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Abstract

The maximum independent set problem is a basic NP-hard problem and has been extensively
studied in exact algorithms. The maximum independent set problems in low-degree graphs are
also important and may be bottlenecks of the problem in general graphs. In this paper, we present
an O∗(1.1737n)-time exact algorithm for the maximum independent set problem in an n-vertex
graph with degree bounded by 5, improving the previous running time bound of O∗(1.1895n). In
our algorithm, we introduce an effective divide-and-conquer procedure to deal with vertex cuts of
size at most two in graphs, and design branching rules on some special structure of triconnected
graphs of maximum degree 5. These result in an improved algorithm without introducing a large
number of branching rules.
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1 Introduction

In the line of research on worst-case analysis of exact algorithms for NP-hard problems, themaximum
independent set problem (MIS) is one of the most important problems. It asks us to find a maximum
set of vertices in a graph such that no pair of vertices in the set are adjacent to each other. The
method of trivially checking all possible vertex subsets results in an O∗(2n)-time algorithm. In
the last half a century, great progresses have been made on exact exponential algorithms and their
worst-case analysis for MIS. In 1977, Tarjan and Trojanowski [13] published the first nontrivial
O∗(2n/3)-time algorithm. After this, many fast exact algorithms for MIS have been investigated. We
quote the O∗(1.2346n)-time algorithm by Jian in 1986 [9], the O∗(1.2278n)-time polynomial-space
and O∗(1.2109n)-time exponential-space algorithms by Robson in 1986 [12], the O∗(1.2210n)-time
algorithm by Fomin et al. in 2006 [5], the O∗(1.2132n)-time algorithm by Kneis et al. in 2009 [10]
and the O∗(1.2114n)-time algorithm by Bourgeois et al. in 2012 [2].

Most polynomial-space algorithms for MIS use the following simple idea to search a solution:
branch on a vertex of maximum degree by either excluding it from the solution set or including it
to the solution set. In the first branch we will delete the vertex from the graph and in the second
branch we will delete the vertex together with all its neighbors from the graph. When the vertex to
be branched on is of degree at lest 8, the simple branch is almost good enough to get the running
time bound of all published polynomial-space algorithms for MIS. Then MIS in graphs with degree
bounded by i (i ∈ {3, 4, 5, 6, 7}) may be the bottleneck cases of MIS. For most cases the running
time bound for MIS-i (the maximum independent set problem in graphs with maximum degree i) is
one of the bottlenecks to improve the running time bound for MIS-(i+1), especially for small i. This
holds in the many algorithms for MIS [2, 3, 5, 10, 18]. We look at the most recent two algorithms
for MIS in general graphs. Kneis et al. [10] used a fast algorithm for MIS-3 by Razgon [11] and used
a computer-aided method to check a huge number of cases for MIS-4, and then these two special
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case will not be the bottleneck cases in their algorithm for MIS in general graphs. In Bourgeois et
al.’s paper [2], more than half is discussing algorithms for MIS-3 and MIS-4, and based on improved
running time bounds for MIS-3 and MIS-4 they can improve the running time bounds for MIS-5,
MIS-6 and then MIS in general graphs. We can see that MIS in low-degree graphs are important. In
the literature, we can find a long list of contributions to fast exact algorithms for MIS in low-degree
graphs [17, 1, 16, 11, 15, 8, 6, 18]. Currently, MIS-3 can be solved in O∗(1.0836n) time [17], MIS-4
can be solved in O∗(1.1376n) time [18], MIS-5 can be solved in O∗(1.1895n) time and MIS-6 can
be solved in O∗(1.2050n) time [2]. In this paper, we will design an O∗(1.1737n)-time algorithm for
MIS-5, improving all previous running time bounds for this problem.

Our algorithm is mainly based on a branch-and-reduce paradigm, in each step of which we
will branch on the current graph G with measure w into l subgraphs G(i) with measure w(i) (i =
1, 2, . . . , l). Let C(w) denote the worst-case size of the search tree in our algorithm when the measure
of the graph is w. Then we get the recurrence relation C(w) ≤

∑l
i=1C(w−t(i)), where t(i) = w−w(i)

is the decrease of the measure in the i-th subinstance. Let τ(t(1), t(2), . . . , t(l)) denote the unique

positive real root of the function f(x) = 1 −
∑l

i=1 x
−t(i) . Then τ(t(1), t(2), . . . , t(l)) is called the

branching factor of the recurrence. Let τ be the maximum branching factor among all branching
factors in the search tree. Then the size C(w) of the search tree is at most τw. When designing
the exact algorithm, we need to make the worst branches in the algorithm as good as possible to
improve the running time bound. More details about the analysis of the size of the search tree can
be found in the monograph on exact algorithms [7].

To avoid some bad branches in the algorithm, we may need to reduce some special local structures
of the graph. First, we apply our reduction rules to find a part of the solution when the graph has
certain structures. Second, we design effective divide-and-conquer algorithms based on small cuts
of the graph. By reducing the local structures in the above two steps, we can apply our branching
rules on the graph to search a solution. In our algorithm, the divide-and-conquer methods are newly
introduced and they can effectively reduce some bottleneck cases, and we design effective branching
rules based on careful check on the structures of the graph and analysis of their properties. These
are crucial techniques used in the paper to get the significant improvement on this problem.

2 Notation System

Let G = (V,E) stand for a simple undirected graph with a set V of vertices and a set E of edges.
Let n = |V |. We will use ni to denote the number vertices of degree i in G, and α(G) to denote
the size of a maximum independent set of G. The vertex set and edge set of a graph G are denoted
by V (G) and E(G), respectively. For simplicity, we may denote a singleton set {v} by v and union
X ∪ {v} of a subset X and an element by X + v.

For a subset X ⊆ V , let X denote the complement set V \X, N(X) denote the set of all vertices
in X that are adjacent to a vertex in X, and N [X] = X ∪ N(X). Let δ(v) = |N(v)| denote the
degree of a vertex v. For a subset X ⊆ V , δ(X) denote the sum of degree of vertices in X and
δ≥3(X) denote the sum of degree of vertices of degree ≥ 3 in X. We use N2(v) to denote the set
of vertices with distance exactly 2 from v, and let N2[v] = N2(v) ∪N [v]. Let G −X be the graph
obtained from G by removing the vertices in X together with any edges incident to a vertex in X,
G[X] = G− (V \X) be the graph induced from G by the vertices in X, and G/X denote the graph
obtained from G by contracting X into a single vertex (removing self-loops and parallel edges). For
a vertex v, let fv denote the number of edges between N [v] and N2(v). In a graph with maximum
degree 5, we define the gain gv of v to be

gv =
∑

t∈N2(v)

(5− δ(t)) + (fv − |N2(v)|),
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where the second term means the number of times two edges leaving N [v] meet at a same vertex in
N2(v). We denote (fv, gv) ≥ (a, b) when fv ≥ a and gv ≥ b hold.

A partition (V1, Z, V2) of the vertex set V (G) of a graph G is called a separation if V (G) is a
disjoint union of nonempty subsets V1, Z and V2 and there is no edge between V1 and V2, where
Z is called a vertex cut. In this paper, a vertex cut is always assumed to be a minimal vertex cut,
i.e., no proper subset of a vertex cut is still a vertex cut. The line graph of a graph G is the graph
whose vertices correspond to the edges of G, and two vertices are adjacent iff the corresponding
two edges share a same endpoint in G. Throughout the paper we use a modified O notation that
suppresses all polynomially bounded factors. For two functions f and g, we write f(n) = O∗(g(n))
if f(n) = g(n)poly(n) holds for a polynomial poly(n) in n.

3 Reduction Rules

First of all, we introduce the reduction rules, which can be applied in polynomial time and reduce
the graph by finding a part of the solution. There are many reduction rules for MIS and the related
vertex cover problem [3], from the simplest ones to deal with degree-1 and degree-2 vertices to the
somewhat complicated unconfined vertices and crown reductions. They can be found in almost all
exact algorithms and most of approximation and heuristic algorithms for MIS. We introduce some
reduction rules that will be used our algorithm.

Reduction by eliminating easy instances

For a disconnected graph G with a component H, we see that α(G) = α(H)+α(G−V (H)), and
solve instances H and G−V (H) independently. We will solve two kinds of components H directly:
(1) H has at most ρ = 28 vertices; and
(2) H is the line graph of a bipartite graph H ′ between the set of degree-3 vertices and the set of
degree-4 vertices, which are call a (3, 4)-bipartite graph.

Case (1) can be solved in constant time since the size of the graph is constant. Case (2) is
based on the following observation: if graph G is the line graph of a graph G′, then we obtain a
maximum independent set of G directly by finding a maximum matching M in G′ and taking the
corresponding vertex set VM in G as a solution. There are several methods to check whether a
graph is a line graph or not [14]. To identify a line graph L(G′) of a (3, 4)-bipartite graph G′, we
need to check if L(H) is a union of 3-cliques and 4-cliques such that each vertex is a common vertex
of a 3-clique and a 4-clique.

Reduction by removing unconfined vertices
A vertex v in an instance G is called removable if α(G) = α(G −v). A sufficient condition for a
vertex to be removable has been studied in [17]. In this paper, we only use a simple case of the
condition. For a vertex v and its neighbor u ∈ N(v), a vertex s ∈ V \ V [v] adjacent to u is called
an out-neighbor of u. A neighbor u ∈ N(v) is called an extending child of v if u has exactly one
out-neighbor su ∈ V \ N [v], where su is also called an extending grandchild of v. Note that an
extending grandchild su of v may be adjacent to some other neighbor u′ ∈ N(v) \ {u} of v. Let
N∗(v) denote the set of all extending children u ∈ N(v) of v, and Iv be the set of all extending
grandchildren su (u ∈ N∗(v)) of v together with v itself. We call v unconfined if there is a neighbor
u ∈ N(v) which has no out-neighbor or Iv \ {v} is not an independent set (i.e., some two vertices
in Iv ∩N2(v) are adjacent). It is known in [17] that any unconfined vertex is removable.

Lemma 1 [17] For an unconfined vertex v in graph G, it holds that

α(G) = α(G−v).
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A vertex u dominates another vertex v if N [u] ⊆ N [v], where v is called dominated. We see that
dominated vertices are unconfined vertices.

Reduction by folding twins
The set {v1, v2} of two nonadjacent degree-3 vertices is called a twin if N(v1) = N(v2).

Lemma 2 [17] For a twin A = {v1, v2}, we have that

α(G) = α(G⋆) + 2,

where G⋆ = G/N [A] if N(A) is an independent set and G⋆ = G−N [A] otherwise.

Folding a twin A = {v1, v2} is to remove or contract N [A] in the above way. See Fig. 3 (a) and (b)
in Appendix for an illustration.

Reduction by folding short funnels
A degree-3 vertex v together with its neighbors N(v) = {a, b, c} is called a funnel if N [v]\{a} induces
a triangle for some a ∈ N(v), and the funnel is denoted by a-v-{b, c}. Note that v dominates any
vertex in N(a) ∩N(v) if N(a) ∩N(v) is not empty. When we assume that there are no dominated
vertices anymore, then N(a) ∩N(v) = ∅.

