 and
each vertex z ∈ N(V1) is adjacent to both vertices in V1, indicating that the degree of each vertex
z ∈ N(V1) decreases by at least one in G⋆ and that the measure decreases by 2w3 + 2∆w4 = 2w4,
where 2w4 ≥ w4 + 2∆w4 by (2).

Step 2: Folding a degree-2 vertex in Step 2 of RG(G, s) is to delete a degree-2 vertex v and
contract the two nonadjacent neighbors a and b of v into a new vertex s, i.e., it deletes two vertices

11

of degree x and y from the graph and introduces a new vertex of degree at most x + y − 2. By
Lemma 12, we have wx + wy ≥ wx+y−2, and the measure does not increase.

Step 5: After Step 2 of RG(G, s), the minimum degree of G is at least 3. We consider folding
a 2-3 structure {v, u}-{a, b, c} with δ(v) = δ(u) = 3 in Step 5 of RG(G, s) (folding a 3-4 structure
can be treated analogously). In Case (a), vertex v will be removed decreasing the measure by at
least w4+2∆w4 as in Step 2. In Case (b), {v, u} will be deleted and {a, b, c} will be contracted. By
noting that wδ(a)+wδ(b)+wδ(c) ≥ wδ(a)+δ(b)−2+wδ(c) ≥ wδ(a)+δ(b)+δ(c)−4 by Lemma 12, we see that
where contracting {a, b, c} decreases the measure by at least wδ(a)+δ(b)+δ(c)−4 − wδ(a)+δ(b)+δ(c)−6 ≥
2mini∆wi ≥ 2∆w4. In total the measure decreases by 2w3 + 2∆w4 ≥ w4 + 2∆w4 by (2).

Step 6: Folding a short funnel a-v-{b, c} in Step 6 of RG(G, s) is to delete vertices {v, a} with
δ(v) = 3 after letting every two vertices between N(v) and N(a) adjacent.

(1) First consider the case of δ(a) = 3. Let N(a) = {v, t1, t2}, where t1 is adjacent to b or c,
say b. Then the weight of vertices v and a decreases by 2w3 in total, while the weight of vertices
in {b, c, t1, t2} increases by at most ∆wδ(t2)+1 + ∆wδ(c)+1 ≤ 2max{∆w5,∆w6} in total (note that
δ(t2), δ(c) ≥ 3 since the minimum degree in G is at least 3). Hence the measure decreases by at
least 2w3 − 2max{∆w4,∆w5,∆w6} ≥ ∆w4 by (4). Now assume that the degree of ℓ vertices of
maximum degree ≥ 5 decreases in the resulting graph G⋆(v). Since δ(v) ≤ δ(a) < 5, only vertices
in {b, c, t1, t2} can be the ℓ vertices of maximum degree ≥ 5, where the degree of each of them
decreases by no more than one. Let x ∈ {b, c, t1, t2} be one of the ℓ vertices of maximum degree
≥ 5. In the above analysis, the weight decrease from vertex x is not included. Hence the measure
further decreases by at least ℓmini∆wi = ℓ∆w4.

(2) Next let δ(a) = 4 and N(a) = {v, t1, t2, t3}, where there are at least two edges between
{t1, t2, t3} and {b, c}. See Fig. 1(b). Without loss of generality that t1 and b are adjacent, and
t2 is adjacent to b or c. We consider the case where t2 is adjacent to c (the other case where
t2 is adjacent to b can be treated analogously). Then the weight of vertices v and a decreases
by w4 + w3 in total, while the weight of vertices in {b, c, t1, t2} increases by at most ∆wδ(t3)+1 +
∆wδ(b)+1 + ∆wδ(c)+1 ≤ 3max{∆w4,∆w5,∆w6} in total. Hence the measure decreases by at least
w4+w3−3max{∆w4,∆w5,∆w6} ≥ ∆w6 by (4). When the degree of ℓ vertices of maximum degree
≥ 5 decreases in G⋆(v), we can show that the measure decreases by (ℓ+1)∆w4 in total. in the same
manner of (1).

We have considered all cases finishing the proof.

To evaluate the weight decrease in folding degree-2 vertices, we define

β = min
3≤i,j≤4

wi + wj − wi+j−2.

Lemma 14 Let v be a degree-2 vertex with two nonadjacent neighbors a and b such that 3 ≤
δ(a), δ(b) ≤ 4. Then folding a degree-2 vertex v decreases the measure w by at least β.

Proof. Contracting a and b into a new vertex decreases w by at least wδ(a)+wδ(b)−wδ(a)+δ(b)−2 ≥ β.

To simplify our analysis, we further assume that

1.5(w4−w3) ≤ w3 ≤ 2(w4−w3). (5)

Recall that w0 = w1 = w2 = 0, ∆wi ≥ w4−w3, 3 ≤ i ≤ 4, and w3 ≤ 2(w4−w3) by (5). Let X be
a subset of vertices in a reduce graph G = (V,E) and p be the number of edges between X and
V −X. When we remove X, the total weight in the remaining set V −X decreases by at least

kw3 + (w4−w3)ϵ (6)

12

for the integers k with p = 3k + i (i ∈ {−1, 0, 1}) and ϵ such that ϵ = 1 when i = 1, or ϵ = 0
otherwise. In addition, if no degree-0 vertex is created in G[V − X], then the total weight in the
remaining set V −X decreases by at least

k′w3 + (w4−w3)r (7)

for the integers k′ and r ∈ {0, 1} such that p = 2k′ + r. In our analysis, we also use the following
properties on a degree-3 vertex v in a reduced graph: (i) Removing N [v] creates no degree-0 vertex
u (otherwise {v, u}-N(v) would be a 2-3 structure); and (ii) If there is no edge between any two
neighbors of degree-3 vertex v, then |N2(v)| ≥ 4 (otherwise N(v)-N2(v) ∪ {v} would be a 3-4
structure).

The above analysis is frequently used in the next subsection to get a lower bound on the decrease
of the measure or to eliminate some redundant case analysis. In the next subsection, we carefully
check each branching step in the algorithm in Figure 3 and list out all possible recurrences.

6.2 Generating All Recurrences

6.2.1 Branches in Step 2

After Step 1, the graph is a reduced graph where the minimum degree is at least 3. In Step 2,
the algorithm will branch on a vertex v of maximum degree by excluding it from the independent
set or including it to the independent set. In the first branch, we will delete v from the graph. In
the second branch, we will delete N [Sv] from the graph. We use ∆out(v) and ∆in(v) to denote the
decrease of the measure of w in the corresponding two branchings, respectively. Recall that C(w)
denotes the worst-case size of the search tree when the parameter of the graph is w. Then we obtain
recurrence C(w) = C(w−∆out(v))+C(w−∆in(v)) in this branch.

To analyze how much w decreases at least in each branch, we consider three cases. (i) v is a good
vertex: Let X ⊆ V be the subset with v ∈ N(X) and 6 ≤ |X| ≤ 26 such that X contains at least
one vertex of degree ≥ 5, where if |X| < 26 then |N(v)−X| ≥ 2 since X is maximal. Hence in the
branch of deleting v, the measure decreases by at least ∆out(v) ≥ |X|w3 + w5 + |N(v)−X|∆w4 ≥
6w3 +w5 + 2∆w4. In the other branch of deleting N [Sv], the vertices in X ∪N(v) will be removed
and the measure decreases by at least ∆in(v) ≥ (|X ∪N(v)| − 1)w3 +w5 ≥ 8w3 +w5. Therefore we
obtain recurrence

C(w) ≤ C(w−(6w3 + w5 + 2∆w4−σ1))+C(w−(8w3 + w5−σ1)), (8)

where we introduce shift σ1 for branching on degree-4 vertices in Step 5.
We use the next lemma to obtain a lower bound on ∆in(v) when a vertex v of maximum degree

is picked up.

Lemma 15 Let G be a reduced graph, and let v be a vertex of maximum degree d ≥ 5. Then
deleting N [Sv] decreases the weight of vertices in V −N [v] by at least 2w4 + 2∆w4.

Proof. Let p denote the number of edges between N [v] and N2(v). Now p ≥ d = |N(v)| since
each vertex u ∈ N(v) is adjacent to a vertex in N2(v) (otherwise u would dominate v). If p ≥ 13,
then deleting N [Sv] decreases the weight of vertices in N2(v) by at least 4w3 +∆w4 by (6), where
4w3 +∆w4 ≥ 2w4 + 2∆w4 holds by (5).

Now assume that p ≤ 12. Then d ≤ 12. Let N+
2 (v) be the set of vertices in N2(v) that have a

neighbor in V −N [v]−N2(v). Now |N+
2 (v)| ≥ 4 holds, since otherwise X = N [v]∪ (N2(v)−N+

2 (v))
would be a reducible vertex set with |N(X)| = |N+

2 (v)| = 3 and |X| ≤ 1 + d + p ≤ 25 where
|N+

2 (v)| ≥ 3 (otherwise X = N [v] ∪ (N2(v) − N+
2 (v)) would be a reducible vertex set). Now

G contains at least 24 vertices by definition of reduced graphs. Hence N2(v) contains at least

13

|N+
2 (v)| ≥ 4 vertices that cannot be degree-0 vertices after removing edges between N [v] and

N2(v). Also if |N+
2 (v)| = 4, then for any two vertices s, s′ ∈ N+

2 (v), N({s, s′}) contains at least two
vertices in V − (N [v]∪N2(v)), since otherwise X

′ = X ∪{s, s′} would be a reducible vertex set with
|X ′| ≤ 1 + d+ p− 3 + 1 ≤ 23.

This means that if p ≥ 10 then the weight of the vertices in N2(v) decreases by at least 2w3 +
4∆w4 (= 2w4 + 2∆w4). Assume that p ≤ 9. Since d ≥ 5, this implies that v has at least one
satellite; i.e., Sv − v ̸= ∅. Also if a vertex t ∈ N+

2 (v) becomes a degree-1 vertex in G −N [v], then
we can fold the degree-1 vertex deleting a neighbor of t in G − N [v] − N2(v). In what follows,
we mainly consider the case where no vertex t ∈ N+

2 (v) ∩N [Sv − v] becomes a degree-1 vertex in
G−N [Sv]; if there are p1 edges between N(v) and N2(v)−N [Sv − v] and there are p2 vertices in
N+

2 (v)−−N [Sv−v], then deleting the p1 edges decreases the weight of vertices in N2(v)−N [Sv−v]
by at least ⌊(p1 − p2)/3⌋w3 + p2∆w4.

