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Abstract: The fact that every plane embedding γ of a simple graph G admits a
straight-line plane drawing D is known as Fary’s theorem. The result has been extended
to the class of 1-planar graphs by Thomassen by identifying two kinds of forbidden con-
figurations, a topological characterization of all 1-plane embeddings γ that do not admit
straight-line 1-plane drawings. In this paper, we first consider the classical problem set-
ting which asks whether a given embedding γ admits a straight-line drawing D with the
same planarization of γ, and show that there is a 3-plane and quasi-plane embedding
that admits no straight-line drawing and cannot be characterized by a natural extension
of forbidden configurations either. We next formulate a slightly relaxed problem setting
which asks whether a given embedding γ of a graph G admits a straight-line drawing
D under the same “frame,” which is defined by a fixed biconnected plane spanning
subgraph of G. We prove that a given embedding admits a straight-line drawing under
the same frame if and only if it contains none of our forbidden configurations. One
of our consequences is that if a given embedding is quasi-plane and its crossing-free
edges induce a biconnected spanning subgraph, then its straight-line drawability (in the
classical sense) can be checked by our forbidden configurations in polynomial time. Our
result also implies several previously known results on straight-line drawings such as
the convex-drawability of biconnected plane graphs.

Key words. Straight-line Drawing, Planar Graphs, Connectivity, Edge Crossing,
Embedding, Convex Drawing, Polynomial Algorithm

1 Introduction

Graph drawing has attracted much attention due to its wide range of applications, such as VLSI
design, social networks, software engineering and bioinformatics. Straight-line drawing of planar or
non-planar graphs in the plane is one of the most fundamental problem issues among many kinds
of two or three dimensional drawings of graphs under a variety of aesthetics and edge represen-
tations [2, 16, 18]. In this paper, we consider straight-line drawings of graphs embedded in the
plane.

Throughout the paper, a graph G = (V,E) stands for a simple undirected graph. A drawing
D of a graph G is a geometric representation of the graph in the plane, such that each vertex
of G is mapped to a point in the plane, and each edge of G is drawn as a curve. In this paper,
we consider only the following “proper” drawings: (i) each edge contains no vertex other than its
endpoints; (ii) no edge crosses itself; (iii) no two edges meet tangentially; and (iv) no three edges
share a crossing. In particular, if every edge is drawn as a straight-line segment, then the drawing
is called a straight-line drawing. A drawing is called a k-plane drawing (k-plane graph) if each edge
has at most k crossings on it. A 0-plane drawing is called a plane drawing. A drawing is called
quasi-plane if it does not contain three pairwise crossing edges.

1Technical report 2013-005, August 9, 2013.
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It is known that every plane embedding admits a straight-line drawing [9, 21, 26]. There are
algorithms for constructing straight-line drawings of planar graphs under various drawing aesthetics
(e.g., [2, 16, 18]).

One direction of extending the idea of straight-line drawings is to force outer/inner facial cycles
to be drawn as convex polygons, if possible. A straight-line drawing is called a convex drawing if
every facial cycle is drawn as a convex polygon. Tutte [25] showed that every triconnected plane
graph admits a convex drawing for any given boundary drawn as a convex polygon. The result
has been generalized by Hong and Nagamochi [13] so that every triconnected plane graph with a
fixed star-shaped polygon boundary has an inner-convex drawing, i.e., a drawing in which every
inner face is drawn as a convex polygon (see Theorem 21 in Section 11). Also Thomassen [24]
gave a necessary and sufficient condition for a biconnected plane graph with a prescribed convex
boundary to have a convex drawing. The result has been extended by Hong and Nagamochi [12]
who gave a necessary and sufficient condition for a biconnected plane graph with a prescribed
convex boundary and a set A of corners to have a straight-line drawing with inner faces drawn by
star-shaped polygons whose concave corners are allowed to be chosen only from A (see Theorem 13
in Section 7).

Another direction of extending the idea of straight-line drawings is to deal with non-planar
graphs allowing edge-crossings in their straight-line drawings. More recently, the mathematical
structure of “almost” planar graphs have been investigated. Ringel [20] first considered 1-planar
graphs. Subsequently, the structure of 1-planar graphs has been investigated [4, 5, 8, 15, 19, 22].
Pach and Toth [19] proved that a 1-plane graph with n vertices has at most 4n − 8 edges as a
tight bound. Korzhik and Mohar [17] proved that testing whether a given graph admits a 1-plane
embedding is NP-hard. However, there is a linear time algorithm for testing maximal 1-planarity
of a graph, if a rotation system (i.e., the circular ordering of edges for each vertex) is given [6]. For
straight-line drawability of 1-plane graphs, Eggleton [7] conjectured and Thomassen [23] showed
that a given 1-plane embedding admits a straight-line drawing if and only if it does not contain any
of the two embeddings of graphs, called the B- and W-configurations, shown in Fig. 1(a) and (b).
Recently, Hong et al. [11] gave a linear-time algorithm for testing if a given 1-plane graph contains
such configurations or not and for constructing a straight-line drawing of it (if any). They also
showed that the exponential lower bound on the drawing area of straight-line drawings of 1-plane
embeddings.

In this paper, we first introduce a set of embeddings of some graphs as forbidden configurations
so that no embedding containing one of such configurations admits a straight-line drawing. Our
forbidden configurations are a natural extension of the B- and W-configurations, as shown in
Fig. 1(c) and (d). We next show that there exists an example of embeddings that admits no
straight-line drawing and also contains none of the forbidden configurations. We then show that
any instance of straight-line drawing problem can be reduced to a 3-plane and quasi-plane instance
without changing the straight-line drawability. This would suggest that assuming quasi-planarity
on instances does not make the problem easy enough to solve via characterization with forbidden
configurations. We then formulate a slightly relaxed problem setting which asks whether a given
embedding of a graph G admits a straight-line drawing under the same “frame,” which is defined
by a set of crossing-free edges which induces a biconnected spanning subgraph of G. We prove that

Figure 1: (a) B-configuration and (b) W-configuration, the two forbidden configurations for PSL-
drawability of 1-plane graphs; (c) a self-closing chain; and (d) a zipped-chain (S, S′).
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a given embedding admits a straight-line drawing under the same frame if and only if it contains
none of our forbidden configurations. One of our consequences is that if a given embedding is
quasi-plane and its crossing-free edges induces a biconnected spanning subgraph, then its straight-
line drawability (in the classical sense) can be tested by our forbidden configurations in polynomial
time. This extends the characterization of straight-line-drawable 1-plane embeddings [23] to a
wider class of embeddings. Another consequence is that our result also implies several previously
known results on straight-line drawings such as the convex-drawability of biconnected plane graphs
[12, 24]. Thus the above two directions of extending straight-line drawings of plane embeddings
meet again in this paper.

This paper is organized as follows. In Section 2, we review basic terminology on plane graphs
and embeddings of graphs, and extend the notion of convex polygons to “pseudo-convex” polygons.
In Section 3, we define a collection of forbidden configurations, as a natural extension of the B- and
W-configurations. In Section 4, we present some examples of embeddings of graphs that cannot
be drawn with straight-line segments but do not contain any of our forbidden configurations, even
in the case of 3-plane and quasi-plane embeddings. In Section 5, we newly formulate a problem
of finding straight-line drawings from given embeddings in a slightly relaxed setting, for which the
set of instances that do not have straight-line drawings are now completely characterized by our
collection of forbidden configurations. Section 6 collects examples of embeddings which illustrate
some of the new notions and properties on straight-line drawability. Section 7 demonstrates how
our main result (Theorem 10) can imply some of the previous results on straight-line drawings.
Section 8 gives some procedures of replacing some edges in polygons in a straight-line drawing
with convex/concave links. In Section 9, we give a sketch of our constructive proof for the main
result, which can be implemented to run in polynomial time. Section 10 collects some technical
lemmas on forbidden subgraphs which will be used to establish the correctness of reductions of
instances to prove Theorem 10. Section 12 designs a reduction procedure for P-nodes in the
SPQR-tree. Section 13 designs a procedure for drawing the subgraphs (called cactus instances) for
S-nodes without considering any edges coming from the outside. Section 14 establishes a reduction
procedure for S-nodes by combining with the procedure for cactus instances. Section 15 gives
a reduction procedure for R-nodes in the SPQR-tree, which completes a constructive proof for
Theorem 10. In Section 16, we make some concluding remarks.

2 Preliminary

2.1 Pseudo-convex Polygons

For two distinct points p and p′ in the plane, let L[p, p′] denote the straight-line segment (segment,
for short) with endpoints p and p′, and L⟨p, p′⟩ denote the straight-line (with no endpoints) passing
through p and p′. When we place a vertex v of a graph on a point p in the plane, the point p may
be simply denoted by v for a notational convenience.

A simple polygon P is denoted by a closed sequence of points P = (p1, p2, . . . , pn) in the plane,
where the boundary of P has no self-intersection and is formed by a concatenation of segments
L[p1, p2], L[p2, p3], . . ., L[pn−1, pn] and L[pn, p1]. A corner at a point pi of polygon P is called
convex (resp., concave and flat) if its interior angle is less than π (resp., larger than π and equal
to π). Every polygon has at least three convex corners. A polygon is called convex if each of the
corners is convex or flat. A subsequence (pi, pi+1, . . . , pj) of the closed sequence of points around
a polygon is called a concave link (resp., convex link) if the corners of pi and pj are convex and
those of pi+1, . . . , pj−1 are concave (resp., convex). Polygon P is called pseudo-convex if every two
distinct points pi, pi′ ∈ {p1, p2, . . . , pn} not on the same concave link of P are visible each other
within P (i.e., all internal points of L[pi, pi] are contained in the interior of P without intersecting
the boundary of P ). A polygon is called star-shaped if it contains an internal point p∗ from which
any point p on the boundary of the polygon is visible. The kernel K(P ) of a star-shaped polygon
P is the set of all such internal points p∗ of P . A pseudo-convex polygon is star-shaped.

Given a polygon P , we can replace some of the edges with concave or convex links so that the
resulting polygon becomes pseudo-convex (if we place the new corners on the links sufficiently close
to the original edges). See Section 8 for a formal procedure for converting a convex polygon into a
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pseudo-convex polygon by replacing edges with convex/convex links.
In Section 8, we discuss a more general problem, where we wish to convert polygons in a set of

polygons in a straight-line drawing (such as a convex drawing) into polygons to keep the visibility
of some two vertices in each inner face. The obtained results here will be used as a final step of our
inductive proof of our main theorem.

2.2 Graphs and Plane Drawings

The set of vertices and the set of edges of a graph G are denoted by V (G) and E(G), respectively.
A path with end vertices u and v is called a u, v-path. A vertex (resp., a pair of vertices) is called a
cut-vertex (resp., a cut-pair) if removing it increases the number of components in the graph. For
a cut-pair {s, t} of a biconnected graph G, an s, t-component H is a maximal connected subgraph
of G such that st ̸∈ E(H) and H − {s, t} remains connected.

For a subset E′ ⊆ E, let G − E′ denote the graph obtained from G by removing the edges in
E′. For a subset X ⊆ V , let E(X) be the set of edges uv ∈ E with {u, v} ∩ X ̸= ∅, let G − X
denote the graph obtained from G by removing the vertices in X together with the edges in E(X),
let G[X] = G − (V −X) be the graph induced from G by the vertices in X, and let G/X denote
the simple graph obtained from G by contracting X into a single vertex (removing self-loops and
parallel edges). Subdividing an edge e = uv is to replace the edge with a u, v-path u,w1, w2, . . . ,
uk, v for some k ≥ 1. A graph H is a subdivision of G if H is obtained by subdividing some edges
in G.

A plane drawing D of a graph G = (V,E) divides the plane into several connected regions,
called faces, where a face enclosed by a closed walk of the graph is called an inner face and the
one not enclosed by any closed walk is called the outer face. We may mean by a face f the region
enclosed by the facial cycle or the facial cycle as a subgraph interchangeably. Let V (f) and E(f)
denote the sets of vertices and edges in a facial cycle f , respectively.

A plane drawing D induces an embedding γ of G, which is defined by a circular ordering of the
edges around each vertex in V , called the rotation system (which can be represented by the set of
faces) and the outer face in D. Thus a plane embedding γ of a graph G = (V,E) is given by a pair
(F, fo) of a set F of faces and a face fo ∈ F designated as the outer face.

A straight-line drawing D of a plane embedding γ is called a star-shaped drawing if each face
f is drawn as a star-shaped polygon Pf . A straight-line drawing D of γ is called an inner convex
drawing if each inner face f is drawn as a convex polygon Pf , and is called a convex drawing if in
addition the outer boudnary of D is also drawn as a convex polygon Pout. In some problem settings,
the polygon Pout for the outer boundary is given as a prescribed convex/star-shaped polygon before
we determine adequate positions of inner vertices to form a convex (or inner convex) drawing.

2.3 Biconnected Plane Graphs

Let γ = (F, fo) be a plane embedding of a biconnected graph G = (V,E), and H be a connected
subgraph of G. We define the embedding γ|H of γ induced by H to be a sub-embedding of γ
obtained by removing the vertices/edges not in H keeping the same rotation around the remaining
vertices and the same outer face. For a notational simplicity, we denote γ|H , F (γ|H) and fo(γ|H)
simply by the plane graph H, F (H) and fo(H), respectively. Let V o(H) denote the set V o(fo(H))
of vertices on the boundary fo(H). For two distinct vertices s, t ∈ V o(H), we define the s, t-
boundary walk fost(H) to be the path obtained by traversing the outer boundary fo(H) from s to
t in clockwise order. We denote V (fost(H)) by V o

st(H). Then fo(H) is the union of walks fost(H)
and fots(H) which share s and t. We call an s, t-boundary walk an s, t-boundary path if it does not
visit the same vertex more than once. When {s, t} is a cut-pair which separates H from the rest
of the graph G − V (H), there is a face f whose boundary contains fost(H) as its subpath from t
to s in clockwise order (i.e., traversing fost(H) in the opposite direction). We denote the face f by
facest(H). Also let facets(H) denote the other face containing fots(H). Then H is surrounded by
the two faces facest(H) and facets(H). For a facial cycle f and two vertices a, b ∈ V (f), we also
define the a, b-boundary path foab(f) by regarding f as a cycle of G.
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Figure 2: (a) A u, v-chain; (b) A self-closing chain with a 0-vertex-cycle; (c) A self-closing chain
with a 0-vertex-cycle; (d) A self-closing chain with a 1-vertex-cycle; (e) A twin-chain with a 0-
vertex-cycle; (f) A twin-chain with a 1-vertex-cycle; (g) A zipped-chain of length (k, k′) with a
2-vertex-cycle; (h) A zipped-chain with terminals u and v in a standard instance where H is a
u, v-component for a cut-pair {u, v}; and (i) A u, v-lens with length (k = 4, h = 5).

2.4 Planarization of Drawings

We define embeddings possibly with edge crossings via plane embeddings. Let D be a drawing
of a graph G = (V,E). A crossing c made by two edges e = uv and e′ = u′v′ is represented by
(uv;u′v′) if u′ (resp., v′) appears on the left hand (resp., right hand) when we traverse e from u
to v; otherwise it is denoted by c = (uv; v′u′). We denote the set of crossings by CD. Each edge

e ∈ E
(k)
D is subdivided into k + 1 curves, called edge-pieces. The planarized graph of G by D is

the graph GD = (V = V ∪ CD, ED) obtained by regarding both the vertices of G and the crossings
in CD as graph vertices and the set ED of edge-pieces in D as the set of edges to obtain a plane
drawing. The planarized embedding PD of D is the plane embedding of the graph GD defined by
the set FD of faces and the outer face fo ∈ FD in the resulting plane drawing of GD. An embedding
of G induced by D is defined to be the tuple

γ = (CD, ED,FD, f
o
D).

Given an embedding γ = (C, E ,F , fo) of a graph G, we say that a drawing D of G realizes γ if
(CD, ED,FD, f

o
D) equals (C, E ,F , fo). Given an embedding γ, let V (γ), E(γ), C(γ), E(γ), F(γ),

and E(k)(γ) respectively denote the sets of vertices, edges, crossings, edge-pieces, faces, and graph
edges e such that there are exactly k crossings on e in γ, and let fo(γ) denote the outer face. An
edge in E(0)(γ) is called crossing-free. We also say that an embedding γ of a graph k-plane (resp.,
quasi-plane) if a drawing D that realizes γ is k-plane (resp., quasi-plane).

If a straight-line drawing D realizes γ, then we say that γ is planarizing-straight-line drawable
(PSL-drawable, for short). Embeddings that are not PSL-drawable are called infeasible.
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3 Forbidden Configurations

In this section, we extend the B- and W-configurations into a collection of embeddings of some
graphs as forbidden configurations which cannot be contained in any PSL-drawable embeddings.

An embedding η of a sequence S = (e1, e2, . . . , ek) (ei = uivi) of edges is called a chain if the
following (i) and (ii) hold:
(i) for each i = 1, 2, . . . , k − 1, edges ei and ei+1 cross each other; and
(ii) An edge e0 = u1vk can be added to η so that all other end-vertices ui (1 < i ≤ k) and vi
(1 ≤ i < k) are enclosed by the outer facial cycle of the resulting embedding η′.

If u appears after v along the edge uv in η′ in clockwise order, then S is called a u, v-chain;
it is called a v, u-chain otherwise. Chain S is called self-closing if u1 = vk or e1 crosses ek (see
Fig. 1(c)).

An embedding η of a pair (S, S′) of a non-self-closing u1, vk-chain S = (e1, e2, . . . , ek) (ei = uivi)
and a non-self-closing u′1, v

′
k′-chain S

′ = (e′1, e
′
2, . . . , e

′
k′) (e

′
i = u′iv

′
i) is called a twin-chain of length

(k, k′) if the following (i) and (ii) hold:
(i) edges e1 and e′k′ cross (or u1 = u′k′) and edges e′1 and ek cross (or u′1 = uk); and
(ii) the end-vertices of the edges except u1, vk, u

′
1 and v′k′ are enclosed by the outer facial cycle

fo(η) (where k = 1 or k′ = 1, but k + k′ ≥ 3 since otherwise η does not give a proper drawing).
A twin-chain (S, S′) is called a zipped-chain if the boundary is a simple cycle (i.e., u1 = u′k′

and u′1 = uk), where we call the vertices u1 = u′k′ and u
′
1 = uk the terminals of the zipped-chain.

See Fig. 1(d) for a zipped-chain and Section 10 for more illustrations. We define a forbidden
configuration to be a self-closing chain or a twin-chain.

Lemma 1 Let γ be an embedding of a graph G = (V,E). If G contains an edge subset E′ which
induces a forbidden configuration η, then γ it is not PSL-drawable.

Proof: Consider the case where η is a twin-chain of a u1, vk-chain S = (e1, e2, . . . , ek) (ei = uivi)
and a u′1, v

′
k′-chain S

′ = (e′1, e
′
2, . . . , e

′
k′) (e′i = u′iv

′
i) such that u1 = u′k′ and edges e′1 and ek have

a crossing c∗ (the other cases can be treated analogously). See Fig. 2(f). Assume without loss of
generality that S and S′ are minimal in the sense that no edge ei (1 < i < k) or e′i (1 < i < k′)
can be removed without keeping S and S′ as a twin-chain. In this case, each ei (1 ≤ i < k)
does not cross with any edge ei+2. Similarly for the edges e′i in S′. Hence the crossing ci,i+1

(1 ≤ i < k) made by two edges ei and ei+1 appears on the boundary fo(η). Analogously with
the crossing c′i,i+1 (1 ≤ i < k′) made by edges e′i and e

′
i+1. Hence fo(η) is a simple cycle formed

by Q = (u1 = u′k′ , c1,2, c2,3, . . . , ck−1,k, c
∗, c′1,2, c

′
2,3, . . . , c

′
k′−1,k′) plus edge-pieces c∗uk and c∗u′1. In

any straight-line drawing D that realizes γ, the cycle Q is drawn as a (k + k′)-gon PQ (recall that
k + k′ ≥ 3). However, the interior angle at any corner of Q except for those at the two points
u1 = u′k′ and c

∗ needs to be larger than π since the corner is made by two line-segments each of
which has an end-point inside PQ. Note that there are (k + k′ − 2) such concave corners in PQ.
Since the total of interior angles over all corners of any (k + k′)-gon is exactly (k + k′ − 2)π, the
sum of interior angles at corners for u1 = u′k′ and c

∗ must be negative, a contradiction. This shows
that γ cannot admit a straight-line drawing D.

Here we observe one more property on chains.

Lemma 2 Let γ be an embedding of a graph G = (V,E) such that the boundary fo(γ) consists
of edges in E(0)(γ) and the edges in E(0) induces from γ a biconnected spanning plane graph
(V,E(0)(γ)) from γ. Then any forbidden configuration η is a zipped-chain (S, S′) with terminals
u, v ∈ V such that {u, v} is a cut-pair of G, and the edges in (S, S′) surround a u, v-component H
of G. See Fig. 2(h).