Folding a funnel a-v-{b, c} means that we add an edge between every non-adjacent pair (x, y)
of vertices x ∈ N(a) \{v} and y ∈ {b, c} and then remove vertices a and v.

Fig. 3(c) in Appendix illustrates the operation of folding a funnel. Let G† denote the graph after
folding a funnel a-v-{b, c} in G. Then we have the following lemma.

Lemma 3 [17] For any funnel a-v-{b, c} in graph G, it holds that

α(G) = 1 + α(G†).

We call a funnel a-v-{b, c} in a graph with minimum degree 3 a short funnel if δ(a) = 3 (resp.,
δ(a) = 4) and between N(a) \{v} and {b, c} there is at least one edge (resp., there are at least two
edges meeting at the same vertex b or c). In our algorithm, we will reduce short funnels only and
leave some other funnels.

Definition 4 A graph is called a reduced graph if none of the above reduction operations is appli-
cable.

The algorithm in Figure 1 is a collection of all above reduction operations. When the graph is
not a reduced graph, we can use the the algorithm in Figure 1 to reduce it and find a part of the
solution.

4 Properties of vertex-cuts with size at most 2

For a disconnected graph G with a component H, we can solve instances H and G − V (H) inde-
pendently. Here we observe a similar property on graphs with vertex-connectivity 1 and 2.

Let v be a vertex cut in a graph G, which gives a separation (V1, {v}, V2). Let Gi = G[Vi],
i = 1, 2, and V v

1 = V1 \N(v). The induced graph G[V v
1 ] is denoted by Gv

1.
The following theorems provide a divide-and-conquer method for us to find a maximum inde-

pendent set in G.
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Input: A graph G = (V,E) and the size s of the current partial solution (initially
s = 0).
Output: A reduced graph G′ = (V ′, E′) and the size s′ of a partial solution S′ with
N [S′] ∩ V ′ = ∅ in G.

1. If {Graph G has a component H that is a graph with at most ρ = 28 vertices or the
line graph of a (3, 4)-bipartite graph}, return (G′, s′) := RG(G−V (H), s+α(H)).

2. Elseif {There is an unconfined vertex v}, return (G′, s′) := RG(G−v, s).

3. Elseif {There is a twin A = {u, v}}, return (G′, s′) := RG(G⋆, s + 1) for G⋆ =
G−N [A] if N(v) is an independent set, and G⋆ = G/N [A] otherwise.

4. Elseif {There is a short funnel}, return (G′, s′) := RG(G†, s+ 1).

5. Else return (G′, s′) := (G, s).

Figure 1: The Algorithm RG(G, s)

Theorem 5 For subgraphs G1 and Gv
1 defined on a separation (V1, {v}, V2) in a graph G, it holds

α(G) = α(G1) + α(G⋆),

where G⋆ = G − V1 if α(G1) =α(Gv
1), and G⋆ = G2 otherwise. A maximum independent set in a

graph G can be constructed from any maximum independent sets to G1, G
v
1 and G⋆.

(See appendix for a proof of Theorem 5.)

For a separation (V1, {u, v}, V2) of a graphG, letGi = G[Vi] (i = 1, 2), V v
1 = V1\N(v), V u

1 = V1\N(u)
and V uv

1 = Vi \N({u, v}), i ∈ {1, 2}. The induced graphs G[V v
1 ], G[V u

1 ] and G[V uv
1 ] are simply

denoted by Gv
1, G

u
1 and Guv

1 respectively. Let G̃2 denote the graph obtained from G[V2∪{u, v}] by
adding an edge uv if v and u are not adjacent.

Theorem 6 For subgraphs G1, G
v
1, G

u
1 and Guv

1 defined on a separation (V1, {u, v}, V2) in a graph
G, it holds

α(G) = α(G1) + α(G⋆),

where

G⋆=



G[V2∪{u,v}] if α(Guv
1 )=α(G1),

G̃2 if α(Guv
1 )<α(Gu

1)=α(Gv
1)=α(G1),

G[V2 + v] if α(Gu
1)<α(Gv

1)= α(G1),
G[V2 + u] if α(Gv

1)<α(Gu
1)= α(G1),

G/(V1∪{u, v}) if α(Guv
1 )+1 = α(G1) and α(Gv

1)<α(G1),
G2 otherwise (α(Guv

1 )+2 ≤ α(G1) and α(Gv
1)<α(G1)).

A maximum independent set in a graph G can be constructed from any maximum independent sets
to G1, G

v
1, G

u
1 , G

uv
1 and G⋆.

(See appendix for a proof of Theorem 6.)

Note that the above divide-and-conquer method can be used to deal with degree-1 and degree-2
vertices in the graph.
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5 Branching Rules

We introduce our branching rules, which will only be applied on a graph that is reduced and
connected component of it is triconnected.

Branching on a vertex
The simplest branching rule is to branch on a single vertex v by considering two cases: (i) there is
a maximum independent set of G which does not contain v; (ii) every maximum independent set of
G contains v. In (ii), it is shown that Iv is always contained in any maximum independent set of G
[17].

Branching on a vertex v means creating two subinstances by excluding v from the independent
set or including Iv to the independent set. In the first branch we will delete v from the instance
whereas in the second branch we will delete N [Iv] from the instance. Selecting vertices to branch
on is important for efficiency of our algorithms.

A vertex cut Z of size |Z| = 3 is a good vertex cut if there is a separation (X1, Z,X2) such that

|X1| ≤ 24, δ(X1) ≥ 17 and X1 induces a connected subgraph,

and X1 is maximal under the above two conditions. A pair of nonadjacent vertices u and v is called
a good pair if one of u and v is a degree-5 vertex, and u and v share at least three common neighbors.
A funnel a-v-{b, c} is called a good funnel if vertex a has a neighbor u such that (v, u) is a good
pair. The vertices on which we branch will be chosen as follows:

(i) the vertex is a vertex in a good vertex cut;

(ii) the vertex is a in a good funnel a-v-{b, c}; or

(iii) the vertex is a vertex of maximum degree d ≥ 5.

When we branch on the vertex a of a funnel a-v-{b, c} in (iii), we generate instance by excluding
a or by including Ia. In the first branch, after removing a, vertex v becomes dominated, and we
can include it in a solution. Therefore we get the following branching rule [17].

Branching on a funnel a-v-{b, c} in a reduced instance G by either including v or including Ia
in the independent set. Hence we generate the two subinstances by removing either N [v] or N [Ia]
from G.

Branching on a complete bipartite subgraph

Lemma 7 Let A and B be two disjoint vertex subsets in a graph G such that every two vertices
a ∈ A and b ∈ B are adjacent. Then either S ∩ A = ∅ or S ∩ B = ∅ holds for any independent set
S in G.

Proof. If S ∩ A = ∅ then we are done. If S contains a vertex a ∈ A, then S ∩ N(a) (⊇ S ∩ B) is
empty.

For a good pair {u, v}, we have a bipartite graph between A = {u, v} and B = N(u) ∩N(v).
Branching on a good pair {u, v} means branching by either excluding {u, v} from the independent

set or excluding N(u) ∩N(v) from the independent set.

6 The Algorithm and Results

6.1 Framework for Analysis

We apply the Measure and Conquer method [5] to analyze our algorithm. In this method, we
introduce a weight to each vertex in the graph according to the degree of the vertex, w : Z+ → R+
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(where Z+ and R+ denote the sets of nonnegative integers and nonnegative reals, respectively): we
denote by wi the weight w(v) of a vertex v of each degree i ≥ 0 and let ∆wi = wi −wi−1 for i ≥ 1.
We will assume that ∆w5 ≤ ∆wi for i ≥ 3. Then we adopt µ(G) =

∑
iwini as the measure of the

graph G. Usually, vertices of higher degree receive a larger weight (i.e., ∆wi ≥ 0), and the weight
of each vertex in the initial graph G is not greater than 1 (i.e., µ(G) ≤ n). We will construct a
recurrence related to the measure µ = µ(G) for each branch in our algorithm and analyze a bound
for the worst ones.

For each branch operation, we will generate two subinstances G1 and G2 by deleting some
vertices from the graph. After deleting some vertices, we can reduce the measure from two parts:
the weight of the vertices being deleted and partial weight of the vertices adjacent to the deleted
vertices since their degree will decrease. Let t(i) be a lower bound on the decrease of the measure
in the subinstance (i.e., µ(G)− µ(Gi) ≥ t(i)). Then we get the recurrence

C(µ) ≤ C(µ− t(1)) + C(µ− t(2)). (1)

The most important and complicated case in our algorithm is to branch on a vertex v of maximum
degree. Let ∆out(v) and ∆in(v) to denote the decrease of the measure of µ in the branches of
excluding v and including Iv, respectively. We get recurrence C(µ) = C(µ−∆out(v))+C(µ−∆in(v)).
We give more details about lower bounds on ∆out(v) and ∆in(v). Let ki denote the number of
degree-i neighbors of v. Then d =

∑d
i=3 ki. For the first branch, we get

∆out(v) = wd +

d∑
i=3

ki∆wi.

In the second branch, we will delete N [Iv] from the graph. Let ∆(N [v]) denote the decrease of
weight of vertices in V (G) \N [v] by removing N [Iv] from G together with possibly weight decrease
attained by reduction operations applied to G−N [Iv]. Then we have

∆in(v) ≥ wd +

d∑
i=3

kiwi +∆(N [v]).

We can branch on a vertex v of degree d with recurrence

C(µ) = C(µ−∆out(v)) + C(µ−∆in(v))

≤ C(µ−(wd +
∑d

i=3 ki∆wi) + C(µ−(wd +
∑d

i=3 kiwi +∆(N [v]))).
(2)

In our algorithm, we carefully select a vertex of maximum degree to branch on so that the worst
recurrence (2) is as good as possible. To do so, we need to analyze lower bounds on ∆(N [v]) when
the maximum degree of the graph is 5. If no vertex in N2(v) is adjacent to two vertices in N1(v),
then ∆(N [v]) ≥ fv∆w5, since we assume that ∆w5 ≤ ∆wi for i ≥ 3. Otherwise, we have the
following lower bound based on our weight setting (a proof can be found in Appendix 7.1)

∆(N [v]) ≥ fv∆w5 + gv(∆w4 −∆w5). (3)

When N∗(v) ̸= ∅ (v has some extending children), the above bound may not be good enough since
fv may be small. For this case, N [N∗(v)] will be removed from the graph and ∆(N [v]) can reach a
desired bound.
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6.2 The Algorithm

Our algorithm is simple in the sense that it consists of branching on three kinds of vertices and
branching on good pairs except for how to select vertices of maximum degree 5 to branch on. A
reduced degree-5 graph is a proper graph if it has neither good vertex cuts nor good pairs and each
connected component of it has vertex connectivity at least 3. In fact, branching on a vertex v of
maximum degree 5 in a proper graph will be bottlenecks in the analysis for the running time bound
of our algorithms. We here identify degree-5 vertices v in proper graphs branching on which would
efficiently reduce the current instance in terms of the degrees of neighbors of v. These vertices are
called optimal vertices.