First consider the case where there are at least two vertices s, s′ ∈ N [Sv − v] ∩N2(v). Let k be
the number vertices in {s, s′} that are contained in N+

2 (v). We here claim that N({s, s′}) ∩N+
2 (v)

and N+
2 (v)−N [Sv − v] contain at least four vertices, say z1, z2, z3 and z4 in total. When k = 0, 1 or

|N+
2 (v)| ≥ 5, the claim holds since |N+

2 (v)| ≥ 4 and any vertex in N({s, s′})∩N+
2 (v) has a neighbor

in V − N [v] − N2(v). When k = 2 and |N+
2 (v)| = 4, as we have observed, N({s, s′}) contains at

least two vertices in V − (N [v] ∪ N2(v)), proving the claim. Hence removing N [Sv] decreases the
weight of the vertices in {s, s′} and {z1, z2, z3, z4} by at least 2w3 + 4∆w4.

Now consider the other case; i.e., there is only one vertex s ∈ N [Sv − v] ∩ N2(v); i.e., Sv − v
contains only one satellite s and no vertex in N2(v)− s is adjacent to s. Let h denote the number
of edges between s and N(v), where 1 ≤ h ≤ δ(s) ≤ d. If s ∈ N+

2 (v), then s is adjacent to a vertex
z ∈ V −N [v]−N2(v) and let S = {s, z}; let S = {s} otherwise. Then S ∪N+

2 (v) contains at least
four vertices other than s. We distinguish subcases according to h.
For h ≥ 5, the weight of S∪N+

2 (v) decreases by at least w5+4∆w4, where w5+4∆w4 ≥ 2w4+2∆w4

holds since ∆w5 +∆w4 ≥ w3 by (2) and (5).
For h = 4, any vertex u ∈ N(v) −N(s) has at least two neighbors in N+

2 (v) (since v has no other
satellite than s) and if |N(v) − N(s)| = 1 (resp., |N(v) − N(s)| = 2), then at least three (resp.,
two) vertices in N2(v) − {s} are adjacent to vertices in N(v) ∩ N(s) (otherwise N [v] ∪ {s} would
contain a reducible vertex set). This indicates that there are at least five edges between N(v)
and N2(v) − {s}, and the weight of vertices in S ∪ N+

2 (v) or in V − N [v] decreases by at least
w4 + 5∆w4 (≥ 2w4 + 2∆w4) by (5) (recall that if a degree-1 vertex created in N+

2 (v) then folding
it delete a vertex in N −N [v]−N2(v) decreases the measure more).
For h = 3, any vertex u ∈ N(v)−N(s) has at least two neighbors in N+

2 (v), and |N(v)−N(s)| ≥
2, and if |N(v) − N(s)| = 2 then at least two vertices in N2(v) − {s} are adjacent to vertices
in N(v) ∩ N(s), and there are at least six edges between N(v) and N2(v) − {s}. Then when
δ(s) = 3 (resp., δ(s) ≥ 4), the weight of vertices in S ∪N+

2 (v) or in V −N [v] decreases by at least
w3 + w3 + 4∆w4 (≥ 2w4 + 2∆w4) by (5) (resp., w4 + w3 + 3∆w4 (= 2w4 + 2∆w4)).
For h = 1, 2 (s ∈ N+(s) and S = {s, z}), each vertex u ∈ N(v)−N(s) has at least two neighbors in
N+

2 (v), and |N(v)−N(s)| ≥ 3, and and there are at least six edges between N(v) and N2(v)−{s}.
Then the weight of vertices in S ∪N+

2 (v) or in V −N [v] decreases by at least 2w3 +w3 +3∆w4 (≥
2w4 + 2∆w4) by (5).

Let di denote the number of degree-i neighbors of v, where d =
∑d

i=3 di. For the first branch of
deleting v from G, we have

∆out(v) = wd +

d∑
i=3

di∆wi.

In the second branch where v is included to the independent set, we will remove all vertices in N [v],
which decreases the degree of the vertices in N2(v). By Lemma 15, deleting N [v] decreases the

14

weight of vertices in V −N [v] is at least 2w4 +∆w4, and we get

∆in(v) ≥ wd +

d∑
i=3

diwi + 2w4 +∆w4.

(ii) v is a vertex of maximum degree d ≥ 6: Using ∆w4 ≤ ∆wi and w3+∆w3 ≤ wi+∆wi (i ≥ 3)
by (2) and (5) and the property that C(w−(a+b))+C(w−(a+c))≤C(w−(a+b−ϵ))+C(w−(a+c+ϵ))
for 0 ≤ a, 0 ≤ b ≤ c, and 0 ≤ ϵ ≤ a+ b (cf. [8]), we get the following recurrence

C(w) = C(w−∆out(v))+C(w−∆in(v))

≤ C(w−(wd+
∑d

i=3 di∆wi))+C(w−(wd +
∑d

i=3 diwi + 2w4+2∆w4))

≤ C(w−(wd+
∑d

i=3 di∆w4))+C(w−(wd+
∑d

i=3 di(wi+∆wi−∆w4)+2w4+2∆w4))

≤ C(w−(wd+
∑d

i=3 di∆w4))+C(w−(wd+
∑d

i=3 di(2w3−∆w4)+2w4+2∆w4))
≤ C(w−(w6 + 6∆w4))+C(w−(w6 + 6(2w3−∆w4)+2w4+2∆w4))
= C(w−(w6 + 6w4 − 6w3))+C(w−(w6 − 2w4 + 16w3)).

By introducing shift σ1, we have

C(w) ≤ C(w−(w6+6w4−6w3−σ1))+C(w−(w6−2w4+16w3−σ1)). (9)

(iii) v is a vertex of maximum degree d = 5: Analogously with (ii), we get the recurrence with
shift σ2 (≤ min{σ1,∆w4}) for d = 5

C(w) ≤ C(w−(w5 + d5(w5−w4) + d4(w4−w3) + d3w3−σ2))
+C(w−(w5 + d5w5 + d4w4 + d3w3 + 2w4 + 2∆w4−σ2))

for 0 ≤ d3, d4, d5 ≤ 5 with d5 + d4 + d3 = 5.
(10)

6.2.2 Branches in Step 3

In this step, the graph is a reduced graph with maximum degree 4 where there is no short funnel
and each vertex is of degree 3 or 4. If the graph contains an irregular triangle, then there exists
a good funnel a-v-(N(v) − {a}), on which the algorithm will branch by removing either N [Sa] or
N [v].

a a

b

vvvv

b
bb

c

cc cd

aa

t
t

t

t

s

s

(a) Case 1 (b) Case 2 (c) Case 3.1 (d) Case 3.2

Figure 4: Illustrations of branching on good funnels

Case 1. The good funnel is a 4-funnel a-v-{b, c, d} (see Fig. 4(a)): Vertex a is not adjacent to
any vertex t ∈ {b, c, d} since otherwise v would dominate t. We first consider the branch of removing

15

N [v]. Note that N({b, c, d})−{v} contains at least three vertices, since otherwise a vertex dominate
would some other vertex in {b, c, d}. Hence there are at least five edges between N [v] and V −N [v],
and no three of them meet at the same vertex since |N({b, c, d}) − {v}| ≥ 3. This means that
removing N [v] does not create degree-0 vertices and decreases the total weight in V − N [v] by at
least 2w3 +∆w4 by (7), and the total weight in N [v] by at least w3 + 4w4. Totally the measure w
decreases by at least 5w4 + 2w3. We next consider the other branch of removing N [Sa]. Note that
v ∈ N(a) and there are at least five edges between N(a) and N2(a). Removing N [a] decreases the
total weight of vertices in N [a] by at least 3w3 + w4, that in {b, c, d} by 3(w4−w3) (at this point
the degree of each vertex in {b, c, d} is 3), and that in some vertices in N2(a)− {b, c, d} by at least
2(w4−w3). Note that N [a] ⊆ N [Sa]. In the branching of removing N [Sa], the measure w decreases
by at least 6w4 − 2w3 in total. In Case 1, we get recurrence

C(w)≤C(w−(5w4 + 2w3)) + C(w−(6w4 − 2w3)). (11)

In the rest of cases, let a-v-{b, c} be a good 3-funnel. Note that a is not adjacent to any of
b and c, otherwise v would dominate b or c. Assume without loss of generality that δ(b) ≥ δ(c).
Then δ(b) ≥ 4. Let pa (resp., pv) be the number of edges between N [a] and N2(a) (resp., N [v] and
N2(v)). We distinguish three cases.

Case 2. δ(a) = 4 (see Fig. 4(b)): Note that b and c have no common neighbor in N2(v) (otherwise
c would dominate b). Let k be the number of degree-3 vertices in N(a)− {v}. First we look at the
branch where N [Sa] is removed. In this branch at least the vertices in N [a] (⊆ N [Sa]) is removed.
Each neighbor t ∈ N(a) of vertex a is adjacent to a vertex in N2(a), otherwise t would dominate a.
Hence pa ≥ 5 and |N2(a)| ≥ 4 (otherwise N(a)−{v} would contain a dominated vertex or a-v-{b, c}
would be a short funnel). Removing N [a] decreases the weights of vertices in N [a] and N2(a) by at
least w4+4w3+(3−k)∆w4 = (1+3−k)w4+(1+k)w3 and w3+3∆w4 (since pa ≥ 5 and |N2(a)| ≥ 4),
respectively. Then this branch decreases w by at least (4 − k)w4 + (1 + k)w3 + w3 + 3∆w4 =
7w4−w3−k(w4−w3). We also analyze a special case where a is not contained in any 4-cycle. Since
a is not in a 4-cycle, there is at most one edge joining vertices N(a) − {v} and there are at least
four edges between N(a)− {v} and N2(a). Also no two of the four edges meet at the same vertex
in N2(a) or none of them is adjacen to b or c, indicating that pa ≥ 6 and |N2(a)| ≥ 6. Then this
branch decreases w by at least w4 + 4w3 + (3− k)∆w4 + 6∆w4 = 10w4 − 5w3 − k(w4−w3).