Proof: Let η be a forbidden configuration η in γ, where η is a self-closing chain S or a twin-chain
(S, S′). In any case, the interior of fo(η) strictly contains an end-vertex uin of some edge of S
or S′ (note that a self-closing chain S consists of at least two edges, since otherwise γ would not
give proper drawings). By assumption, the boundary fo(γ) of γ contains a vertex vout of G. Since
(V,E(0)(γ)) in γ is a biconnected spanning graph, (V,E(0)(γ)) must contain at least two internally
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disjoint paths between vertices uin and vout. Such two paths cannot exist except when η is a
zipped-chain (S, S′), since for the other case, graph G(η) = (V (η) ∪ C(η), E(η)) has a cycle that
passes through at most one graph vertex and separates the region containing uin from the outer
region. Note that the cycle fo(η) of a zipped-chain η = (S, S′) has only two graph-vertices, which
is a cut-pair in G that separates uin and the vertices in fo(γ). Again by the biconnectivity, v and
u and v are connected within fo(η).

Figure 3: (a) Pappus’ kite, an embedding that has neither a straight-line drawing nor self-closing
chains/twin-chains; (b) A geometric configuration with thick lines, where c′1, c2 and c3 are co-linear
by Pappus’ theorem; (c) Replacing a curve Ce drawn for a crossing edge uv ∈ E(k)(γ) with a u, v-
lens ζe of length (k, k); (d) The embedding Γ obtained from Pappus’ kite by replacing crossing
edges with lenses; and (e) The embedding γi−1 for i = |E − E(0)(γ)| constructed in the proof of
Lemma 4.

4 PSL-Drawablity

4.1 Counterexample

In this section, we observe that there is an embedding that contains no forbidden configuration but
admits no PSL-drawing either. We call the embedding of a graph in Fig 3(a) the Pappus kite.

Let G = (V,E) be a graph with eight vertices vi, i = 1, 2, . . . , 8 and 15 edges vivj with (i)
1 ≤ i < j ≤ 3; (ii) 4 ≤ i < j ≤ 6; (iii) 1 ≤ i ≤ 3 < j ≤ 6 with (i, j) ̸∈ {(1, 5), (2, 6), (3, 4)}; and (iv)
(i, j) ∈ {(1, 7), (5, 7), (3, 8), (4, 8), (7, 8)}. See Fig 3(a).

An embedding γ of G is constructed as follows. First draw the graph G − {v7v8} except edge
v7v8 as a straight-line drawing D(G−{v7v8}), where we denote by c(vivj ; vkvh) the crossing made
by two edges vivj , vkvh ∈ E. For this, place five vertices vi, i = 1, 2, . . . , 5 to form a convex 7-gon
v7v1v2v3v8v4v5, and place v6 strictly inside triangle v4v5c2 for c2 = c(v1v4; v3v5). This determines
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a straight-line drawing D(G− {v7v8}) of G− {v7v8}, as shown in Fig 3(a). Let c1 = c(v1v6; v2v5),
c3 = c(v2v4; v3v6), c4 = c(v1v6; v3v5), c5 = c(v1v4; v3v6), c6 = c(v1v4; v2v5), and c7 = c(v2v4; v3v5).
Finally we draw edge v7v8 within the convex 7-gon so that it intersects six edge-pieces v1c1, c1c6,
c2c4, c2c5, c3c7 and c3v3 of D(G−{v7v8}). Let γ be the resulting embedding of G with 14 crossings
induced by the drawing of G. We call the resulting embedding the Pappus kite.

Lemma 3 The Pappus kite is not PSL-drawable and contains no forbidden configuration either.

Proof: We know that γ admits a straight-line drawing D if we ignore the edge v7v8. See Fig 3(a).
Thus, it suffices to show that c2 will always be placed under the straight line L passing c1 and c3
in D when we take v2 on the top level and v4v5 on the bottom level. To see this, we take three
new points in D: (i) v′2 = c(v1v3; v2v4), (ii) the crossing point v′6 of L[v4, v5] and the straight line
L⟨v6, v3⟩ passing through v6 and v3, and (iii) c′1 = c(v1v

′
6; v

′
2v5). See Fig. 3(b). Now v1, v

′
2 and v3

(resp., v5, v
′
6 and v4) are co-linear in D, for which we can apply Pappus’ hexagon theorem (A.D.

320) to know that c′1, c2 and c3 are also co-linear. This means that c2 is under the straight line
L⟨c1, c3⟩ passing c1 and c3 in D, as required.

We next show that there is no forbidden configuration in γ. Since the current embedding γ
satisfies the condition of Lemma 2, any forbidden configuration η is a zipped-chain such that the
two vertex u, v ∈ V on fo(η) is a cut-pair of G, and u and v are connected within the region fo(η).
Hence η is enclosed by the boundary fo(γ) of edges in E(0)(γ) whereas fo(η) encloses a u, v-path of
edges in E(0)(γ). Clearly we see that such a pair {u, v} cannot exist in γ. Hence γ has no forbidden
configurations.

The Pappus kite has a straight-line drawing if we draw edge v7v8 so that it intersects edge-pieces
c2c6 and c2c7 instead of c2c4 and c2c5. Of course this is not allowed in finding a drawing of the same
planarization in the PSL-drawability problem. However the above example may imply that keeping
the configuration of pairwise crossing edges in PSL-drawability is a direct reason why our collection
of forbidden configurations cannot completely characterize the infeasibility of instances. In other
words, can we always find our forbidden configurations in quasi-plane infeasible instances? The
answer is no, as we see below that the above example can be converted into a quasi-plane infeasible
instance. We define a u, v-lens to be the reversal of a zipped-chain with terminals u and v. Given
an embedding γ, we replace each crossing edge uv is a u, v-lens (as shown in Fig 3(c)) so that each
of the new edges has exactly one crossing with an edge in some other lens. Let Γ be the resulting
embedding, which is 3-plane and quasi-plane. Fig. 3(d) illustrates the embedding Γ of the Pappus’
kite. We can prove that the original embedding admits a straight-line drawing (resp., contains a
forbidden configuration) if and only if so does Γ (see Lemma 4 in the next subsection). Hence Γ
in Fig. 3(d) is a 3-plane and quasi-plane embedding that has neither a straight-line drawing nor
self-closing chains/twin-chains.

4.2 Quasi-plane Instances of PSL-drawability

In this section we then show that a problem instance γ can be reduced a 3-plane and quasi-plane
instance Γ without changing both the PSL-drawability and the existence of forbidden configurations.

Let η = (S, S′) be a zipped-chain with vertices u and v on its boundary fo(η) such that
(i) S = (e1, e2, . . . , ek) (ei = uivi), S

′ = (e′1, e
′
2, . . . , e

′
h) (e

′
i = u′iv

′
i) for k + h ≥ 3, and u = u1 = v′h

and v = v′1 = uk;
(ii) no two edges in S and S′ share the same common end-vertices (except u1 = v′h and v′1 = uk);
and
(iii) two edges a and b in S and S′ cross only when a = ei and b = ei+1 with 1 ≤ i < k (or a = e′i
and b = e′i+1 with 1 ≤ i < h).

Let ζ be the embedding obtained by reversing the above zipped-chain η (i.e., exchanging the
inner and outer faces). Now all the end-vertices of edges in S and S′ appear on the outer closed
walk fo(ζ). Such an embedding ζ is called a u, v-lens of length (k, h). Note that any straight-line
drawing Dζ that realizes ζ encloses its interior with a convex polygon, which provides a space for
drawing a segment L[u, v] inside Dζ .
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We are ready to show how to convert a given embedding γ into a quasi-plane one. Let D be
a drawing that realizes γ. In D, we take a simple connected region Re that strictly contains the
curve Ce of each edge e ∈ E − E(0)(γ) except for the end-points and that does not contain any
other vertices or crossings not on the curve Ce. For each edge e = uv ∈ E(k)(γ) (k ≥ 1), we replace
the curve Ce with a drawing of u, v-lens ζe with length (k, k) within the region Re so that each edge
in ζe receives exactly one new crossing (which is made by an edge in some other lens ζe′ , e

′ ̸= e).
See Fig. 3(c). Let Γ denote the embedding of the resulting drawing. See Fig. 3(d) for an example.
We easily see that Γ is a 3-plane and quasi-plane embedding.

Lemma 4 For an embedding γ of a graph G, let Γ be the above 3-plane and quasi-plane embed-
ding. Then γ is PSL-drawable if and only if Γ is PSL-drawable. Moreover γ contains a forbidden
configuration if and only if so does Γ.

Proof: It is easy to see that PSL-drawability is preserved since in a straight-line drawing Dγ of γ,

we can take a simple connected region Re around the segment Le for each edge e = uv ∈ E(k)(γ) so
that Re can house a straight-line drawing of u, v-lens ζe of length (k, k) instead of Le in a similar
manner of construction of Γ. Conversely, in a straight-line drawing DΓ of Γ, we can replace the
straight-line drawing of lens ζe for each edge e = uv ∈ E −E(0)(γ) with a segment L[u, v].

We next show that the existence of forbidden configurations is also preserved. Each edge
e = uv ∈ E − E(0)(γ) in γ is now drawn as a u, v-lens ζe = (Se, S

′
e) in Γ. There are |E − E(0)(γ)|

such lenses in Γ.
Assume that γ contains a self-closing chain η = S or a twin-chain η = (S, S′). For each edge

e = uv in η, we see that when e is replaced with one of v, u-chain Se and u, v-chain S′
e, say Se, the

end-vertices of all edges in Se will appear on the outer boundary of the modified embedding of η.
In this case, we use the other chain S′

e (otherwise use Se) as a building block Be for the edge e.
Now we replace each edge e = uv in η with the chain Be to obtain a drawing η′, where if u (resp.,
v) is inside fo(η) then u (resp., v) still is inside the resulting drawing η′. From each chain Be = Se
(or S′

e), we discard any edge ei = uivi (or e
′
i = u′iv

′
i) if the both of end-vertices are outside η′ so

that if u (resp., v) of an edge e = uv is outside fo(η), then Be will be shorten to have an edge
ej = ujvj (or e′j = u′jv

′
j) with exactly one of the end-vertices inside the drawing η′.

Conversely assume that Γ contains a self-closing chain η = S or a twin-chain η = (S, S′).
To see that γ also contains a forbidden configuration, we consider a sequence of embeddings γi,
i = 1, 2, . . . ,K such that
(i) γ1 = γ and γK = γ;
(ii) γi−1 (i > |E − E(0)(γ)|) is obtained from γi by replacing two crossing edges ej = ujvj and
ej+1 = uj+1vj+1 in a lens with a single edge ujvj+1; and

(iii) γi−1 (1 < i ≤ |E −E(0)(γ)|) is obtained from γi by replacing a u, v-lens of length (1, 2) with a
single edge uv.

See Fig. 3(e) for an example of embeddings γi−1 for i = |E − E(0)(γ)|.
Hence K is the number of edges in all lenses in Γ minus 2|E − E(0)(γ)|. In other words, Γ is

constructed from γ first by replacing each edge e = uv ∈ E − E(0)(γ) with a u, v-lens with length
(1, 2) and then by splitting an edge in a lens with two crossing edges so that each edge in a lens
receives exactly one crossing with some other lens.

It suffices to show that if γi contains a forbidden configuration η, then so does γi−1.
In the case of i ≤ |E − E(0)(γ)|, an edge e = uv ∈ E − E(0)(γ) is replaced with a u, v-lens

(S = (e1 = u1v1), S
′ = (e′1 = u′1v

′
1, e

′
2 = u′2v

′
2)) of length (1, 2), where u = u1 = v′2 and v = v1 = u′1.

In the other case of i > |E − E(0)(γ)|, e = uv ∈ E − E(0)(γ) is replaced with two crossing edges
e′1 = u′1v

′
1 and e′2 = u′2v

′
2 (where u = v′2 and v = u′1).

We consider the case of i ≤ |E −E(0)(γ)| (the other case can be treated in a similar and easier
way).

Let ce be the crossing of e′1 and e′2 in γi, where e′1 (resp., e′2) is split into edge-pieces u′1ce
and cev

′
1 (resp., u′2ce and cev

′
2). By the way of replacing edges with lenses, we see that no edge

intersects any of edge-pieces u′2ce and cev
′
1; no edge intersects two edge-pieces u′1ce and cev

′
2 at the

same time; and three edges e1, e
′
1 and e′2 enclose none of vertices and crossings in γi. Hence an

edge intersects e′1 or e′2 if and only if it intersects e1. We consider the case where γi contains a
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twin-chain η = (Sa, Sb) as a forbidden configuration (the case where η is a self-closing chain can be
treated analogously). Recall that η has at most four vertices on its boundary fo(η). Assume that
e′1 or e′2 (say e′1) is contained in Sa or Sb (say Sa), since otherwise η also appears in γi−1.

Let cet be the first edge-piece in cev
′
2 starting ce (i.e., t = v′2 or t is the first crossing along cev

′
2).

Now consider the embedding Q of a sequence of edge-pieces v1ce and cev
′
2 in γi.

We distinguish two cases:
(1) cet is inside fo(η) (for example when v′1 is within fo(η)): If Q does not cross any edge

in Sa ∪ Sb − {e′1}, then the embedding obtained from η by replacing e′1 and e′2 with e = uv is a
forbidden configuration in γi−1, since Q and e1 (hence e = uv) intersect the same set of edges in
γi. If Q intersects an edge in Sa − {e′1}, then we choose the edge ea ∈ Sa − {e′1} closest to e′1
among such edges, and we see that the union of e = uv and the subsequence of Sa between e′1 and
ea gives a forbidden configuration in γi−1. Finally consider the case where Q intersects an edge
eb ∈ Sb without intersecting any edges in Sa − {e′1}. If a subsequence S′

b of Sb and Q enclose the
end-vertices of the edges in S′

b, then the union of S′
b and e = uv gives a forbidden configuration

in γi−1. Assume that no such subsequence S′
b exists. Then Q intersects Sb at most twice, and Q

splits the region fo(η) into two regions R1 and R2, where we assume that R1 contains the other
end-vertex u′1 of e′1 (possibly on the boundary of R1). The set of edges forming the boundary of
R1 and e = uv give a forbidden configuration in γi−1.

(2) cet is outside f
o(η): In this case, v′1 is on the boundary fo(η) or strictly outside fo(η). If Q

does not cross any edge in Sa ∪Sb−{e′1}, then the embedding obtained from η by replacing e′1 and
e′2 with e = uv is a forbidden configuration in γi−1. If a subsequence S′

a of Sa and Q enclose the
end-vertices of the edges in S′

a, then the union of S′
a and e = uv gives a forbidden configuration

in γi−1. Assume that no such subsequence S′
a exists. Then Q intersects Sa at most twice. If a

subsequence S′
b of Sb and Q enclose the end-vertices of the edges in S′

b, then the union S′
b and

e = uv gives a forbidden configuration in γi−1. Assume that no such subsequence S′
b exists. Then

Q intersects Sb at most once. Assume that t is a crossing on an edge in Sa (the other case where t
is a crossing on an edge in Sb can be treated analogously). When Q and Sa enclose the end-vertices
of edges in Sb, the union of e = uv and the edges of Sa in the boundary of the enclosed region gives
a forbidden configuration in γi−1. On the other hand, Q and the region fo(η) enclose e′1. In this
case, if Q does not intersect Sb (i.e., v′2 is within fo(η)), then the union of e = uv and the edges
of Sa in the boundary of the enclosed region gives a forbidden configuration in γi−1. Otherwise (Q
intersects Sb), we see that Q does not intersect with Sb twice, since otherwise we would have the
above subsequence S′

b. In this case, Q splits the region fo(η) into two regions R1 and R2, where
we assume that R1 contains the other end-vertex u′1 of e′1. The set of edges forming the boundary
of R1 and e = uv gives a forbidden configuration in γi−1.

By Lemma 3 and Lemma 4, we have the next.

Lemma 5 The above embedding Γ obtained from the Pappus kite γ by replacing crossing edges
with lenses is a 3-planar and quasi-plane embedding that is not PSL-drawable and has no forbidden
configurations either.

With only quasi-planarity, we cannot characterize infeasible instances by our forbidden configu-
rations. How can we extend the result for straight-line drawability of 1-plane embeddings? Observe
that the set of crossing-free edges in the Pappus kite γ induces a biconnected spanning subgraph
while introducing lenses lowers the connectivity of spanning subgraph of crossing-free edges in the
quasi-plane embedding Γ.

In this paper, the next result will be implied by our main result (Theorem 8) on a new concept
of drawability of embeddings.

Theorem 6 Let γ be an embedding is quasi-plane and its crossing-free edges induces a biconnected
plane spanning subgraph. Then γ is PSL-drawable if and only if it has no forbidden configurations.

4.3 Star Augmentation

We here investigate how much we can increase the connectivity of spanning subgraphs of crossing-
free edges by adding some new crossing-free edges (without changing straight-line drawability).
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Let γ be an embedding of a graph G = (V,E). A simple cycle E ′ ⊆ E(γ) is called separating if
a vertex u ∈ V and a vertex v ∈ V respectively are strictly inside and outside the region enclosed
by E ′. A simple cycle E ′ ⊆ E is called a k-vertex-cycle if there are exactly k vertices on it (i.e., it
contains |E ′| − k crossings in C(γ)).

A star augmentation γA of γ is an embedding of an augmented graph GA = (V ∪ VA, E ∪ EA)
obtained by introducing new edges/vertices as follows: for each facial cycle f ∈ F(γ) with |V (f)| ≥
2 (at least two vertices in V in C(γ)), we place a new vertex uf together with new edges ufv
(v ∈ V (f)) within the region f . Let VA and EA be the sets of newly introduced vertices and edges,
respectively. Note that all edges in EA are crossing-free in the resulting embedding γA of the graph
GA = (V ∪ VA, E ∪ EA). (See Fig. 6 in Section 6.)

Lemma 7 Let γ be an embedding of a graph G = (V,E) such that the graph G(γ) = (V ∪C(γ), E(γ))
is connected. Then
- any forbidden configuration in the star augmentation γA is a forbidden configuration in γ; and
- the set of crossing-free edges induces a connected (resp., biconnected) spanning subgraph in γA
if and only if G(γ) has no separating 0-vertex-cycles (resp., 0- or 1-vertex-cycle), not necessarily
facial.

Proof: The set of crossing free-edges in γA is E(0)(γ)∪EA. In γA, any newly added edge e ∈ EA

is crossing-free and has an end-vertex uf to which no crossing edge is incident. This means that
no new edge is contained in any self-closing chains or twin-chains in γA, and hence any forbidden
configuration in the star augmentation γA is a forbidden configuration in γ.

We next show that the spanning subgraph G
(0)
A = (V ∪ VA, E(0)(γ)∪EA) of crossing-free edges

is connected if and only if G(γ) has no separating 0-vertex-cycles. We easily see that if G(γ) has
a separating 0-vertex-cycle, then no newly introduced crossing-free edges in EA can connect two
vertices u, v ∈ V that are separated by the separating 0-vertex-cycle. We show the converse.

Assume that G
(0)
A is not connected. Then (V ∪ VA, E(0)(γ) ∪ EA) contains a component H which

has no vertices in V (fo(γ)), since all outer vertices in V (fo(γ)) will be joined to the same vertex
ufo(γ) (when |V (fo(γ))| ≥ 2). Consider the set of faces f ∈ F(γ) that contain at least one vertex in
H. The outer boundary of the union of these faces will be a closed walk W which passes through
only crossings in C(γ). Hence W contains a separating 0-vertex-cycle of P(γ).

We finally show that G
(0)
A is biconnected if and only if G(γ) has no separating 0- or 1-vertex-

cycles. If there is a separating 1-cycle containing a vertex w ∈ V , then two vertices u, v ∈ V
separated by the cycle cannot be connected by two internally disjoint paths in E(0)(γ)∪EA due to

w which will be a cut-vertex in GA. We show the converse. Assume that G
(0)
A is connected, but not

biconnected (since we have shown that if G
(0)
A is not connected, then G(γ) contains a separating

0-vertex-cycle). Then (V ∪VA, E(0)(γ)∪EA) contains a biconnected component H which is disjoint

with V (fo(γ)). We choose a minimal subgraph H among such components. Since G
(0)
A is connected,

it contains a path P that connects a vertex uout ∈ V (fo(γ)) and a vertex uin ∈ V (H), where uin is
chosen so that P is maximal subject to the condition. Hence the first vertex w that appears along
P starting from uout is a vertex in V (not a new vertex in VA), and that H −{w} contains another
vertex in V (since a new vertex in VA is placed in a face with at least two vertices in V along its
boundary). Consider the set of faces f ∈ F(γ) that contain at least one vertex in H. We then
discard the faces which contain only w from the vertices in H. Then the outer boundary of the
union of the collected faces will be a closed walk W which passes through only crossings in C(γ)
except w. Hence W contains a separating 1-vertex-cycle of G(γ).

In the next section, we formulate a problem of finding straight-line drawings allowing pairwise
crossing edges to have arbitrary orders of crossings along edges (see Fig. 5 in Section 6), while a
certain connectivity of spanning subgraph induced by crossing-free edges is required.

5 FSL-Drawablity

For a biconnected graph G = (V,E), we take a subset M ⊆ E of edges such that GM = (V,M) is a
biconnected spanning subgraph ofG, and γM = (M,FM , f

o
M ) is a plane embedding ofGM = (V,M).
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Consider a drawing D of G such that all edges in M are crossing-free and the drawing induced
from D by (V,M) realizes γM (some edges in E −M may be crossing-free). In other words, D is
obtained from a drawing DM that realizes γM by drawing each edge e = uv ∈ E −M within the
region of a face f ∈ FM such that V (f) ⊆ {u, v}. When {u, v} is a cut-pair of GM = (V,M), there
are two or more facial cycles f in FM that contain both u and v. Let FM (e) be the set of faces
f ∈ FM with V (f) ⊆ {u, v}. The assignment αD of D specifies a face α(e) ∈ FM (e) in which e is
drawn. A frame of G is define to be a tuple

ψ = (M,FM , f
o
M , αD).

