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Abstract.

In this paper we consider a primal-dual interior point method for solv-
ing nonlinear semidefinite programming problems, which is based on the
shifted perturbed KKT conditions. The main task of the interior point
method is to get a point approximately satisfying the shifted perturbed
KKT conditions. We first propose a differentiable merit function whose
stationary points always satisfy the conditions. The function is an exten-
sion of that proposed by Forsgren and Gill for the nonlinear programming
problem. Then, we develop a Newton type method that finds a station-
ary point of the merit function. We show the global convergence of the
proposed Newton type method under some mild conditions. Finally, we
report some numerical results which show that the proposed method is
competitive to the existing primal-dual interior point method based on
the perturbed KKT conditions.
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1 Introduction

In this paper we consider the following nonlinear semidefinite programming (SDP) problem:

minimize  f(x),
reR” (1.1)
subject to  g(xz) =0, X(z) >0,

where f : R® - R, g : R® = R™ and X : R® — S% are twice continuously differentiable
functions, and S¢ denotes the set of d x d real symmetric matrices. Let S%, (S%) denote the
set of d x d real symmetric positive (semi)definite matrices. For a matrix M € S¢, M = 0 and
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M > 0 mean that M € Si and M € Si +, respectively. If the functions f, g and X are linear,
then the nonlinear SDP (1.1) is reduced to the linear SDP.

The nonlinear SDP is a wide class of the mathematical programming problems, and has
many applications [5, 7, 11, 20, 24]. The linear programming, the second order cone program-
ming, the linear SDP and the nonlinear programming can be cast as the nonlinear SDP. The
linear SDP has been studied extensively by many researchers [1, 3, 6, 21, 22, 23]. However there
exist important applications that are formulated as the nonlinear SDP, but cannot be reduced
to the linear SDP. For example, the Gaussian channel capacity problems [24], the minimization
(or maximization) of the minimal (or maximal) eigenvalue problems [16], the nearest correla-
tion matrix problems [17] and the static output feedback problems [18] are such applications.
Thus it is worth to develop solution methods for the nonlinear SDP.

Until now several solution methods for the nonlinear SDP have been proposed [5, 9, 19, 26].
Basically, these methods are extensions of the existing methods for the nonlinear programming,
such as the sequential quadratic programming method, the successive linearization method, the
augmented Lagrangian method and the interior point method.

Freund, Jarre and Vogelbush [5] proposed the sequential semidefinite programming method
for the nonlinear SDP. However, they consider only the case where the objective function is a
quadratic function and the constraint functions are affine. Kanzow, Nagel, Kato and Fukushima
[9] extended the successive linearization method with a certain exact penalty function and the
trust region-type technique. They show that the extended method is globally convergent under
rather strong assumptions on the generated sequence, which are not verified in advance. Stingl
[19] presented the augmented Lagrangian method for the nonlinear SDP. The method needs to
calculate the eigenvalue decomposition of a matrix, and hence, it may not be suitable for solving
some large-scale problems. Yamashita, Yabe and Harada [26] applied the primal-dual interior
point method for the nonlinear SDP, and they exploit a nondifferentiable L; merit function to
determine a step length. They showed the global convergence of their algorithm under some
unclear assumptions on the generated sequences. These assumptions are discussed in Section
4.3.

The purpose of this work is to propose an interior point method for (1.1) that converges
globally under milder conditions than the above existing methods. In particular, we give
concrete conditions related to the problem data, e.g., f,g and X only. We show that these
conditions hold for the linear SDP.

Recently, Kato, Yabe and Yamashita [10] proposed a primal-dual interior point method
based on the shifted perturbed KKT conditions, which are an extension of the method pro-
posed by Forsgren and Gill [4] for the nonlinear programming. The method generates points
satisfying the shifted perturbed KKT conditions at each iteration. In order to find such a point,
Kato, Yabe and Yamashita [10] exploit a merit function which is an extension of [25]. However,
since the merit function is rather complicated, it might be difficult to implement it appropri-
ately. In this paper, we propose a new merit function F' whose stationary points satisfy the
shifted perturbed KKT conditions. It is an extension the merit function of [4] for the nonlinear
programming. It consists of simple functions of matrices, such as log-determinant and trace,
and hence it is easy to implement. We show the following important properties of the merit
function F'.

(i) The merit function F is differentiable;

(ii) Any stationary point of the merit function F' is a shifted perturbed KKT point;



(iii) The level set of the merit function F' is bounded under some reasonable assumptions.

Note that Kato, Yabe and Yamashita [10] showed that their merit function also enjoys (i) and
(ii), but they did not show the property (iii). Due to these properties, we can find a point
satisfying the shifted perturbed KKT conditions by minimizing the merit function F'. For the
minimization of F', we further propose a Newton type method based on the nonlinear equations
in the shifted perturbed KKT conditions. We show that the Newton direction is sufficiently
descent for the merit function F. As a result, we prove the global convergence of the proposed
Newton type method. These details are discussed in Section 4.

The present paper is organized as follows. In Section 2, we introduce some operators in S¢
and important concepts, which are used in the subsequent sections. In Section 3, we present
a primal-dual interior point algorithm based on the shifted perturbed KKT conditions. In
Section 4, we first propose a merit function F' for the shifted perturbed KKT point and present
its properties. Secondly, we propose a Newton type algorithm for minimization of the merit
function. Moreover, we prove the global convergence of the Newton type algorithm. In Section
5, we report some numerical results for the proposed method. Finally, we make some concluding
remarks in Section 6.

Throughout this paper, we use the following notations. Let p and ¢ be positive integers.
For matrices A, B € RP*? (A, B) denotes the inner product of A and B defined by

(A, B) = tr(A"B),

where tr(M) denotes the trace of a square matrix M, and the superscript T denotes the
transpose of a vector or a matrix. Note that if ¢ = 1, then (-,-) denotes the inner product of
vectors in RP. For a given vector w € R? and a matrix W € RP*Y, w; denotes the i-th element
of the vector w, and W;; denotes the (4, j)-th element of the matrix W. Moreover, ||w|| denotes
the Euclidean norm of the vector w defined by

[wll = v/ (w, w),

and ||| denotes the Frobenius norm of the matrix W defined by
Wlle = v (W, W).
Let V= R" x R™ x S¢. For a given v € V, we use the following notations for simplicity.

x
v=| vy or v=(z,y,%2),
Z

where # € R", y € R™ and Z € S¢, respectively. We further define the inner product (-,-)
and the norm || - || on V as (vy,ve) = (21, %2) + (Y1, Y2) + (21, Z2) and ||v|| = y/(v,v), where
v, = (21,91, 7Z1) € V and vy = (22,2, Zo) € V. For a given matrix U € S, A\ (U),..., \(U)
denote eigenvalues of the matrix U. In particular, Ay, (U) and Apax(U) denote the minimum
and the maximum eigenvalues of the matrix U, respectively. For a given matrix V & S‘_{,

Vi€ S? denotes the matrix such that V = VzVz. Note that V2 = QAQT, where

A 0
A= ;
O Aa(V)



and @ is a certain orthogonal matrix such that V = QA2Q". Let ® : P, x P, — P;, where P
and P, are open sets. We denotes a Fréchet derivative of ® as V®. We further denote a Fréchet
derivative of ® with respect to a variable Z € P, as V;®. Moreover, if ® is a vector-valued
function, then Jg denotes a Jacobian of ®.

2 Preliminaries

In this section, we first introduce some operators. Then we present some useful properties of
the log-determinant function on S¢. Moreover, we introduce the (approximate) KKT conditions
related to the primal-dual interior point methods for the nonlinear SDP.

2.1 Some operators and their properties

Let U,V € 8¢, P, € R™ and x,w € R". We use the following notations.

(i) A product o of the matrices U and V' is defined by
UoV = vy vy VU.
2
(ii) A partial derivative of X (x) with respect to x; is denoted by A;(z) € S¢, that is,

0
axi

Ai(z) = —X(z) fori=1,... ,n.

(iii) An operator A(x) from R" to S? is defined by
A(x)w = Z w; A ().
i=1

(iv) The adjoint operator of A(x) is denoted by A*(x), that is,

(As(2),U)
A ()T = :
{(An(2),U)

(v) An operator P ® @Q from S¢ to S¢ is defined by
1
(POQ)U = 5(PUQT +QUPT). (2.1)

If X(z)=>"",x;A; with some constant matrices 4; € S%,i = 1,...,n, then A;(x) = A;,i =
1,...,n. Note that U oV = 0 is equivalent to UV = 0 if U and V are symmetric positive
semidefinite. Note also that a gradient of (X (z),U) with respect to = is given by

V. (X(z),U) = A*(z)U. (2.2)

We list some useful properties of the operator P ® ). See [22] and [26] for their proofs.