For the other branch where N [v] is removed, we consider two cases: the degree of c is 3 or 4. Note
that there is at most one edge between {b, c} and N(a)−{v} (otherwise a-v-{b, c} would be a short
funnel). When c is a degree-3 vertex, there are pv ≥ 6 edges between N(v) and N2(v). Hence it is
impossible to create a degree-0 vertex after removingN [v]. Then removingN [v] decreases the weight
of vertices in N2(v) by at least kw3+(3−k)∆w4+2∆w4 = 5(w4−w3)+k(2w3−w4). Then this branch
decreases w by at least 2w4+2w3+5(w4−w3)+k(2w3−w4) = 7w4−3w3+k(2w3−w4) in total. When
c is a degree-4 vertex, there are pv ≥ 7 edges between N(v) and N2(v). Note that b and c can have at
most one common neighbor in N2(v), otherwise c would dominate b. Hence it is impossible to create
two degree-0 vertices after removing N [v]. Then removing N [v] decreases the total weight in N2(v)
by at least kw3+(3−k)∆w4+w3+∆w4 = 4w4−3w3+k(2w3−w4). Totally this branch decreases w
by at least 3w4+w3+4w4−3w3+k(2w3−w4) = 7w4−2w3+k(2w3−w4) > 7w4−3w3+k(2w3−w4).

In Case 2, we can always branch with

C(w) ≤ C(w−(7w4−w3−k(w4−w3)))
+C(w−(7w4−3w3 + k(2w3−w4))) for k = 0, 1, 2, 3.

(12)

Furthermore, if a is not contained in any 4-cycle and both of b and c are degree-4 vertices, we can
branch with

C(w) ≤ C(w−(10w4−5w3−k(w4−w3)−σ3))
+C(w−(7w4−2w3 + k(2w3−w4)−σ3)) for k = 0, 1, 2, 3,

(13)

16

where we introduce shift σ3. The special case (13) is covered by (12). But it will be used in the
analysis later.

Case 3. δ(a) = 3 (see Fig. 4(c) and (d)): Let N(a) = {v, t, t′}, where δ(t) ≤ δ(t′) is assumed
without loss of generality. Let 0 ≤ f1 ≤ 2 be the number of degree-4 neighbors of vertex a and
1 ≤ f2 ≤ 2 be the number of degree-4 vertices in {b, c}.

First, we look at the first branch where N [v] is removed. This decreases the total weight of
vertices in {a, v} by 2w3 and that in {b, c} by f2w4 + (2 − f2)w3. Next we analyze how much
weight in N2(v) decreases after removing N [v]. There are 4 + f2 edges between N [v] and N2(v).
We consider two cases on the first branch: the degree of c is 3 or 4.

(1-i) c is a degree-3 vertex (now f2 = 1): Let c′ (̸= v, b) be the third neighbor of c. Then
c′ ̸= t, t′ (otherwise b would be a roof) and the degree of c′ is 3 (otherwise c′-c-{v, b} would be
a good funnel of Case (ii)). Let b′ and b′′ be the third and fourth neighbors of b. Note that
b′, b′′ ̸= c′ otherwise c would dominate b. Also {b′, b′′, c′} ∩ {t, t′} = ∅, otherwise a-v-{b, c} would
be a short funnel with δ(a) = 3. Then the weight of vertices in N2(v) decreases by at least
WN2(f1) = f1∆w4 + (2− f1)w3 + w3 + 2∆w4 = (2 + f1)w4 + (1− 2f1)w3 after removing N [v]. We
show that when f1 = 0 and a is not in a triangle, the weight in V − N [v] further decreases by at
least β (≤ w3−∆w4). If one of b

′ and b′′ is a degree 3 vertex, then the weight of the vertex decreases
by w3 instead of ∆w4 in WN2(f1). On the other hand, if both b′ and b′′ are of degree 3, then the
graph G − N [v] has exactly three degree-2 vertices, t, t′ and c′, and one of t and t′, say t is not
adjacent to c′, indicating that folding the degree-2 vertex t (or some other reduction) decreases the
measure by at least min{β,∆w4} = β by Lemma 13. Then in Case (1-i) removing N [v] decreases
the weight in V −N [v] by at least WN2(f1) + ϵβ, where ε = 1 if f1 = 0 and a is not in a triangle,
and ε = 0 otherwise.

(1-ii) c is a degree-4 vertex (now f2 = 2): Let c′′ be the fourth neighbor of c. Note that
{c′, c′′} ̸= {b′, b′′} since otherwise c would dominate b. Also {t, t′} ∩ {c′, c′′, b′, b′′} = ∅, otherwise
a-v-{b, c} would be a short funnel with δ(a) = 3. Then the weight of vertices in {t, t′} decreases by
at least f1(w4−w3) + (2 − f1)w3 and that in {c′, c′′} ∩ {b′, b′′} by at least 2(w4−w3) + w3. Then
removing N [v] decreases the total weight of vertices in N2(v) by at least WN2(f1).

Therefore, the first branch decreases the measure w by at least

W1(f1, f2) = 2w3 + f2w4 + (2− f2)w3 +WN2(f1)
= (2 + f1 + f2)w4 + (5− 2f1 − f2)w3 + εβ,

where ε = 1 if f1 = 0 and a is not in a triangle, and ε = 0 otherwise.
For the second branch where N [Sa] is removed, we consider two subcases.
Case 3.1. Vertex a is not in a triangle (see Fig. 4(c)): For this case, we analyze how much

measure w will decrease by removing only N [a] (⊆ N [Sa]). Removing N [a] decreases the weight of
vertices in {a, v} by 2w3 and that in {t, t′} by f1w4 + (2− f1)w3. We consider the weight decrease
of vertices in N2(a). There are 6 + f1 edges between N [a] and N2(a).

(2-i) No degree-1 vertex is created after removing N [a]: Then the weight of vertices in N2(a)
decreases by at least W ′ = (6 + f1 − (2− f2))∆w4 + (2− f2)w3 (note that there are at least 2− f2
degree-3 vertices in N2(a)). We show that when f2 = 1, the weight of vertices in V −N [a] further
decreases by at least β (≤ w3−∆w4). By f2 = 1, the degree of c′ is 3 (otherwise c′-c-{v, b} would be
a good funnel of Case (ii)). If one of t and t′, say t is adjacent to a degree-3 vertex in N2(a), then
the weight of a neighbor of t decreases by w3 instead of ∆w4 in W ′. On the other hand, none of t
and t′ is adjacent to any degree-3 vertex in N2(a), then the graph G−N [a] has exactly one degree-2
vertex c, and folding the degree-2 vertex c (or some other reduction) decreases the measure by at
least min{β,∆w4} = β by Lemma 13.

(2-ii) A degree-1 vertex v′ is created after removing N [a]: Consider the case of v′ = c′. In this
case, c′ is a degree-3 vertex adjacent to both t and t′. The weight decrease of neighbors in N2(a)
of t and t′ in W ′ is 2∆w4 + w3 instead of 4∆w4. However, folding the degree-1 c, we can further

17

decrease the measure by at least w3 of the degree-3 vertex b. In total, we can further decrease the
weight in V −N [a] by w3−2∆w4+w3 (≥ 2β). Assume that v′ ̸= c′. Then the neighbor v′′ of v′ is a
vertex of degree ≥ 3 in G′ = G−N [a], since otherwise v′, v′′ and a vertex in {t, t′} (say t) will form
a triangle and then t′-v′-{v′′, t} would be a short funnel in G. In this case, we can further decrease
w by at least w3 (≥ β) by removing the dominated vertex v′′.

From (2-i) and (2-ii), the weight of vertices in V − N [a] decreases by at least W ′
N2

(f1, f2) =
W ′+(2− f2)β = (4+ f1+ f2)w4− (2+ f1+2f2)w3+(2− f2)β. Hence the second branch decreases
w by at least

W2(f1, f2) = 2w3 + f1w4 + (2− f1)w3 +W ′
N2

(f1, f2)

= (4 + 2f1 + f2)w4 + (2− 2f1 − 2f2)w3 + (2− f2)β.

We get recurrences:

C(w)≤C(w −W1(f1, f2))+C(w −W2(f1, f2)), (14)

where f1 ∈ {0, 1, 2} and f2 ∈ {1, 2}.
Case 3.2. Vertex a is in a triangle (see Fig. 4(d)): Note that now v-a-{t, t′} is also a 3-funnel.

By choice of good funnels, f2 ≥ f1 holds. After removing N [Sa] ⊇ N [a], by the above analysis (1-i)
and (1-ii) of the branch where N [v] is removed, we know that w will decrease by at least

W ′
2(f1, f2) = W1(f2, f1) = (2 + f1 + f2)w4 + (5− f1 − 2f2)w3.

For f1 = 2, f2 = 2 holds and we get recurrence

C(w)≤C(w −W1(2, 2)) + C(w −W ′
2(2, 2)). (15)

However, when f1 ≤ 1 this is not good enough for our analysis. In fact, for this case vertex a has
2− f1 satellites and we can show that the measure decreases by at least 2w4 + 6w3. First consider
the case of f1 = 0 (i.e., δ(t) = δ(t′) = 3). Let s and s′ be the third neighbor of t and t′, respectively.
Note that s and s′ are not adjacent otherwise vertex a would be a roof. There are at least four
edges between {s, s′} and N({s, s′}) − {t, t′}. It is impossible to have N({s, s′}) − {t, t′} = {b, c}
otherwise the component would contain only eight vertices. Let x ∈ N({s, s′}) be a vertex different
from t, t′, b and c. If one of b and c (say b) is in N({s, s′}), then after removing N [Sa], the degree
of c will decrease by at least 2. In this case, removing N [Sa] decreases the weight of vertices in
{v, a, t, t′, s, s′, x, b, c} by at least 7w3+w4+w3 = w4+8w3 (≥ 2w4+6w3). If neither of b and c is in
N({s, s′}), then N({s, s′})− {t, t′} contains at least two vertices x and x′ different from t, t′, b and
c, and removing N [Sa] decreases the weight of vertices in {v, a, t, t′, s, s′, x, x′} by at least 8w3 and
that in {b, c} by 2(w4−w3) in total w decreases by at least 8w3 + 2(w4−w3) = 2w4 + 6w3. Hence
for f1 = 0, the second branch decreases w by at least 2w4 + 6w3.