(See Fig. 7 in Section 6 for an example.)
Given a frame ψ = (M,FM , f

o
M , α) of a graph G, we say that a drawing D of G realizes ψ

if M induces the embedding (M,FM , f
o
M ) from D and αD equals the given α. If a straight-line

drawingD realizes ψ = (M,FM , f
o
M , α), then we say that the frame ψ is frame-straight-line drawable

(FSL-drawable, for short) or D is an FSL-drawing of ψ.
If a drawing D of G realizing ψ induces γ, then we say that an embedding γ of G realizes ψ

(possibly different drawings D and D′ realizing the same frame ψ may induce distinct embeddings).
Note that, for two embeddings γ1 and γ2 that realize the same frame ψ of a graph G, the set

of crossings and the set of edges with k crossings are same. Only the ordering of crossings on an
edge can be different, and this occurs for embeddings with pairwise crossing edges. Notice that
if γ1 contains a forbidden configuration η, then γ2 also contains a forbidden configuration, since
the ordering of crossing along each edge is not required to be fixed in the definition of forbidden
configurations. In fact, if η is minimal, then it is minimal in any embedding that realizes the same
frame. Thus, forbidden configurations in a frame ψ are defined to be those in any embedding γ
that realizes ψ.

In this paper, we prove that our collection of forbidden configurations can characterize the
FSL-drawability.

Theorem 8 Let ψ = (M,FM , f
o
M , α) be a frame of a graph G = (V,E). Then (G,ψ) is FSL-

drawable if and only if it has no forbidden configurations.

Theorem 6 follows from the theorem. Also it is not difficult to see that Theorem 8 implies the
characterization of infeasible 1-plane embeddings by the B-configuration or the W-configuration
(see Section 7 for the detail).

Outer Boundaries

Lemma 9 Let (G = (V,E),M, FM , f
o
M , α) denote a given instance, and ψ = (M,FM , f

o
M ) denote

the plane embedding (frame) of the biconnected graph GM = (V,M). Let γ be an embedding of G
that realizes frame ψ = (M,FM , f

o
M ). If the number r of vertices in V that appear on the outer

boundary fo(γ) is at most two, then ψ has a forbidden configuration.

Proof: Let E′ ⊆ E be the set of edges whose edge-pieces appear on the boundary fo(γ). If r ≤ 1,
then E′ gives a self-closing chain. If r = 2, then E′ gives a twin-chain of a uv-chain and a vu-chain
for the two vertices u, v ∈ V on fo(γ).

Assume that for any embedding γ of G that realizes a given frame ψ = (M,FM , f
o
M ), the outer

facial cycle fo(γ) consists of crossing-free edges in M ; if necessary, we place three new vertices
va, vb and vc in the outer face and join them with the vertices in V on fo(γ) to from a biconnected
plane embedding on these vertices. This clearly does not create a new forbidden configuration.
Thus we can assume that the facial cycle foM is simple and no edge in E −M is assigned witin foM
to examine the FSL-drawability of an instance.

We call an instance (G,M,FM , f
o
M , α) standard if the facial cycle foM is simple and no edge in

E−M is assigned witin foM (i.e., the outer boundary of the embedding contains only edges in M).
To prove Theorem 8, we show the next slightly stronger result, where the outer boundary is

drawn as a prescribed convex polygon Pout possibly with flat corners. Let Q1, Q2, . . . , Qk be the
subpaths of fo, each corresponding to a segment of Pout. A u, v-chain S of inner edges (possibly
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|S| = 1) is called squashed if u and v are contained in the same subpath Qi, where Qi contains a
v, u-path S′ of outer edges with no convex corners on it, and we also call (S, S′) a squashed chain.

Theorem 10 Let (G,M,FM , f
o
M , α) be a standard instance. Then a precribed convex polygon Pout

drawn for fo can be extended to an FSL-drawing D of (M,FM , f
o
M , α) if and only if there is no

zipped-chain or squashed chain.

Theorem 8 follows from the theorem, because no squashed chain appears when Pout is chosen
as a convex polygon with no flat corners. In the rest of the paper, we focus on establishing a
constructive proof of Theorem 10.

6 Some Examples

This section gives a collection of examples which illustrates some of the new notions and definitions
introduced in this paper.

Figure 4: Infeasible instances minimal subject to edge sets: (a) An infeasible embedding which
has only one set of pairwise crossing edges v1v4, v3v5 and v7v8; and (b) A 3-plane and quasi-plane
infeasible embedding which contains no forbidden configurations.

Fig. 4 illustrates two minimal instances that do not admit PSL-drawings but contain none of
our forbidden configurations either, where these two instance are “minimal” in the sense that they
admit straight-line drawings if we drop arbitrary one of the edges. The infeasible embedding in
Fig. 4(a) has only one set of pairwise crossing edges v1v4, v3v5 and v7v8 and contains no forbidden
configurations, where crossing c2 will be above the line L⟨c1, c3⟩ passing through crossings c1 and
c3 in any straight-line drawing without using edge v7v8. Fig. 4(b) shows a 3-plane and quasi-
plane infeasible embedding which contains no forbidden configurations, which is obtained from
the embedding in Fig. 4(a) by replacing each edge with a chain keeping c2 above the line passing
L⟨c1, c3⟩ through c1 and c3. It is not difficult to see that the embedding in Fig. 4(b) admits no
straight-line drawing.

Fig. 5 illustrates an example of a proper embedding γ1 of a graph and its straight-line drawing
D1. Note that γ1 has only one set of pairwise crossing edges v2v12, v1v21 and v22v26 with three
crossings c1 = (v1v21; v2v12), c2 = (v1v21; v22v26) and c3 = (v2v12; v22v26). In D1, the ordering of
these crossings on the pairwise crossing edges are different from that in γ1, and D1 is not a PSL-
drawing of γ1. When such a change of orderings is allowed, our method in the paper can find such
a drawing since crossing-free edges can be added to γ1 so that they form a biconnected spanning
graph, as will be shown Fig. 6 and Fig. 7(b).

Fig. 6 illustrates an embedding γ of a graph G = (V,E) and its star-augmentation GA =
(V ∪VA, E ∪EA). In this case, the crossing-free edges in GA induce a biconnected spanning graph,
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Figure 5: (a) An embedding γ1, which has only one set of pairwise crossing edges v2v12, v1v21
and v22v26; and (b) A straight-line drawing D1 that realizes γ1 in (a), where the crossings on the
pairwise crossing edges appear in a different order from that in γ1.
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Figure 6: (a) An embedding γ of a graph G = (V,E); and (b) The star-augmentation GA =
(V ∪ VA, E ∪ EA) of γ in (a).
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Figure 7: (a) A biconnected plane graph GM = (V,M) with a set FM = {f1, f2, . . . , f10} and an
outer face foM = f10; and (b) A standard instance (G,M,FM , f

o
M , α, Pout) on the graph GM in (a),

where the set of blue edges in each inner face f are those assigned to f by α, and the black lines
on the outer boundary indicate a prescribed convex polygon Pout.

and our method in the paper can test whether the original embedding γ admits a straight-line
drawing D wherein the ordering of crossings on pairwise crossing edges may not be preserved.

Fig. 7 illustrates examples of frames. The embedding in Fig. 7(a) is a biconnected plane graph
GM = (V,M) with a set FM = {f1, f2, . . . , f10} of faces and an outer face foM = f10. The embedding
in Fig. 7(b) is obtained from (GM , FM ) by assigning some more edges to inner faces in FM . In
particular, the six edges assigned to inner face f6 ∈ FM makes the polygon Pf6 to be drawn for
f6 convex. Also facial cycle f5 will be drawn as a star-shaped polygon whose kernel contains the
point for v17 due to the five edges incident to v17 within region f5. The outer boundary foM is now
fixed to a prescribed polygon Pout.

7 Implications by the Main Theorem

In this section, we show that several previously known results on straight-line drawings can be
derived from our main result.

7.1 Implication to Straight-line Drawability of 1-plane Embeddings

Let us first observe that Theorem 8 implies the characterization of infeasible 1-plane embeddings
by the B- or W-configuration shown in Fig. 1(a) and (b).

Let γ be a 1-plane embedding of a graph such that its planarization G(γ) is connected. Then
we easily see that G(γ) cannot have a separating 0- or 1-vertex-cycle since γ is 1-plane and no
two crossings are adjacent in G(γ). Hence by Lemma 7, the star-augmentation γA of γ has a
biconnected spanning graph of crossing-free edges. Since 1-plane embeddings are quasi-plane, γA is
PSL-drawable if and only if it is FSL-drawable, where we choose the set of all crossing-free edges as
M , the embedding induced from γA by M as (M,FM , f

o
M ) and the assignment of the rest of edges

in the faces in FM as α. Hence by Theorem 8, if γA is not PSL-drawable, then γ has a forbidden
configuration, which is a 1-plane zipped-chain, i.e., the B- or W-configuration.

7.2 Implication to Convex Drawability of Biconnected Plane Embeddings

As an application of FSL-drawings, we introduce new edges within several inner faces in a given
plane embedding of a graph so that selected inner faces will be drawn as convex polygons or
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star-shaped polygons, as shown in Fig. 7 (in fact such technique will be frequently used in our con-
structive proof of Theorem 10). For example, given a plane embedding γ = (F, fo) of a biconnected
graph G = (V,E), suppose that we wish to make several pairs of vertices u and v visible in the
interior of an inner face f ∈ F in a straight-line drawing D of γ, i.e., L[u, v] will be contained in the
polygon Pf for f without intersecting Pf except the common points u and v in D. Finding such a
constrained drawing D is reduced to a problem instance of finding an FSL-drawing. More formally,
when we select a set Evisible

f of some pairs of vertices u, v ∈ V (f) along each inner face f ∈ F −{fo}
(possibly Evisible

f = ∅ for some faces f), we let G′ = (V,E′) with E′ = E∪ (∪f∈FE
visible
f ), and frame

(M,FM , f
o
M ) of G′ be (E,F, fo). Obviously G has a straight-line drawing D of γ = (F, fo) in

which the vertices in each pair (u, v) ∈ Evisible
f , f ∈ F is visible within f if and only if G′ has an

FSL-drawing D′.
In particular, when we select a subset F ′ ⊆ F of inner faces of length ≥ 4 to be drawn as

convex polygons with no flat corners, we prepare Evisible
f as the set of every pairs u, v ∈ V (f) with

distance 2 along f , which automatically makes every corner of the polygon for f in D′ convex. The
following statement is immediate from Theorem 10.

Corollary 11 Let (F, fo) be a plane embedding of a biconnected graph G = (V,E), and F ′ be a
subset of inner faces. Then a convex polygon Pout possibly with flat corners drawn for fo can be
extended to a convex drawing D of G if and only if the following conditions (i)-(ii) hold:
(i) For each cut-pair {u, v}, no u, v-component is enclosed by a pair of two inner faces f, f ′ ∈ F ′;
and
(ii) Let Q1, Q2, . . . , Qk be the subpaths of fo, each corresponding to a segment of Pout. Then for each
i = 1, 2, . . . , k, there is no edge uv whose end-vertices are contained in Qi, and for each cut-pair
{u, v} with u, v ∈ V (Qi), no u, v-component is enclosed by a pair of an inner face f ∈ F ′ and the
outer face fo.

Figure 8: (a) An inner face f in a plane embedding, where (v1, f), (v2, f), (v3, f) ∈ A are required
to be realized as concave corners in a polygon Pf for f ; (b) face f assigned new edges vw covering
vertex u.; (c) Polygon Pf in an FSL-drawing for the augmented embedding in (b); (d) A new
vertex rf which is joined to all vertices v ∈ V (f); and (e) Polygon Pf in an FSL-drawing for the
augmented embedding in (d).

We now observe that Corollary 11 implies the next necessary and sufficient condition for a
biconnected plane graph with the outer face fixed as a convex polygon to admit a convex drawing.
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Theorem 12 [24] Let (F, fo) be a plane embedding of a biconnected graph G = (V,E). Then a
convex polygon Pout possibly with flat corners drawn for fo can be extended to a convex drawing D
of G if and only if the following conditions (i)-(iii) hold:
(i) For each inner vertex v of degree ≥ 3, there exist three paths disjoint except v, each connecting
v and an outer vertex;
(ii) Every cycle of G which has no outer edge has at least three vertices v degree ≥ 3; and
(iii) Let Q1, Q2, . . . , Qk be the subpaths of fo, each corresponding to a segment of Pout. Then for
each i = 1, 2, . . . , k, there is no inner edge uv whose end-vertices are contained in Qi, and the
graph G− V (fo) has no component H such that all the outer vertices adjacent to vertices in H are
contained in Qi.

For each inner vertex v of degree 2 and each outer vertex v of degree 2 placed on Pout as a flat
apex, we replace the two edges uv and vw incident to v with a single edge uw, since such vertices
v will be only flat corners in the adjacent faces in a convex drawing. If this creates multiple edges,
then we see that the given instance admits no convex drawing, and that it violates the necessary
condition (ii). Now we assume that any vertex of degree 2 appears as a convex corner of Pout

and consider if a given instance has a convex drawing in which every inner face is drawn as a
convex polygon with no flat corners. By Menger’s theorem, an inner vertex v of degree at least 3 is
separated from the outer vertices by a cut-pair {u, u′} in a biconnected plane graph if and only if
there is no three disjoint paths between v and the outer vertices. Hence it is not difficult to see that
Corollary 11 with F ′ = F − {fo} the conditions (i)-(ii) are equivalent with those in Theorem 12.
This proves that Theorem 12 follows from Corollary 11.

7.3 Implication to Straight-line Drawability of Biconnected Plane Embeddings
under Concave Corner Constraints

We first review related notations in the problem of finding straight-line drawings under concave
corner constraints [12].

Let γ = (F, fo) be a plane embedding of a biconnected graph G = (V,E), A corner λ around
a vertex v is defined to be a pair (v, f) of the vertex v and the facial cycle f ∈ F whose interior
contains the corner. See Fig. 8(a). Let Λ(v) denote the set of all corners around a vertex v in γ,
and Λ(γ) denote the set of all corners in γ. A corner (v, fo) of a vertex v in the outer facial cycle
fo of γ is an outer corner of fo. We let Λo(γ) denote the set of the outer corners of the outer
facial cycle fo. We call a simple cycle C in G a cut-cycle if a cut-pair {u, v} ⊆ V (C) separates the
vertices outside C from those along C (including those inside C). A corner (v, f) of a vertex v in
a cut-cycle C is an outer corner of C if v is not in the cut-pair of C, and f is one of the two facial
cycles outside C that share the cut-pair of C. We denote by Λo(C) the set of the outer corners of
a cut-cycle (or the outer facial cycle) C.

Let D be a straight-line planar drawing that realizes γ. A corner of γ is called concave in D if
its angle in D is greater than π (note that along the outer boundaryfo a concave corner means a
convex apex of the polygon drawn for fo). A vertex v in a straight-line drawing D is called concave
if one of the corners around v is concave in D. Let Λc(D) denote the set of all concave corners in
D.

The following result is known [12].

Theorem 13 Let γ = (F, fo) be a plane embedding of a biconnected graph G′ = (V,E′), and A be
a subset of Λ(γ). Then:

(a) There exists a straight-line drawing D′ of γ such that Λc(D′) ⊆ A if and only if |A∩Λo(fo)| ≥ 3
and |A ∩ Λo(C)| ≥ 1 for all cut-cycles C in γ.

(b) Let A satisfies the condition in (a), and fo be drawn as a convex polygon Pout with Λo(Pout) =
A ∩ Λo(fo). Then Pout can be extended to a star-shaped drawing D∗ of G′ with Λc(D∗) ⊆ A.

First we show that Theorem 13(a) can be derived from Theorem 8. The only-if-part is easy
to observe independently. We show that the if-part can be derived from Theorem 10. The if-part
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means that a straight-line drawing D′ of γ such that Λc(D′) ⊆ A exists if |A ∩ Λo(fo)| ≥ 3 and
|A ∩ Λo(C)| ≥ 1 for all cut-cycles C in γ.

Denote the given plane graph by (M = E′, FM = F, foM = fo). We next assign news edges as
follows:
(i) For each inner face f ∈ F (γ) of length at least four, assign a new edge vw inside the region f
for every two adjacent edges vu, uw ∈ E(f) such that (u, f) ̸∈ A, as shown in Fig. 8(b); and
(ii) For the outer face fo, assign a new edge vw in the outer region of γ for every two adjacent
edges vu, uw ∈ E(f) such that (u, f) ̸∈ A.

Let E −M be the set of all new edges, and α be the assignment of edges in E −M to faces in
F defined in the above. This defines an instance I of the FSL-drawing problem.

Since |A ∩ Λo(fo)| ≤ 3, foM cannot be surrounded by at most two chains. Hence any forbidden
configuration to I is a zipped-chain, since GM = (V,M) is biconnected. Assume that I has a zipped-
chain (S, S′) with terminals a and b, where we choose a zipped-chain so that the a, b-component
H has the minimum number of vertices among all such components surrounded by zipped-chains
in I. Then we see that the boundary fo(H) is a simply cycle, since otherwise a subgraph H ′ of H
would be surrounded by another zipped-chain by the way of introducing new edges. This, however,
contradicts that a given set A ⊆ Λ(γ) satisfies |A ∩ Λo(fo(H))| ≥ 1. Therefore by Theorem 8, I
has an FSL-drawing D. Let D′ be the straight-line drawing induced from D by the set of original
edges in M = E. Then clearly every other corner (u, f) not in A is realized as a convex corner due
to the augmenting edges vw in D, as shown in Fig. 8(c). Thus, D′ is a straight-line drawing of γ
such that Λc(D′) ⊆ A. This proves the if-part of Theorem 8.

Next we show that Theorem 13(b) can be derived from Theorem 10. Given a plane embedding
γ, a subset A ⊆ Λ(γ). a convex polygon Pout drawn for fo in Theorem 13(b), we construct a fame
as follows.
(i) For each inner face f ∈ F (γ) of length at least four, assign a new edge vw inside the region f
for every two adjacent edges vu, uw ∈ E(f) such that (u, f) ̸∈ A; and
(ii) For each inner face f ∈ F (γ) which has at least two corners from A, create a new vertex rf ,
add a crossing-free edge rjv for each vertex v ∈ V (f) with (v, f) ∈ A and an edge rjv

′ for the other
vertices in V (f), as shown in Fig. 8(d). (Hence the region f is split into |{v ∈ V (f) : (v, f) ∈ A}|
regions.)

Let M be the union of E′ and the edges rfv with (v, f) ∈ A introduced in (ii), FM be the set
of outer face fo and the resulting inner faces, and foM := fo. Let E−M be the set of all new edges
introduced in (i) and the edges rfv

′ with (v′, f) ̸∈ A introduced in (ii). We regard that each edge
in E −M is assigned one of the split region when the corresponding region f is split in (ii). This
determines an assignment α of all edges in E −M to some faces in FM . This defines an instance I
of the FSL-drawing problem. Analogously with case (a), we see that introducing new edges in (i)
creates no zipped-chain or squashed chain. If some new edge rfv in (ii) is used in a zipped-chain
or squashed chain, then I must have an a, b-component H containing rf but is disjoint with the
outer boundary. However, by construction in (ii) on a biconnected graph G′, there cannot be such
a cut-pair {a, b}. Hence I admits an FSL-drawing D by Theorem 10. Let D′ be the straight-line
drawing induced from D by the original vertices/edges in G′. Then every other corner (u, f) not in
A is realized as a convex corner due to the augmenting edges vw in D, and the face f to which a
new vertex rf was created is drawn as a star-shaped polygon Pf , as shown in Fig. 8(e). Note that
the polygons Pf in D′ for the other inner faces are always star-shape, because Pf has at most one
concave corner along it. Thus, D′ is a star-shaped drawing of γ such that the outer boundary is
Pout and Λc(D′) ⊆ A holds. This proves Theorem 13(b).

7.4 Application to Straight-line Drawability of SEFE with Biconnected Inter-
section Graph

Theorem 6 allows us to check the straight-line drawability of the following simultaneous embeddings.
Given two planar graphs G1 = (V,E1) and G2 = (V,E2) with a common vertex set V as input,

Simultaneous Embedding with Fixed Edges (SEFE) asks whether Gi, i = 1, 2 admits a plane drawing
γi such that: (i) each vertex v ∈ V is mapped to the same point in γ1 and in γ2; and (ii) every edge
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e ∈ E1 ∩ E2 is mapped to the same curve in γ1 and γ2. The intersection graph G1∩2 is defined to
be the spanning subgraph (V,E1 ∩ E2).

Angelini et al. [1] proved that the SEFE problem for two graphs with a biconnected intersection
graph can be solved in linear time.

By Theorem 6, the straight-line drawability of simultaneous embeddings in such a case.

Corollary 14 Let γ be a simultaneous embedding of G1 = (V,E1) and G2 = (V,E2) such that
(V,E1∩E2) is biconnected. Then γ is PSL-drawable if and only if it has no forbidden configurations.