For a degree-5 vertex v in a proper graph, let k(v) = (k3, k4, k5), where ki is the number of
degree-i neighbors of v (i = 3, 4, 5). The vertex v is called effective if one of the following (a)-(f)
holds:
(a) (fv, gv) ≥ (14, 0), (12, 3) or (10, 5), for (k4, k5) = (0, 5);
(b) (fv, gv) ≥ (13, 0) or (11, 2), for (k4, k5) = (1, 4);
(c) (fv, gv) ≥ (12, 0) or (10, 2), for (k4, k5) = (2, 3);
(d) (fv, gv) ≥ (11, 0), for (k4, k5) = (3, 2);
(e) (fv, gv) ≥ (12, 0) or (10, 1), for (k4, k5) = (4, 1); and
(f) (fv, gv) ≥ (10, 0), for (k4, k5) = (5, 0).

Lemma 8 Let G be a proper graph with at least one degree-5 vertex. Assume that N∗(u) = ∅ for
all degree-5 vertices in G and that no degree-5 vertex is adjacent to a degree-3 vertex. Then there
exists an effective vertex in G.
(See appendix for a proof of Lemma 8.)

A degree-5 vertex v in a proper graph is called optimal if either (1) k3 ≥ 1 or (2) there is no
degree-5 vertex adjacent to a degree-3 vertex, and v is effective or it holds N∗(v) ̸= ∅. Our algorithm
for MIS-5 is described in Figure 2.

6.3 The Result

In our algorithm, we set vertex weight as follows

wi =



0 for i = 0, 1 and 2
0.5091 for i = 3
0.8243 for i = 4

1 for i = 5
1.5091 for i = 6
1.7482 for i = 7
1.9722 for i = 8

w8 + (i− 8)(w5−w4) for i ≥ 9.

(4)

Lemma 9 With the vertex weight setting (4), each recurrence generated by the algorithm in Figure 2
has an amortized branching factor not greater than 1.1737.

The proof of this analytical lemma is moved to Appendix. From the lemma we know that the
size of the search tree generated by our algorithm is not greater than 1.1737µ, where µ is not greater
than the number n of vertices in the initial graph since it has maximum degree 5.

Theorem 10 A maximum independent set in a degree-5 graph of n vertices can be found in
O∗(1.1737n) time.
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Input: A graph G.
Output: The size of a maximum independent set in G.

1. If {Graph G has a vertex cut v with a separation (V1, {v}, V2) such that δ≥3(V1) ≤
δ≥3(V2)}, return MIS5(G[V1]) + MIS5(G⋆).

2. Elseif {Graph G has a vertex cut {u, v} with a separation (V1, {u, v}, V2) such that
δ≥3(V1) ≤ δ≥3(V2)}, return MIS5(G[V1]) + MIS5(G⋆).

3. Else Let (G, s) := RG(G, 0).

4. If {G has a vertex of degree ≥ 6}, pick up a vertex v of maximum degree, and
return s+max{MIS5(G−v), |Iv|+MIS5(G−N [Iv])}.

5. Elseif {G has a good vertex cut}, pick up a vertex v in a good vertex cut, and
return s+max{MIS5(G−v), |Iv|+MIS5(G−N [Iv])}.

6. Elseif {G has a good funnel a-v-{b, c}, return s+max{1 +MIS5(G−N [Ia]), 1 +
MIS5(G−N [v])}.

7. Elseif{G has a good pair (u, v)}, return s + max{MIS5(G −{u, v}),MIS5(G −
N(u) ∩N(v))}.

8. Elseif {G has a degree-5 vertex}, pick up an optimal degree-5 vertex v, and return
s+max{MIS5(G−v), |Iv|+MIS5(G−N [Iv])}.

9. Else {G is a degree-4 graph}, use an algorithm for MIS4 to solve the instance G
and return s+ α(G).

Note: With a few modifications, the algorithm can deliver a maximum independent set.

Figure 2: Algorithm MIS5(G)
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Appendix

7 The Analysis and Proof of Lemma 9

In the part, we show the details of the analysis, from which we can see how we set the vertex weight
and prove Lemma 9.

7.1 Weight Setting

Let wi denote the weight of a vertex v of degree i ≥ 0, and define the measure of a graph G to be
µ(G) =

∑
iwini. We will use ∆wi to denote wi − wi−1 for i ≥ 1. We set wi > 0 for i ≥ 3 and

w0 = w1 = w2 = 0, and
w8 + (i− 8)∆w5, i ≥ 9.

Values of wi > 0, 3 ≤ i ≤ 8 will be determined after we analyze how the measure changes after each
step of the algorithm.

Then an instance G with µ(G) = 0 can be solved in polynomial time, since such a graph has
only degree-0, degree-1 and degree-2 vertices and the maximum independent set problem can be
solved in linear time. We also set

0 ≤ w3 ≤ w4 ≤ w5 ≤ 1 (5)
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Figure 3: (a) Removing set N [A] for a twin A = {v1, v2}; (b) Contracting set N [A] for a twin
A = {v1, v2}; (c) A short funnel b-a-{b, c}.

so that a given degree-5 graph satisfies 0 ≤ µ(G) ≤ n. We allow weight wj , j > 5 to be larger than
1 as long as the entire weight µ(G) never increases.

We here introduce several conditions on weights wi, 3 ≤ i ≤ 8. To simplify our analysis, we
assume that

0 ≤ ∆w5 ≤ ∆wi ≤ ∆w3, i ≥ 3. (6)

This and w0 = w1 = w2 = 0 imply

∆w1 = ∆w2 = 0 and wi =
∑

1≤k≤i

∆wk ≥ (i− 2)∆w5, i ≥ 3.

For simplify argument, we assume

∆w5 ≤ (5/9)∆w4, (7)

0.507 < w3 ≤ 3∆w5 < 0.525, (8)

and

w3 +∆w3 ≤ wi +∆wi, i ≥ 3. (9)

By the above assumptions, we can easily prove (3).
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7.2 Weight Shift

To ease amortization on our analysis in this section, we introduce “shift” σ for some recurrence
which is not a bottleneck in a final set of recurrences. In general, when a branch rule A generates
two graphs G1 and G2 from a graph G, we get recurrence (1). Suppose that we know an instance G
for which the branch rule A is applied by our algorithm. In this case, we temporarily increase the
measure of G by σ ≥ 0 (aiming to derive a better recurrence for the graph). Instead, we evaluate
the branch rule A with a worse recurrence

C(µ) ≤ C(µ− (t(1) −σ)) + C(µ− (t(2) −σ)).

For analyzing the time bound of our algorithm, we introduce shift σ = ∆w5 in the recurrences for
the divide-and-conquers on vertex cuts in Section 7.4 and branching on maximum degree ≥ 6 in
Section 7.5.

7.3 Reduction Steps

We will show that the measure will not increase when we apply our reduction rules. This is important
for us to construct our recurrences.

To obtain the next lemma, we assume that

wi + wj − wi+j−2 ≥ 0, 3 ≤ i, j ≤ 7. (10)

w3 + wi − wi+1 ≥ σ = ∆w5, i = 3, 4. (11)

Lemma 11 wi + wj ≥ wi+j−2 holds for all i, j ≥ 1, and wi + wj ≥ wi+j−2 +∆w5 if i+ j − 2 ≤ 5.

Proof. If i or j is at most 2, say i ≤ 2, then wi + wj = wj ≥ wi+j−2. Let i, j ≥ 3. For 3 ≤ i, j ≤ 7,
we have wi + wj ≥ wi+j−2 by (10). Let at least one of i and j, say i, be greater than 7. Then we
have that i+ j − 2 ≥ 8 and wi+j−2 = w8 + (i+ j − 2− 8)∆w5 = wi + (j − 2)∆w5 by the definition
of wk (k ≥ 9). Since wj ≥ (j − 2)∆w5, this implies wi+j−2 = wi + (j − 2)∆w5 ≤ wi +wj . Similarly,
when i+ j − 2 ≤ 5, we see that wi + wj ≥ wi+j−2 +∆w5 by (11).

We are ready to show that the measure never increases in RG(G, s). Note that any graph G
after Step 2 is triconnected.

Lemma 12 The measure µ of a graph G never increases in RG(G, s). Moreover µ decreases by at
least σ = ∆w5 after any step in RG(G, s) if the maximum degree decreases by at least one after this
step.

Proof. Obviously the measure never increases by Steps 1-2 in RG(G, s), which simply removes
some vertices from G. Furthermore, if the maximum degree of the graph decreases after Step 1 or 2,
then the measure decreases by at least mini∆wi = ∆w5. In Step 3 of RG(G, s), for a twin A, G⋆ is
obtained from G−A by removing or contracting N(A). By Lemma 11, contracting N(A) does not
increase the measure. Hence the measure decreases by at least the weight in the twin 2w3 (≥ ∆w5).

Finally we consider Step 4 in RG(G, s) for folding a short funnel a-v-{b, c}. Let δ(a) = 4 (the
case of δ(a) = 3 can be treated analogously). Let N(a) = {v, t1, t2, t3}, where t1 and t2 are adjacent
to b or c, say both of t1 and t2 are adjacent to b (the other cases can be treated analogously).
By folding the funnel, we remove v and a from the graph and add at most four new edges bt3,
ct1, ct2 and ct3. Removing vertices v and a decreases the weight of these vertices by w3 + w4,
and adding the four edges increase the total weight at most by ∆wδ(t3)+1 + wδ(c)+2 − ∆wδ(c) ≤
maxi≥4∆wi +maxj≥3{wj+2 −∆wj} ≤ w3 + w4 by (6) and (10), as required. Note that the degree
of some vertex u in {b, c, t1, t2, t3} decreases only when u = b and b is adjacent to all t1, t2 and t3.
In this case, the measure decreases by at least ∆wδ(b) ≥ ∆w5.

Next, we will analyze the recurrences created in each step of the algorithm MIS5(G).
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7.4 Divide-and-conquer on Vertex Cuts (Steps 1 and 2)

In fact, the number of instances generated by the divide-and-conquer procedures on vertex cuts in
Steps 1-2 of MIS5(G) is not exponentially large.

Let (V1, Z, V2) be a separation with δ≥3(V1) ≤ δ≥3(V2) in Step 1 or 2. By (6) and (8), we know
that µ(V1) ≤ 3µ(V2). Let x = µ(V1), then x ≤ 1

4µ. If V1 contains only vertices of degree ≤ 2,
then subinstances G1, G

v
1, G

u
1 and Guv

1 can be solved in constant time. The divide-and-conquer
procedure reduces the instance G to an instance G⋆ in constant time, where clearly µ(G⋆) ≤ µ(G).
Next, we assume that V1 contains at least one vertex of degree ≥ 3. Then w3 ≤ x ≤ 1

4µ.
In Step 1, we need to solve three subinstances G1, G

v
1 and G⋆, where µ(Gv

1) ≤ µ(G1) ≤ µ(V1)−
µ(Z) ≤ x and µ(G⋆) ≤ µ(G)− x = µ− x. Then we get recurrence

C(µ) ≤ 2C(x) + C(µ− x).