Next consider the case of f1 = 1, where one of t and t′, say t is a degree-3 vertex, whose neighbor
s ∈ N(t) − N(a) is satellite, where s and t′ are not adjacent (otherwise t would dominate t′). If
δ(s) = 4, then N [a]∪N [s] contains eight vertices two of which are of degree 4, and the second branch
decreases w by at least 2w4+6w3. Let δ(s) = 3, where s and t′ have no common neighbor (otherwise
s-t-{a, t′′} would be a short funnel). If N(s) ∩ {b, c} = ∅, then the weight of the four vertices in
{b, c} and N(t′′)− {a, t} decreases by at least 4∆w4, implying that removing N [a]∪N [s] decreases
the measure by at least w4 + 6w3 + 4∆w4 = 5w4 + 2w3 (≥ 2w4 + 6w3). If |N(s) ∩ {b, c}| = 1,
then removing N [a] ∪ N [s] decreases the weight of b and c by at least w4 + w3, implying that
removing N [a]∪N [s] decreases the measure by at least w4+5w3+w4+w3 = 2w4+6w3. Finally let
{b, c} ⊆ N(s), where both of b and c are degree-4 vertices (otherwise c would dominate b). There
are four edges between N [a]∪N [s] and V −N [a]∪N [s]. Then removing N [a]∪N [s] decreases the
measure by at least 3w4 + 4w3 + w3 +∆w4 = 4w4 + 4w3 (≥ 2w4 + 6w3).

18

In Case 3.2, we get recurrences:

C(w)≤C(w −W1(f1, f2)) + C(w−(2w4 + 6w3)), (16)

where f1 ∈ {0, 1} and f2 ∈ {1, 2}.
Note that after Step 6, the graph has no irregular triangle.

6.2.3 Branches in Step 4

In this step, we will branch on optimal 4-cycles that contain at least one degree-4 vertex. Without
loss of generality, we assume that the algorithm will branch on an optimal 4-cycle abcd, where a
is a degree-4 vertex. Note that if there is a degree-3 vertex in the cycle, a and c (b and d) are
not adjacent, otherwise there would be an irregular triangle. According to the branching rule,
our algorithm will branch by removing either {a, c} or {b, d} from the graph. We distinguish the
following five cases.

Case 1. The other vertices than a in the 4-cycle are of degree 3: We assume that a′ and a′′ are
the third and fourth neighbors of a, b′ is the third neighbor of b, c′ is the third neighbor of c, and
d′ is the third neighbor of d, where possibly c′ ∈ {a′, a′′} (see Fig. 5(a) for an illustration). Note
that b′ ̸= d′, otherwise {b, d}-{a, c, b′ = d′} would be a 2-3 structure. Also {a′, a′′, c′} ∩ {b′, d′} = ∅,
otherwise there would be an irregular triangle or a roof. Let ε = 1 if at least one of b′ and d′ is of
degree 4, and ε = 0 otherwise.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 5: Branching on 4-cycles

In the branch where {a, c} is removed, b and d will become degree-1 vertices. The algorithm
will apply the reduction rules to eliminate degree-1 vertices immediately. Then b′ and d′ will be
removed. Totally, at least six vertices a, b, c, d, b′ and d′ are removed from the graph. There are also
at least five edges between V ′ = {a, b, c, d, b′, d′} and V − V ′ (there may not be seven edges when b′

and d′ are adjacent). We consider how much weight of vertices in V − V ′ decreases after removing
V ′. If |N(V ′)| ≥ 3, then the weight in V − V ′ decreases by at least w3 + 2(w4−w3) = 2w4−w3.
If |N(V ′)| = 2 (i.e., N(V ′) = {a′, a′′}), then each of a′ and a′′ is adjacent to a vertex in {c, b′, d′}
(otherwise b′d′a′ or b′d′a′′ would be an irregular triangle), and removing V ′ decrease the weight in
V − V ′ either by wδ(a′) + wδ(a′′) ≥ w4 + w3, where one of a′ and a′′ is of degree 4 (otherwise V ′

would be contained in a component with size at most 14). Then in the branch of removing {a, c}
the measure w decreases by at least

w4 + 5w3 + ε∆w4 + 2w4−w3 = 3w4 + 4w3 + ε(w4−w3).

In the other branch where {b, d} is removed, c will become a degree-1 vertex and we will further
remove c′ from the graph. Thus the branch will remove N [c]. Let us see how much weight in V −N [c]

19

will decrease by removing N [c]. There are at least six edges between N [c] and V −N [c]. Note that
|N2(c)| ≥ 3 since {a, d, d′} ⊆ N2(c). Note that no two neighbors of c are adjacent. If |N2(c)| = 3,
then N(c)-N2(c) ∪ {c} would be a 3-4 structure. We know that |N2(c)| ≥ 4. No degree-0 vertex u
is created after removing N [c] otherwise {c, u}-N(c) would be a 2-3 structure. If |N2(c)| ≥ 5, then
the measure w decreases by at least w4 + 4∆w4 (w4 from vertex a and 4∆w4 from the other four
vertices in N2(c)). Now let |N2(c)| = 4. If no degree-1 vertex is created after removing N [c], then
the weight in N2(c) still decreases by at least w4+4∆w4+2(1−ε)(w3−∆w4). If a degree-1 vertex u
is created, then the weight in N2(c) may only decrease by w4+2∆w4+w3+(1−ε)(w3−∆w4). Note
that u is the unique degree-1 vertex in the graph, and we can further decrease w by at least ∆w4

by removing the dominated vertices adjacent to degree-1 vertices. Then for any case, the weight in
V −N [c] decreases by at least w4 +4∆w4 +2(1− ε)(w3−∆w4). Totally, in the branch of removing
{b, d} the measure w decreases by at least

4w3 + w4 + 4(w4−w3) + 2(1− ε)(2w3 − w4) = 5w4 + (1− ε)(4w3 − 2w4).

In Case 1, we can always branch with the following recurrence

C(w) ≤ C(w−(3w4 + 4w3 + ε(w4−w3)))
+C(w−(5w4 + (1−ε)(4w3−2w4))) for ε ∈ {0, 1}. (17)

Case 2. a and c are the two degree-4 vertices in the 4-cycle: Let b′ and d′ be the third neighbor
of b and d, respectively. Note that b′ ̸= d′ holds, otherwise {b, d}-{a, c, b′ = d′} would be a 2-3
structure. Also b′ (d′) is not adjacent to a or c, otherwise there would be an irregular triangle. See
Fig. 5(b) for an illustration of this case. Let 0 ≤ k ≤ 2 be the number of vertices of degree 4 in
{b′, d′}.

It is easy to see that in the branch where {b, d} is removed, the weight of b and d decreases by
2w3, that of a and c by 2w4, and that of b′ and d′ by at least k(w4−w3) + (2− k)w3. Since a and c
become degree-2 vertices in G−{b, d}, the measure further decreases by 2β by folding them. In total,
the measure w decreases by 2w3+2w4+ k(w4−w3)+ (2− k)w3+2β = (2+ k)w4+(4− 2k)w3+2β.

In the other branch where {a, c} is removed, b and d become degree-1 vertices and we will also
further remove b′ and d′. Let V ′ = {a, b, c, d, b′, d′}. Removing V ′ decreases the sum of weights of
vertices in V ′ by (2+k)w4+(4−k)w3. We consider how much weight of vertices in V −V ′ decreases
after removing V ′. Note that there are at least 6 + k edges between V ′ and V − V ′ (b′ and d′ may
be adjacent) and |N(V ′)| ≥ 4. Then the weight in V −V ′ decreases by at least w3+(3+k)(w4−w3)
for k ∈ {0, 1} and by 2w3 + 2(w4−w3) = 2w4 for k = 2. In Case 2, we can branch with at least one
of the following recurrences:

C(w)≤C(w−(2+k)w4−(4−2k)w3+2β)+C(w−(5+2k)w4−(2−2k)w3) (18)

for k ∈ {0, 1}; and

C(w)≤C(w − 4w4) + C(w−(6w4 + 2w3) + 2β) for k = 2. (19)

Case 3. a and b (or a and d) are the two degree-4 vertices in the 4-cycle: Assume without loss
of generality that a and b are the degree-4 vertices in the cycle. Define a′, a′′, b′, c′ and d′ as in
Case 1, and let b′′ be the fourth neighbor of b (see Fig. 5(c) for an illustration). Since the graph has
no irregular triangle, vertex c′ (d′) is different from any of b′ and b′′ (a′ and a′′) whereas d′ ∈ {b′, b′′}
and {a′, a′′} ∩ {b′, b′′, c′} ̸= ∅. Also c′ ̸= d′, otherwise 5-cycle c′cabd would contain a roof c′. We
look at the branch where {a, c} is removed. Vertex d will become a degree-1 vertex and we will
further remove the dominated vertex d′ and the degree-1 vertex d. Thus in this branch we will
remove N [d]. We consider how much weight of vertices in V −N [d] decreases after removing N [d].
Note that no two vertices in N(d) are adjacent, otherwise there would be an irregular triangle or a

20

roof. It is impossible to create a degree-0 vertex v after removing N [d], otherwise v = c′ holds and
{d, v}-{a, c, d′} would be a 2-3 stricture. Hence each vertex in N2(d) has a neighbor in V −N(d).
There are at least seven edges between N(d) and N2(d). If there is a degree-i vertex z ∈ N2(d)
which has (i− 1) neighbors in N(d), then the vertex z becomes a degree-1 vertex in G−N [d], and
folding z removes a vertex x ∈ V −N [d], which deletes at least two edges between x and N(x)−{z}.
Since there are at least 7 + 2− (i− 1) edges between X = N [d] ∪ {z, x} and V −X, deleting these
edges decrease the weight of vertices in V −X by at least W = 2w3 +∆w4 for i = 3 and W = 2w3

for i = 4. In total, the weight of vertices in V −N [v] decreases by at least wi+w3+W = w4+3w3.
Consider the case where each degree-i vertex in N2(d) has exactly (i−2) neighbors in N(d). In this
case, deleting N [d] decrease the weight of each degree-i vertex in N2(d) by wi. Since there are at
least seven edges between N(d) and N2(d), deleting N [d] decrease the weight of vertices in N2(d)
by at least 3w4 +w3 (≥ w4 +3w3). Therefore, the branch of removing {a, c} decreases the measure
w by at least w4 + 3w3 + w4 + 3w3 = 2w4 + 6w3.