8 Converting Convex Polygons into Pseudo-convex Polygons

In this section, we show how to convert a convex polygon into a pseudo-convex polygon by replacing
its side with convex/convex links. For a convex k-gon P = (p1, p2, . . . , pk), the segment between two
adjacent apices pi and pi+1 is called a side of P , which is denoted by pipi+1 such that pi and pi+1

appear in this order when we traverse the boundary of P in the clockwise order. When we place
a vertex v of a graph on a point p in the plane, the point p may be denoted by v for a notational
convenience. For two distinct points p and p′, let L[p, p′⟩ denote the half-line (with exactly one
endpoint p) passing through p and p′. The distance between two points p and p′ is denoted by
|L[p, p′]|. For three distinct points p, p′ and p′′, let δ(p; p′, p′′) be the distance from a point p to the
straight-line L⟨p′, p′′⟩ for two points p′ and p′′ (i.e., δ(p; p′, p′′) is the length of altitude from p to
L⟨p′, p′′⟩).

Given a convex polygon P , we can replace the line-segment drawn for each side on the boundary
of P with a convex or concave line so that the resulting polygon remains pseudo-convex if each
convex or concave line is drawn sufficiently near the original position of the corresponding segment.

More formally, assume that we replace the segment L[u, v] for each side uv on P with a convex
or concave link Q with h new points, say Q = (u, u1, u2, . . . , uh, v), where h may be different for
each side uv (possibly h = 0, which means that we keep the segment L[u, v] without introducing
new vertices on it). Let S−

P (resp., S+
P ) be denote the set of sides uv which are required to be

replaced with concave links (resp., convex links). Assume that
(A1) for each side uv, the new vertices are initially placed along the current segment L[u, v] as
distinct flat corners as their positions (keeping the clockwise order that they appear along P );
(A2) An upper bound ϵ > 0 on the movement is given so that a final position of each new vertex
is required to be within distance ϵ from its initial position in (A1).

We replace the sides of P with concave/convex links as follows.

1. Define δ(P ) to be the minimum of the following:

min{|L[p, p′]| : for every two distinct points p and p′ along P}

and

min{δ(p; p′, p′′) : for every three non-co-linear points p, p′ and p′′ along P }.

2. For each new vertex w, take a circle zone Zw with radius min{ϵ, δ(P )/4} with the current
initial position of w as its center.

3. For each side uv ∈ S−
P (resp., uv ∈ S+

P ), move the new vertices u1, u2, . . . , uh within their
circle zones to form a concave link (resp., a convex link).

In Step 2, we see that every two vertices w and w′ not on the same link are still visible with
no interference by any other segments, after changing the position of a new vertex w to any new
position within Zw. Hence a desired pseudo-convex polygon can be obtained after Step 3.

The construction can be applied to a set of convex polygons in straight-line drawings. In a
plane embedding, each side uv is shared by two inner faces, denoted by f(uv) and f(vu), where u
and v appear in this order along f(uv) in the clockwise order (or along f(vu) in the anti-clockwise
order).
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Figure 9: Illustration for converting convex polygons in inner convex drawings into pseudo-convex
polygons by replacing some sides with concave/convex links: (a) Some convex polygons drawn for
inner faces in an inner convex drawing D, where black circles indicate the reference points rf for
inner faces f ; (b) New vertices with initial positions on the segments of the corresponding sides
of polygons, where dashed lines indicate the tracks around each reference point rf ; (c) The new
vertices are moved to form concave links Quv, Qts, Qab and Qba; and (d) A convex link Q′

ab is
realized as a concave link Qba, and a concave link Q′

uv is generated from a combined concave link
Quv.
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Lemma 15 Let D be a straight-line drawing of a plane embedding γ such that each inner face f ∈
F (γ)−fo(γ) is drawn as a convex polygon Pf . For specified S

−(Pf ) and S
+(Pf ), f ∈ F (γ)−fo(γ),

and ϵ > 0, given initial positions of new vertices on the current sides can be changed within distance
ϵ so that
- each side uv ∈ S−(Pf ) (resp., uv ∈ S+(Pf )) will be replaced with a concave (resp., convex) link
of Pf and
- the polygon Pf for each inner face f ∈ F (γ)− fo(γ) remains pseudo-convex.

Proof: I. Now for each side uv, uv ∈ S−(Pf(uv)) of uv ∈ S+(Pf(vu)), and if uv ∈ S−(Pf(uv)) ∪
S+(Pf(vu)), then vu ∈ S−(Pf(vu)) ∪ S+(Pf(vu)). For each new vertex w, we take a circle zone Zw

with radius
min[ϵ, (1/4)min{δ(Pf ) : f ∈ F (γ)− fo(γ)}]

with the initial position of w as its center. Then we see that the above construction can be applied
independently to the set of new vertices u1, u2, . . . , uh for each side uv ∈ S−(Pf(uv)) ∪ S+(Pf(vu))
to obtain a desired set of pseudo-convex polygons Pf , f ∈ F (γ)− fo(γ).

II. We here show some systematical way of moving new vertices w from their initial positions to
adequate positions within Zw. Before we move the new vertices, we select a reference point rf from
the interior of Pf of each inner face f ∈ F (γ)−fo(γ), as shown in Fig. 9(a). For each new vertex w
on L[u, v] for a side and the initial position pw, use the segments L[pw, rf(uv)] and L[pw, rf(vu)] as
tracks only along which the vertex w is allowed to move; when f(vu) = fo(γ), we use the half-line
L[rf(uv), p⟩ as a track for w on L[u, v], as shown in Fig. 9(b), where the face f(st) is equal to fo(γ).

Now we move the new vertices w along their tracks so that each side uv ∈ S−
P (resp., uv ∈ S+

P ),
form a concave link (resp., a convex link), as shown in an example of a concave link Quv for side
uv in Fig. 9(c).

Now we consider the case where the segment of a side uv of a polygon is replaced not only with
a single concave/convex link but also with a pair of concave/convex links Quv and Q′

uv. Thus, we
allow a side uv of a polygon to satisfy one of the following:

(i) uv ∈ S−(Pf(uv)) and vu ∈ S−(Pf(vu));

(ii) uv ∈ S−(Pf(uv)) and vu ∈ S+(Pf(vu)); and

(iii) uv ∈ S+(Pf(vu)) and vu ∈ S−(Pf(vu)).

A new polygon Puv to be created between Quv and Q′
uv also needs to be pseudo-convex. In other

words,

(i) Quv is a concave link to the polygon Pf(uv), Q
′
uv is a concave link to the polygon Pf(vu), and

Quv and Q′
uv form a pseudo-convex polygon Puv;

(ii) Quv is a concave link to the polygon Pf(uv), Q
′
uv is a convex link to the polygon Pf(vu), and

Quv and Q′
uv form a pseudo-convex polygon Puv; and

(iii) Quv is a convex link to the polygon Pf(uv), Q
′
uv is a concave link to the polygon Pf(vu), and

Quv and Q′
uv form a pseudo-convex polygon Pf(uv).

Note that a pseudo-convex polygon Puv in (i) is always convex. Even for the case where the
segment of some side of a polygon is replaced with a pair of concave/convex links, we obtain an
analogous result.

Lemma 16 Let D be a straight-line drawing of a plane embedding γ such that each inner face f ∈
F (γ)−fo(γ) is drawn as a convex polygon Pf . For specified S

−(Pf ) and S
+(Pf ), f ∈ F (γ)−fo(γ),

and ϵ > 0, given initial distinct positions of new vertices on the current sides can be changed within
distance ϵ so that
- each side uv ∈ S−(Pf ) (resp., uv ∈ S+(Pf )) will be replaced with a concave (resp., convex) link
of Pf and
- the polygon Pf for each inner face f ∈ F (γ)− fo(γ) and the polygon newly created between a pair
of two links will be pseudo-convex.
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Figure 10: Illustration for replacing sides of polygons with single concave links with convex/concave
links: (a) An inner edge uv in a straight-line drawing D for a biconnected plane graph, where
the kernels K(Pf(uv)) and K(Pf(vu)) of the polygons of the inner faces adjacent to uv have no
intersection along the segment L[u, v]; (b) New vertices for each side uv are initially placed on the
visible area K(Pf(uv)) ∩K(Pf(vu)) along segment L[u, v], and the reference point rf for each inner
face f is taken from the interior of the kernel K(Pf ) of the initial polygon Pf ; and (c) Required
concave/convex links are realized in the same manner with the proof of Lemma 16.
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Proof: All new vertices are placed on given initial positions on the segments L[u, v] of the
corresponding sides uv, where the two set of new vertices, one for Quv and Q′

uv are all on the same
segment L[u, v], keeping their clockwise order along Pf(uv). By assumption, no two vertices are
placed on the same initial position. We prepare reference points and tracks as in the proof II of
Lemma 15.

We first consider the case where none of types (ii) and (iii) of pairs of links are given. In this
case, we can move the new vertices for a sinlge concave/convex link Quv and a pair of a concave link
Quv and a convex link Q′

uv in the same manner with the proof II of Lemma 15, since a convex link
Q′

uv will be served as a concave link Qvu. See an example of a concave link Qab and a convex link
Q′

ab for side ab in Fig. 9(c). Thus we can construct each concave link independently by moving the
new vertices w along their tracks within zone Zw to obtain a desired set of pseudo-convex polygons.
Note that the polygon Puv between Quv and Q′

uv will automatically become convex since we move
the new vertices along their tracks which always ensure the convexity of polygon Puv.

Next we consider how to handle types (ii) and (iii) of pairs of links. For a side uv, assume that
we are supposed to construct type (ii) of links, i.e., a concave link Quv to the polygon Pf(uv), a
convex link Q′

uv to the polygon Pf(vu) (type (iii) can be treated symmetrically). Then let Wuv and
W ′

uv be the set of new vertices on Quv and Q′
uv, where both Wuv and W ′

uv are initially on L[u, v].
We first construct two links Quv and Q′

uv as a single combined concave link with the new vertices in
Wuv ∪W ′

uv to Pf(uv). We do this for each single concave link in the above case and each combined
concave link independently by moving the new vertices w along their tracks within zone Zw. With
the resulting concave links, each polygon is a required pseudo-convex polygon.

The remaining task is to split each of the combined concave links. This can be done for each
concave link independently as follows. Let Quv be a combined concave link, which is a convex link
to the other polygon Pf(vu). Then we leave the vertices in Wuv as they are on the link Quv while
we move the vertices in W ′

uv toward their initial positions along their tracks, letting W ′
uv ∪ {u, v}

keep to form a convex link to Pf(vu) until the polygon Puv between Wuv and W ′
uv becomes pseudo-

convex. Note that every new vertex Wuv ∪W ′
uv in the combined link Quv was visible from any

vertex along Pf(vu). Hence the visibility of vertices in W ′
uv will be preserved as long as they move

toward the reference point rf(vu) within Pf(vu). Hence when Puv becomes pseudo-convex (i.e., every
two vertices w ∈ Wuv and w′ ∈ W ′

uv are visible), we obtain a desired pair of links Quv and Q′
uv.

Fig. 9(d) illustrates how Q′
uv is constructed from the combined link Quv in Fig. 9(c).

From the above, we see that all specified links can be realized to form a desired set of pseudo-
convex polygons Pf , f ∈ F (γ)− fo(γ).

Let D be a straight-line drawing that realizes a biconnected plane graph with the outer face fo,
and let Pf denote the polygon in D drawn for an inner face f . We call a polygon Pf convex-interior
if it satisfies the followings:

(i) There is no inner vertex of degree 2;

(ii) Each inner edge uv ∈ E(f)− E(fo) is drawn as a single segment L[u, v] along Pf ;

(iii) Pf is star-shaped (where an outer edge uv ∈ E(f) ∩ E(fo) is allowed to be drawn as any
sequence of segments (not necessarily convex or concave one to Pf ); and

(iv) For each inner edge uv ∈ E(f)− E(fo) and the two inner faces f(uv) and f(vu) containing
edge uv, the intersection of L[u, v], kernels K(Pf(uv)) and K(Pf(vu)) has a positive length.

We call D a convex-interior drawing if all polygons Pf in D are convex-interior. We can replace
each “inner” edge in a convex-interior drawing with a single concave/convex link or a pair of
concave/convex links keeping the visibility of two vertices u and v within each inner face as long
as there are not on the same link or the sequence of segments for an outer edge (where we do not
change the sequence of segments for each outer edge).

Fig. 10(a) illustrates part of a straight-line drawing D that realizes a biconnected plane graph
with the outer face fo, where the polygon Pf1 is not convex-interior in D, because for the inner
edge uv ∈ E(f1), the kernels K(f1) and K(f2) of the polygons of the inner faces f1 and f2 adjacent
to uv have no intersection along the segment L[u, v]. Note that {u, v} is a cut-pair of the graph.
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Fig. 10(b) illustrates convex-interior polygons Pf1 and Pf2 , where for the inner edge uv ∈
E(f1)∩E(f2), the intersection of the kernels K(Pf1) and K(Pf2) and L[u, v] has a positive length.

In the next lemma, no initial positions of new vertices on links are specified.

Lemma 17 Let D be a convex-interior drawing of a plane embedding γ of a biconnected graph
G = (V,E). Let S−(Pf ) and S+(Pf ) be sets of sides of polygon Pf in D for each inner face
f ∈ F (γ)− fo(γ) such that S−(Pf )∪S+(Pf ) contains no sides for outer edges on fo(γ). Then the
segment for each inner edge can be replaced with specified links so that
- each side uv ∈ S−(Pf ) (resp., uv ∈ S+(Pf )) will be replaced with a concave (resp., convex) link
of Pf ,
- the polygon newly created between a pair of two links will be pseudo-convex; and
- for each inner face f ∈ F (γ) − fo(γ), two vertices u, v ∈ V (f) are visible within the polygon Pf

unless u and v are on the same link or the sequence of segments for an outer edge.

Proof: By definition (iv) of convex-interior polygons, for an inner edge uv ∈ E(f) − E(fo) and
the two inner faces f(uv) and f(vu), the intersection of L[u, v], kernels K(Pf(uv)) and K(Pf(vu))
has a positive length. Hence each of kernels K(Pf(uv)) and K(Pf(vu)) has a positive area, and
their intersection K(Pf(uv)) ∩ K(Pf(vu)) does so. Since no initial positions of new vertices on
each link are specified, we place them on the corresponding segment L[u, v] within the region
K(Pf(uv))∩K(Pf(vu)). Then we choose a reference point rf from kernels K(Pf ), and set up tracks
as in the proof of Lemma 16. Since the positions of outer vertices along an inner face f remain
unchanged, the other inner or newly introduced vertices in along f are always visible from these
outer vertices as long as they stay inside K(Pf ). Hence we see that the new vertices can be moved
along their tracks so that all specified links are realized to form a desired set of polygons Pf ,
f ∈ F (γ) − fo(γ) after selecting ϵ = (1/4)min{δ(Pf ) : f ∈ F (γ) − fo(γ)}, as in the proof of
Lemma 16.

9 A Constructive Proof for the Main Result

We prove Theorem 10 by an induction on the number of edges in M −E(foM ). In what follows, we
denote a given instance without zipped-chains/squashed chains by a tuple

I = (G,M,FM , f
o
M , α, Pout).

For a straight-line drawing D of a standard instance I, we call two vertices u and v (or edge
e = uv ∈ E) M -visible in D if the segment L[u, v] does not intersect the segment L[a, b] (except
at end-points a and b) of any edge ab ∈ M in D. When GM = (V,M) is drawn as a straight-line
plane drawing, every edge in M is M -visible. Then a straight-line drawing D of I that realizes the
frame (M,FM , f

o
M ) is an FSL-drawing of I if and only if every edge in E is M -visible in D.

When M − E(foM ) = ∅, i.e., M forms a prescribed convex polygon Pout, clearly the instance
I is FSL-drawable since there is no squashed chain. Assume that M − E(foM ) ̸= ∅. Our idea is
to construct an instance I ′ = (G′,M ′, FM ′ , foM ′ , α′, P ′

out) with |M ′ − E(foM ′)| < |M − E(foM )| by
simplifying a subgraph H of G such that
(i) no new zipped-chains/squashed chains will be created in I ′; and
(ii) any FSL-drawing D′ for I ′ (which exists by induction hypothesis) can be modified into an
FSL-drawing D of the original instance I.

Exposed Vertices We here introduce a notion of “exposed vertices” along a subgraph of GM .
Let H be an s, t-component for a cut-pair {s, t} in GM , and let (v1 = t, v2, . . . , vk = s) denote
the t, s-boundary path of fots(H). Let vivj ∈ E −M be an edge assigned to facets(H) such that
vivj ∈ V o

ts(H). We say that edge vivj covers a vertex vh ∈ V o
ts(H) − {s, t} if vi, vj ̸= vh and edge

vivj together with fots(H) encloses vh (i.e., vi, vh and vj appear along fots(H) in this order). When
facets(H) is an inner face of FM , a vertex vh ∈ V o

ts(H) − {t, s} is called exposed along fots(H) if
no edge vivj (vi, vj ∈ V o

ts(H)) assigned to facets(H) covers vh. When facets(H) = foM , a vertex
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vh ∈ V o
ts(H)− {t, s} is called exposed along fots(H) if the corner at vertex vh in polygon Pout is not

a flat corner (note that no edge is assigned to facets(H) = foM ). We say that H is exposed along
fots(H) if a vertex u ∈ V o

ts(H) − {s, t} is exposed along fots(H), and that H is fully exposed along
fots(H) if all vertices u ∈ V o

ts(H)− {s, t} are exposed along fots(H).
A set of edges vivi+2 (1 ≤ i ≤ k − 2) and v1vk−1 and v2vk assigned to facets(H) is called a

convex-support along fots(H). Symmetrically we define exposition along fost(H). In our reductions
for instances, we sometime introduce a convex-support along a newly constructed path so that the
path is drawn as a convex polygon (minus one side) in an FSL-drawing of the reduced instance.

To find adequate subgraphs H, we use the decomposition of a graph GM = (V,M) into tricon-
nected components, which can be represented by a rooted SPQR tree (see Section 11 for details).
For a simple graph GM , there are three types of nodes, P-, R- and S-nodes. A node ν provides a
graph, called the skeleton skn(ν) which is an abstract structure of a subgraph, denoted by G−(ν),
of the entire graph GM . Based on skn(ν), we design a procedure for simplifying the subgraph
H = G−(ν) to obtain a smaller instance I ′. However, if we simplify H = G−(ν) too much, say
to a single edge, then it would be impossible to construct a necessary straight-line drawing by
extending any FSL-drawing D′ of the reduced instance I ′. Although removing vertices/edges from
I never creates a new forbidden configuration (zipped-chain or squashed chain), this again may
leave an instance I ′ whose FSL-drawing cannot be modified into that for I. To keep some area in
a drawing D′ of a reduced instance I ′ so that a necessary straight-line drawing of H = G−(ν) can
be constructed there, we sometimes introduce new edges in our reduction process. However, we
need to be careful in introducing new edges or contracting vertices, because such kind of operations
could easily introduce a new forbidden configuration.

Figure 11: (a) Embedding with the subgraph G−(ν) of a reduced S-node ν, where the set of edges
vv′ (v, v′ ∈ V o

ts(G
−(ν)) within f right is the convex-support for G−(ν); (b) Embedding with the

subgraph G−(ν) of a reduced S-node ν on the polygon Pout; (c) Embedding with the subgraph
G−(ν) of a reduced P-node ν such that G−(ν) is required to be drawn as a convex polygon; and
(d) Embedding with the subgraph G−(ν) of a reduced P-node ν such that G−(ν) is required to be
drawn as a pseudo-convex polygon with a concave link G−(ν2).

In this paper, we simplify the subgraph H = G−(ν) for one of P-, R- and S-nodes ν up to the
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following structure (see Fig. 11 in Section 11).

Reduced S-nodes We call a non-root S-node ν with no virtual edges in skn−(ν) if (i) skn−(ν) =
G−(ν) consists of a subpath of the outer boundary foM , which is now drawn as a convex polygon
Pout; or (ii) G

−(ν) are fully exposed along fots(G
−(ν)) and has a convex-support along fost(G

−(ν))
for (s, t) with st = parent(ν).

Reduced P-nodes A P-node ν with {s, t} = V (skn(ν)) is called reduced if skn(ν) consists of two
virtual edges e1 and e2 which correspond to reduced S-nodes µ1 and µ2.

To prove Theorem 10, it suffices to design reductions for each of the following cases:
- A non-reduced P-node whose child-nodes are all reduced S-nodes;
- An R-node whose child-nodes (if any) are all reduced S- or P-nodes; and
- A non-reduced S-node whose child-nodes (if any) are all reduced P-nodes.

The details of reduction for each case can be found in Sections 12 - 15.

10 Technical Lemmas

This section provides a collection of technical lemmas which will be used in the subsequent sections.

Lemma 18 Let I = (G = (V,E),M, FM , f
o
M , α) be a standard instance with a prescribed convex

polygon Pout for foM , and assume that I has no zipped-chains or squashed chains. Let f ∈ FM be
an inner face, and u and v be two distinct vertices in V (f), and I ′ be the instance obtained by
assigning a new edge uv within face f .
(i) Assume that I ′ contains a zipped-chain (S, S′) with terminal a and b, where the a, b-chain S
contains uv without loss of generality. Then {a, b} is contained in the u, v-boundary path fouv(f) or
v, u-boundary path fovu(f) of the facial cycle f , and I has a b, a-chain S′ which together with the
a, b-boundary path foab(f) surrounds the region f (see Fig. 12(a)).
(ii) Assume that I ′ contains a squashed a, b-chain S. Then there is an a, b-component H such that
u, v ∈ V o

ab(H) and foba(H) is a b, a-path S′ = Pba of the boundary of Pout from b to a in the clockwise
order which contains no convex corner (see Fig. 12(b)).