If we save shift σ = ∆w5 in the above recurrence, where ∆w5 ≤ 0.175 by (8), we get

C(µ) ≤ 2C(x+ σ) + C(µ− x+ σ) ≤ 2C(x+ 0.175) + C(µ− x+ 0.175). (12)

In Step 2, we need to solve five subinstancesG1, G
v
1, G

u
1 , G

uv
1 andG⋆, where max(µ(G1), µ(G

v
1), µ(G

u
1),

µ(Guv
1 )) ≤ µ(V1) − µ(Z) ≤ x and µ(G⋆) ≤ µ(G̃2) ≤ µ(G) − x = µ − x (note that we may add an

edge uv in G̃2, however the degrees of u and v in G̃2 will not increase since the cut Z is minimal
and u and v are adjacent to at least one vertex in V1 in G). Then we get recurrence

C(µ) ≤ 4C(x) + C(µ− x).

By saving shift σ = ∆w5 in the above recurrence, we still can get

C(µ) ≤ 4C(x+ σ) + C(µ− x+ σ) ≤ 4C(x+ 0.175) + C(µ− x+ 0.175). (13)

We can easily verify that C(µ) = 1.17µ satisfies the above two recurrences (12) and (13) by the
substitution method (note that w3 ≤ x ≤ 1

4µ).

We also analyze two special cases of applying the divide-and-conquer procedures.

Lemma 13 Let G be a graph containing at least one vertex of degree ≥ 3. If G has a vertex cut of
size 1, then after iteratively applying Step 1 in MIS5(G) until the graph has no vertex cut of size 1,
the measure decreases by at least σ = ∆w5.

Proof. Assume that the algorithm selects a vertex cut Z = {v} of size 1 with a separation (V1, Z, V2)
in Step 1. If V1 contains at least one vertex of degree ≥ 3, then we can save σ from (12). If v is a
vertex of degree ≥ 3, the measure will also decrease by at least ∆wδ(v) ≥ ∆w5 from v. Otherwise
V1 ∪ Z only contains vertices of degree ≤ 2 and G[V1 ∪ Z] is a path. For this case, we reduce the
G to G⋆ in constant time. We can see that either the measure decreases by at least ∆w5 from the
neighbor of u in V2 (u is of degree ≥ 3 in G) or G⋆ has a degree-1 vertex u (u is of degree 2 in
G). For the later case, the graph still has a vertex cut of size 1. Therefore, the measure will finally
decrease by at least σ = ∆w5 after iteratively applying Step 1.

Lemma 14 Let G be a graph containing at least one vertex of degree ≥ 3. If G has a degree-2
vertex not adjacent to any other degree-2 vertices, then after iteratively applying Steps 1 and 2 in
MIS5(G) until the graph has no vertex cut of size 1 or 2, either the measure decreases by at least
σ = ∆w5 or the resulting graph has a vertex of degree ≥ 6.
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Proof. If there is a vertex cut of size 1, then the measure can always decrease by σ by Lemma 13.
Next we assume that the algorithm selects a vertex cut Z of size 2 with a separation (V1, Z, V2).
If V1 contains at least one vertex of degree ≥ 3, then we can save σ from (13). We only need to
analyze the case that V1 only contains vertices of degree 2 (note that G after Step 2 in MIS5(G) is
biconnected).

Let v be a degree-2 vertex with two neighbors u1 and u2 of degree ≥ 3, where none of u1 and
u2 is a degree-1 vertex since the graph is biconnected. If one of u1 and u2 is reduced to a vertex
of degree ≤ 2 by these steps, the measure decreases by at least ∆w3 ≥ ∆w5, since the operations
create no new vertices (unless contracting two vertices into a vertex). Otherwise, in Step 2 we
will finally select the separation (V1 = {v}, Z = {u1, u2}, V2 = V \ {v, u1, u2}). For this case, the
algorithm reduces the graph G to G⋆ = G/{v, u1, u2} (this is exactly the operation of folding a
degree-2 vertex in the literature [17, 3]). In this operation, we replace {v, u1, u2} with a new vertex
v∗ with δ(v∗) ≤ δ(u1) + δ(u2) − 2 in the graph. If δ(v∗) ≤ 5 then we can save σ by Lemma 11;
otherwise the graph has at least a vertex of degree ≥ 6.

7.5 Branching on Vertices of Maximum Degree in Step 4

After Step 3 in MIS5(G), the current graph G is a reduced graph that is triconnected. In this step,
the algorithm will branch on a vertex of maximum degree d ≥ 6 with the recurrence (2).

Now we derive a lower bound w3+3∆w5 on ∆(N [v]) for d ≥ 6. If no degree-0 or -1 vertex is
created in N2(v) after deleting N [v], the decrease of weight of vertices in N2(v) is at least d∆w5,
since ∆wi ≥ ∆w5 by (6). If a vertex t ∈ N2(v) becomes of degree-1 after deleting N [v], then at
least two edges incident to t from N(v) are removed in G −N [v], and removing these two edges
decrease the weight of t by w3, where 2∆w5 < w3 by (8). This implies that the weight decrease in
N2(v) is minimized when no degree-1 vertex is created in N2(v). Let p be the number of vertices in
N2(v) that become of degree-0 in G −N [v]. Since |N(N2[v])| ≥ 3 by the triconnectivity, there are
at least three vertices in N2(v) that cannot become of degree-0 in G−N [v], and the weigh of them
decreases by at least ∆w5. Hence we have

∆(N [v]) ≥ min
0≤p≤fv/3

{pw3 +max{fv − 3p, 3}∆w5}. (14)

For each vertex u ∈ N(v), there is an edge between u and a vertex in N2(v), otherwise u would
dominate v. Hence we have fv ≥ |N(v)| ≥ d. Since ∆(N [v]) never increases as fv gets smaller,
it holds ∆(N [v]) ≥ min0≤p≤d/3{pw3 + max{d − 3p, 3}∆w5}, which is qw3 + (d − 3q)∆w5 for q =
⌊(d−3)/3⌋ since w3 ≤ 3∆w5 by (8). We see that qw3+(d−3q)∆w5 is at least w3+3∆w5 for d ≥ 6.

We also need the following inequality in the analysis. Using ∆w5 ≤ ∆wi and w3 + ∆w3 ≤
wi+∆wi (i ≥ 3) by (6) and (9) and the property that C(µ− (a+ b))+C(µ− (a+ c)) ≤ C(µ− (a+
b− ϵ))+C(µ− (a+ c+ ϵ)) for 0 ≤ a, 0 ≤ b ≤ c, and 0 ≤ ϵ ≤ a+ b (cf. [7]), we obtain the inequality

C(µ) ≤ C(µ−(b+
∑

u∈X ∆wδ(u)) + C(µ−(c+
∑

u∈X wδ(u)))

≤ C(µ−(b+
∑

u∈X ∆w5))+C(µ−(c+
∑

u∈X(wδ(u)+∆wδ(u)−∆w5))

≤ C(µ−(b+
∑

u∈X ∆w5)) + C(µ−(c+
∑

u∈X(2w3−∆w5)).

(15)

By (15), the recurrence (2) for d ≥ 6 is given by

C(µ) ≤ C(µ−(wd +
∑d

i=3 ki∆wi) + C(µ−(wd +
∑d

i=3 kiwi +∆(N [v])))
≤ C(µ−(w6+6∆w5)) + C(µ−(w6+6(2w3−∆w5)+w3 + 3∆w5)).

We here introduce shift σ to the recurrence. Thus to save shift σ = ∆w5, we use a weaker recurrence

C(µ)≤C(µ−(w6+6∆w5−σ))+C(µ−(w6+6(2w3−∆w5)+w3+3∆w5−σ)). (16)
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7.6 Branching on Vertices in Good Vertex Cuts in Step 5

Let v be a vertex in a good vertex cut Z with separation (X1, Z,X2), where |X1| ≤ 24, δ(X1) ≥ 17
and X1 is maximal under the first two conditions.

First, we assume that |X1| < 24. By the maximality of X1, we know that |N(u) ∩ X2| ≥ 2
for any vertex u ∈ Z. Our algorithm branches on a vertex u ∈ Z by removing u or N [Iu]. Note
that the vertices in X1 (resp., X1 − N [Iu]) will be removed by Steps 1 and 2 in MIS5(G) on the
vertex cut of size at most 2. Note that at least two vertices from X2 will be removed in the
second branch of removing N [Iu] since |N(u) ∩X2| ≥ 2. Since δ(X1) ≥ 17 implies

∑
x∈X1

wδ(x) ≥
min{w5 + 4w3, 2w4 + 3w3} = w5 + 4w3, where w3/3 ≤ ∆w5 ≤ ∆wi (i ≥ 3) by (6) and (8), we have
recurrence

C(µ) ≤ C(µ−(
∑

x∈X1
wδ(x) + wδ(u) +

∑
y∈N(u)∩X2

∆wδ(y)))

+C(µ−(
∑

x∈X1
wδ(x) + wδ(u) +

∑
y∈N(u)∩X2

wδ(y)))

≤ C(µ−(w5 + 5w3 + 2∆w5)) + C(µ−(w5 + 5w3 + 2(2w3 −∆w5)))
(by (15)).

(17)

When |X1| = 24, in each branch the measure will decrease by at least
∑

x∈X1
wδ(x) ≥ 24w3. We can

get a recurrence covered by the above one.
Let N+

2 (v) = N(N2[v]) be the set of vertices in N2(v) adjacent to at least one vertex in V \N2[v].
Then after Step 5, we see that

|N+
2 (v)| ≥ 4 for all degree-5 vertices v,

since otherwise (|N+
2 (v)| = 3) subset X1 = N2[v] \N+

2 (v) satisfies |X1| ≤ 26− 3 = 23 and δ(X1) ≥
δ(N [v]) ≥ 20, and then N+

2 (v) would be a good vertex cut.

7.7 Branching on Good Funnels in Step 6

For a degree-5 vertex v with N(v) = {u1, u2, u3, u4, u5}, let (v, t) is a good pair which has a good
funnel u1-t-{u2, u3} for a degree-3 vertex t ∈ N2(v) such that N(t) = {u1, u2, u3}. Note that
u2 and u3 are adjacent. If G[N(t)] contains two edges uiuj and ujuk, then t would dominate
uj , a contradiction. Hence G[N(t)] contains no other edge than u2u3. Also δ(ui) ≥ 4, i = 2, 3
(otherwise ui would dominate u3). Now there are two edges between v ∈ N(u1) and {u2, u3}.
Hence δ(u1) ≥ 4, since otherwise u1-t-{u2, u3} would be a short funnel. If δ(u1) ≥ 5, then there is
a vertex z1 ∈ (N(u1) \{v, t}) ∩N2(v).

We branch on good funnel u1-t-{u2, u3} by removing N [Iu1 ] or removing N [t]. In the first
branch of removing N [Iu1 ] decreases µ by at least

∑
u∈N [u1]

wδ(u) +
∑

x∈{u4,u5}\N(u1)
∆wδ(x) +∑

y∈{u2,u3}(wδ(y)−wδ(y)−2), which is at least w5+w4+3w3+2min{w5−w3, w3} for δ(u1) = 4 and
w5 +w4 +4w3 +2min{w5 −w3, w3} for δ(u1) ≥ 5, where min{w5 −w3, w3} = w5 −w3 by (8). The
other branch of removing N [t] decreases µ by at least

∑
a∈N [t]wδ(a) +w5 +

∑
u∈N(u1)\{t,v}∆wδ(u) ≥

w3 + 3w4 + w5 + 2∆w5. We get recurrence

C(µ) ≤ C(µ−(w5 + w4 + 3w3 + 2(w5 − w3)))
+C(µ−(w3 + 3w4 + w5 + 2(w5−w4))).