This also holds for the other branch where {b, d} is removed. In Case 3, we can branch with
recurrence

C(w) ≤ 2C(w−(2w4 + 6w3)). (20)

Case 4. There are exactly three degree-4 vertices in the 4-cycle: Without loss of generality, we
assume that the three degree-4 vertices are a, b and c. Note that the third neighbor d′ of d is not
adjacent to a or c. Note that a and d has no common neighbor, and a and b has a common neighbor
a′ only when δ(a′) = 4 (otherwise there would be an irregular triangle). Similarly for common
neighbors between c and {b, d}. Hence in the branch of removing {b, d}, vertices a and c will be
degree-2 vertices adjacent to pairs of vertices of degree ≥ 3. In the branch of removing {b, d}, the
measure w decreases by at least 3w4 + w3 + w3 + (w4−w3) = 4w4 + w3. Folding the two degree-2
vertices further decreases the measure by at least 2β.

In the other branch where {a, c} is removed, vertex d becomes a degree-1 vertex and we will
further remove {d′}. This decreases the weight of vertices in {a, b, c} by 3w4, that in {d, d′} by
at least 2w3, and that in V − {a, b, c, d, d′} by at least 3w3 (note that there are at least six edges
between {a, c, d, d′} and V − {a, b, c, d, d′} and no degree-0 vertices will be created after removing
N [d]). Totally the measure w decreases by at least 3w4 + 5w3. In Case 4, we get recurrence

C(w)≤C(w−(4w4 + w3 + 2β))+C(w−(3w4 + 5w3)). (21)

Case 5. All the vertices in the 4-cycle are degree-4 vertices: Since there are no 4-funnels in a
reduced graph, the vertices abcd do not induce a clique of size 4. Assume without loss of generality
a and c are not adjacent. Let N(a) = {b, d, a′, a′′} and N(c) = {b, d, c′, c′′}. Note that a and each
of b and d have a common neighbor a′ only when δ(a′) = 4 (otherwise a and a′ would be in an
irregular triangle), where a cannot have the common neighbor a′ both with b and d (otherwise b
would dominate d). Similarly for common neighbors between c and {b, d}. Hence the branch of
removing {a, c} decreases the weight of vertices a, b, c and d by 4w4. When vertices a and c have
the third common neighbor z, the degree of z is four (otherwise abcz would has more degree-3
vertices than the optimal 4-cycle abcd). Hence removing {a, c} decreases the weight of vertices in
V − {a, b, c, d} by at least 4∆w4 if {a′, a′′} ∩ {c′, c′′} = ∅ and δ(a′) = δ(a′′) = δ(c′) = δ(c′′) = 4
or by 4∆w4+(w3−∆w4) otherwise. In the other branch of removing {b, d}, vertices a and c will
be degree-2 vertices adjacent to pairs of vertices of degree ≥ 3. The branch of removing {b, d}
decreases the weight of vertices in {a, b, c, d} by 4w4. When there are only two edges between {b, d}
and V − {a, b, c, d}, these edges can meet at a vertex z only when δ(z) = 4 (otherwise zdab would
has more degree-3 vertices than the optimal 4-cycle abcd). Hence removing {b, d} decreases the
weight of vertices in V − {a, b, c, d} by at least min{2(w4−w3), w4} = 2(w4−w3). Folding the two
degree-2 vertices further decreases the measure by at least 2β. In total the measure decreases by at

21

least 6w4 − 2w3 + 2β. When {a′, a′′} ∩ {c′, c′′} = ∅ and δ(a′) = δ(a′′) = δ(c′) = δ(c′′) = 4, a vertex
of degree ≥ 5 will be created and remain in a reduced graph or the measure further decreases by at
least ∆w4 until all degree ≥ 5 vertices are eliminated in a reduced graph. In any case, we can save
min{σ2,∆w4} = σ2 in the second branch. In Case 5 we get recurrences

C(w) ≤ C(w−(8w4 − 4w3 + (w3−∆w4))+C(w−(6w4 − 2w3 + 2β)); (22)

C(w) ≤ C(w−(8w4 − 4w3))+C(w−(6w4 − 2w3 + 2β + σ2)). (23)

Note that after Step 4, no degree-4 vertex is contained in a 4-cycle.

6.2.4 Branches in Step 5

In this step, the algorithm will branch on an optimal degree-4 vertex v by either deleting v from
the graph or deleting N [v] from the graph.

We observe that when G has a degree-4 vertex in a component H after Step 4, there always
exists a degree-4 vertex that is not contained in two edge-disjoint triangles, since otherwise H would
be the line graph of a 3-regular graph, which must have been eliminated by our reduction rules.

Let v be an optimal degree-4 vertex v in a component H of a reduced graph G, where H
contains none of irregular triangles, 4-cycles containing degree-4 vertices and vertices of degree ≥ 5
after Step 4. Since there is no irregular triangle in H, every degree-3 neighbor of v has exactly two
neighbors in N2(v) (see Fig. 6 for all possible subgraphs induced by the neighbors of an optimal
vertex v).

Let d3 be the number of degree-3 vertices in N(v), and p be the number of edges between N(v)
and N2(v), where p = |N2(v)| since v is not contained in any 4-cycle. Let ℓ (≤ d3) be the number
of degree-3 neighbors that have at least one degree-4 neighbor in N2(v), and k3 be the number of
degree-3 vertices in N2(v), where k3 ≥ 2(d3 − ℓ) always holds. In the branch of deleting v, the total
weight of the vertices in N [v] decreases by at least

w4 + (4− d3)∆w4 + d3w3 = (5− d3)w4 + (2d3 − 4)w3.

By applying RG to the resulting graph G− v, the measure decreases as follows.

Lemma 16 Let d3 ≥ 1. Then G − v has d3 ≥ 1 degree-2 vertices. Let ui (1 ≤ i ≤ d3) be the
degree-3 neighbors of v in G where ui has neighbors xi, yi ∈ N2(v). Then one of the following (i)
and (ii) holds:
(i) Applying RG to G − v decreases the measure by at least 2w3 before a reduced graph is obtained
from G− v;
(ii) No degree-3 neighbor of v is in a triangle or a 4-cycle in G, and no 6-cycle contains two degree-
3 neighbors of v and their four neighbors other than v. None of Steps 1, 3, 4 or 5 of RG will be
executed before a reduced graph is obtained from G−v. Step 2 of RG is executed each degree-2 vertex
to G− v without creating a new degree-2 vertex to leave a graph G∗ with no degree-2 vertices, where
each pair xi and yi is contracted into a vertex of degree δ(xi)+δ(yi)−2 and w(G−v)−w(G∗) ≥ d3β
holds.

Proof. Assume that applying RG to G− v does not decrease the measure by 2w3 or more before a
reduced graph is obtained from G− v. Since none one of Steps 1, 3, 4 or 5 of RG will be executed
since otherwise the measure would decrease by at least w4+2∆w4 (≥ 2w3) by Lemma 13. Hence no
degree-3 neighbor u of v in G is in a triangle uxy (where x and y are two degree-3 vertices in N2(v)
since G has no irregular triangles and v is not contained in 4-cycle in G), because otherwise the
vertex u becomes a dominating vertex degree-2 in G−v, contradicting that Step 3 of RG will not be

22

executed. Then after removing v from G, Step 2 of RG will be repeatedly executed until no degree-2
vertex exists. Note that no two degree-3 neighbors of v have a common neighbor other than v since
no 4-cycle contains a degree-4 vertex. Since the measure does not decrease by 2w3 or more, we see
that G has no degree-3 neighbor of v is in a triangle or a 4-cycle in G and no 6-cycle contains two
degree-3 neighbors of v and their four neighbors other than v. If a degree-3 neighbor u of v is in a
4-cycle xuyz (where each of x, y and z is of degree 3 since no 4-cycle contains a degree-4 vertex),
then folding the degree-2 vertex u in G − v contracts x and y into a degree-3 vertex which is now
incident to degree-2 vertex z, indicating that the weight of decrease from vertices x, y and z is 2w3,
a contradiction. Similarly if G has a 6-cycle u1x1x2u2y2y1 for two degree-3 neighbors u1 and u2 of
v, then folding degree-2 vertices u1 and u2 in G− v decreases the degree of their neighbors by six in
total, indicating that the weight of decrease from vertices x1, y1, x2 and y2 is at least 6∆w4 (≥ 2w3

by (5)), a contradiction.
We finally claim that the degree of a vertex t ̸∈ {v, u1, . . . , ud3} decreases during the execution

only when G has a 4-cycle containing a degree-3 neighbor of v or a 6-cycle that contains two degree-
3 neighbors of v and their four neighbors other than v (when two vertices t and t′ are contracted
into t′′, we regard that the degree of each of t and t′ becomes that of t′′). Let t ̸∈ {v, u1, . . . , ud3}
be the first vertex whose degree decreases during folding degree-2 vertices in G − v (hence no
new degree-2 vertex than u1, . . . , ud3 has not been created yet). Immediately before the degree
of x decreases, there must be a 4-cycle u1x1ty1 for some degree-2 vertex u1. Since no degree-3
neighbor of v is in a 4-cycle, this means that one of vertices x1, t and y1 is a vertex created by
folding another degree-2 vertex u2. If one of x1 and y1 is such a vertex, then u1 and u2 would have
a common vertex x, contradicting that no two degree-2 vertices in {u1, . . . , ud3} have a common
vertex (even if x is assumed to be created by folding another degree-2 vertex u3, we cannot avoid
such a common vertex between two vertices in {u1, . . . , ud3}). Hence only t is a vertex created by
folding another degree-2 vertex u2. Hence before folding the degree-2 vertex u2, the 4-cycle was
a 6-cycle u1x1x2u2y2y1. Analogously none of vertices x1, x2, y2 and y1 can be created by folding
degree-2 vertces in {u1, . . . , ud3} − {u1, u2} (otherwise some two of them would have a common
neighbor). This contradicts that such a 6-cycle exists in G, proving the claim. The claim implies
that no new degree-2 vertex will be created during folding the d3 degree-2 vertice in G− v, and the
measure decreases by at least β by Lemma 14 before the d3 degree-2 vertices are folded. Also the
degree of any other vertex never decreases, and each pair xi and yi of ui will be contracted into a
vertex of degree δ(xi) + δ(yi)− 2, which will not decrease while Step 2 of RG is applied.