Figure 12: Illustration for embeddings with a new edge uv assigned to an inner face f ∈ FM : (a)
the new edge uv is contained in an a, b-chain S which gives a newly created zipped-chain; and (b)
the new edge uv is contained in an a, b-chain S which gives a newly created squashed chain.

Proof: (i) By Lemma 2, {a, b} is a cut-pair of GM and the zipped-chain (S, S′) surrounds an
a, b-component H. Since the facial cycle f and the new edge uv give three internally disjoint paths
between u and v in I ′, the cut-pair {a, b} never separate u and v. Hence {a, b} is contained in
fouv(f) or fovu(f). Clearly in this case the a, b-boundary path foab(H) of H appears along f as

26



the b, a-boundary foba(f). Hence the b, a-boundary path foba(H) of H and the b, a-boundary foab(f)
surrounds the region f , as shown in Fig. 12(a).

(ii) By definition, {a, b} is a cut-pair of GM that appears along the facial cycle f and the b, a-
path S′ = Pba obtained from the boundary of Pout from b to a in the clockwise order, where S′ = Pba

contains no convex corner of Pout, since S is a squashed chain. See Fig. 12(b). Note that path
S′ = Pba and chain S surround an a, b-component H such that u, v ∈ V o

ab(H) and Pba = foba(H).

Lemma 19 Let I = (G = (V,E),M, FM , f
o
M , α) be a standard instance with no zipped-chains. Let

{u, v} is a cut-pair with uv ̸∈ E such that there are two inner faces f1, f2 ∈ FM which contain u
and v on their facial cycles, where the ordering of u and v along f1 and f2 is assumed so that,
for the subgraph H of GM with no outer vertices/edges enclosed by f1 and f2, the boundary fo(H)
consists of fouv(H) = fovu(f1) and f

o
vu(H) = fouv(f2), as shown in Fig. 13(a). Assume that instance I

contains neither a v, u-chain which together with f1 surrounds the path fouv(H) = fovu(f1) nor a u, v-
chain which together with f2 surrounds the path fovu(H) = fouv(f2). Let Ii = (Gi,M, FM , f

o
M , αi),

i = 1, 2 be the instance obtained by assigning a new edge ei = uv within face fi. Then at least one
of I1 and I2 contains no newly created zipped-chain.

Figure 13: Illustration for embeddings with new edge ei = uv assigned to two different inner faces
of FM : (a) Two inner faces f1, f2 ∈ FM enclose a subgraph H of GM with no outer vertices/edges
such that the boundary fo(H) consists of fovu(f1) and f

o
uv(f2), and the blue lines (resp., green lines)

indicate v, u-chains which together with f1 surrounds the path fouv(H) = fovu(f1) (resp., u, v-chains
which together with f2 surrounds the path f

o
vu(H) = fouv(f2)); (b) f

left
2 is enclosed by the boundary

of the a1, b1-component H1; and (c) f left2 is not enclosed by the boundary of H1.

Proof: Fix an embedding γ of G that realizes the frame (M,FM , f
o
M , α). Let γi be an embedding

of Ii obtained from γ by placing edge ei = uv within face fi ∈ FM . The assumption that instance
I has no v, u-chain which together with f1 surrounds the path fouv(H) = fovu(f1) implies that
adding a new edge e1 within face f1 does not create a new zipped-chain with terminal u and v.
Symmetrically for the assumption that there is no u, v-chain which together with f2 surrounds the
path fovu(H) = fouv(f2).
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To derive a contradiction, assume that each γi, i = 1, 2 contains a zipped-chain ηi = (Si, S
′
i)

with ei ∈ Si in Ii, where Si and S
′
i are minimal. Let ai and bi be the terminals of the zipped-chain

(Si, S
′
i), where we assume without loss of generality that Si is an ai, bi-chain, where S

′
i is a biai-chain

in Ii. By the assumption, each of I1 and I2 contains no new zipped-chain with terminal u and v,
and we have {ai, bi} ̸= {u, v} for i = 1, 2. Let Qi denote the 2-vertex-cycle that surrounds ηi in
the graph G(γi) = (V ∪ C(γi), E(γi)) (thus V (Qi) = {ai, bi}). Let Hi denote the ai, bi-component
of GM = (V,M), where we regard Hi as the plane embedding induced from γ. The end-vertices of
all edges in Si ∪ S′

i appear along the outer boundary fo(Hi).

By Lemma 1, Si and S
′
i are contained in different inner faces f lefti and f righti of FM , respectively.

We distinguish two cases.
(i) f left2 is enclosed by the boundary fo(H1) of the a1, b1-component H1 (see Fig. 13(b)): In this

case, Q2 contains exactly two vertices along H1 as the terminals a2 and b2 in G(γ2), and {a2, b2}
needs to be a cut-pair of GM , since Q2 surrounds an a2, b2-component which contains u and v.
By {a2, b2} ̸= {u, v}, we see that Q2 visits both faces f1 and f2. Then Q2 surrounds the b2, a2-
boundary path of fo(H1). Hence S1 ∪ S′

2 contains an a1, b1-chain S3 in I, and (S3, S
′
3 = S′

1) gives
a zipped-chain with e1, e2 ̸∈ S3 ∪ S′

3 in the original instance I, a contradiction to the assumption
on I.

(ii) f left2 is not enclosed by the boundary fo(H1) (see Fig. 13(c)): In this case, f right1 = f left2 = f2.
Assume without loss of generality that f left1 is not enclosed by the boundary fo(H2) either (otherwise

we can apply the argument of (i)). Then f right2 = f left1 = f1. Since vertices a1, a2, b1 and b2 appear in
both f1 and f2 and H1 and H2 share vertices u and v, these vertices appear along f1 in an ordering
(s1, s2, v, u, s3, s4) ∈ {(a2, b1, v, u, b2, a1), (b1, a2, v, u, b2, a1), (a2, b1, v, u, a1, b2), (b1, a2, v, u, a1, b2)}.
In any case, S1 ∪ S′

2 contains an s4, s1-chain S3 in I, and S2 ∪ S′
1 contains an s1, s4-chain S

′
3 in I,

which gives a zipped-chain (S3, S
′
3) with e1, e2 ̸∈ S3 ∪S′

3 in the original instance I, a contradiction.

For a standard instance, let f1 ∈ FM be an inner face, and s and t be two distinct vertices
along the facial cycle f1. We consider how a new zipped-chain or squashed chain can be created by
adding a new edge vw within region f1 ∈ FM in the standard instance. In particular, we assume
that there are two vertices s and t which are connected by three internally disjoint paths, and
vertices v and w appear on the s, t-boundary path fost(f1) and the t, s-boundary path fots(f1) of f1,
respectively. We say that edge wv is a shift of an edge wv′ if there is a v, z-chain or z, v-chain S∗

along the s, t-boundary path fost(f1) such that the edge v′w crosses some edge in S∗ (see Fig. 14(a)
and (b)). The next tells that introducing shifts does not create new zipped/squashed chains.

Lemma 20 Let I = (G = (V,E),M, FM , f
o
M , α) be a standard instance with a prescribed convex

polygon Pout for foM , and assume that instance I has no zipped-chains or squashed chains. Let
s and t be two distinct vertices along an inner facial cycle f1 ∈ FM such that GM contains an
s, t-path Q disjoint with the facial cycle f1 except at s and t, where such a path Q is denoted by
Q1 (resp., by Q2) if Q and the t, s-boundary path fots(f1) (resp., s, t-boundary path fost(f1)) of f1
encloses the region f1. For a vertex v on fost(f1) (possibly v = s or t), and a vertex w ( ̸= s, t) on
fots(f1), let I

′ be the instance obtained from I by adding a new edge wv within f1. Assume that I ′

has a zipped-chain or a squashed chain; i.e., I ′ has a new a, b-chain S with vw ∈ S such that a
zipped-chain of the a, b-chain S and a b, a-chain S′ (or a squashed a, b-chain S and an a, b-subpath
of foM ) surrounds an a, b-component H∗. Then the terminals a and b are on fots(f1). Moreover

(i) When b and a appear in this order from t to s along fots(f1) (see Fig. 14(c),(e)), v = s = a
holds, vertices t, b, w and a appear in this order along fots(f1) from t to s, and fobs(f1) =
fosb(H

∗).

(ii) When a and b appear in this order from t to s along fots(f1) (see Fig. 14(d),(f)), vertices t,
w, a, b and s appear in this order along fots(f1) from t to s, foba(f1) = foab(H

∗), and instance
I has no path Q2 and no edge vw such that vw is a shift of v′w.

Proof: When I ′ has a new zipped-chain (S, S′), {a, b} is a cut-pair of GM and (S, S′) surrounds
an a, b-component H∗ of GM by Lemma 2. Similarly by definition, when I ′ has a new squashed
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Figure 14: Illustration for two vertices s and t along an inner face f ∈ FM such that GM contains
an s, t-path Q1 or Q2 disjoint with the facial cycle f except at s and t: (a) vw is a shift of edge
v′w with a v, z-chain S∗; (b) vw is a shift of edge v′w with a z, v-chain S∗, and an s, t-component
H next to f implies the existence of path Q2; (c) vertices t, b, w and v = a = t appear in the
clockwise order along f1 for a zipped-chain (S, S′) such that the added edge vw; (d) vertices t,
w, a, b, s and v appear in the clockwise order along f1 for a zipped-chain (S, S′) such that the
added edge vw; (e) vertices t, b, w and v = a = t appear in the clockwise order along f1 for a
squashed a, b-chain S containing the added edge vw; and (f) vertices t, w, a, b, s and v appear in
the clockwise order along f1 for a squashed a, b-chain S containing the added edge vw.
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a, b-chain S, {a, b} is a cut-pair of GM and we see that chain S and an s, b-subpath of foM surround
an a, b-component H∗.

Since GM has three internally disjoint s, t-paths (Q and two from f1) by assumption, the cut-
pair {a, b} is on fots(f1) or fost(f1). Since w ∈ V (H∗) and w ̸∈ V (fost(f1)), we see that {a, b} must
be on fots(f1). We distinguish two cases.

(i) b and a appear in this order from t to s along fots(f1) (see Fig. 14(c),(e)): In this case, the
b, a-boundary path foba(f1) of f1 is the a, b-boundary path of H∗ (i.e., fobs(f1) = fosb(H

∗)). Note that
this can happen only when v is on foba(f1) (i.e., v = s = a). Since w is also on the the b, a-boundary
path, we see that vertices t, b, w and v = s = a appear in this order along fots(f1).

(ii) a and b appear in this order from t to s along fots(f1) (see Fig. 14(d),(f)): Now the b, a-
boundary path of f is part of fo(H∗), and hence vertices t, w, a, b and s appear in this order along
fots(f1) from t to s (possibly w = a and v = s = b). Note a ̸= t by w ̸= s, t by assumption. Then
H∗ contains the b, a-boundary path fb,a of f1 as its a, b-boundary path (i.e., foba(f1) = foab(H

∗)),
and this means that GM cannot have the second type of s, t-path Q2 (see Fig. 14(b)).

Finally we show that instance I has no edge v′w which is a shift of vw. Assume that vw is a shift
of an edge v′w for a z, v-chain S∗ along fost(f1). Then we see that (S−{vw})∪{v′w}∪S∗ will be an
a, b-chain in I, which together with the b, a-chain S′ (or the a, b-subpath of foM ) gives a zipped-chain
(or a squashed chain), contradicting the assumption that instance I has no zipped-chains.

We call the a, b-component H∗ in (i) (resp., (ii)) of the lemma type I (resp., type II) bad
component for the vertex pair {v, w}.

11 Preliminaries for Proving Theorem 10

11.1 Inner Convex Drawings of Triconnected Plane Graphs

A straight-line drawing of a plane embedding is called inner convex if every inner facial cycle is
drawn as a convex polygon. It is known that a given plane embedding admits an inner convex
drawing when it is triconnected or internally triconnected. To establish a reduction for R-nodes
for proving Theorem 10, we use the following result, a slight extension of the main result in [13]
(Theorem 10).

Theorem 21 For a plane embedding γ = (F, fo) of a triconnected planar graph G = (V,E), the
outer facial cycle fo is drawn as a star-shaped polygon P o whose kernel K(P o) has a positive area.
Let K ′ be a convex region contained in the region K(P o). Then P o can be extended to an inner
convex drawing DG of G such that all inner vertices appear strictly inside K ′. Such a drawing DG

can be computed in linear time.

Proof: It is shown [13] (Lemma 7) that G contains a tree T (so-called an “arch-free tree”) whose
leaf set is equal to the set V (fo) of the boundary of the plane embedding γ with the following
properties:
(i) T can be drawn as a straight-line drawing DT within in P o;
(ii) all non-leaf vertices of T are placed strictly inside K(P o) in DT ; and
(iii) P o together with DT forms an inner convex drawing D′ with convex inner faces f1, . . . , fq ∈
F (D′), where the subgraph Gi of G enclosed by the boundary of each face fi admits a convex
drawing DGi as an extension of the convex polygon for fi.

This implies that a convex drawing DG of G can be obtained by placing the convex drawing DGi

in each face fi. In the above argument, we can further restrict an area where non-leaf vertices of T
will be located to a sub-region K ′ of K(P o) (instead of K(P o)) without affecting the correctness
of the proof. Note that all vertices in each Gi automatically appear inside the convex region K ′ in
any convex drawing DGi of Gi, since otherwise the inner face DGi containing an outer edge in fo

cannot be convex.

In an inner convex drawingDG obtained in the theorem, a convex polygon Pf drawn for an inner
face f may have a flat corner for some inner vertex on the facial cycle. We can slightly move such ver-
tices so that the corner for each inner vertex along any convex polygon Pf become convex. Formally,
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as in Section 8, we define δ(P ) to be the minimum of min{|L[p, p′]| : for every two distinct points p
and p′ along P} and min{δ(p; p′, p′′) : for every three non-co-linear points p, p′ and p′′ along P },
and set ϵ = (1/4)min{δ(Pf ) : for every polygon Pf in DG drawn for an inner face f}. Then we
see that a straight-line drawing D′

G obtained by changing the position of each vertex v within dis-
tance ϵ from that in DG preserves the convexity of all corners in DG. We only need to choose new
positions of vertices whose corners are flat in DG so that they become convex corners in D′

G. For
each side S = L[u, v] of Pf which contains at least one flat corner in DG, where u and v are convex
corners of Pf , we replace S with a convex link to Pf selecting new positions of the flat corners on
S within distance ϵ from their initial positions on S. Summarizing these we have the next result.

Corollary 22 For a plane embedding γ = (F, fo) of a triconnected planar graph G = (V,E), the
outer facial cycle fo is drawn as a star-shaped polygon P o whose kernel K(P o) has a positive area.
Let K ′ be a convex region contained in the region K(P o). Then P o can be extended to an inner
convex drawing DG of G such that all inner vertices appear strictly inside K ′ and no flat corner
appears at any inner vertex. Such a drawing DG can be computed in polynomial time.

11.2 SPQR decomposition of graphs

We here review a decomposition of a given graph into “triconnected components” and a tree
representation for the components.

Triconnected components of a graph G = (V,E) are defined as follows [14]. If G is triconnected,
then G itself is the unique triconnected component of G. Otherwise, let {u, v} be a cut-pair of G.
We split the edges of G into two disjoint subsets E1 and E2, such that |E1| > 1, |E2| > 1, and the
subgraphs G1 and G2 induced by E1 and E2 only have vertices u and v in common. Form the graph
G′

1 from G1 by adding an edge (called a virtual edge) between u and v that represents the existence
of the other subgraph G2; similarly form G′

2. We continue the splitting process recursively on G′
1

and G′
2. The process stops when each resulting graph reaches one of three forms: a triconnected

simple graph, a set of three multiple edges (a triple bond), or a cycle of length three (a triangle).
The triconnected components of G are obtained from these resulting graphs: (i) a triconnected
simple graph; (ii) a bond, formed by merging the triple bonds into a maximal set of multiple edges;
and (iii) a polygon, formed by merging the triangles into a maximal simple cycle.

One can define a tree structure, sometimes called the 3-block tree, using triconnected components
as follows. The nodes of the 3-block tree are the triconnected components of G. The edges of the
3-block tree are defined by the virtual edges, that is, if two triconnected components have a virtual
edge in common, then the nodes that represent the two triconnected components in the 3-block
tree are joined by an edge that represents the virtual edge. There are many variants of the 3-block
tree in the literature; the first was defined by Tutte [25]. In this paper, we use the terminology of
the SPQR tree, a data structure with efficient operations defined by di Battista and Tamassia [3].

Each node ν in the SPQR tree is associated with a graph called the skeleton of ν, denoted by
skn(ν) = (Vν , Eν) (Vν ⊆ V ), which corresponds to a triconnected component. There are four types
of nodes in the SPQR tree. The node types and their skeletons are:

1. Q-node: the skeleton consists of two vertices connected by two edges. Each Q-node corre-
sponds to an edge of the original graph.

2. S-node: the skeleton is a simple cycle with at least three vertices (this corresponds to a
polygon triconnected component).

3. P-node: the skeleton consists of two vertices connected by at least three edges (this corre-
sponds to a bond triconnected component).

4. R-node: the skeleton is a triconnected graph with at least four vertices.

The SPQR tree is unique, and can be computed in linear-time [3, 10, 14]. In our case, G is
simple, and no Q-nodes appear.

We treat the SPQR tree as a rooted tree T by choosing a node ν∗ as its root. For a node ν, let
Ch(ν) denote the set of all children of ν, and let η be the parent of ν. The graph skn(η) has exactly
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one virtual edge e in common with skn(ν). The edge e is called the parent virtual edge parent(ν) of
skn(ν), and a child virtual edge of skn(η). Non-virtual edges in skn(ν) are called real edges, which
are some of the edges in G. We define the parent cut-pair of ν as the two end vertices of parent(ν).
We denote the graph formed from skn(ν) by deleting its parent virtual edge as skn−(ν) = (Vν , E

−
ν ),

E−
ν = Eν − {parent(ν)}. Let G−(ν) denote the subgraph of G which consists of the vertices and

real edges in the graphs skn−(µ) for all descendants µ of ν, including ν itself. For notational
convenience, we let G−(ν), skn−(ν) and E−

ν denote G(ν), skn(ν) and Eν if ν is the root. By the
definition, no S-node (resp., P -node) has a child S-node (resp., child P -node), and no P -node can
be a leaf in the SPQR tree.

11.3 Construct SPQR-trees for Frame Graphs GM = (V,M)

We compute the SPQR-tree T for the biconnected graph GM = (V,M). In what follows, the
SPQR-tree T always means that for GM = (V,M) (not for G = (V,E) in an instance I).

Choosing Roots Let T be the SPQR tree of GM = (V,M). We distinguish two case: (i) The
outer facial cycle fo(ψ) contains two vertices u, v ∈ V (fo(ψ)) such that {u, v} is a cut-pair of the
biconnected spanning graph GM = (V,M); and (ii) Otherwise.

In (i), there is a P-node ν whose skeleton consists of multiple edges uv. We choose such a
cut-pair {u, v} so that u and v are as close as possible on fo(ψ) (hence no other outer vertex a
(resp., b) appears on the u, v-boundary path (resp., v, u-boundary path) such that {u, a} (resp,
{v, b}) is a cut-pair). Then we choose the P-node for such a cut-pair {u, v} as the root ν∗ of the
SPQR tree T . In (ii), there is an R-node ν such that both fo(skn(ν)) and fo(G(ν)) consists of the
same set of crossing-free edges in M , and we designate such an R-node as the root ν∗ of T .

Lemma 23 Let I = (G = (V,E),M, FM , f
o
M , α) be a standard instance. For an S-node ν in the

rooted SPQR tree of GM , denote st = parent(ν). Then GM contains three internally disjoint s, t-
paths, each from the subgraphs H = G−(ν), facest(H)− (V (H)− {s, t}) and facest(H)− (V (H)−
{s, t}), respectively.

Proof: By the choice of the root ν∗ of T , any S-node is a non-root node in T . Clearly GM −
(V (H) − {s, t}) contains two internally disjoint s, t-paths when the parent of ν is an R-node or
a non-root P-node. When the parent of ν is the root P-node ν∗, we see that each vertex in
V (skn(ν)) − {s, t} is an inner vertex in the plane embedding of GM by the choice of the cut-pair
{s, t} on the outer boundary fo(η) for the root P-node ν∗, and thereby GM − (V (H) − {s, t})
contains two internally disjoint s, t-paths. Hence GM contains three internally disjoint s, t-paths in
H = G−(ν), facets(H)− (V (H)− {s, t}) and facest(H)− (V (H)− {s, t}).

11.4 Detecting Forbidden Configurations

W here examine the structure of P-, R- and S-nodes for standard instances, which provides how to
detect whether a given instance contains zipped-chains or squashed chains.