(18)

7.8 Branching on Good Pairs in Step 7

In Step 5, our algorithm branches on a good pair. Let v be a degree-5 vertex such that (v, t) is
a good pair for a vertex t ∈ N2(v), where δ(t) ≥ 4 or G[N(t)] contains no edge (otherwise there
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would be a good funnel). We denote N(v) = {u1, u2, u3, u4, u5}, di = δ(ui), i = 1, 2, . . . , 5 and
N(t) ∩ N(v) = {ui | i = 1, 2, . . . , r} (r ≥ 3). We branch on the good pair (v, t) by removing
A = {v, t} or B = N(t) ∩N(v) = {u1, u2, . . . , ur}. We distinguish three cases.

Case 1. r = |N(t)∩N(v)| ≥ 4: In the first branch of removing A, µ decreases by at least w4+w5+∑
u∈N(t)∆wδ(u) +

∑
u∈N(t)∆wδ(u)−1 +

∑
z∈N(v)\N(t)∆wδ(z) ≥ w4 + w5 +

∑
u∈N(t)∆wδ(u) + 5∆w5.

In the other branch of removing N [t], we can always remove u5 even when r = 4 since in this case
v will be a degree-1 vertex and u5 can be removed by the divide-and-conquer steps. Hence the
measure µ decreases by at least w4 + w5 +

∑
u∈N(t)wδ(u) + wδ(z) ≥ w5 + w4 +

∑
u∈N(t)wδ(u) + w3.

We have recurrence

C(µ) ≤ C(µ−(w4 + w5 +
∑

u∈N(t)∆wδ(u) + 5(w5−w4)))

+C(µ−(w5 + w4 +
∑

u∈N(t)wδ(u) + w3))

≤ C(µ−(w4 + w5 + 4(w5−w4) + 5(w5−w4)))
+C(µ−(w5 + w4 + 4(2w3 − (w5−w4)) + w3)) (by (15)).

(19)

Case 2. r = 3 and δ(t) ≥ 4. Denote di = δ(ui), i = 1, 2, . . . , 5, where we assume without loss of
generality that 3 ≤ d1 ≤ d2 ≤ d3 ≤ 5. Let ℓ be the number of degree-3 neighbors in N(t). For each
ui ∈ N(t) with i ≤ ℓ, we let zi ( ̸= v, t) denote the third neighbor of ui. Note that zi ̸∈ B (otherwise
ui would dominate zi = uj), and for 1 ≤ i < j ≤ ℓ, it holds zi ̸= zj (otherwise {ui, uj} would be a
twin). We consider two subcases.

(a) δ(t) = 5: Let x1, x2 ∈ N(t) − B be the two neighbors of v, where x1, x2 ̸∈ N [v]. In the
first branch of removing A, the weight of vertices in X = {u4, u5, x1, x2} decreases, and also ui
with i ≤ ℓ becomes a degree-1 vertex, whose neighbor zi will be removed by the divide-and-conquer
steps. Hence the first branch decreases µ by at least w5 + wδ(t) +

∑
i=1,2,3(wdi − wdi−2) + ℓw3 +∑

u∈X\{z1,...,zℓ}∆wδ(u) ≥ 2w5 +
∑

i=1,2,3(wdi − wdi−2) + ℓw3 + (4− ℓ)∆w5.
In the other branch of removing B, the total weight in the vertices in {v, t, u1, u2, u3} becomes

zero. There are at least two edges between B and G −{v, t, u1, u2, u3} (otherwise a vertex in B
dominates some other vertex in B), and the decrease of weight in the vertices in G−{v, t, u1, u2, u3}
is then at least 2∆w5. The branch of removing B decreases µ by at least w5+wδ(t)+

∑
i=1,2,3wdi +

2∆w5.
Therefore we get recurrences:

C(µ) ≤ C(µ−(6w5 − 4w4 +
∑

i=1,2,3(wdi−wdi−2) + ℓ(w3+w4−w5)))

+C(µ−(4w5 − 2w4 +
∑

i=1,2,3wdi))
(20)

for all 3 ≤ d1 ≤ d2 ≤ d3 ≤ 5.
(b) δ(t) = 4: Let x1 ∈ N(t)−B be the neighbor of v, where x1 ̸∈ N [v]. Note that zi ̸∈ {u4, u5}

(otherwise t-ui-{v, zi} would be a short funnel). In the first branch of removing A, the weight of
vertices in {x1, u4, u5} decreases, and ui with i ≤ ℓ becomes a degree-1 vertex, whose neighbor zi will
be removed by the divide-and-conquer steps (possibly x1 = zi for some i ≤ ℓ). Hence the first branch
decreases µ by at least w5 + wδ(t) +

∑
i=1,2,3(wdi − wdi−2) + max{ℓw3,∆wδ(x1)}+∆wd4 +∆wd5 ≥

w5 + w4 +
∑

i=1,2,3(wdi − wdi−2) + max{ℓw3,∆w5}+ 2∆w5.
In the second branch of removing B, the total weight in the vertices in {v, t, u1, u2, u3} becomes

zero, and t becomes a degree-1 vertex, whose neighbor x1 will be removed by the divide-and-conquer
steps. Hence the branch of removing B decreases µ by at least w5 + wδ(t) +

∑
i=1,2,3wdi + wδ(x1).

Therefore we get recurrences:

C(µ) ≤ C(µ−(3w5 − w4 +
∑

i=1,2,3(wdi−wdi−2) + max{ℓw3, w5−w4}))
+C(µ−(w5 + w4 + w3 +

∑
i=1,2,3wdi))

(21)
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for all 3 ≤ d1 ≤ d2 ≤ d3 ≤ 5.

Case 3. r = 3, N(t) ⊆ N(v) and G[N(t)] contains no edge: Denote di = δ(ui), i = 1, 2, . . . , 5,
where we assume without loss of generality that 3 ≤ d1 ≤ d2 ≤ d3 ≤ 5. Let ℓ be the number of
degree-3 neighbors in N(t). For each ui ∈ N(t) with i ≤ ℓ, we let zi (̸= v, t) denote the third
neighbor of ui, and let d̃i = δ(zi). Note that zi ̸∈ N(v) (otherwise t-ui-{zi, v} would be a short
funnel), and for 1 ≤ i < j ≤ ℓ, it holds zi ̸= zj (otherwise {ui, uj} would be a twin).

In the first branch of removing A, the weight of u4 and u5 deceases by at least 2∆w5 in to-
tal, and ui with i ≤ ℓ becomes a degree-1 vertex, whose neighbor zi will be removed by the
divide-and-conquer steps. Hence the first branch decreases µ by at least w5 + w3 +

∑
i=1,2,3(wdi −

wdi−2) +
∑

i≤ℓwd̃i
+ 2∆w5. In the other branch of removing B, the total weight in the vertices in

{v, t, u1, u2, u3} becomes zero, and the weight of vertices zi, i ≤ ℓ decreases by
∑

i≤ℓ∆w
d̃i
. There

are p =
∑

i=1,2,3(di − 2) edges between B and G −{v, t, u1, u2, u3}, and three of them can meet
at the same vertex x of degree ≥ 4 (otherwise {t, x} would be a twin). Since w4 = ∆w4 + w3 ≥
∆w5 + 2∆w5 > 3∆w5 by (8), the decrease of weight in the vertices in G −{v, t, u1, u2, u3} is
then at least max{

∑
i≤ℓ∆w

d̃i
, p∆w5}. The second branch of removing B decrease µ by at least

w5 + w3 +
∑

i=1,2,3wdi +max{
∑

i≤ℓ∆w
d̃i
, p∆w5}. Therefore we get recurrences:

C(µ) ≤ C(µ−(3w5 − 2w4 + w3 +
∑

i=1,2,3(wdi−wdi−2) +
∑

i≤ℓwd̃i
))

+C(µ−(w5 + w3 +
∑

i=1,2,3wdi

+max{
∑

i≤ℓ∆w
d̃i
,
∑

i=1,2,3(di−2)(w5−w4)}))
(22)

for all 3 ≤ d1 ≤ d2 ≤ d3 ≤ 5 and 3 ≤ d̃i ≤ 5 with i ≤ ℓ.

7.9 Branching on Optimal Vertices of Maximum Degree 5 in Step 8

After Step 7, if the graph still contains a degree-5 vertex, then the graph is a proper graph, and in
this step the algorithm will select an optimal degree-5 vertex v to branch on with the recurrence
(2) at least.

We consider the first branch of removing v such that k3 = 1 or N(v)\N∗(v) contains a degree-3
neighbor of v. In this case, we can further decrease the measure by σ = ∆w5 after the first branch
of removing v (see the following lemma).

Lemma 15 Let v be an optimal vertex in a proper graph G such that k3 = 1 or N(v) \ N∗(v)
contains a degree-3 neighbor of v. Then the measure decreases by at least w5 +

∑
u∈N(v)wδ(u) + σ

in the branch of removing v when shift σ is save from Lemma 14, reduction operations or (16) (in
the first four steps in MIS5(G)).

Proof. In this case, each degree-3 neighbor u becomes a degree-2 vertex in G − v in which u
is not adjacent to any other degree-2 vertex. By Lemma 14, we know that after Steps 1 and 2,
either the measure decreases by at least σ = ∆w5 or the resulting graph contains a vertex of degree
≥ 6. If the maximum degree of the graph decreases in Step 3, then the measure will decrease by
at least σ = ∆w5 by Lemma 12. Otherwise our algorithm branches on a vertex of degree ≥ 6 with
recurrence (16) in Step 4 wherein shift σ = ∆w5 is already saved. Therefore, for a degree-5 vertex v
with k3 = 1 or N(v) \N∗(v) contains a degree-3 neighbor of v, we can further decrease the measure
µ by σ = ∆w5.

The following lemma provides a lower bound on ∆(N [v]) in the recurrence (2) when branching
on a degree-5 vertex in a proper graph, The proof of which is delayed to Appendix 8.3.
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Lemma 16 Let v be an optimal degree-5 vertex in a proper graph G. Then it holds

∆(N [v]) ≥ λ(k3, k4, k5),

where

λ(k3, k4, k5) =



14∆w5 if (k3, k4, k5) = (0, 0, 5)
9∆w5+2∆w4 if (k3, k4, k5) = (0, 1, 4)
8∆w5+2∆w4 if (k3, k4, k5) = (0, 2, 3)
9∆w5+∆w4 if (k3, k4, k5) = (0, 4, 1)

11∆w5 if (k3, k4, k5) = (0, 3, 2)
10∆w5 if (k3, k4, k5) = (0, 5, 0)

2w3 + 6∆w5 if k3 ≥ 2 and N(v) \N∗(v) contains
no degree-3 neighbor of v

10∆w5 if k3 = 1 or N(v) \N∗(v) contains
a degree-3 neighbor of v.

By applying Lemma 15 and Lemma 16 to the weight decreases in the first and second branches
of (2) for d = 5, we get recurrence

C(µ) ≤ C(µ−(w5 + k3w3 + k4(w4 − w3) + k5(w5−w4) + ϵσ))
+C(µ−(w5 + k3w3 + k4w4 + k5w5 + λ(k3, k4, k5)))

(23)

for all nonnegative integers (k3, k4, k5) with k3 + k4 + k5 = 5, where σ = ∆w5, and ϵ = 1 if k3 = 1
or N(v) \N∗(v) contains a degree-3 neighbor of v and ϵ = 0 otherwise.