In the second branch of deleting N [v], the vertex weight decreases by w4 + (4− d3)w4 + d3w3 =
(5 − d3)w4 + d3w3 from N [v] and k3w3 + (p − k3)∆w4 from N2(v). The total weight decrease by
deleting N [v] is at least

(5− d3)w4 + d3w3 + k3w3 + (p− k3)∆w4 = (5− d3 + p− k3)w4 + (d3 − p+ 2k3)w3,

which is at least (5− d3 + p)w4 + (d3 − p)w3.
We analyze recurrences in Step 5 distinguishing five cases according to the number d3 of degree-3

neighbors of v.
Case 1. d3 = 4 (see Fig. 6(a)): Then p = |N2(v)| = 8. By Lemma 16, the measure in G− v further
decreases by at least min{4β, 2w3} = 4β and we get recurrence

C(w)≤C(w−(w4+4w3+4β))+C(w−(9w4−4w3)). (24)

Case 2. d3 = 3 (see Fig. 6(b)): Then p = |N2(v)| = 9. By Lemma 16, the measure in G− v further
decreases by at least min{3β, 2w3} = 3β and we get recurrence

C(w)≤C(w−(2w4+2w3+3β))+C(w−(11w4−6w3)). (25)

23

(a) Case 1

v

(b) Case 2

v

(c) Case 3.1

v

(d) Case 3.2

v

(e) Case 4.1

v

(f) Case 4.2

v

(g) Case 5.1

v

(h) Case 5.2

v

t t’

t t’ t t’u u

u u

z z’

z z’z1 z2 z1 z2

z1 z2 z1 z2

Figure 6: The structure of the neighbors of an optimal degree-4 vertex v in Step 5

Case 3. d3 = 2: We distinguish two subcases on whether v is in a triangle or not.
Case 3.1 v is in a triangle vtt′ (see Fig. 6(c)): Then p = |N2(v)| = 8.

(i) Consider the case where the measure decreases by at least 2w3 before a reduced graph is obtained
by applying RG to G− v after removing v from G in the first branch. Then we get recurrence

C(w)≤C(w−(3w4 + 2w3))+C(w−(11w4 − 6w3)). (26)

In what follows, we assume that the measure does not decrease by 2w3 or more before a reduced
graph is obtained from G−v. Hence the conditions in Lemma 16(ii) hold. No degree-3 neighbor of v
is in a triangle or a 4-cycle. In the first branch of removing v, we have ℓ vertices of degree ≥ 5 in the
resulting graph G∗ after folding all degree-2 vertices by Lemma 16(ii), where w(G−v)−w(G∗) ≥ 2β.
(ii) Next assume that ℓ = 0. Then k3 ≥ 4. This gives recurrence

C(w)≤C(w−(3w4+2β))+C(w−(7w4+2w3)). (27)

In the following we assume that ℓ ≥ 1.
(iii) There is a degree-6 vertex in a reduced graph obtained after applying RG to G∗. The algorithm
branches on a vertex of degree ≥ 6 with recurrence (9) with shift σ1, and we get recurrence

C(w)≤C(w−(3w4 + 2β + σ1))+C(w−(11w4 − 6w3)). (28)

(iv) G∗ has exactly h degree-6 vertices (h = 1, 2), and none of these degree-6 vertices remains in a
reduced graph after applying RG to G∗. Then k3 ≥ 2− h. By Lemma 13, we see that the measure
decreases by at least (h+ 1)∆w4 before a reduced graph is obtained. Then we get recurrences

C(w)≤C(w−(3w4+2β+(h+1)∆w4))+C(w−((9+h)w4−(2+2h)w3)) (29)

for h = 1, 2.
(v) G∗ has no degree-6 vertex, and there is a degree-5 vertex in a reduced graph obtained after
applying RG to G∗. Note that G∗ has ℓ degree-5 vertices and k3 ≥ 2. In this case the algorithm
branches on a vertex of degree 5 with recurrence (10) with shift σ2, and we get recurrence

C(w)≤C(w−(3w4 + 2β + σ2))+C(w−(9w4 − 2w3)). (30)

24

(vi) G∗ has no degree-6 vertex, and no vertex of degree ≥ 5 exists in a reduced graph after applying
RG to G∗. By Lemma 13, we see that the measure decreases by at least (ℓ+ 1)∆w4 before the ell
degree-5 vertices are eliminated. By noting that k3 ≥ 4− ℓ, we get recurrences

C(w)≤C(w−(3w4+2β+(ℓ+1)∆w4))+C(w−((7+ℓ)w4+(2−2ℓ)w3))

for ℓ = 1, 2, which are covered by (29).
Case 3.2 v is not in any triangle (see Fig. 6(d)): Then p = |N2(v)| = 10. We can derive

recurrences analogously with Case 3.1, where the measure decrease in the second branch in Case 3.2
is larger by 2∆w4 than that in Case 3.1.

Case 4. d3 = 1: Let u be the degree-3 neighbor of v, and N(u) = {v, z1, z2}. We distinguish two
subcases on whether v is in a triangle or not.

Case 4.1 v is in a triangle vtt′ (see Fig. 6(e)): Then p = |N2(v)| = 9. We derive recurrences for
ℓ ≥ 1 in a similar manner with Case 3.1.
(i) Consider the case where the measure decreases by at least 2w3 before a reduced graph is obtained
by applying RG to G− v after removing v from G in the first branch. Then we get recurrence

C(w)≤C(w−(4w4 − 2w3 + 2w3))+C(w−(13w4 − 8w3)). (31)

In what follows, we assume that the measure does not decrease by 2w3 or more before a reduced
graph is obtained from G−v. Hence the conditions in Lemma 16(ii) hold. No degree-3 neighbor of v
is in a triangle or a 4-cycle. In the first branch of removing v, we have ℓ vertices of degree ≥ 5 in the
resulting graph G∗ after folding all degree-2 vertices by Lemma 16(ii), where w(G−v)−w(G∗) ≥ β.
(ii) Assume that ℓ = 0. Then the degree-3 neighbor u of v is adjacent to two degree-3 neighbors
z1, z2 ∈ N2(v) which are not adjacent to each other. Hence k3 ≥ 2. We consider the second
branch of removing N [v]. If k3 = 2, then G − N [v] has only two degree-2 vertices z1 and z2
(which are independent), and the measure decreases by at least 11w4−4w3 + 2β in the second
branch since folding these degree-2 vertices in G − N [v] further decreases the measure by 2β.
If k3 = 3, then G − N [v] has exactly three degree-2 vertices and the measure decreases by at
least 10w4−2w3 + β in the second branch since folding these three degree-2 vertices in G − N [v]
finally contracts at least one pair of vertices of degree ≥ 3 even if some of these degree-2 vertices
are adjacent. For k3 ≥ 4, the measure decreases by at least 9w4 in the second branch. Since
min{11w4−4w3 + 2β, 10w4−2w3 + β, 9w4} = 11w4−4w3 + 2β by β ≤ 2w3 − w4, we get recurrence

C(w)≤C(w−(4w4−2w3+β))+C(w−(11w4−4w3 + 2β)). (32)

In the following assume that ℓ = 1. Then the maximum degree of G is at least 5.
(iii) The maximum degree of G∗ decreases before a reduced graph is obtained after applying RG to
G∗. By Lemma 13, we see that the measure decreases by at least 2∆w4 before a reduced graph is
obtained.

C(w)≤C(w−(4w4 − 2w3 + β + 2∆w4))+C(w−(13w4 − 8w3)). (33)

In the following we assume that the maximum degree of G∗ does not decrease before a reduced
graph is obtained.
(iv) There is a degree-6 vertex in a reduced graph obtained after applying RG to G∗. The algorithm
branches on a vertex of degree ≥ 6, and we get recurrence

C(w)≤C(w−(4w4 − 2w3 + β + σ1))+C(w−(13w4 − 8w3)). (34)

(v) There is a degree-5 vertex in a reduced graph obtained after applying RG to G∗. This means
that G∗ has a degree-5 vertex. Note that k3 ≥ 1. In this case the algorithm branches on a vertex
of degree 5, and we get recurrence

C(w)≤C(w−(4w4−2w3+β+σ2))+C(w−(12w4−6w3)). (35)

25

Case 4.2 v is not in any triangle (see Fig. 6(f)): Then p = |N2(v)| = 11. For ℓ ≥ 1, we can derive
recurrences analogously with Case 4.1, where the measure decrease in the second branch in Case 4.2
is larger by 2∆w4 than that in Case 4.1. However, we introduce shift σ4 for each recurrence with
ℓ ≥ 1.
(i) First consider the case where the measure decreases by at least 2w3 before a reduced graph
is obtained by applying RG to G − v after removing v from G in the first branch. Then we get
recurrence

C(w)≤C(w−(4w4−2w3+2w3−σ4))+C(w−(15w4−10w3−σ4)). (36)

In what follows, we assume that the measure does not decrease by 2w3 or more before a reduced
graph is obtained from G− v. Hence the conditions in Lemma 16(ii) hold. No degree-3 neighbor of
v is in a triangle or a 4-cycle. In the first branch of removing v, we have ℓ vertices of degree ≥ 5 in
the resulting graph G∗ after folding all degree-2 vertices by Lemma 16(ii).
(ii) Consider the case of ℓ = 0. Then k3 ≥ 2 holds and we get recurrence