Structure of R-nodes

Lemma 24 Let I = (G = (V,E),M, FM , f
o
M , α) be a standard instance. For a non-root R-node ν

in the SPQR tree of GM , let H = G−(ν) and st = parent(ν). Then:
(i) If H is not exposed along fots(H) and along fost(H), then there is a zipped-chain or a squashed
chain; and
(ii) Assume that the parent node of ν is an R- or S-node, and that f left = facest(H) ∈ FM and
f right = facets(H) ∈ FM are inner faces. If H is exposed along both fots(H) and fost(H) and instance
I has no edge st, then adding a new edge st within f left or f right does not create a zipped-chain or
a squashed chain.
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Proof: (i) We see that there is a zipped-chain (S, S′) of an s, t-chain S and a t, s-chain S′ or a
squashed s, t- or t, s-chain S (possibly S or S′ consists of a single edge st).

(ii) We apply Lemma 19 to cut-pairs {s, t} and inner faces f left, f right = facets(H) ∈ FM . Since
the parent of ν is now an R- or S-node, GM has no other s, t-component H ′ other than H and its
complement. Hence no st- or t, s-chain stated in the lemma exists in I, and adding edge st within
f left or f right creates no zipped-chain. Assume that adding a new edge st within f right creates a
squashed a, b-chain S (otherwise we are done). By Lemma 18(ii), the terminals a and b of the chain
S gives a cut-pair that appears along f left and the b, a-path Pba obtained from the boundary of
Pout from b to a in the clockwise order. Note that path Pba and chain S surround f left or f left is
the outer face foM . By assumption, f left is an inner face in FM . If adding a new edge st within f left

creates another squashed a′, b′-chain S′, then by Lemma 18(ii), the b′, a′-path Pb′a′ obtained from
the boundary of Pout from b′ to a′ in the clockwise order must be a line segment. However, this is
impossible because a and b′ appear on L[b, a] in this order from b to a, since f left is surrounded by
Pba and S. Therefore, adding st to f left or f right does not create a squashed chain.

Structure of S-nodes For an S-node ν with st = parent(ν) and H = G−(ν), we denote
f left = facest(H) ∈ FM and f right = facets(H) ∈ FM . Also denote the s, t-path skn−(ν) by
(v0 = s, v1, . . . , vk, vk+1 = t), and for each virtual edge ei = vivi+1, let µi ∈ Ch(ν) denote the child
node corresponding to ei and Hi denote G

−(µi); for each real edge ei = vivi+1, let Hi denote the
graph consisting of the real edge ei. For two indices i < j, let H(i, j) denote the union of subgraphs
Hi,Hi+1, . . . , Hj , which is a vi, vj+1-component of GM .

Lemma 25 Let I = (G = (V,E),M, FM , f
o
M , α) be a standard instance. For an S-node ν in the

rooted SPQR tree of GM , denote st = parent(ν) and skn−(ν) = (v0 = s, v1, . . . , vk, vk+1 = t).
Then:
(i) If there are indices 0 ≤ i < j ≤ k+ 1 such that H(i, j) is not exposed along fovj+1vi(H(i, j)) and

along fovivj+1
(H(i, j)), then instance I contains a zipped-chain or a squashed chain.

(ii) Assume that the parent node of ν is an R- or S-node, and that f left = facest(H) ∈ FM and
f right = facets(H) ∈ FM are inner faces. If H is exposed along both fots(H) and fost(H) and instance
I has no edge st, then adding a new edge st within f left or f right does not create a zipped-chain or
a squashed chain.

Proof: (i) We see that there is a zipped-chain (S, S′) of an s, t-chain S and a t, s-chain S′ or a
squashed s, t- or t, s-chain S (possibly S or S′ consists of a single edge st).

(ii) Analogously with Lemma 24(ii).

Structure of P-nodes For each P-node ν with {s, t} = V (skn(ν)), we always index the virtual
edges in skn−(ν) as e1, e2, . . . , ek by traversing these edges from left to right, placing s on the
bottom level and t on the top level, as shown Fig. 15(a). The child node in Ch(ν) corresponding
to the virtual edge ei is denoted by µi. Possibly, fots(G

−(µ1)) or fost(G
−(µk)) is a subpath of the

outer boundary foM . When ν is the root of T , it holds skn−(ν) = skn(ν) and fo(ψ) consists of the
boundary paths fots(G

−(µ1)) and f
o
st(G

−(µk)).

Lemma 26 Let I = (G = (V,E),M, FM , f
o
M , α) be a standard instance with a prescribed convex

polygon Pout. For a P-node ν, let V (skn(ν)) = {s, t} and let e1, e2, . . . , ek denote the virtual edges
in skn(ν). Then there is a zipped-chain or a squashed chain if there are indices 1 ≤ i < j ≤ k that
satisfy one of the following (i)-(iii):
(i) G−(µi) is not exposed along fots(G

−(µi)) and G
−(µj) is not exposed along fost(G

−(µj));
(ii) G−(µi) is not exposed along fots(G

−(µi)), and a real edge st ∈ E is assigned in the face f
between G−(µj−1) and G

−(µj) (where f = facets(G−(µj))); and
(iii) G−(µj) is not exposed along fots(G

−(µj)), and a real edge st ∈ E is assigned in the face f
between G−(µi) and G

−(µi+1).
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Proof: In any of (i)-(iii), there is a zipped-chain (S, S′) of an s, t-chain S and a t, s-chain S′ or a
squashed s, t- or t, s-chain S (possibly S or S′ consists of a single edge st).

For each P-node ν, we choose the following index j∗ (1 ≤ j∗ ≤ k) such that G−(µi) (i ≤ j∗) is
exposed along fots(G

−(µi)); G
−(µi) (i > j∗) is exposed along fost(G

−(µj)); and if st ∈ E (possibly
st ∈ M), then st is assigned to the face f between G−(µj∗) and G−(µj∗+1). If there is no such
j∗, then the frame has a forbidden configuration by Lemma 26. We call the virtual edges ei with
i ≤ j∗ (resp., i > j∗) the left edges (resp., right edges) in the skeleton skn−(ν).

Lemma 27 Let I = (G = (V,E),M, FM , f
o
M , α) be a standard instance with a prescribed convex

polygon Pout. For a P-node ν, let V (skn(ν)) = {s, t}, and let e1, e2, . . . , ej∗ and ej∗+1, ej∗+2, . . . , ek
denote the left edges and the right edges in skn(ν), respectively. If st ̸∈ E, none of G−(µ1) and
G−(µk) is a subpath of Pout, and 1 ≤ j∗ < k, then adding a new edge st within the face f between
G−(µj∗) and G

−(µj∗+1) does not create a zipped-chain or a squashed chain.

Proof: By 1 ≤ j∗ < k and the assumption on G−(µ1) and G−(µk), we see that GM contains
two s, t-paths Q1 and Q2 such that the cycle formed by Q1 and Q2 encloses the region f and each
of Q1 and Q2 is disjoint with the facial cycle f except at s and t. We apply Lemma 18 to f and
a new edge st = uv. Then for any a, b-chain S in a zipped-chain or a squashed chain created by
adding a new edge st within the region f , it must hold a = t and s = b in the lemma due to the
existence of the two s, t-paths Q1 and Q2. However, in this case, the a, b-component H would give
an s, t-chain outside the region f or an s, t-subpath of Pout having no convex corners on it. The
former contradicts the choice of j∗, since G−(µj) for each left edge ej is exposed along its left side
fost(G

−(µj)). The latter contradicts the assumption that none of G−(µ1) and G
−(µk) is a subpath

of Pout. Therefore, adding a new edge st within the face f does not a zipped-chain or a squashed
chain.

In what follows, we assume that for any P-node ν with st = parent(ν) satisfying the condition
of Lemma 27, an edge st is added to E −M within the face f between G−(µj∗) and G

−(µj∗+1).

Figure 15: (a) A plane embedding of skeleton skn−(ν) of a P-node ν, where the virtual edges are
categorized into left edges and right edges; (b) The subgraphs G−(µi) of child-nodes µi ∈ Ch(ν)
such that no virtual edge in skn−(ν) is an outer edge; and (c) The subgraphs G−(µi) of child-nodes
µi ∈ Ch(ν) such that the leftmost virtual edge in skn−(ν) is an outer edge.
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Since any zipped-chain appears around a u, v-component H of GM by Lemma 2, we see that any
zipped-chain in a given standard instance I appears as one of the zipped-chains in Lemma 24(i),
Lemma 25(i) and Lemma 26. Similarly any squashed chain in I appears as one of those in these
lemmas. Hence we can detect any zipped-chains or squashed chains in a given instance I in
polynomial time. In what follows, we assume that a given standard instance has no zipped-chains
or squashed chains.

12 Reduction for P-nodes

In this section, we assume that the rooted SPQR tree T of a given standard instance I has a
non-reduced P-node ν whose child-nodes are all reduced S-nodes, and give a reduction procedure
that converts such a standard instance I into a standard instance I ′ with a smaller number of edges
in M .

For a non-reduced P-node ν whose child-nodes are all reduced S-nodes, let {s, t} = V (skn(ν)),
e1, e2, . . . , ek be the virtual edges in skn−(ν), and µi ∈ Ch(ν) denote the child S-node corresponding
to ei, where e1, e2, . . . , ej∗ are the left edges and ej∗+1, . . . , ek are the right edges. Recall that for each
left edge ei, the graph G−(µi) is fully exposed along its left side fost(G

−(µi)) while it has a convex-
support along its right side fots(G

−(µi)). Symmetrically for each right edge ei, the graph G−(µi) is
fully exposed along fots(G

−(µi)) and has a convex-support along fost(G
−(µi)). We distinguish two

cases:
1. G−(µ1) or G

−(µk) is a subpath of the prescribed polygon Pout; and
2. Neither of G−(µ1) and G

−(µk) is a subpath of the prescribed polygon Pout.

Case 1. G−(µ1) or G
−(µk), say G

−(µ1) is a subpath of Pout. Since ν is not a reduced P-node yet,
skeleton skn−(ν) contains the second virtual edge e2, which is a left edge or a right edge in skn−(ν)
(i.e., j∗ ≥ 2 or j∗ = 1). We denote the s, t-path G−(µ2) by (v0 = s, v1, v2, . . . , vk, vk+1 = t) and
the s, t-path G−(µ1) by (u0 = s, u1, u2, . . . , uℓ, uℓ+1 = t), where each ui is an outer vertex and its
position is now fixed on Pout. Let f

right = facets(G−(µ2)) ∈ FM . See Fig. 16(a) and (b).

Case 1a. e2 is a left edge (see Fig. 16(a)): In this case, we convert I into a standard instance
I ′ as follows.

Reduction

1. Let T be the triangle enclosed by three segments L[s, uℓ], L[t, u1] and L[s, t]. Realize the s, t-
path G−(µ2) as a convex link within T to form a pseudo-convex polygon P1,2 for (s, u1, u2, . . . ,
uℓ, t, vk, vk−1, . . . , v1) such that any two vertices ui in G

−(µ1) and vj in G
−(µ2) are M -visible

(see Fig. 16(b));

2. Modify the outer polygon Pout into P ′
out by replacing G−(µ1) with the above fixed path

G−(µ2), where the edges in E − M that are incident to a vertex ui in G−(µ1) are also
removed. Let I ′ be the resulting instance.

Since each vertex vj in G
−(µ2) is realized as a convex corner along P ′

out, no new squashed chain
is created. By induction hypothesis on the size of M , I ′ admits an FSL-drawing D′, as shown in
Fig. 16(c).

Construction of Drawing
We easily see that D′ can be extended to an FSL-drawing D of I by drawing the removed edges
in E − M within the pseudo-convex polygon (s, u1, u2, . . . , uℓ, t, vk, vk−1, . . . , v1). The resulting
drawing D is an FSL-drawing of I.

Case 1b. e2 is a right edge (see Fig. 16(d)): Possibly the vertices in G−(µ1)−{s, t} are realized
as flat corners along P ′

out. In this case, we convert I into a standard instance I ′ as follows.
Reduction

1. Place the vertices in G−(µ2) along segment L[s, t];
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2. Modify the outer polygon Pout into P ′
out by replacing G−(µ1) with the above fixed path

G−(µ2), where the edges in E − M that are incident to a vertex ui in G−(µ1) are also
removed. Let I ′ be the resulting instance, as illustrated in Fig. 16(e).

Although each vertex vj in G
−(µ2) is realized as a flat corner along P ′

out, no new squashed chain
is created, since G−(µ2) is fully exposed along fots(G

−(µ2)) and no edge assigned within f right joins
two vertices vi and vj ({i, j} ̸= {0, k+1}). By induction hypothesis on the size of M , I ′ admits an
FSL-drawing D′, as shown in Fig. 16(f).

Construction of Drawing
We now show that D′ can be extended to an FSL-drawing D of I. For each vertex vi in G

−(µ2),

let Wi denote the set of vertices w on the t, s-boundary f rightts of the facial cycle f right such that
there is an edge wvi ∈ E−M . For each vertex w ∈Wi (1 ≤ i ≤ k), we define conew to be the set of
half-lines L starting from w that do not intersect any segment in D′ except segment L[s, t]. We call
the intersection Ki of conew over all w ∈Wi and the convex polygon P ′

out, the kernel for the vertex
vi in G

−(µ2). Clearly, Ki contains the point for vi in D
′. We see that Ki has a positive area, since

each w ∈ Wi has segment L[w, vi] which are separate apart with some positive distance from any
edges in M except at w and vi. We next move the position of each vertex vi (1 ≤ i ≤ k) in G−(µ2)
within the interior of Ki so that G−(µ1) and G

−(µ2) form a convex polygon, as shown in Fig. 16(g).
This is possible because each Ki contains the current position for vi and has a positive area. Let
D′ be the resulting drawing for I. Note that the new position for each vi in Ki is M -visible from
any vertices w ∈Wi. Hence D is a correct FSL-drawing of I.

Case 2. Neither of G−(µ1) and G−(µk) is a subpath of the prescribed polygon Pout. Since ν is
not reduced, it has at least three virtual edges in skn−(ν), where e1, e2, . . . , ej∗ are the left edges
and ej∗+1, . . . , ek are the right edges. Without loss of generality that the number of left edges
is not less than that of right ones, where e1 and e2 are left edges and e3 is a left or right edge.
We denote the s, t-path G−(µ1) by (u0 = s, u1, u2, . . . , uℓ, uℓ+1 = t). the s, t-path G−(µ2) by
(v0 = s, v1, v2, . . . , vk, vk+1 = t), and the s, t-path G−(µ3) by (w0 = s, w1, w2, . . . , wh, wh+1 = t).
See Fig. 17(a) and (c).

Reduction
Let X = V (G−(µ2))− {s, t}. Remove the vertices in X and the edges in E(X) from I, and let I ′

be the resulting instance.
Since I ′ is obtained from I by simply removing vertices/edges, I ′ has no new zipped-chains. By

induction hypothesis on the size of M , I ′ admits an FSL-drawing D′, as shown in See Fig. 17(b)
and (d).

Construction of Drawing
We now show that D′ can be extended to an FSL-drawing D of I. Recall that G−(µ1) =
(s, u1, . . . , uℓ, t) has a convex-support on its right side in I, and D′ contains segments L[s, uℓ] and
L[t, u1] for edges suℓ and tu1. Currently the polygon for the cycle (s, u1, u2, . . . , uℓ, u, t, wh, wh−1, . . . , w1)
of G−(µ1) and G

−(µ3) is a convex polygon P1,3 (resp., pseudo-convex polygon) when j∗ = 2 (resp.,
j∗ ≥ 3). Let K be the intersection of the kernel K(P1,3) of the polygon P1,3 and the convex polygon
(s, u1, u2, . . . , uℓ, t) for G

−(µ1). We place the vertices in G−(µ1)−{s, t} within the interior of K so
that G−(µ1) and G−(µ2) form a pseudo-convex polygon, as shown in Fig. 16(b) and (d). Let D′

be the resulting drawing for I. Note that each vertex vi in G
−(µ2) is M -visible from any vertices

G−(µ1) and G
−(µ3) since it is placed inside K. Hence D is a correct FSL-drawing of I.

13 Cactus Instances

We are given a non-root S-node ν in a standard instance I such that every child node of ν is a
reduced P- or S-nodes. Hence the subgraph G−(ν) is a concatenation of paths/cycles. Our aim is
to reduce such an S-node ν to a reduced S-node, i.e., to replace the subgraph G[V (H)] induced by
the vertex set of H = G−(ν) with a single path with a convex-support in a given embedding of I.
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Before we establish an entire reduction, we in this section focus on how to construct a straight-
line drawing for the induced subgraph G[V (H)], ignoring the rest of the graph G−V (H). However,
finding a straight-line drawing of G[V (H)] is not trivial, because G[V (H)] may have some crossing
edges in E −M that join two vertices in H. We also introduce a way of controlling the area for
a drawing DH of G[V (H)] so that we can plug the drawing DH in an FSL-drawing of a reduced
instance I ′.

In what follows, we formulate a “cactus instance” which represents the structure of the induced
graphs G[V (H)] for H = G−(ν), where we will ignore any edges in E − E(H) joining two vertices
in the same cycle in H = G−(ν) and we instead impose a constraint on the shape of a polygon
drawn for each cycle H = G−(ν). In the rest of section, we design a procedure for constructing a
straight-line drawing of cactus instances.

We call a cactus a line-cactus if it consists of q (≥ 0) cycles

Qi = (si−1, vi,1, vi,2, . . . , vi,ki , si, v
′
i,k′i
, v′i,k′i−1, . . . , v

′
i,1), i = 1, 2, . . . , q

such that Qi and Qi+1 share a vertex si (1 ≤ i < q), where vertices si−1, vi,1, vi,2, . . . , vi,ki , si, v
′
i,k′i
,

v′i,k′i−1, . . . , v
′
i,1 appear in this order when we traverse Qi in clockwise order. Possibly ki = 0 or

k′i = 0, i.e., Qi is an si−1si-path (Qi is a single edge when ki = k′i = 0). See Fig. 18(a). We call
vertices vi,j (resp., v′i,j) in some Qi left vertices (resp., right vertices) whereas we call vertices

s0, s1, . . . , sq

joint vertices. When q = 0, the above line-cactus is a single vertex. We call s0 and sq the terminal
of the line-cactus, and call a line-cactus with terminals s and t an s, t-cactus.

Formally a cactus instance (G, γ,M) is defined to be a tuple of a graph G = (V,E), an embed-
ding γ of G 1, an s, t-cactus GM = (V,M) = (Q1, Q2, . . . , Qq) of crossing-free edges that spans G,
and such that
(i) the terminal s and t of (V,M) are on the boundary of γ;
(ii) no edge E −M joins two vertices in the same cycle Qi (except edge si−1si ∈ E −M); and
(iii) no edge in E −M joins a left vertex in Qi and a right vertex in Qj for any i, j.

For two distinct vertices u, u′ ∈ V o
st(GM ) (resp., u, u′ ∈ V o

ts(GM )), we denote u ≺ u′ if u′ appears
after u when we traverse fost(GM ) (resp., fots(GM )) from s to t (i.e., u′ is closer to t than u), and
denote u ⪯ u′ if u ≺ u′ or u = u′. Every edge uu′ ∈ E −M and the boundary of M enclose a new
region Ruu′ (not the one inside some cycle Qi). We call edge uu′ ∈ E −M (u ⪯ u′) a left edge if u′

appears immediately after u along the boundary Ruu′ in the clockwise order; otherwise it is called
a right edge. Let Eright and Eleft denote the set of right and left edges in E −M , respectively. No
left edge is incident to any right vertex. Similarly for right edges.

Polygon constraint We assume that each cycle Qi is one of central, left and right types, which
specify the shape of polygon Pi drawn for Qi as follows:
- Each central type cycle Qi is required to be drawn as a convex polygon Pi (where a single edge
Qi is always of central type);
- Each right type cycle Qi has edge si−1si ∈ Eleft, and Qi is required to be drawn as a pseudo-
convex polygon Pi that consists of a concave link (si−1, vi,1, vi,2, . . . , vi,ki , si) and a convex link
(si+1, v

′
i,k′i
, v′i,k′i−1, . . . , v

′
i,1); and

- Each left type cycle Qi has edge si−1si ∈ Eright, and Qi is required to be drawn as a pseudo-
convex polygon Pi that consists of a convex link (si−1, vi,1, vi,2, . . . , vi,ki , si) and a concave link
(si+1, v

′
i,k′i
, v′i,k′i−1, . . . , v

′
i,1).

In that follows, for a straight-line (or a segment) L in the xy-plane not parallel to the y-axis,
let λL(x) denote a function that outputs the y-coordinate of the point on L with the x-coordinate
x (i.e., point (x, λL(x)) is on L).

1Graph G and set M here are now reset for cactus instances in this section, not necessarily the same ones from
which a particular S-node ν is taken.
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We assume that the x-coordinates of all vertices v ∈ V are predetermined to be values a(v)
such that

a(si−1) < a(vi,1) < a(vi,2) < · · · < a(vi,ki) < a(si)

and
a(si−1) < a(v′i,1) < a(v′i,2) < · · · < a(v′i,k′i

) < a(si)

(possibly a(vi,h) = a(v′i,ℓ) for some h and ℓ) for all i = 1, 2, . . . , q. Hence a(s0) < a(s1) < · · · < a(sq).
For the terminals s0 and sq, their permanent y-coordinates are also predetermined to be some values:

y(s0) = b∗0 and y(sq) = b∗q .

The other non-terminal vertices v ∈ V −{s0, sq} are temporarily placed on the segment L[s0, sq] =
L[(a(s0), b

∗
0), (a(sq), b

∗
q)]; i.e., the temporary y-coordinate y(v) of them is

λL[s0,sq ](a(v)).