7.10 Reducing to Degree-4 Graphs in Step 9

When the maximum degree of the current graph is at most 4, we invoke an exact algorithm [18] that
runs in O∗(1.137567µ

′(G)) time for a degree-4 graph G with measure µ′(G) =
∑

1≤i≤4w
′
ini where ni

is the number of degree-i vertices in G, and w′
i is a weight of a degree-i vertex defined by w′

0 = w′
1 =

w′
2 = 0, w′

3 = 0.62225 and w′
4 = 1. Then it holds C(µ(G)) = O(1.137567µ

′(G)). Since µ′(G)/µ(G) =∑
3≤i≤4w

′
ini/

∑
3≤i≤4wini ≤ max{w′

3/w3, w
′
4/w4}, we have C(µ(G)) = O(1.137567µ

′(G))

= O(1.137567max{0.62225/w3,1/w4}µ(G)). Hence we only need to consider the following two cases.

C(µ) = O(1.137567(1/w4)µ), (24)

and

C(µ) = O(1.137567(0.62225/w3)µ). (25)

7.11 Final Solution to Weights

Recurrences (16) to (25) generate the constraints in our quasiconvex program. By solving the
quasiconvex program under conditions (5) to (11) and (24), and (25) according to the method
introduced in [4], we get a bound 1.17367 of the branching factor for all recurrences by setting
w3 = 0.50906, w4 = 0.82426, w5 = 1, w6 = 1.509050, w7 = 1.748217 and w8 = 1.972241. This
verifies Lemma 9.

Now recurrences (23) with (k4, k5) = (1, 4) and (2, 3) and constraints ∆w5 ≤ (5/9)∆w4 in (7),
w8 ≤ w5 + w5 in (10) and (24) attain the tight branching factor 1.1737.
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8 Some proofs

8.1 Proofs of the theorems in Section 4

Theorem 5 For subgraphs G1 and Gv
1 defined on a separation (V1, {v}, V2) in a graph G, it holds

α(G) = α(G1) + α(G⋆),

where G⋆ = G − V1 if α(G1)=α(Gv
1), and G⋆ = G2 otherwise. A maximum independent set in a

graph G can be constructed from any maximum independent sets to G1, G
v
1 and G⋆.

Theorem 5 follows from the next lemma and its proof.

Lemma 17 It holds that α(G1) ≥ α(Gv
1) and

α(G) =

{
α(Gv

1)+α(G[V2 + v]) if α(G1)=α(Gv
1)

α(G1)+α(G2) if α(G1) > α(Gv
1).

Proof. Since Gv
1 is an induced subgraph of G, we know that α(G1) ≥ α(Gv

1) holds. Let S be a
maximum independent set of G. Then we have |S ∩ V1| ≤ α(G1) and |S \V1| ≤ α(G[V2 + v]).

First assume that α(G1) = α(Gv
1). Then we have |S ∩ V1| ≤ α(G1) = α(Gv

1) = |Sv
1 | for any

maximum independent set Sv
1 of Gv

1. Then α(G) = |S ∩ V1| +|S \V1| ≤ α(Gv
1) +α(G[V2 + v]). On

the other hand, |Sv
1 ∪(S \V1)| ≤ α(G) since Sv

1 ∪(S \V1) is an independent set of G since G[V2 + v]
and Gv

1 are separated by cut V1 \V v
1 . Therefore, α(G) =α(Gv

1) +α(G[V2 + v]).
Next, we consider the case of α(G1) > α(Gv

1). Let Ŝ1 be a maximum independent set of
G[V1 + v]. We have that |Ŝ1| ≤ min{α(Gv

1) +1, α(G1)} ≤ α(G1). We have that |S ∩ V2| ≤ α(G2)
and |S \V2| ≤ |Ŝ1| ≤ α(G1). Then α(G) = |S ∩ V2| + |S \V2| ≤ α(G2) +α(G1). On the other
hand, α(G) ≥ |(S ∩ V2) ∪S1| = |S ∩ V2|+α(G1) for any maximum independent set S1 of G1, since
(S ∩ V2) ∪S1 is also an independent set of G since G2 and G1 are separated by cut {v}. Therefore,
α(G) =α(G1) +α(G2).

Theorem 6 For subgraphs G1, G
v
1, G

u
1 and Guv

1 defined on a separation (V1, {u, v}, V2) in a graph
G, it holds

α(G) = α(G1) + α(G⋆),

where

G⋆=



G[V2∪{u,v}] if α(Guv
1 )=α(G1),

G̃2 if α(Guv
1 )<α(Gu

1)=α(Gv
1)=α(G1),

G[V2 + v] if α(Gu
1)<α(Gv

1)= α(G1),
G[V2 + u] if α(Gv

1)<α(Gu
1)= α(G1),

Ĝ2 if α(Guv
1 )+1 = α(G1) and α(Gv

1)<α(G1),
G2 otherwise (α(Guv

1 )+2 ≤ α(G1) and α(Gv
1)<α(G1)).

A maximum independent set in a graph G can be constructed from any maximum independent sets
to G1, G

v
1, G

u
1 , G

uv
1 and G⋆.

Theorem 6 follows from the next lemma and its proof.

Lemma 18 Assume without loss of generality that α(Gu
1) ≤ α(Gv

1). Then it holds that α(Guv
1 ) ≤

α(Gu
1) ≤ α(Gv

1) ≤ α(G1) and

α(G)=



α(Guv
1 )+α(G[V2∪{u,v}]) if α(Guv

1 )=α(G1), (i)

α(G1)+α(G̃2) if α(Guv
1 )<α(Gu

1)=α(Gv
1)=α(G1), (ii)

α(Gv
1)+α(G[V2 + v]) if α(Gu

1)<α(Gv
1)= α(G1), (iii)

α(G1)+α(Ĝ2) if α(Guv
1 )+1 = α(G1) and α(Gv

1)<α(G1), (iv)
α(G1)+α(G2) if α(Guv

1 )+2 ≤ α(G1) and α(Gv
1)<α(G1), (v)
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where G̃2 is the graph obtained from G[V2∪{u, v}] by adding an edge uv if v and u are not adjacent

and Ĝ2 = G/(V1∪{u,v}) is the graph obtained from G by contracting V1∪{u, v} into a single vertex
z and deleting multi-edges and self-loops.

Proof. Since Guv
1 is an induced subgraph of Gu

1 (resp., Gv
1), and Gu

1 (resp., Gv
1) is an induced

subgraph of G1, we know that α(Guv
1 ) ≤ α(Gu

1) ≤ α(G1) and α(Guv
1 ) ≤ α(Gv

1) ≤ α(G1). We
consider the other five possible relations among α(Guv

1 ), α(Gu
1), α(G

v
1) and α(G1). In the following,

S (resp., Suv
1 , Su

1 , S
v
1 and S1) denotes an arbitrary maximum independent set of G (resp., Guv

1 , Gu
1 ,

Gv
1 and Gu

1).

Case (i). α(Guv
1 ) = α(G1): We partition V (G) into V uv

1 , Z = V1 \V uv
1 and V2 ∪ {u, v} so that

there is no edge between V uv
1 and V2 ∪ {u, v}. Hence we have α(G) ≥ α(Guv

1 ) + α(G[V2 ∪ {u, v}]).
The converse can be obtained by

α(G) = |S| = |S ∩ V1|+ |S ∩ (V2 ∪ {u, v})| ≤ α(G1) + |S ∩ (V2 ∪ {u, v})|
≤ α(Guv

1 ) + |S ∩ (V2 ∪ {u, v})| = |Suv
1 |+ |S ∩ (V2 ∪ {u, v})|

≤ α(Guv
1 ) + α(G[V2 ∪ {u, v}]).

Case (ii). α(Guv
1 ) < α(Gu

1)=α(Gv
1) = α(G1): This holds because V2∪{u, v} is a subgraph of G̃2.

We first show that G has a maximum independent set S containing at most one vertex in {u, v}.
If u, v ∈ S, then can replace S ∩ (V1 ∪ {u}) with Sv

1 in S to get another maximum independent set
S′ = Sv

1 ∪ {v} ∪ (S ∩ (V2 \N({u, v}))) of G, since

α(G) = |S| = |S ∩ V uv
1 |+ |{u, v}|+ |S ∩ (V2 \N({u, v}))|

≤ α(Guv
1 ) + |{u, v}|+ |S ∩ (V2 \N({u, v}))|

≤ α(Gv
1)− 1 + |{u, v}|+ |S ∩ (V2 \N({u, v}))|

= |Sv
1 |+ |{v}|+ |S ∩ (V2 \N({u, v}))|

≤ α(G).

Hence G has a maximum independent set S such that |{u, v} ∩ S| = 1. Now we observe that

α(G) = |S| = |S ∩ V1|+ |S ∩ (V2 ∪ {u, v})|
≤ |S ∩ V1|+ α(G̃2)

≤ max{α(Gu
1), α(G

v
1), α(G1)}+ α(G̃2)

= min{α(Gu
1), α(G

v
1), α(G1)}+ α(G̃2)

≤ α(G),

indicating that α(G) = α(G1) + α(G̃2).

Case (iii). α(Gu
1) < α(Gv

1) = α(G1): We partition V (G) into V v
1 , Z = {u}∪ (V1 \V v

1 ) and V2+ v
such that there is no edge between V v

1 and V2 + v. Hence α(G) ≥ α(Gv
1) + α(G[V2 + v]). If u ̸∈ S,

then |S ∩ (V1+ u)| = |S ∩ V1| ≤ α(G1) = α(Gv
1). If u ∈ S, then |S ∩ (V1+ u)| = |S ∩ V u

1 | + 1 ≤
α(Gu

1) + 1 ≤ α(Gv
1). In any case we have

α(G) = |S| = |S ∩ (V1+ u)|+ |S ∩ (V2 + v)| ≤ α(Gv
1)+|S ∩ (V2 + v)|

= |Sv
1 |+|S ∩ (V2 + v)| ≤ α(G).

Case (vi). α(Guv
1 ) + 1 = α(G1) and α(Gv

1) < α(G1): We first observe that assumption α(Gu
1) ≤

α(Gv
1) < α(G1) implies that G has a maximum independent set S with |{u, v} ∩ S| = 0 or 2. If
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{u, v} ∩ S = {u}, then we can replace S ∩ (V1 ∪ {u, v}) with S1 in S to get another maximum
independent S′ = S1 ∪ (S ∩ V2) set of G, where

α(G) = |S| = |S ∩ V1|+ |S ∩ {u, v}|+ |S ∩ V2|
≤ α(Gu

1) + 1 + |S ∩ V2|
≤ α(G1) + |S ∩ V2|
= |S1|+ |S ∩ V2| ≤ α(G).

Symmetrically if {u, v}∩S = {v}, then α(Gv
1) < α(G1) implies that we can replace S∩ (V1∪{u, v})

with S1 in S to get another maximum independent set S′ = S1 ∪ (S ∩ V2) of G. Hence G has a
maximum independent set S with |{u, v} ∩ S| = 0 or 2.