C(w)≤C(w−(4w4 − 2w3 + β))+C(w−(13w4 − 6w3)). (37)

In the following assume that ℓ = 1. Then the maximum degree of G is at least 5.
(iii) The maximum degree of G∗ decreases before a reduced graph is obtained after applying RG to
G∗. By Lemma 13, we see that the measure decreases by at least 2∆w4 before a reduced graph is
obtained. This gives recurrence

C(w)≤C(w−(4w4−2w3+β+2∆w4−σ4))+C(w−(15w4−10w3−σ4)). (38)

(iv) There is a degree-6 vertex in a reduced graph obtained after applying RG to G∗. The algorithm
branches on a vertex of degree ≥ 6, and we get recurrence

C(w)≤C(w−(4w4−2w3+β+σ1−σ4))+C(w−(15w4−10w3−σ4)). (39)

(v) There is a degree-5 vertex in a reduced graph obtained after applying RG to G∗. This means
that G∗ has a degree-5 vertex. Note that k3 ≥ 1. In this case the algorithm branches on a vertex
of degree 5, and we get recurrence

C(w)≤C(w−(4w4−2w3+β+σ2−σ4))+C(w−(14w4−8w3−σ4)). (40)

Case 5. d3 = 0: Then p = |N2(v)| ≥ 10. First consider the case where the measure decreases by
at least 2w3 before a reduced graph is obtained by applying RG to G− v after removing v from G
in the first branch. Then we get recurrence

C(w)≤C(w−(5w4−4w3+2w3))+C(w−(15w4−10w3)). (41)

In what follows, we assume that the measure does not decrease by 2w3 or more before a reduced
graph is obtained from G− v. Hence the conditions in Lemma 16(ii) hold. Hence none of Steps 1,
3, 4 and 5 of RG is executed when RG is applied to G− v. We distinguish two subcases on whether
v is in a triangle or not.

Case 5.1 v is in a triangle vtt′ (see Fig. 6(g)): Then p = |N2(v)| = 10. Let N(v) = {t, t′, u1, u2}.
Now v satisfies one of conditions (c) and (d) in the definition of optimal vertices. We show that v
can only satisfy condition (c). For each i = 1, 2, degree-4 neighbor ui of v not in triangle vtt′ satisfies
condition (c), and thereby the current vertex v also satisfies (c), i.e., one of u1 or u2, say u1 is in a
triangle u1y1y2. Note that the last neighbor y3 ∈ N(u1)− {v, y1, y2} is also a degree-4 vertex since
otherwise u1 should have been chosen as an optimal vertex satisfying (c) with a degree-3 neighbor.

26

Then y3-u1-{y1, y2} will be a good funnel with δ(y3) = 4 after removing v in the first branch. We
see that G− v has no short funnel, since otherwise a 4-cycle and a triangle share an edge and this
means that G would have a 4-cycle containing a degree-4 vertex or a roof. Hence not only Steps 1,
3, 4 and 5 but also Step 6 of RG will not be executed to obtain a reduced graph from G − v, and
y3-u-{y1, y2} remains to be a good funnel in the reduced graph after applying RG. The algorithm
then branches on the good funnel (or possibly the same type of good funnel generated at the other
degree-3 neighbor u2) with recurrence (13) with shift σ3. Hence we get recurrence

C(w)≤C(w−(5w4−4w3+σ3))+C(w−(15w4−10w3)). (42)

Case 5.2 v is not in any triangle (see Fig. 6(h)): Then p = |N2(v)| = 12.
(i) k3 ≥ 1. In the first branch, the measure decreases by at least 5w4−4w3. As observed in
Case 4.1(v), the second branch decreases the measure by at least 15w4−8w3 if k3 ≥ 2 and by at
least 16w4−10w3+β (by folding a degree-2 vertex) if k3 = 1, where min{15w4−8w3, 16w4−10w3+β} =
16w4−10w3+β. Hence

C(w)≤C(w−(5w4−4w3))+C(w−(16w4−10w3+β)). (43)

(ii) In what follows, we assume that k3 = 0.
(ii-1) Assume that a degree-4 neighbor u of v is in a triangle uy1y2 disjoint with v. Note that

all neighbors in N(u) = {v, y1, y2, y3} are of degree 4 by k3 = 0. Then after removing v in the first
branch, y3-u-{y2, y3} will be a good funnel in G − v such that δ(y3) = 4 and y3 is not in a 4-cycle
by the assumption on G. If G − v is changed so that it has no good funnel by applying RG, then
the measure further decreases by at least ∆w4 by Lemma 13. On the other hand, the algorithm
branches on the good funnel with recurrence (13) with shift σ3. Hence we get recurrence

C(w)≤C(w−(5w4−4w3 +min{∆w4, σ3}))+C(w−(17w4−12w3)). (44)

(ii-2) Assume that no degree-4 neighbor of v is in a triangle disjoint with v. Hence there is no
triangle containing a vertex in N [v]. Note that each degree-4 neighbor u ∈ N(v) is adjacent to
only degree-4 vertices in N2(v) (otherwise a neighbor u ∈ N(v) with at least one degree-3 neighbor
would be optimal instead of the current optimal vertex v). Hence the component H containing v
is a 4-regular graph with no triangles. After removing v in the first branch, we see that Step 6 of
RG will not be executed to G− v (recall that none of Steps 1, 3, 4 and 5 of RG will be executed).
When G − v is a reduced graph, the algorithm chooses an optimal degree-4 vertex v′ which is in
N2(v) in G and now adjacent to a degree-3 vertex u in G − v. Hence v′ satisfies the condition of
Case 4.2(i) or Case 4.2(iii)-(v) since v is not in a 4-cycle in G the unique degree-3 neighbor u is
adjacent to only degree-4 vertices in G− v. Then including the shift σ4 saved from each recurrence
in Case 4.2(i) or Case 4.2(iii)-(v), we get recurrence

C(w)≤C(w−(5w4−4w3+σ4)))+C(w−(17w4−12w3)). (45)

6.2.5 Analysis for Step 6

It is easy to see that if none of the first six steps can be executed, the graph is a 3-regular graph.
We use our O∗(1.083506n)-time algorithm for MIS3 in [18] to solve it, and then we get

C(w) ≤ O(1.083506
w
w3), (46)

which will generate the last constraint in our quasiconvex program.

27

6.3 Final Solution to Weights

Recurrences (9) to (46) generate the constraints in our quasiconvex program. By solving the quasi-
convex program under conditions (1), (2), and (3) according to the method introduced in [5], we get
a bound 1.13756673 of the branching factor for all recurrences by setting w3 = 0.6222440, w4 = 1,
w5 = 1.3937424 and w6 = 1.7714985 (now β = 0.22571). This verifies Lemma 10.

Now the recurrence (23) and constraints ∆w4 ≤ min{w3,∆w5,∆w6} in (2), and wi+wj ≥ wi+j−2

with 3 ≤ i ≤ j ≤ 4 in (3) and (46) attain the tight branching factor 1.1376.

7 Concluding Remarks

After carefully checking the local structures and what will happen after branching on a degree-4
vertices, we improve the running time bound of MIS4 to O∗(1.1376n). Now (46) is the crucial
bottleneck in the algorithm. If we remove these two constraints, many new bottlenecks will appear
and the improvement is tiny. Maybe new technique and method are needed on this problem to get
further significant improvement.

References

[1] Bourgeois, N., Escoffier, B., Paschos, V. T., van Rooij, J. M. M.: Maximum independent set in
graphs of average degree at most three in O(1.08537n). In: TAMC, LNCS 6108 (2010) 373–384

[2] Bourgeois, N., Escoffier, B., Paschos, V. T., van Rooij, J. M. M., Fast algorithms for max
independent set, Algorithmica 62(1-2), (2012) 382–415.

[3] Chen, J., Kanj, I. A., Xia, G.: Improved upper bounds for vertex cover. Theoretical Computer
Science 411(40-42) (2010) 3736–3756

[4] Chor, B., Fellows, M., Juedes, D. W.: Linear kernels in linear time, or how to save k colors in
O(n2) steps. In: WG 2004. LNCS 3353, Springer (2004) 257–269

[5] Eppstein D.: Quasiconvex analysis of multivariate recurrence equations for backtracking algo-
rithms. ACM Transactions on Algorithms 2(4)(2006) 492-509

[6] Fomin, F. V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of
exact algorithms. J. ACM 56(5) (2009) 1–32

[7] Fomin, F. V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Process. Lett.
97(5) (2006) 191–196

[8] Fomin, F. V., Kratsch, D.: Exact Exponential Algorithms, Springer (2010)

[9] Fürer, M.: A faster algorithm for finding maximum independent sets in sparse graphs. In:
LATIN 2006. LNCS 3887 , Springer (2006) 491–501

[10] Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem. IEEE
Transactions on Computers 35(9) (1986) 847–851

[11] Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set
algorithm. In Kannan, R., Kumar, K.N., eds.: FSTTCS 2009. V. 4 LIPIcs., Dagstuhl, Germany
(2009) 287–298

[12] Razgon, I.: Faster computation of maximum independent set and parameterized vertex cover
for graphs with maximum degree 3. J. of Discrete Algorithms 7(2) (2009) 191–212

28

[13] Robson, J.: Algorithms for maximum independent sets. J. of Algorithms 7(3) (1986) 425–440

[14] Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM J. on Computing
6(3) (1977) 537–546

[15] West, D.: Introduction to Graph Theory. Prentice Hall. 1996

[16] Xiao, M.: A simple and fast algorithm for maximum independent set in 3-degree graphs. In:
M. Rahman and S. Fujita: WALCOM 2010, LNCS 5942 (2010) 281–292

[17] Xiao, M., Chen, J., Han, X.: Improvement on vertex cover and independent set problems for
low-degree graphs. Chinese J. of Computers 28(2) (2005) 153–160

[18] Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: A simple maximum
independent set algorithm in degree-3 graphs. Theoretical Computer Science 469 (2013) 92–104

[19] Xiao, M., Nagamochi, H.: Further Improvement on Maximum Independent Set in Graphs
with Maximum Degree 4. Technical report 2012-003, Department of Applied Mathematics and
Physics, Graduate School of Informatics, Kyoto University (2012)

Proof of Lemma 5. Lemma 5 follows from the next lemma and its proof.