Proposition 1 Let P and Q be nonsingular matrices in R¥¢. Then the following statements
hold.

(a) The operator P ® Q is invertible.

(b) (U, (PoQ)V)={((PToQQ"NU,V) forall UV €8
{ ,(P@Q) W)y=(PTeoQ"'U,V) forall UV eS8

(c) (P@P) = (P 'o P, 0

Some interior point methods for SDP exploit a scaling of X(r) and Z, where Z € S¢
corresponds to a Lagrangian multiplier matrix for X (z) > 0 in (1.1). (The details of Z are
given in Subsection 2.3. We will exploit the scaling in the proposed method.) Let T" be a
nonsingular matrix in R¥?. We consider the scaled matrices X (x) and Z defined by

X(z)=(ToT)X() and Z=(T"ToT Nz

We show some useful properties of X (z) and Z.

Proposition 2 The following statements hold.

(a) Let(z, Z) = X(x)oZ. Then we have Vih(z, Z) = %(Z@I)(T@T)A(x) and V z¢(z, Z) =
{X@o)(TTeT ).

(b) Suppose that X (x) and Z are symmetric positive definite. Suppose also that )z(x) and Z
commute. Then we have

<(Z@ N(X(z) ® DU, U> >0 forall U e S,
Furthermore, the strict inequality holds in the above if and only if U # 0.
(¢) Suppose that X () and Z commute. Then we have
X@)oD)(Zol)=(ZoI)(X(z)o Z).

Proof. (a) Let « € R" be fixed. Since the function X is differentiable, we have
X(z+h)= +ZhA )+ o(|h]) for h € R",

and hence

n

X(x+h) = X@)+(ToT)Y_ hAiz)+ o).

=1

= X(z)+ (T ®T)A(x)h + o(||h]]).



It then follows that
Wa+hZ) = X@+hZ+ZX(x+h)
= (K@) + (T T)A@h + oA} Z + Z{X (2) + (T © T)A()h + ol 1)}
= X(@)Z + ZX(z) + (T © T)A(@)hZ + Z(T  T)A(z)h + o(||1]])
= (x, 2) + 5(Z 0 DT © T)A)h +of||h]),

which implies that V¢ (x, Z) = %(Z o I)(T o T)A(x). Next we give V¢(x, Z). Let H € S°.
Then we have
W, Z+H) = X@)(T 0T WZ+H) + (T 0T ")(Z+H)X ()
= X@)Z+ZX(2)+X@)(T T oT HYH+ (T "oT "HX ()

— V@ 2)+5(X@ e T T o T A

which implies that Vz¢(z,Z) = 3(X(z) @ I)(T-" ©@T~"). Thus, (a) is proved.

(b) Since the matrices X () and Z are symmetric positive definite, X () and Z are also symmet-
ric positive definite. It then follows from the commutativity of X (z) and Z that X ()7 is sym-
metric positive definite. Thus, there exists (X (z)Z)2 such that X (2)Z = (X (2)2)2 (X (2)Z)2.
Let U € S% Then we have

(ZonX@onuv) = itr((i)?(x)U + X@)UZ + ZUX (@) + UX (2)2)U)
= %tr(f((x)UZU) +

~ 1 ~1 ~ ~

]_ 1 1 1 ]_ ~1 ad 1 1
= Z—ltr(X(x)iUZﬁZiUX(x)ﬁ) + Z—ltr(ZiUX(x)ﬁX(x)iUZﬁ)

SR @IUZ UK (@) + So(U(R (@) 2)H(X () 2)20)

1=, (1, =1 1. =~ =1
= §HX($)2UZZH%+§H(X($)Z)2UH%
> 0,

where the third equality follows from the commutativity of X (r) and Z. Note that, since
X(z)z, Z2 and (X (z)Z)2 are positive definite, the strict inequality holds in the above if and
only if U # 0.

(c) For any U € S%, we have

K@) ohZenU - }L(X(x)ZU 4 ZUR(2) + X (2)UZ + UZX(2))
_ i(f)?(:c)U + X@)UZ+ ZUX(2) + UX(2)2)

= (ZoD(X(z)e U,

where the second equality follows from the commutativity of X (x) and Z. Hence, we obtain
(X@)oh)zol)=(ZoI)(X(z)oI). O



2.2 Properties of the log-determinant function

Let ¢ : 8¢, — R be defined by ¢(M) = —log det M. Let Q be defined by 2 = {z € R"| X (z) >
0}, and let ¢ : © — R be defined by

p(r) = ¢(X(2)). (2.3)
We first give the differentiability and convexity of ¢.

Proposition 3
(a) The function @ is differentiable on 2, and its derivative is given by Vo(x) = —A*(x) X (x) L.
(b) Suppose that
XAu+(1=Xv) = AX(u) — (1 =MNX(v) =0 for A €0,1] and u,v € Q.  (2.4)
Then ¢ is convexr on §). Moreover, if X is injective on €2, then @ is strictly convex.

(c) Suppose that (2.4) holds. Suppose also that Ai(x), ..., A,(z) are linearly independent for
all z € Q). Then ¢ s strictly convez.

Proof. (a) It follows from [21, Section 5] that
Vo(M) =M1, (2.5)
Then, we have from the chain rule that
Vp(z) = —A*(2) X (z) (2.6)

(b) First note that det A < det B'if 0 < A and 0 = B — A from [8, Corollary 7.7.4]. It then
follows from (2.4) that for any A € [0,1] and w,v € Q such that u # v,

det]A\X (u) + (1 — A) X (v)] < det[X(Au+ (1 — A)v)].

Since — log is a decreasing function on (0, 00) and ¢ is strictly convex from [8, Theorem 7.6.7],
we have

e(Au~+ (1 —A)v) —logdet[ X (Au + (1 — A\)v)]
—log det[AX (u) + (1 — X)X (v)].
PAX (u) + (1 = A)X(v))

AP(X (1)) + (1 = A)o(X (v))

Ap(u) + (1 = A)ep(v),

IN

IN

which shows that ¢ is convex on 2.
Suppose that u # v. Then, since X is injective on €2, X (u) # X (v). Moreover, since ¢ is
strictly convex,

e(Au+ (1 —A)v) d(AX (u) + (1 — M) X(v))
AP(X (u)) + (1 = AN)o(X(v))

Ap(u) + (1 = A)ep(v)

IN A A
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for A € (0,1). Thus, ¢ is strictly convex.
(c) Since X is twice differentiable, X (v 4+ A(u —v)) — X (v) = MA(v)(u — v) + o(A) for u,v € Q
and A € (0,1). Then (2.4) can be written as AA(v)(u —v) — A(X(u) — X(v)) + o(A) = 0.

Dividing both sides by A, we have A(v)(u —v) — X (u) + X (v) + 0(/\)‘) = 0. Letting A — 0 yields

AW)(u —v) — X(u) + X(v) = 0.

Let M = A(v)(u—v) — X (u)+ X (v). Since M and X (v)~! are symmetric positive semidefinite,
there exist M2z and X (v)~2. Then we have

(X (v)™, M) = tr(X (v) M) = tr(X (v) 2M2M2X(0)72) = | MZX (0) 2|2

It then follows from the convexity of ¢, (2.3) and (2.5) that

I
=
Ja
N
S~—
S~—

p(u) = p(v)

,—A(®)(u—))
= |M:X(0)7 2|3+ (A ()X (v) L u—v)
) (2.7)

where the last inequality follows from (2.6).

Since ¢ is convex by (b), it suffices for (c) to show that u = v if and only if p(u) — ¢(v) =
(Vo(v),u —v). If u = v, then it is clear that ¢(u) — p(v) = (Ve(v),u —v). Conversely,
suppose that ¢(u) — ¢(v) = (V(v),u — v), then the equality holds in (2.7). It follows from
(2.7) that |[M2X (v)"z||p = 0, and ¢(X (u)) — ¢(X (v)) = (=X (v)7!, X (u) — X (v)). Then, we
have A(v)(u—v) = 0 from the definition of M. Since A;(x),..., An(x) are linearly independent
for all z € €, we have u = v. O

Note that Proposition 3 (b) does not assume the differentiability of X.
We next show that matrices in a level set of ¢ is uniformly positive definite, which is a key
property for the level boundedness of the merit function proposed in Section 4.