When |{u, v} ∩ S| = 2, we have α(G) = α(Guv
1 ) + |S ∩ (V2 ∪ {u, v})| ≤ α(Guv

1 ) + α(Ĝ2) + 1.

When |{u, v} ∩ S| = 0, we have α(G) = α(G1) + |S ∩ (V2 ∪ {u, v})| ≤ α(G1) + α(Ĝ2). In any case,

we have α(G) ≤ α(Guv
1 ) + 1 + α(Ĝ2) = α(G1) + α(Ĝ2). We show the converse. For a maximum

independent set S∗ of Ĝ2, if z ∈ S∗ (resp., z ̸∈ S∗) then we have an independent set S′ of G such

that S′ = Suv
1 ∪ (S∗ \{z}) ∪ {u, v} (resp., S′ = S1 ∪ S∗) and α(G) ≥ |S′| = α(Guv

1 ) + α(Ĝ2)− 1 + 2

(resp., α(G) ≥ |S′| = α(G1)+α(Ĝ2)), where α(G
uv
1 )+ 1+α(Ĝ2) = α(G1)+α(Ĝ2) by assumption.

Case (v). α(Gv
1) < α(G1) and α(Guv

1 ) + 2 ≤ α(G1): As in Case (iv), assumption α(Gu
1) ≤

α(Gv
1) < α(G1) implies that G has a maximum independent set S with |{u, v} ∩ S| = 0 or 2. If

|{u, v} ∩ S| = 2, then we can replace S ∩ (V1 ∪ {u, v}) with S1 in S to get another maximum
independent set S′ = S1 ∪ (S ∩ V2) of G with {u, v} ∩ S′ = ∅, where

α(G) = |S| = |S ∩ V uv
1 |+ |S ∩ {u, v}|+ |S ∩ V2|

≤ α(Guv
1 ) + 2 + |S ∩ V2|

≤ α(G1) + |S ∩ V2|
= |S1|+ |S ∩ V2| ≤ α(G).

Hence G has a maximum independent set S with S ∩ {u, v} = ∅, indicating that This means that
α(G) = α(G1) + α(G2).

8.2 The proof of Lemma 8

Lemma 8 Let G be a proper graph with at least one degree-5 vertex. Assume that N∗(u) = ∅ for
all degree-5 vertices in G and that no degree-5 vertex is adjacent to a degree-3 vertex. Then there
exists an effective vertex in G.

Proof. Note that any degree-5 vertex v with N∗(v) = ∅ satisfies fv ≥ 2δ(v) = 10, and we are done
if there is a degree-5 vertex with (k4, k5) = (5, 0) or (k4, k5) = (3, 2) (note that for (k4, k5) = (3, 2)
it holds fv ≥ 2δ(v) + 1 = 11 by parity condition). To prove the lemma, we assume that G contains
no degree-5 vertex v with (k4, k5) = (5, 0) or (3, 2) (also no degree-5 vertex with k3 ≥ 1 by the
assumption in the lemma).

In G, we choose a degree-5 vertex v so that (k4, k5) = (4, 1) or (1, 4) holds (if any) before a
degree-5 vertex v with (k4, k5) = (2, 3) is selected. Let N(v) = {ui | 1 ≤ i ≤ 5}. Since N∗(v) = ∅,
each ui ∈ N(v) has at least two neighbors in N2(v), which we denote by xi and yi.

We distinguish three cases.
(i) (k4, k5) = (4, 1): Assume (fv, gv) ≤ (10, 0) (otherwise (fv, gv) ≥ (12, 0) or (10, 1) and we

are done). Since N∗(v) = ∅, it holds fv = 2δ(v) = 10 and each neighbor ui ∈ N(v) has exactly
two neighbors xi, yi ∈ N2(v). Also N2(v) contains only degree-5 vertices since gv = 0. Hence the
induced graph G[N(v)] consists of an edge u1u2 and a path u4u5u3 with δ(u5) = 5. Then vertex
a = u5 is a degree-5 vertex with k(a) = (0, 2, 3), where the two neighbors x5, y5 ∈ N(a) \N [v] have
no neighbors in N [v]. Hence fa ≥ 12 holds and a is an effective vertex.
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(ii) (k4, k5) = (1, 4): Assume (fv, gv) ≤ (11, 1) (otherwise (fv, gv) ≥ (13, 0) or (11, 2) and we
are done). Since N∗(v) = ∅, it holds fv = 2δ(v) + 1 = 11 by parity condition, and one neighbor
u′ ∈ N(v) has exactly three neighbors in N2(v) and each of the other neighbors in N(v) − u′ has
exactly two neighbors in N2(v). In this case, u′ cannot be the degree-4 vertex, since otherwise
G[N(v)] contains a 4-cycle u2u3u4u5, where nonadjacent degree-5 vertices u2 and u4 would be a
good pair. Hence G[N(v)] is a single path u1u2u3u4u5 from the degree-4 vertex u1 to u′ = u5. We
show that u2 or u4 is an effective vertex. Since gv ≤ 1, there is at most one vertex t ∈ N2(v) such
that δ(t) = 4 or t has two neighbors in N(v). If each of x4 and y4 has no other neighbor in N(v) than
u4, then a = u4 is an effective vertex with k(a) = (0, 0, 5) and fa ≥ 14 (when δ(x4) = δ(y4) = 5) or
k(a) = (0, 1, 4) and fa ≥ 13 (when δ(x4) or δ(y4) is 4).

Now assume that one of x4 and y4 has a neighbor uj ∈ N(v) other than u4. Then all other
vertices in N2(v) \{x4, y4} are degree-5 vertices (otherwise gv ≥ 2). Note that uj ̸= u2, since
otherwise (u2, u4) would be a good pair. Then a = u2 is an effective vertex with k(a) = (0, 1, 4) and
fa ≥ 13.

(iii) (k4, k5) = (2, 3): Assume (fv, gv) ≤ (10, 1) (otherwise (fv, gv) ≥ (12, 0) or (10, 2) and we are
done). Since N∗(v) = ∅, it holds fv = 2δ(v) = 10 by parity condition, and each neighbor ui ∈ N(v)
has exactly two neighbors xi, yi ∈ N2(v). We see that the configuration of G[N(v)], which is either
(type-1): a single path; or
(type-2): a union of an edge and a triangle.
Since gv ≤ 1, there is at most one vertex t ∈ N2(v) such that δ(t) ≤ 4 or t has two neighbors in
N(v). We distinguish two subcases on the configuration of G[N(v)].

(1) G[N(v)] is a path u1u2u3u4u5 from a degree-4 vertex u1 to the other degree-4 vertex u5: We
show that u2 or u4 is an effective vertex. If each of x4 and y4 has no other neighbor in N(v) than
u4, then a = u4 is an effective vertex with k(a) = (0, 1, 4) and fa ≥ 13 (when δ(x4) = δ(y4) = 5) or
k(a) = (0, 2, 3) and fa ≥ 12 (when δ(x4) or δ(y4) is 4).

Now assume that one of x4 and y4 has a neighbor uj ∈ N(v) other than u4, and all other
vertices in N2(v) \{x4, y4} are degree-5 vertices (otherwise gv ≥ 2). Note that uj ̸= u2, since
otherwise (u2, u4) would be a good pair. Then a = u2 is an effective vertex with k(a) = (0, 1, 4) and
fa ≥ 13.

(2) G[N(v)] is a union of edge u1u2 between two degree-4 vertices and a triangle u3u4u5 on three
degree-5 vertices. Without loss of generality let x2 = t whenever there is a vertex t ∈ N2(v) with
δ(t) ≤ 4 or |N(t) ∩ N(v)| = 2. Hence each of x1 and y1 is a degree-5 vertex which has only one
neighbor in N(v). By the choice of v, we know that N(x1) contains at most two degree-4 vertices. If
N(x1) contains no other degree-4 vertex than u1, then x1 is a degree-5 vertex with k(x1) = (0, 1, 4),
which contradicts our choice of vertex v.

Assume that N(x1) contains two degree-4 vertices u1 and t. In this case, u1 and t cannot
be adjacent since y1 is of degree 5 now, and x1 is a degree-5 vertex with k(x1) = (0, 2, 3) such
that G[N(x1)] is not of type-2. This means that G[N(x1)] is of type-1 or (fv, gv) > (10, 1) (i.e.,
(fv, gv) ≥ (12, 0) or (10, 2)), since N∗(y) = ∅ for all degree-5 vertices y in G. We are done in the
latter. In the former, we can apply the argument in (iii)-(1) to obtain an effective vertex.

We next consider the case where G is 5-regular. Choose a vertex v in G. Let N(v) = {ui | 1 ≤
i ≤ 5}. Each ui ∈ N(v) has at least two neighbors in N2(v), which are denoted by xi and yi. Also
assume that fv ≤ 12, since otherwise we are done with fv ≥ 14. In this case, G[N(v)] has three
possible configurations:
(type-1): fu = 10 and G[N(u)] is a 5-cycle;
(type-2): fu = 12 and G[N(u)] is a path of length 4; and
(type-3): fu = 12 and G[N(u)] is a union of an edge and a triangle.
Note that for fu = 12, G[N(u)] cannot be a union of an isolated vertex and a 4-cycle, since otherwise
some nonadjacent degree-5 vertices in the 4-cycle would be a good pair.

We fist claim that G always contains a type-2 degree-5 vertex. If G consists of only type-1
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degree-5 vertices, then each pair of adjacent neighbors ui, ui+1 ∈ N(v) share a common vertex in
N2(v) and this implies that gv = 5 and v is an effective vertex with (fv, gv) = (10, 5). If G consists
of only type-3 degree-5 vertices, then it is the 5-regular line graph L(H) of a (3, 4)-bipartite graph
H, again contradicting that G is a reduced graph. However, we easily check that a type-1 degree-5
vertex u cannot be adjacent to a type-3 degree-5 vertex u′, since u will be of degree 1 or 3 in
G[N(u′)]. Therefore, the 5-regular graph G contains a type-2 degree-5 vertex.

Let v be a type-2 degree-5 vertex, where ui (i = 1, 5) has three neighbors xi, yi, zi ∈ N2(v)
and ui (i = 2, 3, 4) has three neighbors xi, yi, zi ∈ N2(v) each of the other three has two neighbors
xi, yi ∈ N2(v). Assume that gv ≤ 2 (otherwise we are done). We show that one of vertices
u2, u3, u4, x3 and y3 will be an effective vertex.

For each i = 2, 3, 4, if xi and yi are not adjacent or both xi and yi have no other neighbor in
N(v) than ui, then we see that a = ui is an effective vertex with fa ≥ 14. Hence assume that, for
each i = 2, 3, 4, xi and yi are adjacent and one of xi and yi has a neighbor ui′ ∈ N(v) than ui, Note
that {x2, y2} ∩ {x4, y4} = ∅, since otherwise (u2, u4) would be a good pair. Now N2(v) contains
exactly two vertices t, t′ ∈ N2(v) which have two neighbors in N(v) (otherwise gv ≥ 3), where
{xi, yi} ∩ {t, t′} ̸= ∅ for i ∈ {2, 3, 4}. Without loss of generality let t = y2 = x3 and t′ ∈ {x4, y4}.
Since u1 is not adjacent to x2 or y2 (otherwise gv ≥ 3), we have fu2 = 12, where we assume that
gu2 ≤ 2 (otherwise we are done).