Lemma 17 It holds that α(G1) ≥ α(Gv
1) and

α(G) =

{
α(Gv

1)+α(G[V2 + v]) if α(G1)=α(Gv
1)

α(G1)+α(G2) if α(G1) > α(Gv
1).

Proof. Since Gv
1 is an induced subgraph of G, we know that α(G1) ≥ α(Gv

1) holds. Let S be a
maximum independent set of G. Then we have |S ∩ V1| ≤ α(G1) and |S \V1| ≤ α(G[V2 + v]).

First assume that α(G1) = α(Gv
1). Then we have |S ∩ V1| ≤ α(G1) = α(Gv

1) = |Sv
1 | for any

maximum independent set Sv
1 of Gv

1. Then α(G) = |S ∩ V1| +|S \V1| ≤ α(Gv
1) +α(G[V2 + v]). On

the other hand, |Sv
1 ∪(S \V1)| ≤ α(G) since Sv

1 ∪(S \V1) is an independent set of G since G[V2 + v]
and Gv

1 are separated by cut V1 \V v
1 . Therefore, α(G) =α(Gv

1) +α(G[V2 + v]).
Next, we consider the case of α(G1) > α(Gv

1). Let Ŝ1 be a maximum independent set of
G[V1 + v]. We have that |Ŝ1| ≤ min{α(Gv

1) +1, α(G1)} ≤ α(G1). We have that |S ∩ V2| ≤ α(G2)
and |S \V2| ≤ |Ŝ1| ≤ α(G1). Then α(G) = |S ∩ V2| + |S \V2| ≤ α(G2) +α(G1). On the other
hand, α(G) ≥ |(S ∩ V2) ∪S1| = |S ∩ V2|+α(G1) for any maximum independent set S1 of G1, since
(S ∩ V2) ∪S1 is also an independent set of G since G2 and G1 are separated by cut {v}. Therefore,
α(G) =α(G1) +α(G2).

Proof of Lemma 6. Lemma 6 follows from the next lemma and its proof.

Lemma 18 Assume without loss of generality that α(Gu
1) ≤ α(Gv

1). Then it holds that α(Guv
1) ≤

α(Gu
1) ≤ α(Gv

1) ≤ α(G1) and

α(G)=



α(Guv
1)+α(G[V2∪{u,v}]) if α(Guv

1)=α(G1), (i)

α(G1)+α(G̃2) if α(Guv
1)<α(Gu

1)=α(Gv
1)=α(G1), (ii)

α(Gv
1)+α(G[V2 + v]) if α(Gu

1)<α(Gv
1)= α(G1), (iii)

α(G1)+α(Ĝ2) if α(Guv
1)+1 = α(G1) and α(Gv

1)<α(G1), (iv)
α(G1)+α(G2) if α(Guv

1)+2 ≤ α(G1) and α(Gv
1)<α(G1), (v)

where G̃2 is the graph obtained from G[V2∪{u, v}] by adding an edge uv if v and u are not adjacent

and Ĝ2 = G/(V1∪{u,v}) is the graph obtained from G by contracting V1∪{u, v} into a single vertex
z and deleting multi-edges and self-loops.

29

Proof. Since Guv
1 is an induced subgraph of Gu

1 (resp., Gv
1), and Gu

1 (resp., Gv
1) is an induced

subgraph of G1, we know that α(Guv
1) ≤ α(Gu

1) ≤ α(G1) and α(Guv
1) ≤ α(Gv

1) ≤ α(G1). We
consider the other five possible relations among α(Guv

1), α(Gu
1), α(G

v
1) and α(G1). In the following,

S (resp., Suv
1 , Su

1 , S
v
1 and S1) denotes an arbitrary maximum independent set of G (resp., Guv

1 , Gu
1 ,

Gv
1 and Gu

1).

Case (i). α(Guv
1) = α(G1): We partition V (G) into V uv

1 , Z = V1 \V uv
1 and V2 ∪ {u, v} so that

there is no edge between V uv
1 and V2 ∪ {u, v}. Hence we have α(G) ≥ α(Guv

1) + α(G[V2 ∪ {u, v}]).
The converse can be obtained by

α(G) = |S| = |S ∩ V1|+ |S ∩ (V2 ∪ {u, v})| ≤ α(G1) + |S ∩ (V2 ∪ {u, v})|
≤ α(Guv

1) + |S ∩ (V2 ∪ {u, v})| = |Suv
1 |+ |S ∩ (V2 ∪ {u, v})|

≤ α(Guv
1) + α(G[V2 ∪ {u, v}]).

Case (ii). α(Guv
1) < α(Gu

1)=α(Gv
1) = α(G1): This holds because V2∪{u, v} is a subgraph of G̃2.

We first show that G has a maximum independent set S containing at most one vertex in {u, v}.
If u, v ∈ S, then can replace S ∩ (V1 ∪ {u}) with Sv

1 in S to get another maximum independent set
S′ = Sv

1 ∪ {v} ∪ (S ∩ (V2 \N({u, v}))) of G, since

α(G) = |S| = |S ∩ V uv
1 |+ |{u, v}|+ |S ∩ (V2 \N({u, v}))|

≤ α(Guv
1) + |{u, v}|+ |S ∩ (V2 \N({u, v}))|

≤ α(Gv
1)− 1 + |{u, v}|+ |S ∩ (V2 \N({u, v}))|

= |Sv
1 |+ |{v}|+ |S ∩ (V2 \N({u, v}))|

≤ α(G).

Hence G has a maximum independent set S such that |{u, v} ∩ S| = 1. Now we observe that

α(G) = |S| = |S ∩ V1|+ |S ∩ (V2 ∪ {u, v})|
≤ |S ∩ V1|+ α(G̃2)

≤ max{α(Gu
1), α(G

v
1), α(G1)}+ α(G̃2)

= min{α(Gu
1), α(G

v
1), α(G1)}+ α(G̃2)

≤ α(G),

indicating that α(G) = α(G1) + α(G̃2).

Case (iii). α(Gu
1) < α(Gv

1) = α(G1): We partition V (G) into V v
1 , Z = {u}∪ (V1 \V v

1) and V2+ v
such that there is no edge between V v

1 and V2 + v. Hence α(G) ≥ α(Gv
1) + α(G[V2 + v]). If u ̸∈ S,

then |S ∩ (V1+ u)| = |S ∩ V1| ≤ α(G1) = α(Gv
1). If u ∈ S, then |S ∩ (V1+ u)| = |S ∩ V u

1 | + 1 ≤
α(Gu

1) + 1 ≤ α(Gv
1). In any case we have

α(G) = |S| = |S ∩ (V1+ u)|+ |S ∩ (V2 + v)| ≤ α(Gv
1)+|S ∩ (V2 + v)|

= |Sv
1 |+|S ∩ (V2 + v)| ≤ α(G).

Case (vi). α(Guv
1) + 1 = α(G1) and α(Gv

1) < α(G1): We first observe that assumption α(Gu
1) ≤

α(Gv
1) < α(G1) implies that G has a maximum independent set S with |{u, v} ∩ S| = 0 or 2. If

{u, v} ∩ S = {u}, then we can replace S ∩ (V1 ∪ {u, v}) with S1 in S to get another maximum
independent S′ = S1 ∪ (S ∩ V2) set of G, where

α(G) = |S| = |S ∩ V1|+ |S ∩ {u, v}|+ |S ∩ V2|
≤ α(Gu

1) + 1 + |S ∩ V2|
≤ α(G1) + |S ∩ V2|
= |S1|+ |S ∩ V2| ≤ α(G).

30

Symmetrically if {u, v}∩S = {v}, then α(Gv
1) < α(G1) implies that we can replace S∩ (V1∪{u, v})

with S1 in S to get another maximum independent set S′ = S1 ∪ (S ∩ V2) of G. Hence G has a
maximum independent set S with |{u, v} ∩ S| = 0 or 2.

When |{u, v} ∩ S| = 2, we have α(G) = α(Guv
1) + |S ∩ (V2 ∪ {u, v})| ≤ α(Guv

1) + α(Ĝ2) + 1.

When |{u, v} ∩ S| = 0, we have α(G) = α(G1) + |S ∩ (V2 ∪ {u, v})| ≤ α(G1) + α(Ĝ2). In any case,

we have α(G) ≤ α(Guv
1) + 1 + α(Ĝ2) = α(G1) + α(Ĝ2). We show the converse. For a maximum

independent set S∗ of Ĝ2, if z ∈ S∗ (resp., z ̸∈ S∗) then we have an independent set S′ of G such

that S′ = Suv
1 ∪ (S∗ \{z}) ∪ {u, v} (resp., S′ = S1 ∪ S∗) and α(G) ≥ |S′| = α(Guv

1) + α(Ĝ2)− 1 + 2

(resp., α(G) ≥ |S′| = α(G1)+α(Ĝ2)), where α(G
uv
1)+ 1+α(Ĝ2) = α(G1)+α(Ĝ2) by assumption.

Case (v). α(Gv
1) < α(G1) and α(Guv

1) + 2 ≤ α(G1): As in Case (iv), assumption α(Gu
1) ≤

α(Gv
1) < α(G1) implies that G has a maximum independent set S with |{u, v} ∩ S| = 0 or 2. If

|{u, v} ∩ S| = 2, then we can replace S ∩ (V1 ∪ {u, v}) with S1 in S to get another maximum
independent set S′ = S1 ∪ (S ∩ V2) of G with {u, v} ∩ S′ = ∅, where

α(G) = |S| = |S ∩ V uv
1 |+ |S ∩ {u, v}|+ |S ∩ V2|

≤ α(Guv
1) + 2 + |S ∩ V2|

≤ α(G1) + |S ∩ V2|
= |S1|+ |S ∩ V2| ≤ α(G).

Hence G has a maximum independent set S with S ∩ {u, v} = ∅, indicating that This means that
α(G) = α(G1) + α(G2).

31