See Fig. 18(b).
We wish to determine a (permanent) value b∗(v) for the y-coordinate of each non-terminal

v ∈ V − {s0, sq} so that they give an FSL-drawing of a cactus instance with a polygon constraint
(possibly after computing temporary values for the y-coordinate of them several times). We here
introduce another constraint in order to control the drawing area for a final FSL-drawing.

Band constraint We are given a positive ϵ > 0 such that a permanent value b∗(v) for the
y-coordinate of each non-terminal v ∈ V − {s0, sq} is required to be chosen from

[λL[s0,sq ](a(v))− ϵ, λL[s0,sq ](a(v)) + ϵ],

i.e., a final position of v is within distance ϵ from the initial position (a(v), λL[s0,sq ](a(v))).
Our task is to find an FSL-drawing which satisfies the polygon and band constraints by selecting

appropriate y-coordinates y(v) for all non-terminal vertices v ∈ V − {s0, sq}. The problem is
described as follows.

Input: A cactus instance I = (G = (V,E), γ, (V,M) = (Q1, Q2, . . . , Qq), b
∗
0, b

∗
q , ϵ) with cycles

Qi of type of central/left/right; permanent x-coordinates x(v) = a(v) of v ∈ V ; permanent y-
coordinates y(s0) = b∗0 and y(sq) = b∗q ; and a band parameter ϵ > 0, where we call segment
L[s0, sq] = L[(a(s0), b

∗
0), (a(sq), b

∗
q)] the guideline of I.

Output: A set of y-coordinates b∗(v) of non-terminal vertices v ∈ V − {s0, sq} which satisfies the
band constraint: |b∗(v) − λL[s0,sq ](a(v))| < ϵ for all v ∈ V − {s0, sq}, and gives an FSL-drawing
D = {(a(v), b∗(v)) : v ∈ V } of γ satisfying the constraint on polygon Pi for each Qi.

We construct such an FSL-drawing of a cactus instance I by a divide-and-conquer procedure,
where we divide the instance into two subinstances I1 and I2 and combine FSL-drawings of them
into an FSL-drawing for I. More formally, we choose a joint vertex sj−1 (or a cycle Qj) adequately
and fix the y-coordinate of sj−1 (or the vertices in Qj) permanently. For the newly determined
permanent y-coordinate b∗j−1 of sj−1 (or b∗v and b∗j of sj−1 and sj), we generate two subinstances

I1 = (G1, γ1, (Q1, Q2, . . . , Qj−1), b
∗
0, b

∗
j−1, ϵ

′) and

I2 = (G2, γ2, (Qj , Qj+1, . . . , Qq), b
∗
j−1, b

∗
q , ϵ

′)

(or I2 = (G2, γ2, (Qj+1, Qj+2, . . . , Qq), b
∗
j , b

∗
q , ϵ

′)), where (G1, γ1) and (G2, γ2) are the subgraphs

and sub-embeddings induced from (G, γ) by (Q1, Q2, . . . , Qj−1) and (Qj′ , Qj′+1, . . . , Qq) (j
′ = j or

j + 1), respectively.
In the following, we show how to choose sj−1 (or choose/fix cycle Qj) and ϵ′(< ϵ/4) so that

arbitrary FSL-drawings D1 and D2 for I1 and I2 will constitute an FSL-drawing D for I.
We say that an edge uu′ ∈ Eleft with u ≺ u′ covers a left or joint vertex v if u ≺ v ≺ u′. If no

edge in Eleft covers a left or joint vertex v, then v is called exposed on its left side. Note that all
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left vertices of each right type cycle Qi are covered by edge si−1si ∈ Eleft. Symmetrically define
edges in Eright covering right/joint vertices and right/joint vertices exposed on their right side.

In a straight-line drawing of γ, an edge uu′ ∈ E −M is called M -visible if the segment L[u, u′]
does not intersect the segment of any edge e ∈M (except at the end-points u and u′). Thus, if all
edges in E −M are M -visible, then the current drawing is an FSL-drawing of γ.

If there is no vertex in V − {s0, sq} which is exposed on its left or right side, then the current
embedding γ would be a zipped-chain with terminals s0 and sq. Then there is a vertex v∗ in
V − {s0, sq} which is exposed on its left or right side. Without loss of generality that v∗ is a joint
or left vertex which is exposed on its left side. Hence v∗ is a joint vertex sj−1 (2 ≤ j ≤ q) or a left
vertex in a cycle Qj , where Qj is of central or left type.

When q = 0, we easily see that I has a desired FSL-drawing, the current point for the single
vertex (s0 = sq) in the instance. Assume that q ≥ 1. We distinguish three cases:
Case 1. v∗ = sj−1 for some 2 ≤ j ≤ q;
Case 2. v∗ = vj,h ∈ V (Qj) for some 1 ≤ j ≤ q and 1 ≤ h ≤ ki, and Qj is of central type; and
Case 3. v∗ = vj,h ∈ V (Qj) for some 1 ≤ j ≤ q and 1 ≤ h ≤ ki, and Qj is of left type.

Case 1. v∗ = sj−1 for some 2 ≤ j ≤ q: In this case, we determine a permanent y-coordinate
y(sj−1) of vertex sj−1 to be

b∗j−1 = λL[s0,sq ](a(sj−1)) + ϵ/2.

Then we generate two instances I1 = (G1 = (V1, E1), γ1, (V1,M1) = (Q1, Q2, . . . , Qj−1), b
∗
0, b

∗
j−1, ϵ

′)

and I2 = (G2 = (V2, E2), γ2, (V2,M2) = (Qj , Qj+1, . . . , Qq), b
∗
j−1, b

∗
q , ϵ

′), where V1 = V (Q1) ∪
V (Q2) ∪ · · · ∪ V (Qj−1), V2 = V (Qj) ∪ V (Qj+1) ∪ · · · ∪ V (Qq) and Ei and Mi are the sets of edges
induced from E and M by the vertices in Vi, respectively.

Now we place vertices in G1 − {s0, sj−1} (resp., G2 − {sj−1, sq}) on a new guideline segment
L[s0, sj−1] (resp., L[sj−1, sq]), which automatically determines their temporary y-coordinates from
their permanent x-coordinate a, as shown in Fig. 18(c). Denote this embedding by D(b∗0, b

∗
j−1, b

∗
q),

and let b(v) be the y-coordinate of each vertex v in this embedding (i.e., b(v) = λL[s0,sj−1](a(v))
for v ∈ V1 − {s0, sj−1} and b(v) = λL[sj−1,sq ](a(v)) for v ∈ V2 − {sj−1, sq}). Note that any edge in

E−E1−E1 joins vertices u ∈ V1−{sj−1} and u′ ∈ V2−{sj−1} and belongs to Eright, since sj−1 is
exposed on its left side. Hence every edge in E −E1 −E1 is M -visible currently in D(b∗0, b

∗
j−1, b

∗
q).

Since the y-coordinates of the end-vertices u and u′ are temporary ones (except u = s0 or u′ = sq),
they may change in FSL-drawings D1 and D2 for I1 and I2, and uu

′ may not be M -visible in the
combined drawing D for I. We can keep uu′ M -visible in D if the band parameter ϵ′ for I1 and I2
is chosen as a sufficiently small value as follows.

For each vertex v ∈ V − {s0, sq} and each pair of vertices u, u′ ∈ V with a(u) < a(v) < a(u′),
we define the y-distance δ(v;uu′) between v and segment L[u, u′] to be the distance between them
in the y-direction; i.e.,

δ(v;uu′) = |b(v)− λL[(a(u),b(u)),(a(u′),b(u′))](a(v))|,

where b denotes the current y-coordinate of vertices in D(b∗0, b
∗
j−1, b

∗
q). Let δ(v) be the minimum of

δ(v;uu′) over all edges uu′ ∈ E − E1 − E2 (⊆ Eright) that cover v. We set

ϵ′ = min[ϵ/4, min{δ(v) : v ∈ V − {s0, sq}] (> 0).

For the above instances I1 and I2 with this ϵ′, the next holds.

Lemma 28 For each j = 1, 2, let Dj be an FSL-drawing of Ij which satisfies the polygon and band
constraints. Then the drawing D obtained by combining D1 and D2 is an FSL-drawing of I which
satisfies the polygon and band constraints.

Proof: Let b∗(v) denote the y-coordinate of a vertex v ∈ Vi in Di (i = 1, 2).
Clearly the polygon constraint is satisfied in D and no two edges e ∈ E1 and e′ ∈ E2 cross each

other in D, since x-coordinates of all vertices are predetermined so that a(v) < a(sj−1) < a(v′) for
all vertices v ∈ V1 − {sj−1} and v′ ∈ V2 − {sj−1}.
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To show that D is an FSL-drawing, we only need to show that no edge uu′ ∈ E − E1 − E2

intersects any edge vv′ inM inD. Recall that inD(b∗0, b
∗
j−1, b

∗
q), no edge uu

′ ∈ E−E1−E2 intersects

any edge vv′ ∈M ; i.e., segments L[(a(u), b(u)), (a(u′), b(u′))] and L[(a(v), b(v)), (a(v′), b(v′))] have
no intersection except at their end-points.

Since each Dj satisfies the band constraint with ϵ′, it holds that max{|b∗(u) − b(u)|, |b∗(u′) −
b(u′)|, |b∗(v) − b(v)|, |b∗(v′) − b(v′)|} ≤ ϵ′ ≤ min{δ(v)/4 : v ∈ V − {s0, sn}}, and we see that the
segments L[(a(u), b∗(u)), (a(u′), b∗(u′))] and L[(a(v), b∗(v)), (a(v′), b∗(v′))] remain separate apart in
the combined drawing D. Also |b∗(u) − b(u)| ≤ ϵ′ ≤ ϵ/4 means that |b∗(u) − λL[s0,sq ](a(u))| ≤
ϵ/2 + ϵ′ < ϵ. Therefore D also satisfies the band constraint of I.

Case 2. v∗ = vj,h ∈ V (Qj) for some 1 ≤ j ≤ q and 1 ≤ h ≤ ki, and Qj is of central type:
See Fig. 19(a). In this case, we fix the y-coordinates of all vertices v in Qj as some values b∗(v)
permanently and generate two instances I1 = (G1, γ1, (Q1, Q2, . . . , Qj−1), b

∗
0, b

∗
j−1, ϵ

′) and I2 =

(G2, γ2, (Qj+1, Qj , . . . , Qq), b
∗
j , b

∗
q , ϵ

′) in a similar manner of Case 1.
We first determine a permanent y-coordinate of vertex vj,h to be

b∗(vj,h) = λL[s0,sq ](a(vj,h)) + ϵ/2.

Then we determine permanent y-coordinates b∗ of the other vertices in Qj so that the following
polygons PA, PB, PC and Pj will be formed (see Fig. 19(b) for the relationship among these poly-
gons):
(i) points s0, sj−1, vj,1, vj,2, . . . , vj,h form a pseudo-convex polygon PA with a concave link (sj−1, vj,1,
vj,2, . . . , vj,h) such that each vertex in the link isM -visible from any vertex on segment L[s0, (a(sj−1),
b∗(sj−1))];
(ii) points vj,h+1, vj,h+2, . . . , vj,kj , sj , sq form a pseudo-convex polygon PB with a concave link
(vj,h+1, vj,h+2, . . . , vj,kj , sj) such that each vertex in the link is M -visible from any vertex on seg-
ment L[(a(sj), b

∗(sj)), sq];
(iii) points s0, sj−1, v

′
j,1, v

′
j,2, . . . , v

′
j,k′j

, sj , sq form a pseudo-convex polygon PC with a concave link

(sj−1, v
′
j,1, v

′
j,2, . . . , v

′
j,k′j

, sj) such that each vertex in the link is M -visible from any vertex on seg-

ments L[s0, (a(sj−1), b
∗(sj−1))] and L[(a(sj), b

∗(sj)), sq]; and
(iv) points sj−1, vj,1, vj,2, . . . , vj,kj , sj , v

′
j,k′j

, v′j,k′j−1, . . . , v
′
j,1 form a convex polygon Pj for Qj (in or-

der to satisfy the polygon constraint for Qj).

Such points can be chosen as follows. First we place sj−1 between L[s0, sq] and L[s0, (a(vj,h), b
∗(vj,h))],

say set the y-coordinate of sj−1 to be

b∗j−1 = min{1
2
[λL[s0,sq ](a(sj−1)) + λL[s0,vj,h](a(sj−1))], λL[s0,sq ](a(sj−1))− ϵ/4}.

Similarly set the y-coordinate of sj to be

b∗j = min{1
2
[λL[s0,sq ](a(sj)) + λL[vj,h,sq ](a(sj))], λL[s0,sq ](a(sj))− ϵ/4}.

Now points s0, sj−1, vj,h form a convex polygon PA, sj−1, vj,h, sj , sq form a convex polygon PB,
s0, sj−1, sj , sq form a convex polygon PC , and sj−1, vj,h, sj from a convex polygon Pj . By Lemma 15,
we can place vertices vj,1, vj,2, . . . , vj,h−1 over segment L[sj−1, vj,h] (resp., vj,h+1, vj,h+2, . . . , vj,kj over
L[vj,h, sj ]) to form a concave link of PA (resp., PB), while we can place vertices v′j,1, v

′
j,2, . . . , v

′
j,k′j

under segment L[sj−1, sj ] to form a concave link of PC .
Let b∗(v) denote the y-coordinate of vertex v in Qj determined in the above way, and b(v)

denote the current y-coordinate of each vertex v ∈ V − {s0, sq} − V (Qj) on a new guideline
L[s0, sj−1] or L[sj , sq]. Since all these points are in pseudo-convex polygons PA, PB and PC , we
see that |b∗(v) − λL[s0,sq ](a(v))| ≤ ϵ/4 for all v ∈ V (Qj), and |b(v) − λL[s0,sq ](a(u))| ≤ ϵ/4 for all
v ∈ V − {s0, sq} − V (Qj).
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Next we choose ϵ′ for the new instances I1 = (G1 = (V1, E1), γ1, (V1,M1) = (Q1, Q2, . . . , Qj−1),
b∗0, b

∗
j−1, ϵ

′) and I2 = (G2 = (V2, E2), γ2, (V2,M2) = (Qj+1, Qj , . . . , Qq), b
∗
j , b

∗
q , ϵ

′). See Fig. 19(c).

Since v∗ = vj,h is exposed on its left side, there is no left edge uu′ that covers v∗ and any
edge covering v∗ is a right edge. As in Case 1, let δ(v) be the minimum of δ(v;uu′) over all edges
uu′ ∈ E − E1 − E2 that cover v, where some left edge in E − E1 − E2 may cover vertices in V .
Then we set

ϵ′ = min[ϵ/4, min{δ(v) : v ∈ V − {s0, sq}] (> 0).

For the above instances I1 and I2 with this ϵ′, we have the next analogously with Lemma 28.

Lemma 29 Let Pj be a convex polygon for Qj defined in the above. For each j = 1, 2, let Dj

be an FSL-drawing of Ij which satisfies the polygon and band constraints. Then the drawing D
obtained by combining D1, D2 and Pj is an FSL-drawing of I which satisfies the polygon and band
constraints.

Case 3. v∗ = vj,h ∈ V (Qj) for some 1 ≤ j ≤ q and 1 ≤ h ≤ ki, and Qj is of left type: See
Fig. 20(a). We can handle this case analogously with Case 2. We first determine permanent y-
coordinates of vertices in Qj so that so that the following polygons PA, PB, PC and Pj will be
formed (see Fig. 20(b) for the relationship among these polygons):
(i) points s0, sj−1, vj,1, vj,2, . . . , vj,h form a pseudo-convex polygon PA with a concave link (sj−1, vj,1,
vj,2, . . . , vj,h) such that each vertex in the link isM -visible from any vertex on segment L[s0, (a(sj−1),
b∗(sj−1))];
(ii) points vj,h+1, vj,h+2, . . . , vj,kj , sj , sq form a pseudo-convex polygon PB with a concave link
(vj,h+1, vj,h+2, . . . , vj,kj , sj) such that each vertex in the link is M -visible from any vertex on seg-
ment L[(a(sj), b

∗(sj)), sq];
(iii) points s0, sj−1, v

′
j,1, v

′
j,2, . . . , v

′
j,k′j

, sj , sq form a convex polygon PC ; and

(iv) points sj−1, vj,1, vj,2, . . . , vj,kj , sj , v
′
j,k′j

, v′j,k′j−1, . . . , v
′
j,1 form a pseudo-convex polygon Pj for Qj

with a “convex” link (sj−1, v
′
j,1, v

′
j,2, . . . , v

′
j,kj

, sj).

Thus the difference from Case 2 is to construct the link (sj−1, v
′
j,1, v

′
j,2, . . . , v

′
j,k′j

, sj) as a “convex”

link to PC , which is a “concave” link to Pj (in order to satisfy the polygon constraint for Qj). This
is again possible by Lemma 15. Finally we set

ϵ′ = min[ϵ/4, min{δ(v) : v ∈ V − {s0, sq}] (> 0)

for the new instances I1 and I2. Then we have the next analogously with Lemma 28. See Fig. 20(c).

Lemma 30 Let Pj be a pseudo-convex polygon for Qj defined in the above. For each j = 1, 2, let
Dj be an FSL-drawing of Ij which satisfies the polygon and band constraints. Then the drawing D
obtained by combining D1, D2 and Pj is an FSL-drawing of I which satisfies the polygon and band
constraints.

Lemma 28, Lemma 29 and Lemma 30 establish a divide-and-conquer method that constructs
an FSL-drawing of a given cactus instance with no zipped-chains in polynomial time.

14 Reduction for S-nodes

In this section, we give a reduction procedure that converts a standard instance I with the subgraph
G−(ν) of GM for an S-node ν into a standard instance I ′ with a smaller number of edges in M .

Let ν be a non-reduced S-node with parent edge parent(ν) = st such that each child-node of ν
is a reduced S- or P-node. Now ν is not the root of the SPQR tree by the choice of root. If graph
G−(ν)−{s, t} contains an outer vertex on foM , then ν has no child P-nodes and any child S-node µ
of ν induces its subpath G−(µ) from the outer facial cycle foM , and then G−(ν) is also a subpath of
the boundary foM , indicating that ν is already a reduced S-node. Hence each child node µ ∈ Ch(ν),
the subgraph G−(µ) contains no outer vertices/edges of the plane embedding of GM .
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Let H = G−(ν), and denote f left = facest(H) and f right = facets(H), where f left and f right

are inner faces in FM . Let V right (resp., V left) denote the set of vertices in f right − V o
ts(H)− {s, t}

(resp., f left − V o
st(H)− {s, t}). On the left/right relationship with respect to (s, t), we here assume

the following without of generality:
(i) If H is not exposed along fost(H) or fots(H), then it is not exposed along fots(H), i.e., there is a
t, s-chain S∗ along fots(H) (possibly S∗ = {ts});
(ii) Otherwise (H is exposed along both fost(H) and fots(H)), if the parent node of ν is an R- or
S-node, then an edge st ∈ E −M is assigned within f right (see Lemma 25(ii)), where S∗ = {ts} is
a t, s-chain along fots(H); and
(iii) Otherwise, if the parent node of ν is a P-node, then ν corresponds to a left edge in the skeleton
of the P-node and an edge st ∈ E −M is assigned within the face f ′ in Lemma 27, where fots(f

′)
and fots(H) surround the region f right.

By the above assumption on the ordering (s, t), we see that H is exposed fots(H).
Denote the skeleton skn−(ν), i.e., an s, t-path by P = (s0 = s, s1, . . . , sq, sq+1 = t) (q ≥ 2), and

let each virtual edge ei = sisi+1 correspond to a reduced S- or P-node µi ∈ Ch(ν). See Fig. 21(a).
For two distinct vertices u, u′ ∈ V o

st(H) (resp., u, u′ ∈ V o
ts(H)), we denote u ≺ u′ (i.e., u′ is closer

to t than u) if u′ appears after u when we traverse fost(H) (resp., fots(H)) from s to t, and denote
u ⪯ u′ if u ≺ u′ or u = u′.

Let W denote the set of vertices w ∈ V right such that an edge wv ∈ E −M for some vertex
v ∈ V o

ts(H)− {s, t} is assigned to f right.
Let {v∗1, v∗2, . . . , v∗r} be the set of all vertices in V o

st(H) exposed on their left sides, where
v∗1, v

∗
2, . . . , v

∗
r appear in this order along the left side fost(H) of H from s to t. Let v∗0 = s and

v∗r+1 = t. By definition, for each i = 1, 2, . . . , r + 1, there is a v∗i−1, v
∗
i -chain along fov∗i−1v

∗
i
(H). For

each 1 ≤ i ≤ r + 1, let Ui denote the set of vertices u ∈ V left such that an edge uv ∈ E −M is
assigned to f left for some vertex v ∈ V o

st(H) with v∗i−1 ≺ v ≺ v∗i . In an illustration in Fig. 21(a),
we have u1 ∈ U1, u3 ∈ U3, u4 ∈ Ur+1, and w1, w2 ∈W .