Proposition 4 For a given v € R, let L4(y) = {U € S, |p(U) < ~}. Let I' be a bounded
subset of S¢. Then, there exists A > 0 such that Apin(U) > A for allU € Ls(y)NT

Proof. Suppose the contrary, that is, there exists a sequence {U;} C Ly4(y) N T such that
Amin(U;) = 0 as j — oo. Then

—IOg )\nlin(U]‘) — OQ. (28)

Since U; € L4(7), we have v > ¢(U;) = —logdet U; = — 327 log Ai(U;). Tt then follows from
(2.8) that there exists an index &k and an infinite subset J such that lim; . jes —log A\g(U;) =
—o0, that is, lim;_, jes A\k(U;) = co. However, this is contrary to the boundedness of {U;}.
Therefore, there exists A > 0 such that A\, (U) > A for all U € Ly(y) NT. O



2.3 The shifted perturbed KKT conditions for the nonlinear SDP

We first introduce optimality conditions for the nonlinear SDP (1.1). Let v = (z,y,Z). The
Lagrangian function L of (1.1) is given by

L(v) = f(z) — g(x) "y — (X(2), 2),

where y € R™ and Z € S? are the Lagrange multiplier vector and matrix for g(z) = 0 and
X (x) = 0, respectively. From (2.2), a gradient of the Lagrangian function L with respect to z
is given by

VL) = V(@) = J,(a) Ty — A'() 2.
The Karush-Kuhn-Tucker (KKT) conditions of (1.1) are written as

V.L(v) 0
gz) | =10 (2.9)
X(x)Z 0
and
X(z)=0, Z=o. (2.10)

Most of the solution methods for the nonlinear SDP is developed to find a point v = (z,y, Z)
that satisfies the KKT conditions. However, it is difficult to get such a point directly due to the
complementarity condition X (z)Z = 0 with X(x) > 0 and Z = 0. To overcome this difficulty,
the primal-dual interior point method proposed by Yamashita, Yabe and Harada [26] exploit
the following perturbed KKT conditions with a parameter u > 0.

V.L(v) 0
9(x) =0 (2.11)
X(x)Z — pl 0
and
X(z) >0, Z = 0. (2.12)

They [26] proposed the Newton type algorithm to get a point satisfying the perturbed KKT
conditions.
In this paper, we focus on the following shifted perturbed KKT conditions. For u > 0,

V.L(v) 0
g@)+py | =10 (2.13)
X(x)Z — pul 0
and
X(z) =0, Z = 0. (2.14)

The above shifted perturbed KKT conditions are derived by Forsgren and Gill [4] for the
nonlinear programming. In what follows, we call a point v satisfying the shifted perturbed
KKT conditions a shifted perturbed KKT point. Furthermore, we define a set YW C V by

W={(x,y,Z) eV | X(z) = 0,7 = 0}.

We call a point v € W an interior point.



3 A primal-dual interior point method based on the shifted
perturbed KKT conditions

In this section, we introduce a prototype of an interior point algorithm based on the shifted per-
turbed KKT conditions (2.13) and (2.14). Note that the prototype has been already proposed
in [10].

The primal-dual interior point method generates a sequence {v,} C R™ x R™ x S¢ such that
the point v, approximately satisfies the shifted perturbed KKT conditions (2.13) and (2.14)
with g = pp > 0, where {u} is a positive sequence such that p, — 0 (K — 00).

To construct a concrete algorithm, it is important to define the approximate shifted per-
turbed KKT point, and to provide a method for finding the approximate shifted perturbed
KK'T point.

We first give a concrete definition of the approximate shifted perturbed KKT point. To this
end, let

V. L(v)
rlosp) = | g(z) +py
X(z)Z — pl

Moreover, let

o= I Vel T )
plos ) = \/ It ||+ 1oz =
For a given € > 0, we define the approximate shifted perturbed KKT point as a point v satisfying
p(v; ) < eandwv € W. Note that p(v; ) = 0 and v € W if and only if v is the shifted perturbed
KKT point. Note also that p(v;0) =0, X(z) = 0 and Z > 0 if and only if v is an original KKT
point of the nonlinear SDP (1.1).

Now, we give the framework of the primal-dual interior point method.

Algorithm 1

Step 0. Let {ux} be a positive sequence such that p, — 0 as k — oo. Choose constants
o,e > 0. Set k= 0.

Step 1. Find an approximate shifted perturbed KKT point vgy1 with € = oy, that is, v, €
W such that p(vgi1; ) < opuy.

Step 2. If p(vi41;0) < e, then stop.

Step 3. Set k =k + 1 and go to Step 1. O

The following theorem gives conditions for the global convergence of Algorithm 1. It can
be proven in a way similar to [26, Theorem 1]. Thus, we omit the proof.
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Theorem 1 Suppose that the approximate shifted perturbed KKT point vgyq is found in Step
1 at every iteration. Moreover suppose that the sequence {xy} is bounded, and that the MFCQ
condition holds at any accumulation point of {xy}, i.e., for any accumulation point x* of {xy},
the matriz J,(x*) is of full rank and there exists a nonzero vector w € R™ such that

Jy(z*)w =0 and X(z")+ ZAZ(ZL’*) > 0.
i=1

Then, the sequences {yx} and {Zy} are bounded, and any accumulation point of {vy} satisfies
the KKT conditions (2.9) and (2.10). O

The theorem guarantees the global convergence if the approximate shifted perturbed KKT
point v, is found at each iteration. Thus it is important to present concrete algorithm that
finds the point. In the next section, we will propose a merit function for the shifted perturbed
KKT point and a Newton type algorithm for solving the unconstrained minimization problem
of the merit function.

4 Finding a shifted perturbed KKT point

In order to find the approximate shifted perturbed KKT point in Step 1 of Algorithm 1, we
may solve the following unconstrained minimization problem:

minimize  p(v; pu)?,

subject to v eV,

where recall that ¥V = R" x R™ x S?. Unfortunately, a stationary point of the problem is not
necessarily a shifted perturbed KKT point unless Vr(v; i) is invertible. In this section, we first
construct a differentiable merit function F' whose stationary point is a shifted perturbed KKT
point. Moreover, we show that a Newton direction for the nonlinear equations r(v;u) = 0 is
a descent direction of the merit function F. Next, we propose a Newton type algorithm for
solving the unconstrained minimization of the merit function F. Finally, we show that the
proposed algorithm finds a shifted perturbed KK'T point under some mild assumptions.

4.1 Merit function and its properties

We propose the following merit function F': WW — R for the shifted perturbed KKT point.
F(.Z',y, Z) = FBP(‘T) + VFPD(Q%Z/; Z)7

where v is a positive constant, and the functions Fgp : 2 = R and Fpp : W — R are
1
Fpp(z) = f(z) + ﬂllg(x)ll2 — plogdet X (z),

and
1

Fpo(e,y,2) = 5 llgle) + pyll* + (X (2), Z) — plog det X () det Z,
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respectively. The functions Fgp and Fpp are called the primal barrier penalty function and
the primal-dual barrier penalty function, respectively. Note that F' is convex with respect to x
when f is convex and g, X are linear. The merit function F' is an extension of that proposed
by Forsgren and Gill [4] for the nonlinear programming.

Remark 1 For the perturbed KKT conditions, Kato, Yabe and Yamashita [10] also proposed
the following merit function F : VW — R.

ﬁ(l.ay? Z) = FBP(x) + VﬁPD(%Z/, Z)a
where Fpp(w) is defined by

(X(2),2) + 122X (2) 2> — e
(det(X (2)Z)) 4

~ 1 L
Fpp(w,y,7) = 5llg(x) + py|* + log <

They showed that F has nice properties as the merit function F. However, F is more compli-
cated than F', and hence it might not be easy to implement the Newton type method based on F
in [10]. Furthermore, even if f is convex and g, X are linear, F' is not necessarily convezr with
respect to x.

In the rest of this subsection, we present some useful properties of the merit function F' such
as the differentiability, the equivalence between a stationary point of F' and a shifted perturbed
KKT point, and the level boundedness.

First of all, we present a concrete formula of the derivatives of the merit function F'.

Theorem 2 The merit function F is differentiable at w = (z,y,Z) € W. Moreover, its
derivative is given by

VFBP(J)) + VVIFPD(U))
VF(IU) = I/VprD(’LU) s
VVZFPD(U})

where

VFsp(x) = Vf(z) + %ngg(x) A (@) X (),

Y, Fop(w) = %Jg@mg(x) ) + A (@)(Z — pX ()7L,

VyFpp(w) = g(x) + py,
VZFPD(QU) = X(l‘) — [LZ_l.

Proof. By the definition of the merit function F', we have
VwF(w) = VFBP<$> -+ VV;EFPD(U)), VyF(w) = VVyFPD(’UJ), VZF(UJ) = VVZFPD(U)).

Thus, the derivative of F' is given by

VxF(w) VFBP([L‘) + vaFpD(w)
VF(w)=| V,Flw) | = vV, Fpp(w)
vZF1(71)> VVZFPD(U})
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By Proposition 3 (a), we obtain
VEpp() = Vf(z) + %ngg@ A (@)X (),
V., Fpp(w) = %Jg<x>T<g<x> ) + A ()2 - pX(2)7Y).