Now gu3 ≥ 3, and we assume that fu3 ≤ 10 and gu3 ≤ 4 (otherwise u3 is an effective vertex).
We see that fu3 ≤ 10 can hold only when t′ = y3 = x4 (recall that x3 cannot be adjacent to u4) and
that gu3 ≥ 4 holds only when the last neighbors z1 and z2 of x3 and y3 must be distinct.

Finally we show that t = y2 = x3 is an effective vertex. Since gt ≥ 2, it suffices to show that
ft ≥ 12. Note that gu2 ≤ 2 implies that x2 and z1 are not adjacent and u1 and y2 = x3 are not
adjacent. Also x2 and y3 = x4 are not adjacent (otherwise (x2, u3) would be a good pair). These
indicate ft ≥ 14.

8.3 The proof of Lemma 16

Lemma 16 Let v be an optimal vertex in a proper graph G. Then it holds

∆(N [v]) ≥ λ(k3, k4, k5),

where

λ(k3, k4, k5) =



14∆w5 if (k3, k4, k5) = (0, 0, 5)
9∆w5+2∆w4 if (k3, k4, k5) = (0, 1, 4)
8∆w5+2∆w4 if (k3, k4, k5) = (0, 2, 3)
9∆w5+∆w4 if (k3, k4, k5) = (0, 4, 1)

11∆w5 if (k3, k4, k5) = (0, 3, 2)
10∆w5 if (k3, k4, k5) = (0, 5, 0)

2w3 + 6∆w5 if k3 ≥ 2 and N(v) \N∗(v) contains
no degree-3 neighbor of v

10∆w5 if k3 = 1 or N(v) \N∗(v) contains
a degree-3 neighbor of v.

Lemma 16 is proven via the following two lemmas, one for optimal vertices v with N∗(v) = ∅
and the other for those with N∗(v) ̸= ∅. The first lemma for optimal vertices v with N∗(v) = ∅ is
as follows.

Lemma 19 Let v be an optimal vertex with N∗(v) = ∅ in a proper graph G. Then it holds

∆(N [v]) ≥ λ(k3, k4, k5),

where if k3 ≥ 1, then N(v) \N∗(v) contains a degree-3 neighbor of v and λ(k3, k4, k5) = 10∆w5.
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Proof. Since N∗(v) = ∅, there are at least 2|N(v)| = 10 edges between N(v) and N2(v) and
then ∆(N [v]) ≥ fv∆w5 ≥ 10∆w5. Note that when k3 ≥ 1, then N(v) \N∗(v) contains a degree-3
neighbor of v and λ(k3, k4, k5) is defined to be 10∆w5. Therefore, the lemma holds for the cases of
k3 ≥ 1 and (k3, k4, k5) = (0, 5, 0). The other cases are proved by used (3) and the property of optimal
vertex (v is an effective vertex since N∗(v) = ∅). For k(v) = (0, 0, 5), it holds (fv, gv) ≥ (14, 0),
(12, 3) or (10, 5) by the lower bounds on fv and gv in the definition of effective vertices, and we have
min{14∆w5, 12∆w5 + 3(∆w4 −∆w5), 10∆w5 + 5(∆w4 −∆w5)} = 14∆w5 = λ(0, 0, 5) by (7). The
other cases can be treated analogously.

The second lemma for optimal vertices v with N∗(v) ̸= ∅ is as follows. We easily see by (7)
and (8) that λ(0, 0, 5) = 14∆w5 ≤ w4 + 2w3 + 4∆w5, λ(0, 1, 4) = 9∆w5 + 2∆w4 ≤ 3w3 + 4∆w5,
λ(0, 5, 0) = 10∆w5 ≤ 2w3 + 5∆w5 and max{9∆w5 + ∆w4, 8∆w5 + 2∆w4, 2w3 + 6∆w5, 11∆w5} ≤
2w3 + 6∆w5. Hence the next lemma and Lemma 19 imply Lemma 16.

Lemma 20 Let v be an optimal vertex with N∗(v) ̸= ∅ in a proper graph G. Then it holds

∆(N [v]) ≥



w4 + 2w3 + 4∆w5 if k(v) = (0, 0, 5)
3w3 + 4∆w5 if k(v) = (0, 1, 4)
2w3 + 5∆w5 if k(v) = (0, 5, 0), v has exactly one degree-3

neighbor (i.e., k3 = 1), or N(v) \N∗(v)
contains a degree-3 neighbor of v

2w3 + 6∆w5 otherwise.

Proof. Without loss of generality let N(v) = {u1, u2, . . . , u5}, N2(v) = {t1, t2, . . . , tr} (r ≥
|N(N2[v])| ≥ 4), and u1 ∈ N∗(v) and t1 ∈ N(u1)∩N2(v). For each vertex t ∈ N2(v), let e(t) be the
number of neighbors of t in N(v), where e(t) ≤ 2 since otherwise (v, t) would be a good pair.

For X = N [Iv], it holds |N(X)| ≥ 4 since there is no good vertex cut, where N(X) ⊆ N [v].
Hence if |N [Iv] \N [v]| ≥ 3, then we have

∆(N [v]) ≥
∑

x∈N [Iv ]\N [v]

wδ(x) +
∑

y∈N(X)

∆wδ(y),

which is at least w4 + 2w3 + 4∆w5 for k(v) = (0, 0, 5) (note that t1 ∈ N [Iv] \ N [v] is a vertex
adjacent to a degree-5 vertex u1 and then δ(t1) ≥ 4 by the choice of the optimal vertex v) and
3w3 + 4∆w5 (≥ 2w3 + 6∆w5 by (8)) otherwise.

Then assume that |N [Iv]\N [v]| ≤ 2. In this case {t1} = Iv−{v}, since |Iv−{v}| = 2 means that
each vertex t ∈ Iv−{v} has a neighbor in V −N(v)−Iv (recall that e(t) ≤ 2 and Iv is an independent
set), implying a contradiction that |N [Iv] \N [v]| > 2. Also t1 is adjacent to two neighbors u1, u2 ∈
N(v) and δ(t1) = 3 (otherwise |N [Iv] \N [v]| ≥ 3). Hence k(v) ̸∈ {(0, 1, 4), (0, 0, 5)}, since otherwise
u1 or u2 would be a degree-5 vertex adjacent to degree-3 neighbor t1 and such a vertex ui should
have been chosen as an optimal vertex instead of v). Let u1 and u2 be the neighbors of t1 in N(v).
We show that none of u1 and u2 is a degree-3 vertex in N∗(v). If one of them, say u1 ∈ N∗(v) is a
degree-3 vertex, then t1-u1-{v, u∗} is a short funnel for the third neighbor u∗ ∈ N(v) of u1, since t1
is a degree-3 vertex and there is an edge u2v between N(t1) \ {u1} and {v, u∗}. Then, no degree-3
vertex is in N∗(v). Hence |Iv −{v}| = 1 implies that if k3 ≥ 1 then N(v) \N∗(v) always contains a
degree-3 neighbor of v. This indicates that we do not need to show ∆(N [v]) ≥ 2w3 + 6∆w5 for the
case where k3 ≥ 2 and N(v) \N∗(v) contains no degree-3 neighbor of v. So we only have to show
that

∆(N [v]) ≥ 2w3 + 5∆w5 for the case where k(v) = (0, 5, 0) or k3 ≥ 1,
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and
∆(N [v]) ≥ 2w3 + 6∆w5 otherwise (k(v) ̸∈ {(0, 5, 0), (0, 1, 4), (0, 0, 5)}).

Then each ui ∈ N(v) with i = 3, 4, 5 has at least two neighbors in N2(v), since otherwise ui
would be adjacent to another vertex in Iv − {v} (note that t1 can be adjacent to only u1 and u2
since e(t1) = 2).

Let x be the third neighbor of t1.
At least six edges between {u3, u4, u5} and N2(v) \{t1} are removed in G−N [Iv].
(i) x ̸∈ N2(v): In this case, we have

∆(N [v]) ≥ wδ(t1) + wδ(x) + 6∆w5 ≥ 2w3 + 6∆w5,

as required.
(ii) x ∈ N(N2[v]): Analogously with (i), the degree of x1 decreases in G −N [Iv], where x1 ∈

(N2[v]) is a neighbor of x and we have ∆(N [v]) ≥ wδ(t1) + wδ(x) +∆wδ(x1) + 5∆w5 if e(x) ≤ 1; or

∆(N [v]) ≥ wδ(t1) + wδ(x) +∆wδ(x1) + 4∆w5 if e(x) = 2 (where δ(x) ≥ 4). In any case, we obtain

∆(N [v]) ≥ 2w3 + 6∆w5.

Now assume that x ∈ N2(v) \N(N2[v]).
(iii) x = t2 ∈ N2(v) \ N(N2[v]) and t2 has a neighbor t3 ∈ N2(v): Now when δ(t2) ≤ 4 − ϵ

(ϵ = 0, 1), there are at least 4 + ϵ edges between {u3, u4, u5} and N2(v) \{t1, t2}. Note that t3 may
receive two of these edges, and in this case, δ(t3) ≥ 4 or |N2(v) \{t1, t2, t3}| ≥ |N(N2[v])| ≥ 4 holds.
In any case, the weight decrease in N2(v) \{t1, t2} is at least (6 − ϵ)∆w5. By wδ(t2) ≥ w3 + ϵ∆w5,
we have

∆(N [v]) ≥ w3 + wδ(t2) + (6− ϵ)∆w5 ≥ w3 + w3 + 6∆w5.

(iv) x = t2 ∈ N2(v) \ N(N2[v]) and t2 has no neighbor in N2(v): In this case, δ(t2) = 3 since
e(t2) ≤ 2. Let h be the number of edges between {u2, u3, u4, u5} and N2(v) \{t1, t2}, where h ≥ 4,
since there are six edges between {u3, u4, u5} and N2(v) \{t1} and t2 can receive at most two of
them. We have

∆(N [v]) ≥ w3 + w3 + h∆w5.

Since we are done if h ≥ 6, we assume h ≤ 5.
If h ≤ 4, then u2 is not adjacent to any vertex in N2 \{t1, t2}, then Z = {u3, u4, u5} is a vertex

cut that separates X = {v, u1, u2, t1, t2} from G, where |X| ≤ 24 and δ(X) ≥ 17, contradicting that
G has no good vertex cut. Therefore h = 5 holds, and in this case, u2 is adjacent to t1 and some
vertex tj ∈ N2(v) with j ≥ 3, and t2 is adjacent to two vertices in {u3, u4, u5}, say u3 and u4.

Since h = 5 holds, we have obtained ∆(N [v]) ≥ 2w3 + 5∆w5 for k(v) = (0, 5, 0) and k3 ≥ 1.
Next, we assume that k3 = 0 and k(v) ̸= (0, 5, 0). In this case, no degree-5 neighbor of v can be

adjacent to degree-3 vertex t1 or t2 by the choice of optimal vertex v, and we have δ(u1) = δ(u2) =
δ(u3) = δ(u4) = 4. We see that for k(v) = (0, 4, 1), it cannot hold fv = 4 + h = 9 due to the parity
condition, a contradiction.
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