From [21, Section 5], we also get VzFpp(w) = X (2)—puZ . Moreover, V,Fpp(w) = g(z)+uy.
(]

Next, we show the equivalence between a stationary point of the merit function F' and a
shifted perturbed KKT point.

Theorem 3 A point w* € W is a stationary point of the merit function F if and only if w* is
a shifted perturbed KK'T point.

Proof. First, let w* = (z*,y*, Z*) € W be a stationary point of the merit function F. It then
follows from Theorem 2 that

V(") + 5 Jg(2%) T (29(2%) + py*) + A*(2*)(Z* = 2uX (2%)71) = 0, (4.1)
g(x*) +py* =0, X(z*)—pu(Z*)~' =0.
Thus we have

V.L(w*) = Vf(x*) = J,(z*) y* — A (") Z*
* 1 * * 1 * ([ k *\ —
= V(= )+pJg(fU ) g(z") — ;«4 (&)X (")
1 * * * * * * *\ —
= —;Jg(ﬂf ) (g(@") + py") = A (@) (2" = pX ("))
= 0,
where the second and third equalities follow from (4.2) and (4.1), respectively. Therefore, w*

is a shifted perturbed KKT point.
Conversely, let w* = (z*,y*, Z*) be a shifted perturbed KKT point. Then, we obtain that

V.L(w*) =V f(z*) — Jy(z*) Ty* — A*(2*) Z* = 0,
9(@) +py* =0, X(z*)Z* —pl =0.

13



It then follows from Theorem 2 that

VoF(w') = Vf(@®) + %Jg(ﬂﬂ*)@g(fﬂ*) +py") + AN (@) (2 = 2pX (7))

= V@) + %Jg(x*)Tg(x*) = pAT(2") X (27)

+ iJg(l’*)T(Q(l‘*) + ") + A (@) (2 — pX (27)7)
_ Vf(l’*> . Jg(I*)T * —.A*(LU*)Z*

+ %Jg(w*)T(g(fr*) + ") + A ()27 — pX (27)7)

V,Fw*) = g(a*)+py* =0,

VzF(w') = X(@")—u(Z)" = (X (@) (Z2") — pI)(Z°) " = 0.

Therefore, we have VF'(w*) = 0, that is, w* is a stationary point of F.

This theorem is an extension of [4, Lemma 3.1] for the nonlinear programming. From this
theorem, we can find an approximate shifted perturbed KKT point by solving the following

unconstrained minimization problem.

minimize F(w),
subject to w € W.

One of the sufficient conditions under which descent methods find a stationary point is that a
level set of the objective function is bounded. Thus, it is worth providing sufficient conditions
for the level boundedness of the merit function F'. For a given o € R, we define the level set

L(«) of F by
La)={weW | F(w) <a}.

We first give two lemmas.

Lemma 1 Let w = (x,y,Z) € W and p > 0. Then the following properties hold.

(a) (X(z),Z) — plogdet X (z)Z > du(1 —log u),

(b) Fpp(w) > du(1-log ). The equality holds if and only if g(x)+py = 0 and X (x)Z—pl = 0.

(c) lim Fpp(w)=o00 and lim  Fpp(w) = oc.
(X(x),2)10 (X(x),Z)to0

Proof. The properties (a), (b) and (c) directly follow from [26, Lemma 1].
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Lemma 2 Suppose that an infinite sequence {w; = (z;,y;, Z;)} is included in L(a). Suppose
also that the sequence {x;} is bounded. Then, the sequences {y;} and {Z;} are also bounded.
In addition, the sequences {X (x;)} and {Z;} are uniformly positive definite.

Proof. Since {z;} is bounded, the sequence {—logdet X (z;)} is bounded below. Thus, there
exists a real number M; such that

1 .
M1 S f(.fE]) + ZHQ(%)HZ — logdet X(.Z']) = FBp(xj) fOY all ] (44)

It then follows from w; € L£(a) and the definition of F' that

R I

Fen(w) = +(Fwy) ~ Fp(z;)) < (o~ My) for all j (4.5)

which can be rewritten as
1
ZHQ(%‘) +uyill? < =(a— M) —(X(x;), Z;) + plogdet X (x;) Z;

< —(a—=M)—du(l —logp),

RV =

where the last inequality follows from Lemma 1 (a). Hence, the sequence {y;} is bounded.
Next we show that {X(z;)} is uniformly positive definite. From Lemma 1 (b) and (4.4), we
have

M, < Fpp(z;) = F(w;) —vFpp(w;) < a —vFpp(w;) < a—du(l —logu) for all 7,

and hence the sequence {Fpp(z;)} is bounded. It then follows from the boundedness of {z;}

and Fpp(x;) = f(z;) + i“g(ﬁ,)”2 — plogdet X(z;) that {—logdet X (z;)} is also bounded.

From Proposition 4, the boundedness of {—logdet X(z;)} and {X(z;)} implies that {X(z,)}

is uniformly positive definite, that is, there exists A such that Ayin (X (z;)) > A > 0 for all j.
Next we show that {Z;} is bounded. From Lemma 1 (b) and (4.5), we have

R | =

du(l —logp) < Fpp(w;) < —(a— M) for all j,

and hence the sequence {Fpp(w;)} is bounded. It then follows from Lemma 1 (c) that
{(X(z;), Z;)} is bounded. Thus, there exists a real number M, such that for all j,

My > tr(X (25)Z5) 2 Min(X (2)))t0(Z;) > Atx(Z;) = A~ M(Z)) (4.6)

where the second inequality follows from [2, Proposition 8.4.13]. Since {Z,} is positive definite,
Mo(Z;) > 0for k=1,...,d. It then follows from (4.6) that {\;(Z;)} is bounded for k =1, ..., d,
and hence {Z;} is bounded.

Finally, we show that {Z,} is uniformly positive definite. Recall that

1
Fpp(w;) = ﬂ”g(%’) + py;|1* + (X (x5), Z;) — plog det X (x5) — plog det Z;;,
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and that the sequences {z;}, {y;}, {(X(z;), Z;) }, {—logdet X (z;)} and { Fpp(w;)} are bounded.
Therefore, {—logdet Z;} is also bounded. It then follows from Proposition 4 and the bound-
edness of {Z;} that {Z;} is uniformly positive definite. O

We now give sufficient conditions under which any level set of the merit function F' is
bounded.

Theorem 4 Suppose that the following four assumptions hold.

(i) The function f is convex;

(1i) The functions gy, ..., gm are affine;

(111) The function X satisfies X (Au+ (1 — A)v) — AX(u) — (1 = XN) X (v) = 0 for A € [0,1] and
u,v € €

(iv) The matrices Ai(x), ..., A,(z) are linearly independent for all x € Q;

(v) There exists a shifted perturbed KKT point.

Then, the level set L(«) of F is bounded for all o € R..

Proof. Let {(xk, yx, Zx)} be infinite sequence in L(«). We first show that the sequence {zy}
is bounded. In order to prove this by contradiction, we suppose that there exists a subset
Z C {0,1,...} such that limg_ oo kez ||2x]] = 0o0. Without loss of generality, we suppose that
|zk|| > 1 for all k£ € Z. From the assumption (v), there exists a shifted perturbed KKT point
w* = (*,y*, Z*). Let u: R™ — R"™ be defined by

w(zy) = — xk+<1 ! >x (47)

[l [l

Then, since [|x;]| > 1, we have

)| H1 +(1 1)*
U\ T = |7 Tk — i
EY B

which implies that the sequence {u(zy)}z is bounded. Therefore, there exists at least one
accumulation point of {u(zy)}z. Let u* be an accumulation point of {u(xy)}z. Then, there
exists a subset J C T such that limy_,o pes u(xy) = u*. From the definition (4.7) of u, we
obtain

1
<1+ (1 - ﬂ) |lz*|| < 1+ ||lz*|| forall k € Z,
Tk

__ ¥ _ * *
luan) — 2] = e — || | Nl = N2l | _ '1 L I 7
||l (E| (E|
and hence
*
|lu*— 2| = lim Ju(xg) =2 > lim |1-— "1l =1 (4.8)
k—oo,kET k—oo,k€T ||k ||

Since w* is the shifted perturbed KKT point, we have from Theorem 2 that
1

0=V.,L(w")=Vf(z")+ %Jg(x*)Tg(x*) - ;A*(x*)X(x*)_l = VFgp(z"). (4.9)
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Note that Fpp is strictly convex from Proposition 3 (c) and the assumptions (i)-(iv). It then
follows from (4.9) that z* is the unique global minimizer of Fgp. Thus, (4.8) implies that

0< FBP(U*) — FBP(JI*>. (410)

Let v« = Fpp(u(zy)) — Fpp(z*) and v* = Fpp(u*) — Fpp(x*). Note that v* is positive from
(4.10) and limy_,o ges & = 7. Therefore, for any € € (0,7*), there exists a positive integer kg
such that |y, —v*| < e for all k € J such that k > kg, which yields that

0<~" —e <y =Fpplu(zg)) — Fpp(z*) <y*+¢e forall k € J such that k > kq. (4.11)
By the definition of F' and Lemma 1 (b), we have
Fpp(xg) +vdu(l —logp) < Fpp(xg) + vEpp(wg) = F(wg) <« forall k € J,

which implies that
1
Fyp(xy) = fla) + ﬂHg(xk)y\? — plogdet X () < B forall k € 7, (4.12)

where § = o — vdu(1l — log pt). From the convexity of Fpp, we obtain
1 1
FBP(U(.Tk)) S —FBP(LEk) + <1 — —) FBP(LC*) for all k& € j,
e e

which means that

Fpp(z™) + (Fpp(u(zy)) — Fpp(x™)) ||zk|| < Fpp(xg) forall k € J. (4.13)
It then follows from (4.11), (4.12) and (4.13) that

Fpp(x™) 4+ (" —¢)||zk|| < Fpp(z™) + v&l|lzk|| < f for all k € J such that k > k.

Rearranging the above inequality, we have

B — Fpp(z*)

*

|z || < < oo forall k € J such that k > k.

The inequality contradicts ||zx|| — oo (k — o0). Hence, for any sequence {xy, y, Zr} C L(«),
the sequence {x} is bounded. Since {z}} is bounded and {F(w;)} is bounded above, it follows
from Lemma 2 that the sequences {y;} and {Z;} are also bounded. O

Due to Theorems 2-4, we can solve the unconstrained minimization problem (4.3) by any
descent method, such as the quasi-Newton method and the steepest descent method, and hence
get an approximate shifted perturbed KKT point v;; in Step 1 of Algorithm 1.

Remark 2 The level boundedness of the merit function for the nonlinear programming is not
given in the original paper [4]. Applying Theorem 4, it is easy to show that the merit function
M in [4}] is level bounded if the objective function f is convex, the constraint functions ¢; (i € &)
are affine, and rank(J.) = n.

Remark 3 Kato, Yabe and Yamashita [10] showed that their merit function Fis differentiable
and its stationary point is shifted perturbed KKT point. However, they did not present the level
boundedness of their merit function.
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4.2 Newton algorithm for minimization of the merit function

In this subsection, we propose a Newton type method for the unconstrained minimization
problem (4.3) of the merit function F'.

We exploit the scaling of X (z) and Z discussed in Subsection 2.1. Let T € R be a
nonsingular matrix such that

TX2)T'T-"ZT' =T""ZT7'TX(2)T". (4.14)
Let X(z) and Z be defined by

X(z) =TX(2)TT = (T o T)X(x),
Z=T"2T'=(T""oT )z,

respectively. Note that X (z) and Z commute, that is, X(2)Z = ZX(z) from (4.14). As
seen later, the scaling enables us to analyze and calculate a Newton direction easily. In the
subsequent discussions, for simplicity, we denote X (z) and X (x) by X and X, respectively.
Next, we give a Newton direction, and show that it is descent direction for the merit
function F. The Newton direction is derived from the nonlinear equations r(w;u) = 0 in the
shifted perturbed KKT conditions (2.13). However, the matrix AZ of a pure Newton direction
(Az, Ay, AZ) for r(w;pu) = 0 is not necessarily symmetric due to XZ — pul = 0. Thus, we
consider the following symmetrized shifted perturbed KKT conditions with the scaling.

V.L(w) 0
rs(w;p)= | gl@)+py | =0 (4.15)
XoZ—ul 0

and
X0, Zs0.

Note that X o Z — pul =0 is equivalent to XZ — pl = 0 if X and Z are symmetric positive
semidefinite [26]. Moreover, X (z) > 0 and Z > 0 if and only if X (z) > 0 and Z > 0. Therefore,
the symmetrized shifted perturbed KKT conditions (4.15) are essentially same as the original
shifted perturbed KKT conditions (2.13).

We apply the Newton method to the equation (4.15). Before we give a concrete Newton
equations, we provide a first order approximation of XoZ— ul at (x + Az, Z + AZ). From
Proposition 2 (a), it is written as

~ o~ 1 ~ 1 ~
XoZ—pl+5(Zo)(TOT)A@Ar+5(X© (T T oT "AZ (4.16)
Let AX be defined as

AX = z”: Ax;Ai(x) = A(z)Ax,

i=1
and let AX and AZ be the scaled matrices of AX and AZ with T, that is,

AX=TAXT  =(TOT)AX and AZ=T "AZT'=(T"ToT HAZ,

18



respectively. Then, the first order approximation (4.16) can be written as

foZ—uﬁ+;Z@DA§+;X@UAZ
1l o~ ~~ 1~ ~ 1~ ~ -
= 5(XZ+ ZX) = pl + S(ZAX + AXZ) + S (XAZ + AZX)

Consequently the Newton equations for the nonlinear equation (4.15) are written as

GAr — J (v)T Ay — A*(2)AZ = —V,.L(w), (4.17)
Jo(x)Az + pAy = —g(z) — py, (4.18)
IAX + AXZ + XAZ+NZX = 2ul — X7 — ZX, (4.19)

where G denotes a Hessian matrix of the Lagrangian function L with respect to x or its
approximation. In what follows, we call the solution Aw = (Ax,Ay, AZ) of the Newton
equations (4.17)—(4.19) the Newton direction.

Next, we give the explicit form of the Newton direction Aw. From (4.18), we have

Ay = —(9(e) + y + Jy()Aa), (4.20)

Moreover, since (X ® I)AZ = Y XAZ + AZX), (X 0 I)(pX ' — Z) = (2ul — ZX — X Z)
and (Z ® I)AX = %(ZA)? + AXZ), the equation (4.19) can be rewritten as

(XODAZ+(ZODAX = (XoD)(pX ' - 2) (4.21)

Since the matrix X is positive definite and the scaling matrix 7" is nonsingular, the matrix X =
TXT" is also positive definite. Therefore, the operator (X ® I) is invertible from Proposition
1 (a). Moreover, X ' = (TXTT) =T TX 1T~ = (T-T T )X 1. It then follows from
(4.21) that

AZ = (WX '=2)—(XoD) (Zol)AX
= TToT X '=2)—(Xo ) Zo)(ToT)Ax) Az,  (4.22)
where the last equality follows from the definition of the scale matrices Z and AX. Since
AZ =(T""OT - "AZ and (T-"T T~ ") =(TT ®T") from Proposition 1 (c), multiplying
both side of (4.22) by (T-" © T~ ")7! yields
AZ=pX"'~Z—-(T"oTHX o)™ MZoI)(TeT)A)A. (4.23)

Finally, we give the concrete form of Az. Substituting (4.20) and (4.23) into (4.17), we obtain

(G+H+i%®f%®oﬁx==—VJ@O—iM@Wﬂ@+uw+Aﬂ@wX1—2)
- —(Vf@>+%4mwwa»—uA%@x=ﬁ, (4.21)

where

H=A@)(TToT )X o)™ (Zo)(ToT)AR).
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Note that H is the linear operator from R" to R", and
Hu=A@)(TToT )X o) ™ (Zo)(ToT)A)u foral ue R™

From the definitions of A(x) and A*(x), the linear operator H is regarded as the matrix whose
(1,7)-th element is written as

Hy; = <Ai(:zc), TToT XD N ZoI)(Te T)Aj(x)> . (4.25)

Since J,(z)".J,(z) is positive semidefinite, we can solve the linear equation (4.24) with respect
to Az if G + H is positive definite. Fortunately, H is positive semidefinite as shown below.

Lemma 3 Suppose that X and Z are symmetric positive definite. Then, H is symmetric
positive semidefinite. Furthermore, if Ai(x), ..., An(z) are linearly independent for all x € R™,
then H is symmetric positive definite.

Proof. Since X is positive definite, the operator X @1 is invertible from Proposition 1 (a). Let
veR"and V = (X © 1) 1T ® T)A(x)u. Then, we have

(Hu,u)y =

S

A*(:v)(TT OTHX o) (Ze )T 6 T)A[)u, u>

Zo )T oT)A)u, (X o D) T e T).A(:c)u>

Zol X@I)V,V>

< oNE o DX o )T T)A@) (X0 DT T)A)u)
O, (4.26)

>

where the second equality follows from Proposition 1 (b) and the last inequality follows from
Proposition 2 (b). Therefore, H is positive semidefinite.
Next we show that H is symmetric. From (4.25), we have

Hy = (Af@).(TT o TX 0 D) (Z o 1)(T & T)A;x)

= tr(A@)TTOTHX o) (Zo )T oT)A;

( Xz
= a(TToTH(X o) (Zo )T 6T)A)

(z)
i()

A
TTOT WX o)™ MZo )T oT)A(x),Ai(r)

~— — ~— ~~_—7

)
TToTHXo)™MZo)(Xo DX oI)™ToT)Ax), Ai(x)
)

( (
( ( ) )
TToTHX 0N (KXo D(ZoNX o) T oT)Ak), A))
( (

I

TToT N Zo )X 6o I) (T oT)A,x), Ai(x)>
( )

Ai(@), (TToTHX o I)"™(Z o I)(T o T)A(x)

I
T

X
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where the sixth equality follows from Proposition 2 (c) and the eighth equality follows from
Proposition 1 (b).

Furthermore, suppose that A;(x),...,A,(z) are linearly independent for all x € R™ and
u# 0. Then, we have V = (X © I)™Y(T © T)A(z)u # 0. It follows from Proposition 2 (b) and
(4.26) that (Hu,u) > 0, i.e., H is positive definite. O

Remark 4 In the case of the linear SDP, Ai(x), ..., A,(z) are usually supposed to be linearly
independent for x € R"™. Then, H is positive definite from Lemma 3.

To sum up the above discussion, we give the concrete formulae of the Newton direction Aw
in the following theorem.

Theorem 5 Let > 0 and w = (z,y,Z) € W. Suppose that the matriz G+ H is positive def-
inite. Then, the Newton equations (4.17)—(4.19) have the unique solution Aw = (Az, Ay, AZ)
such that

. B L T o) — A () X
Az = —(G+H+;Jg(m) Jg(x)) (Vf(x)—i—MJg( ) g(x) — pA* ()X >,(4.27)

Ay = = (o) + - Jy(@)Aa),
AZ = pX'—Z—(T"oTHXoIl) ™ (Zo)(T6T)A)Ax.

Proof. It is clear that iJg(:L‘)TJg(x) is positive semidefinite. Thus, the positive definiteness of
G + H and (4.24) yield that

Azx = — (G + H + %Jg(x)TJg(:E)) B <Vf(a:) + %Jg(x)Tg(x) - ,uA*(m)X‘l) .

Furthermore, Ay and AZ directly follow from (4.20) and (4.23), respectively. O

One of the main burdens on the computations of the Newton direction Aw is the calculation
of the operator (X@[) in (4.23) and (4.25). Note that (X ®I)~" in (4.23) and (4.25) appears
as (X © 1)~ (Z@I) Hence when X = I, it is clear that (X ©® )™ *(Z® 1) = Z ® I. On the
other hand, when X = Z, (X 1)~ (Z ® I) is the identity mapping. Thus, if we choose the
scaling matrix T such that X = I or X = Z we do not have to explicitly handle the operator
()~( ® I)~1. This is one of the reasons why we exploit the scaling. Note that the choices of T
such that X = I or X = Z is well-known as HRVW /KSH/M direction or NT direction.

(i) HRVW /KSH/M choice

Let T = X 2. Then we have X = I and Z = X2 ZX2. This choice corresponds to the dual
HRVW /KSH/M choice for the linear SDP [6, 12, 13].
(ii) NT choice

Let T = W™z, where W = X32(X2ZX2)"2Xz. Then we have X = W 2XW™2 =
Wz2ZW?z = Z. This choice corresponds to the NT choice for the linear SDP [14, 15].

Next, we show that the Newton direction is a descent direction for the merit function F.
For this purpose, we first show the following two lemmas.
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Lemma 4 Let u > 0 and w = (x,y, Z) € W. Suppose that G + H is positive definite. Let Ax
be given by (4.27). Then we have

1
VEgp(z) Az = —Az" (G + H + ;Jg(a:)TJg(:v)) Az <0.

Furthermore, V Fgp(z)" Az = 0 if and only if Az = 0.

Proof. We easily see that G+H +/%Jg(:z:)TJg(x) is positive definite from the positive definiteness
of G+H. Since VFgp(z) = Vf(z)+ iJg(a:)Tg(x) —pA* () X~ from Theorem 2, it then follows
from (4.24) that

VEgp(z) Az = Az’ (Vf(x) + iJg(x)Tg(x) - ,uA*(x)Xl)
T 1 T
= —Ax (G + H + ;Jg(:c) Jg(:c)> Az
< 0.

Furthermore, since G + H + iJg(I)TJg(:c) is positive definite, VFpp(z)" Az = 0 if and only if
Az = 0. O

Lemma 5 Let u >0 and w = (z,y,Z) € W. Let Aw = (Azx, Ay, AZ) be given in Theorem 5.
Then we have

(VEpp(w), Aw) = —ng(w) +pyll” = [(X2) "2 (ul = XZ)|[% < 0.

Furthermore, (VFpp(w), Aw) = 0 if and only if g(z) + py =0 and XZ — pul = 0.
Proof. From Theorem 2, we obtain

<VFPD(U))7 AU)> = (VprD(w), AI> —|— (VprD(w), Ay> —|— <VszD(w), AZ>
— AT @) (gle) + ) + AT A ()2~ X )
+(g(x) + py) " Ay + <X —uZ 1, AZ> . (4.28)

On the other hand, we have from the definitions of A*(z) and AX that
Ar' A" (2)(Z — puX7Y) = Z Ax; (Ai(x), Z — pX )
i=1

— <i Ax;Ay(x), Z — uX1>

= (A(x)Az,Z —pX ")
= (AX,Z —pX ). (4.29)
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From Proposition 1 (c¢) and (b), we have
(AX,Z —pX") = (ToT) (ToTAX,Z—pX ™)
= (I"oTHTOT)AX,Z — pnX1)
= (TODAX, (T "oT ") Z-pX)).

Moreover since X' = (T @ T)X)™! = (TXTT) " = T "X T = (T T 0T T)X!
further have

, we

(AX,Z=pX7Y) = (AX,Z-pX )
- <A)~(, (I - MX—12—1)2>
= t(AX( —pX"'Z7)Z)
= tr(([ — pX'ZHYZAX). (4.30)
Since X and Z commute, X ! and Z~! also commute. Then we get
tr((I — pX'Z7NZAX) = w(Z(I - pZ ' X HAX)
tr(Z(I — pX ' Z " HAX)
= tr((I — pX'ZHAXZ). (4.31)
From (4.30) and (4.31), we obtain

(AX,Z —pX71) = %m«(([ —pX'ZZAX) + %u«(([ —pX'ZAX Z)
= L(1-pX 7 28X 4 L (1-pX 7 ARZ) . (432)
Note that (X —uZ ', AZ) = (AZ, X — pZ~'). In a way similar to prove (4.32), we also have
(X —pz7 ' AZ) = % <1 X171 XAZ> ; <1 X1z, AZ}?> . (4.33)

From (4.28), (4.29), (4.32) and

—~

4.33), we obtain

(VEpp(w), Aw) = —(g(x) + py) " (Jy(z) Az + plAy)

==

1 SO SN -
+5 <1 —uX'Z7 ZAX + AXZ + XAZ + AZX> . (4.34)

Note that since X and Z are symmetric positive definite and commute, X7 is symmetric
i 1

positive definite, and hence there exists (X Z)~2. Then, by substituting (4.18) and (4.19) into

(4.34), we have

1 -~ .
(VEpp(w), Aw) = ——lg(x) + py|® + <I — X777l — XZ>

= —lla@) + l? = (2 (u1 = Z2K).01 - XZ)

~—llate) + ol = ((XZ)H(uf = X2).(X2) 4 (u1 = X2))

1 — .
= l9(@) +uyl® = (XZ) 72 (ul = X Z) |5
0,

IA
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where the third equality follows from the commutativity of X and Z. Moreover, it is clear that
(VFpp(w), Aw) = 0 if and only if g(z) + py = 0 and XZ — ul = 0. O

Now, we show that the Newton direction Aw is the descent direction for the merit function
F.

Theorem 6 Let >0 and w = (z,y,Z) € W. Assume that G+ H is positive definite. Then,
Aw = (Ax, Ay, AZ) be given in Theorem 5 is a descent direction for the merit function F,
1.€.,

(VFw), Aw) = —AxT (G L H+ %Jg(x)TJg(x)> Az

v ~~ 1 ~ ~
- ;Hg(fv) +uyll? = vl[(X2) 72 (ul = X Z)|%
< 0.

Furthermore, (VF(w), Aw) = 0 if and only if w is a shifted perturbed KKT point.
Proof. From Lemmas 4 and 5, we have
(VF(w),Aw) = VEFgp(z) Az + v (VEpp(w), Aw)
= Az’ (G + H + iJg(x)TJg(x)> Az
= loG) + pylP = vI(X2) " (ul = XZ)
< 0. (4.35)

Now, we show the second part of this theorem. Suppose that w is a shifted perturbed KKT
point, i.e., Vf(x) — J,(z) 'y — A*(x)Z = 0,9(x) + py = 0 and XZ — uI = 0. Then we have

V() + iJg(fC)Tg(SU) — p A (@)X = V(@) = Jy(x) 'y — A"(2)Z = 0.

It then follows from (4.27) that Az = 0. Moreover, we have (VF(w), Aw) = 0 from (4.35).

Conversely, suppose that (VF(w), Aw) = 0. Since it follows from Lemmas 4 and 5 that
VFgp(x)"Axr < 0and (VEFpp(w), Aw) < 0, we have VEgp(2)" Az = 0 and (VFpp(w), Aw) =
0. It further follows from Lemmas 4 and 5 that Az = 0, g(z) +py = 0 and XZ — ul = 0. Then
we have from (4.27) that

VoL(w) =V f(z) = Jy(z)"y — A*(2)Z = V[(z) + %Jg(x)Tg(x) — pA (D)X =0.

Thus, w is a shifted perturbed KKT point. O

Theorem 6 guarantees that F'(w + aAw) < F(w) for sufficiently small o > 0 if w is not a
shifted perturbed KKT point.
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Now, we discuss how to choose an appropriate step size « such that F(w + aAw) < F(w).
Since the merit function F' and the Newton equations (4.17)—(4.19) are well-defined only on W.
Therefore, the new point w + aAw is required to be an interior point. Thus, we must choose
the step size a € (0,1] such that X (z + aAz) = 0 and Z + aAZ > 0. To this end, we first
calculate

- T 1 if )\min(X_%AXX_%) <0
dl’ - Amin(X_gAXX_?)
1 otherwise
and
- I I if Amin(Z_%AZZ_%) <0
o, = Amin(Z72AZZ72)
1 otherwise,

where 7 € (0,1) is a given constant. Set
a = min{l, a,, a.}. (4.36)

Then Z + aAZ = 0 for any a € (0,a]. Moreover, X (z + aAz) > 0 for any o € (0,a] if X
is linear. Note that if X is nonlinear, X (z + aAx) is not necessarily positive definite for any
a € (0,a].

Next we choose a step size a € (0, @] such that F(w + aAw) < F(w) and X (z + aAz) > 0.
For this purpose, we adopt the following Armijo’s line search rule: Find the smallest nonnegative
integer [ such that

F(w+ af'Aw) < F(w) + eoaf (VF(w), Aw) ,
X(x+ap'Az) =0

and set a = @', where 3,&q € (0,1). Note that the second condition is not necessary when X
is linear.

Now, we describe a concrete Newton type method for Step 1 of Algorithm 1. Recall that
the script k denotes the k-th iteration of Algorithm 1.

Algorithm 2 (for Step 2 of Algorithm 1)
Step 0. Choose 3,9, 7 € (0,1) and set j = 0 and wy = vg.
Step 1. If p(w;, k) < o, then set v, = w; and return.

Step 2. Obtain the Newton direction Aw; = (Az;, Ay;, AZ;) by solving the Newton equations
(4.17)—(4.19).

Step 3. Set a; = @;3%, where a; is given by (4.36) and ; is the smallest nonnegative integer
such that

F(w; + a; 85 Aw;) < F(w;) + g0a; 8 (VF(w;), Awy)
X(l’j =+ @jﬁleiCj) > O

Step 4. Set wj1; = w; + a;Aw; and j = j + 1, and go to Step 1.
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4.3 Global convergence of Algorithm 2

In this subsection, we prove the global convergence of Algorithm 2. For this purpose, we make
the following assumptions.

Assumptions

(A1) The functions f,gi,..., g, and X are twice continuously differentiable.
(A2) The sequence {x;} generated by Algorithm 2 remains in some compact set {2 of R™.

(A3) The matrix G; + H; + iJg(xj)TJg(xj) is uniformly positive definite and the sequence
{G;} is bounded.

(A4) The sequences {7} and {Tj_l} are bounded.

Note that Assumption (A2) holds under the assumptions of Theorem 4. Assumption (A3)
guarantees that the Newton equations (4.17)—(4.19) have an unique solution.

Remark 5 Assumptions (A1)-(A3) hold for the linear SDP such that Ai(z;),. .., An(x;) are
linearly independent. In fact, it is clear that Assumption (A1) holds. Theorem j guarantees
that Assumption (A2) holds. Moreover H; is positive definite from Remark 4 and G; = 0.
Thus, Assumption (A3) holds.

Remark 6 Yamashita, Yabe and Harada [26] showed that their Newton type algorithm globally
converges to a perturbed KKT point satisfying (2.11) and (2.12) under the boundedness of the
sequence {y;} in addition to Assumptions (A1)-(A4). However they do not give sufficient
conditions for the boundedness of {y;}.

Remark 7 Kato, Yabe and Yamashita [10] also showed that the Newton type algorithm with
the merit function F' can find a shifted perturbed KKT point under the same assumptions.
However, there do not give concrete sufficient conditions for Assumption (A2).

First of all, we show that the sequence {w;} generated by Algorithm 2 is bounded.
Lemma 6 Suppose that Assumptions (A2) holds. Then, the sequence {w; = (z;,y;, Z;)} gen-

erated by Algorithm 2 is bounded. Furthermore, the matrices {X;} and {Z;} are uniformly
positive definite.

Proof. Since the sequence {F'(w;)} is monotonically decreasing, we have F'(w;) < F'(wy) for all
j. It then follows from Assumption (A2) and Lemma 2 that we have the desired results. O

Note that the above lemma guarantees that Assumption (A4) holds if the scaling matrix T’
is given by HRVW /KSH/M choice or NT choice.

Lemma 7 Suppose that Assumptions (A2)-(A4) hold. Then, the sequence {Aw;} generated
by Algorithm 2 is bounded.
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Proof. 1t follows from Assumptions (A2)—-(A4), Lemma 6 and Theorem 5 that the sequence
{Aw;} generated by Algorithm 2 is bounded. O

We now show the global convergence of Algorithm 2. Here, we suppose that Algorithm 2
generates an infinite sequence and w; is not shifted perturbed KKT point for all j.

Theorem 7 Suppose that Assumptions (A1)-(A4) hold. Then, the sequence {w; = (x;,y,, Z;)}
generated by Algorithm 2 has an accumulation point w* = (z*,y*, Z*). Moreover, the accumu-
lation point w* is a shifted perturbed KK'T point.

Proof. Since the sequence {w;} is bounded from Lemma 6, it has at least one accumulation
point w*.

Next, we prove that w* is a shifted perturbed KKT point. To this end, we first show that
the sequence {a;} given in Step 3 of Algorithm 2 is away from zero, that is, there exists a real
number @ such that 0 < & < &; for all j. Note that from Lemmas 6 and 7, the sequences {X;},
{Z;}, {AX,} and {AZ;} are bounded. Moreover the matrices {X;} and {Z,} are uniformly

1 1 1

positive definite. Hence, the sequence {Amin(X;%AXijﬁ)} and {A\nin(Z; *AZ;Z; )} are also
bounded. It then follows from the definition of &; that there exists a real number & such that
0 <a < a;j forall j.
Next, we show (VF(w;), Aw;) — 0 as j — oco. From the Armijo’s line search strategy in
Step 3, we have
Fwjs) = F(wy) < e0a; 8 (VF (w;), Awy)
X(]?j + O_éjBZjA.Tj) = 0.

Summing up the above inequality from 7 =1 to j = }, we have

F(ws,,) — F(w) <eo Y a8 (VF(w;), Aw).

Jj=1

It then follows from (VF(w,), Aw;) <0 from Theorem 6 and & < &; that

F(ws, ) — F(w) < g0a Y B9 (VF(w;), Awy).

j=1
Since the sequence {w;} is bounded, the sequence {F(w;)} is also bounded, and hence
—00 < Zﬂli (VF(w;), Aw;) <O0.
j=1
Therefore, we have

lim 8% (VF(w;), Aw;) = 0.

J—00

Now we consider two cases: liminf; B4 >0 and lim inf; o0 Bl = 0.
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Case 1 : liminf; ,o, 8% > 0. Then, we have

lim (VF(w,), Aw;) = 0.

J]—00

Case 2 : liminf; ,, 8% = 0. In this case, there exists a subset J C {0,1,---} such that
lim; o0 jes lj = 00. Since {X(x;)} is uniformly positive definite and {Ax;} is bounded,
there exists [ such that X (z; + @;8'Ax;) = 0 for all [ > [. Therefore, without loss of
generality, we suppose that X (z; + a;8% 'Ax;) = 0 for all j € J. Furthermore, since
l[; — 1 does not satisfy the Armijo rule in Step 3, we have

E()tj <VF<ZU]), A’ZUJ> < F(lU] + tjA'LUj) — F(UJ]'),

where t; = @;8% 1. Let h(t) = F(w; + tAw;). It then follows from the mean value
theorem for h that there exists 6; € (0,1) such that
€0tj <VF(U)]), Aw]> < F(U}] + tjij) — F(w])
= h(t;) = h(0)
= t;h'(0;t;)
= 1 (VF(w; + 0t} Aw;), Awy)
which yields that

0 < (g0 — 1) (VF(w;), Aw;) (VF(w; + 0;t;Aw;) — VF(w;), Aw;)

<
< I VF(w; + 0;t;Aw;) — VE(w))||||Awyl|, (4.37)

where the last inequality follows from the Cauchy-Schwarz inequality. Since {w;} and
{Aw,} are bounded and lim;_,, jest; = 0, we have from Assumption (Al)

j—oo,jeT
It then follows from (4.37) that

lim (VF(w;),Aw;) = 0.

j—00,j€T
From both cases, we can conclude that

lim (VF(w;), Aw;) = 0. (4.38)

Jj—00

From the boundedness of {w;} and Assumptions (A3) and (A4), there exists a subset K C
{0,1,...} such that

lim  w; =w", lim G, =G7, lim T;=T".
j—00,jEK j—o0,jEK j—o0,jeX

Moreover from (2.1), the sequences {T; ® T;}x and {T;" © T, }x converge to T* ® T* and
(T*)T ® (T*)7, respectively. Then we have from (4.25) that

j—o00,jEK
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Note that the matrix G* + H* + %Jg(x*)TJg(a:*) is positive definite from Assumption (A3). It
then follows from (4.27) that the subsequence {Az;}x converges to Az*, where

-1

At = — (G* L4 %Jg(x*)wgw)) <Vf(x*) + iJg(x*)Tg(x*) _ uA*(a:*)X(x*)l) |

Similarly, {Ay; }c and {AZ;}x converge to Ay* and AZ*, where

* 1 * * * *
Ay = —;(g(:c )+ pyt + Jy () Ax"),

AZY = pX(@) ' =2 = (T o (T (X (@) 0 )N Z* o I)(T* © T*)A(z*)Az*,
and Z* = ((T*)"T ® (T*)~T)Z*. It then follows from (4.38) that
(VF(w"), Aw*) = 0.
Then, from Theorem 6, we have
V.L(w*) =0, g(@*)+py* =0 and X(2")Z" —pl =0,

which means that w* is a shifted perturbed KKT point. O

5 Numerical experiments

In this section, we report some numerical experiments for the proposed algorithm (Algorithm
1 with Algorithm 2). We compare the proposed algorithm with the interior point method [26]
based on the perturbed KKT conditions. We present the number of iterations and the CPU
time of both algorithms. The programs are written in MATLAB R2010a and run on a machine
with an Intel Core i7 920 2.67GHz CPU and 3.00GB RAM. The parameter p; used in the both
algorithms is updated by g1 = py/10 with pg = 0.1. Moreover, we exploit the approximate
Hessian G}, updated by the Levenberg-Marquardt type algorithm [26, Remark 3]. We adopt
the scaling matrix T'= X ’%, and use the following parameters.

M,=35 v=10, 7=0.95,
B =095 &5 =0.50.

We solved the following four test problems used in [26] from the initial points indicated in [26].

Gaussian channel capacity problem:
e LS st
minimize = 0 i)

25 °

1 n
subject to - ZX“ S P, Xu Z O, tz Z O,
n

=1

= =1,...
{ Vi aiXii+ri:| =0, (=1,
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where the decision variables are X;; and t; for ¢ = 1,...,n. In the experiment, the constants
r; and a; for i = 1,...,n are randomly chosen from the interval [0, 1], and P is set to 1. Note
that the objective function of the problem is nonconvex and the constraint functions are linear.

Minimization of the minimal eigenvalue problem:

minimize tr(I1M (q)),

subject to  tr(Il) = 1,
11> 0,
q€Q,

where ) C RP, and M is a function from RP to S™, and decision variables are ¢ € R?
and I € S". In the experiment, p is set to 2, and the function M is given by M(q) =
q1q2 My + gy Mo + qo M3, where My, My, M3 € S™ are given constant matrices whose elements are
randomly chosen from the interval [—1,1]. The constraint region @ is set to [—1, 1] x [—1,1].
Note that the objective function is nonconvex and the constraint functions are linear.

Nearest correlation matrix problem:

. 1 2
migimize o [|X — Allp,

subject to X > €l
Xii: 1, (Z: 1,...,’)7,),

where A € S™ is a given constant matrix, and € € R is a given constant. Note that X > €/ is
equivalent to X — el = 0. In the experiment, elements of the matrix A are randomly chosen
from the interval [—1,1] with A;; = 1 for i = 1,...,n. Moreover, we set ¢ = 1073. Note that the
objective function is quadratic and the constraint functions are linear. Therefore, the problem
is convex.

Static output feedback (SOF) problem:

minimize tr(X),
subjectto P > 0,
F(Q)P+PF(Q)"+DD" =0,

X GQ)P

ra" P |7

where X € S"=*"= P € S"*" and ) € R™*™ are decision variables, and the functions F
and G are defined by

F(Q)=A+MQC and G(Q) =B+ NQC.

Moreover, the matrices A € R"™*" B € R"*" (' € R " D € R"*™ M € R"*"
and N € R™*™ are given constant matrices, and the elements of these matrices are randomly
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Table 1: Gaussian channel capacity problem

Table

Algorithm 1 SDPIP
n iteration time(s) iteration time(s)
) 19 0.37 19 0.42
10 17 1.82 17 1.78
15 22 9.52 21 8.41
20 22 28.82 21 28.03
25 39 129.14 36 130.51
30 29 196.47 24 181.20
35 31 443.46 27 388.13
40 32 848.94 27 785.54
2: Minimization of the minimal eigenvalue problem

Algorithm 1 SDPIP
n iteration time(s) iteration  time(s)
) 6 0.23 9 0.28
10 7 1.16 10 1.60
15 7 7.19 10 10.09
20 8 39.03 10 46.88
25 8 108.23 11 162.18
30 8 241.76 14 443.60
35 8 560.41 16 1161.47
40 10 1289.72 16 2092.33

Table 3: Nearest correlation matrix problem

Algorithm 1 SDPIP
n iteration time(s) iteration time(s)
5 8 0.13 9 0.15
10 8 1.52 10 1.79
15 10 10.33 11 11.02
20 11 37.47 12 40.68
25 10 151.93 11 180.84
30 9 307.40 10 328.88
35 11 875.31 11 872.60
40 11 1503.82 11 1461.04
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Table 4: SOF-H, problem

Algorithm 1 SDPIP
Problem n iteration time(s) iteration  time(s)
AC1 27 191 6.14 191 6.10
AC2 39 142 9.32 142 9.28
AC3 38 162 10.30 162 10.19
AC6 64 182 51.16 182 52.25
AC17 22 11 0.27 11 0.28
HE1 15 12 0.19 12 0.19
HE2 24 22 0.60 22 0.60
HE3 115 245 223.74 245 223.52
REA1 26 98 2.88 98 2.90
DIS1 88 257 127.47 257 127.95
DIS2 16 10 0.21 10 0.17
DIS3 o8 99 14.85 99 15.41
DIS4 66 16 3.05 16 3.34
AC4 13 o4 0.80 o4 0.78
BDT1 96 145 96.54 145 102.84
MFP 26 167 4.90 167 4.91
EB1 59 9 2.24 9 2.37
NN15 20 13 0.27 13 0.28
PSM 49 87 11.29 87 11.27
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chosen from the interval [0, 1]. Since the objective function is linear and the constraint functions
are nonconvex, the problem is nonconvex.

For the termination criteria, we set ¢ = 1.0e — 4 for Gaussian channel capacity problem,
Minimization of the minimal eigenvalue problem and Nearest correlation matrix problem, and
e = 1.0e — 3 for SOF-H, problem.

We show the numerical results in Tables 1-4. In these tables, SDPIP denotes the interior
point algorithm in [26]. From Tables 1-4, we see that Algorithm 1 is competitive to SDPIP.

6 Concluding remarks

In this paper, we have proposed the new merit function F' for the shifted perturbed KKT
conditions. We have shown the properties of the merit function. In particular, we gave the
level boundedness of the merit function F', which is not given in other related papers for the
nonlinear SDP. Moreover, we have proposed the Newton type method (Algorithm 2) to find
an approximate shifted perturbed KKT point. We further have proved the global convergence
under weaker assumptions than those in [26]. In the numerical experiments, we have shown
that Algorithm 1 is competitive to Algorithm SDPIP.

As future research, it is worth to show that Algorithm 1 converges superlinearly under
appropriate conditions.
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