Lemma 31 (i) For each vertex w ∈ W and vertex v ∈ V o
ts(H) − {s, t}, adding a new edge wv

within face f right does not create a new zipped-chain or squashed chain;
(ii) For each vertex u ∈ Ui with 2 ≤ i ≤ r + 1, adding a new edge uv∗i−1 within face f right does not
create a new zipped-chain or squashed chain;
(iii) For each vertex u ∈ Ui with 1 ≤ i ≤ r, adding a new edge uv∗i within face f right does not create
a new zipped-chain or squashed chain;
(iv) For each vertex u ∈ U1, either adding a new edge uv∗0 (= us) within face f right does not create
a new zipped-chain/squashed chain or there is an s, u′-chain outside f left for some vertex u′ ∈ V left

(possibly u′ = u) between t and u (see vertices u1 ∈ U and u′ in Fig. 21(a)); and
(v) For each vertex u ∈ Ur+1, either adding a new edge uv∗r+1 (= ut) within face f right does not

create a new zipped-chain/squashed chain or there is a u′, t-chain outside f left for some vertex
u′ ∈ V left between s and u (possibly u′ = u).

Proof: (i) We apply Lemma 20 to f right and vertices s and t on it. Note that the s, t-boundary
path of f left gives an s, t-path Q1 disjoint with f right except at s and t by Lemma 23. We show
that instance I has neither of types I and II bad component for {w, v} in the lemma. Clearly
{w, v} ∩ {s, t} = ∅, and instance I has no type I bad component for {w, v} (since v = s needs
to hold for (i) of Lemma 20). By the assumption on the ordering (s, t), there is a t, s-chain S∗

along fots(H) or an edge st ∈ E assigned to a face f ′ such that fots(f
′) and fots(H) surround the

region f right. In other words, edge wv with w ∈ W is a shift of some edge wv′ due to the t, s-
chain S∗ = {ts}, or there is an s, t-path Q2 of second type. Hence instance I has no type II bad
component for {w, v} either. This proves (i).

(ii) We show (ii) (the cases of (iii) can be treated symmetrically). We apply Lemma 20 to f left

and vertices s and t on it. Clearly {w, v∗i−1} ∩ {s, t} = ∅ for 2 ≤ i ≤ r + 1, and instance I has
no type I bad component for {w, v∗i−1}. Since there is a v∗i−1, v

∗
i -chain along fost(H), we see that

uv∗i−1 is a shift of some edge uv with v∗i−1 ≺ v ≺ v∗i (by u ∈ Ui), and instance I has no type II bad
component for {w, v∗i−1} either. This proves (ii).
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(iv) We show (iv) (the cases of (v) can be treated symmetrically). Again apply Lemma 20
to f left and vertices s and t on it. Since there is a v∗0, v

∗
1-chain along fost(H), we see that uv∗0 is

a shift of some edge uv with s = v∗0 ≺ v ≺ v∗1 (by u ∈ U1), and instance I has no type II bad
component for {w, v∗0} either. However, instance I may have a type I bad component for {w, v∗0}
since {w, v∗0}∩{s, t} = {s} holds. Lemma 20 tells that this occurs only when there is an s, u′-chain
outside f left for some vertex u′ ∈ V left. This proves (iv).

We are ready to describe our reduction to S-nodes.

Reduction

1. Let E′ := E and M ′ := M . First we add to E′ edges {uv∗i−1 : u ∈ Ui}, (1 ≤ i ≤ r + 1)

and {uv∗i : u ∈ Ui} (0 ≤ i ≤ r) assigned to face f left. Also add to E′ each of new edges
{us : u ∈ U1} ∪ {ut : u ∈ Ur+1} assigned to face f left as long as no new zipped-chain or
squashed chain is created;

2. Let X = V (H) − {s, v∗1, v∗2, . . . , v∗r , t}. We remove the vertices in X from the current graph
(letting V ′ := V −X, E′ := E′−E(X) and M ′ :=M ′−E(X)), and replace H = G−(ν) with
a new s, t-path

P = (s = v∗0, v
∗
1, v

∗
2, . . . , v

∗
r , t = v∗q+1),

adding E(P ) toM ′. Add to E′ a convex-support for the right side P (i.e., edges {v∗j v∗j+2 : 0 ≤
j ≤ q − 1} ∪ {sv∗r , tv∗1} assigned to f right);

3. Finally add to E′ edges {wv∗1, wv∗r : w ∈ W} assigned to face f right. Let I ′ be the resulting
instance (note that the edges {uv∗i ∈ E : u ∈ V left}, 1 ≤ i ≤ r in I still exits in I ′). See
Fig. 21(b).

Lemma 32 The new instance I ′ has no zipped-chains or squashed chains.

Proof: By Lemma 31, the augmented embedding after Step 1 in the reduction contains no new
zipped-chains or squashed chains. To prove the lemma, we regard Steps 2 and 3 as the following
set of sub-steps, which changes I into I ′ more gently.
Step A1. Add to E′ edges {wsi : w ∈W} (1 ≤ i ≤ q) assigned to f right;
Step A2. Remove all vertices in V (H) − V o

st(H) (those not on the facial cycle f left) from H (now
H has been replaced with its left side fost(H));
Step A3. Add to E′ edges {wv∗1, wv∗r : w ∈W} assigned to f right;
Step A4. Remove all edges in E′ that join two vertices in V o

st(H);
Step A5. Remove all edges in E′ (and those added in Step A1) that are assigned in f right and
incident to some vertex in V (H)− {s, v∗1, v∗2, . . . , v∗r , t};
Step A6. Replace each v∗i−1, v

∗
i -path (1 ≤ i ≤ r + 1) on fost(H) by a single edge in v∗i−1v

∗
i ∈M ′;

Step A7. Finally add to E′ a convex-support for the right side P = (s, v∗1, , . . . , v
∗
r , t).

Note that Steps A2, A4, A5 and A6 never introduce new zipped-chains or squashed chains,
since they simply remove vertices/edges or ignore degree 2 vertices in a path of G. Step A1 does
not introduce new zipped-chains or squashed chains by Lemma 31(i). We see that Step A3 also
does not introduce new zipped-chains or squashed chains, since we can obtain a similar property
of Lemma 31(i) in the graph after Step A2.

Finally we prove that Step A7 does not introduce any new zipped-chains or squashed chains.
To prove this, we use the following properties:
(a) By the assumption on the ordering (s, t), there is a t, s-chain S∗ along fots(H) or an edge st ∈ E
assigned to a face f ′ such that fots(f

′) and fots(H) surround the region f right; and
(b) After Step A6, fost(f

right) forms a single s, t-path P which is fully exposed along its left side
(i.e., no edge assigned to f left joins two veritces in the s, t-path P ).

To derive a contradiction, we assume that introducing an edge e = v∗j v
∗
j′ (j

′ ≥ j + 2) creates

a new a, b-chain S with e ∈ S such that S and a b, a-chain S′ (or a ba-subpath S′ of Pout) give a
zipped-chain (or a squashed chain). Let H be the a, b-component surrounded by S and S′.
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We apply Lemma 18 with uv = v∗j v
∗
j′ and f = f right. Since there are three internally disjoint

s, t-path, two along f right and one outside f right, we see that any cut-pair along facial cycle f right

appears on fots(f
right) or fost(f

right). By property (b), the b, a-chain S′ (or the b, a-subpath S′ of
Pout) cannot appear along P . Therefore, the cut-pair {a, b} appear along the right side fots(f

right)
of the face f = f right. In this case, foab(f

right) and the a, b-boundary path foab(H) form the facial
cycle f = f right (as shown in Fig. 12(a)(b)). By property (a), there is a t, s-chain S∗ along fots(H)
or an edge st ∈ E assigned to a face f ′ on the right hand side of f = f right. In the former,
(S − {e = v∗j v

∗
j′}) ∪ S∗ contains an a, b-chain in I, which together with S′ gives a zipped-chain or

a squashed chain, contradicting that instance I has no zipped-chains or squashed chains. In the
latter, the face f ′ also provides another s, t-path Q′ of GM which together with fots(H) surrounds
the region f = f right in I. This is possible only when a = t and b = s. However, in this case, S∗

together with S′ gives a zipped-chain or a squashed chain in I, a contradiction.
This completes a proof that instance I ′ has no zipped-chains or squashed chains.

By induction hypothesis on the size of M , I ′ admits an FSL-drawing D′. Before we proceed to
construction of an FSL-drawing of I from D′, we observe an important property on D′ attained by
the edges added in Steps 1 and 3.

For each vertex u ∈ U1 ∪ U2 ∪ · · · ∪ Ur+1, let coneu be the set of half-lines L starting from
u that do not intersect any edges in E(f left) − E(P ) in the FSL-drawing D′. Similarly define
conew (w ∈ W ) to be the set of half-lines L starting from w that do not intersect any edges in
E(f right)−E(P ) in D′. See Fig. 21(c).

We define the drawing area for the set of all right/joint vertices in H to be the intersection
Kright of conew for all vertices w ∈ W . Similarly, for each i = 1, 2, . . . , r + 1, the drawing area for
the set V o

v∗i−1v
∗
i
(H) of all left/joint vertices in H between exposed vertices v∗i−1 and v∗i is defined to

be the intersection K left
i of coneu for all vertices u ∈ Ui.

Lemma 33 Drawing area Kright contains L[v∗i−1, v
∗
i ] for all i = 2, . . . , r. For each i = 2, . . . , r,

K left
i contains L[v∗i−1, v

∗
i ], K

right∩K left
1 contains a segment L[p, v∗1] for some point p (̸= s) on L[s =

v∗0, v
∗
1], and K

right ∩K left
r+1 contains a segment L[v∗r , p

′] for some point p′ (̸= t) on L[v∗r , t = v∗r+1].

Proof: For each vertex w ∈W , E′ contains two edges wv∗1 and wv∗r within f right. For each vertex
u ∈ Ui with 2 ≤ i ≤ r, E′ contains two edges uv∗i−1 and uv∗i within f left. Hence we see that the

whole segment L[v∗i−1, v
∗
i ] is contained in each of Kright and K left

i . Also E′ contains an edge uv∗1
within f right for each w ∈W . Since v∗1 is a convex corner from the interior of f left in D′, we see that
the intersection of Kright and segment L[s = v∗0, v

∗
1] is given by L[pa, v

∗
1] for some point pa (̸= s) on

L[s = v∗0, v
∗
1] in D

′. Similarly the intersection of Kright and L[v∗r , t = v∗r+1] is given by L[v∗r , pb] for
some point pb (̸= t) on L[v∗r , t = v∗r+1].

We now show that K left
1 contains a segment L[p′a, v

∗
1] for some point p′a (̸= s) on L[s = v∗0, v

∗
1].

To show this, we prove that, for any vertex u ∈ U1, the angle at the point v∗1 between L[s, v∗1] and
L[v∗1, u] is less than π (in other words, the triangle suv∗2 encloses v∗1). This is trivial if D′ has an
edge us ∈ E′ (since it cannot intersect the edges E(P ) ⊆ M ′). Consider the case where edge us
has not been added to E′ in Step 1. In this case, by Lemma 31, G (hence G′) has a u′, s-chain
outside f left for some vertex u′ ∈ V left between u and t, as shown in Fig. 21(a) and (b). Hence in
D′ the u′, s-chain and the path fosu′(f left) must be drawn within the triangle su′v∗2, which implies
that the angle at the point v∗1 between L[s, v∗1] and L[v

∗
1, u] is less than π.

Analogously K left
r+1 also contains a segment L[v∗r , p

′
b] for some point p′b (̸= t) on L[v∗r , t = v∗r+1].

From the above argument, we have the lemma.

Construction of Drawing
We show how to convert the FSL-drawing D′ of I ′ into that of I.

Due to the convex-support introduced in Step 2, the s, t-path P is drawn as a sequence of
segments between adjacent exposed vertices L[s = v∗0, v

∗
1], L[v

∗
1, v

∗
2], . . . , L[v

∗
r , t = v∗r+1] in D

′ which
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together with L[t, s] form a convex (r + 2)-gon. We keep the current position of each vertex v∗i
(1 ≤ i ≤ r) in D′ as those in a final drawing D for the original instance I, and select adequate
positions of the other vertices from their drawing areas.

Recall that the subgraph H = G−(ν) and the set of edges in E joining vertices in H is a cactus
instance (Q1, Q2, . . . , Qq).

We call a cycle Q = G−(µ), µ ∈ Ch(ν) a corner cycle if it contain at least one exposed vertex
in {v∗1, . . . , v∗r}, where possibly Q is a single path (see cycles Q5 and Q9 in Fig. 21(d) for an
illustration of corner cycles). Denote by Qi1 , Qi2 , . . . , Qir′ (1 ≤ i1 < i2 < · · · < r′) all corner cycles,
as shown in Fig. 22(a). Note that if exposed vertices appear along each Qi1 consecutively (i.e., if
v∗i , v

∗
i′ ∈ V (Qij ), then v

∗
i′′ ∈ V (Qij ) for any i < i′′ < i′), since cycle Qij with a vertex exposed on

its left side is fully exposed along the left side fosij−1sij
(Qij ).

Let Ij be the cactus instance induced from I by the vertices in H between sij−1 and sij . It
is not difficult to see that we can find an adequate FSL-drawing Dj of Ij so that a drawing D
obtained by replacing P in D′ with these drawings Dj becomes an FSL-drawing if we construct Dj

within an area sufficiently close to the drawing P . In the following we given a concrete procedure
for constructing such a drawing D.

Fix the current positions of exposed vertices v∗1, . . . , v
∗
r as those in a final drawing forH = G−(ν).

In the following, we always keep each left/joint vertex within the corresponding area K left
i and each

right/joint vertex within Kright.

1. Regard segments L[v∗0, v
∗
1], L[v

∗
1, v

∗
2], . . . , L[v

∗
r , v

∗
r+1] as guidelines, and place the other vertices

in H along guidelines according to the order ≺, where the right vertices in a corner cycle Qj

can be placed on any guideline between sj−1 and sj as long as they obey the order ≺. See
Fig. 22(b).;

2. Regarding the line L⟨s, t⟩ as the x-axis with the y-coordinate which increases in the left
direction, we fix the x-coordinates a(v) of the current positions (a(v), b(v)) for all vertices
v in G, and the y-coordinates b(v) of all vertices v in G − (V (H) − {v∗1, . . . , v∗r}). We only
decrease the y-coordinates b(v) of the vertices v in H − {v∗1, . . . , v∗r}. For each left/right
(resp., joint) vertex v in H − {v∗1, . . . , v∗r}, let (a(v), bright(v)) be the rightmost point of v
within within its corresponding area K left

i /Kright (resp., K left
i ∩Kright). We set δD′ to be the

minimum of the following

min{b(v)− bright(v) : v ∈ V (H)− {v∗1, . . . , v∗r}}

and
(1/2)min{δ(v;uu′) : v, u ∈ V (H), u′ ∈ U1 ∪ U2 ∪ · · · ∪ Ur+1 ∪W},

where δ(v;uu′) is the y-distance between v and segment L[u, u′] defined in Section 13;

3. Decrease the y-coordinates of joint vertices sj−1, sj (̸∈ {v∗1, . . . , v∗r}) in each corner cycle Qj

by at most δD′/4 so that the new positions of sj−1 and sj form a convex polygon Pj . Fix the
y-coordinates of the joint vertices of all corner cycles Qj , and move the other vertices on the
corresponding sides of the convex polygons Pj by decreasing their y-coordinates, as shown in
Fig. 22(c);

4. Move the remaining vertices v (̸∈ {sj−1, sj}∪{v∗1, . . . , v∗r}) in each corner cycle Qj by at most
δD′/4 (fixing the vertices not on corner cycles) so that the following (i)-(iv) hold:
(i) Pj of a central type of corner cycle Qj becomes a convex polygon when Qj is of central
type;
(ii) Pj of a left type of corner cycle Qj becomes a pseudo-convex polygon with a concave link
along its right side fosjsj−1

(Qj);

(iii) Polygon PC drawn for the cycle of the right side fots(H) of H and L[st] becomes a pseudo-
convex polygon with concave links along central type of corner cycles Qj ; and
(iv) The polygon P ′

ij
= (v∗h, . . . , sij−1 , . . . , sij , . . . , v

∗
ℓ ) = fov∗hv

∗
ℓ
(H) between every two con-

secutive corner cycles Qij−1 and Qij becomes a pseudo-convex polygon with concave links
(v∗h, . . . , sij−1) and (sij , . . . , v

∗
ℓ ), where v

∗
h is the last exposed vertex on Qij−1 and v∗ℓ is the
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first exposed vertex on Qij .
Such a set of pseudo-convex polygons can be obtained by applying Lemma 15 with ϵ = δD′/4
(where we can find a desired set of pseudo-convex polygons just by changing the y-coordinates
in the proof I of Lemma 15 as long as no side of a given polygon is parallel to y-axis). See
Fig. 22(d);

5. Determine the position of vertices between Finally we the joint vertices sij−1 and sij of every
two consecutive corner cycles Qij−1 and Qij . Let Ij be the cactus instance induced from
instance I by the vertices in H between sij−1 and sij , where the positions of the terminals
sij−1 and sij have been determined. See Fig. 21(d). We set ϵ = δD′/4, and construct an
FSL-drawing Dj for each Ij with the procedure described in Section 13. See Fig. 21(e);

6. Let D be a straight-line drawing D obtained from D′ by plugging FSL-drawings Dj of all
cactus instances Ij , wherein we draw a segment L[u, v] (resp., L[w, v]) for every edge uv ∈ E,
u ∈ U1 ∪ U2 ∪ · · · ∪ Ur+1 and v ∈ V (H) (resp., wv ∈ E, w ∈W and v ∈ V (H)).

Since δD′ is the maximum change of the y-cooridinate for all vertices v ∈ V (H)− {v∗1, . . . , v∗r}
such that each of them stays within the corresponding drawing area, the segments L[u, v] and
L[u′, v′] for any two edges uv, u′v′ ∈ E that do not cross in D′ remain separate apart as long
as the x-coordinates of all vertices v ∈ V (H) − {v∗1, . . . , v∗r} remain fixed to the one a(v). After
all steps in the construction, the maximum possible change of the x-coordinate of each vertex
v ∈ V (H)− {v∗1, . . . , v∗r} is bounded by (3/4)δD′ , which implies that every edge uv or wv between
H and G− V (H) is M -visible in the final drawing D. Therefore D is an FSL-drawing for instance
I.

15 Reduction for R-nodes

In this section, given a non-root R-node ν in a standard instance I such that any child node of ν
is a reduced P- or S-node, we present a reduction procedure that converts the instance I into a
standard instance I ′ with a smaller number of edges in M by simplifying the subgraph G[V (H)]
induced by the vertex set of H = G−(ν).

One easy and tricky reduction for an R-node ν with at least one real edge in its skeleton is to
simply regard one edge e∗ ∈ E(skn−(ν)) (⊆ M) as an edge in E −M to obtain I ′. This simply
completes a reduction for such an R-node ν since M one edge less still induces a biconnected
spanning subgraph GM and E −M can contain crossing-free edges (recall that M can be a proper
subset of E(0)). However, there is a case where the skeleton skn−(ν) contains only virtual edges
(although the figures in this section contain real edges of skeletons for readability). In this section,
we assume that

the skeleton skn−(ν) of R-node ν contains only virtual edges. (1)

Now each child of ν is a reduced S- or P-node. Then the subgraph G−(ν) of GM will be obtained
from the skeleton skn−(ν) by replacing each virtual edge uv with a single u, v-path or a cycle of
two u, v-paths, which is required to be drawn as a convex/concave link or a pair of convex/concave
links to its incident inner faces in an FSL-drawing of I.

We distinguish three cases:
1. ν is the root R-node;
2. ν is not the root node, but the subgraph G−(ν) contains a subpath of the prescribed polygon
Pout; and
3. the subgraph G−(ν) contains no subpath of the prescribed polygon Pout.

Case 1. ν is the root R-node (see Fig. 23(a)-(d)): In this case, we convert I into a standard
instance I ′ as follows.

Reduction
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1. Remove all edges E −M from the graph, and replace the subgraph G−(µ) of each child P-
or S-node µ ∈ Ch(ν) with a real edge eµ (i.e., replace the interior of GM with the interior of
the skeleton skn(ν)). Let M ′ be the set of all current edges including those in foM ;

2. For each inner face f of length at least four in the resulting plane embedding, assign a new
edge vw for every adjacent edges vu, uw ∈ E(f) sharing an inner vertex u (see Fig. 23(b)).
Let E′ be the set of edges introduced in Step 2. Let I ′ be the resulting instance.

Lemma 34 The new instance I ′ has no zipped-chains or squashed chains.

Proof: Clearly Step 1 creates no zipped-chain or squashed chain. We show that no zipped-chain
or squashed chain will be created either during Step 2. After Step 2, the graph GM ′ in I ′ can have
a cut-pair {a, b} only along a subpath of the outer facial cycle foM = foM ′ . We show that adding
a new edge vw within an inner face f with |V (f)| ≥ 4 creates no zipped-chain or squash chains.
Since the end-vertices v and w of vw are two non-adjacent vertices in the skeleton skn(ν), there
are two other vertices s, t ∈ V (f) − {v, w} such that s, v, t and w appear in the clockwise order
along f and there is an s, t-path Q in GM disjoint with V (f)− {s, t}, as shown in Fig. 14(a).

By Lemma 20, if adding a new edge vw within such a face f , then there is a bad component
of type I or II for {v, w}. Since {v, w} ∩ {s, t} = ∅, there is no type I bad component for {v, w}
by Lemma 20(i). By Lemma 20(ii), a type I bad component is an a, b-component H∗ for a cut-
pair {a, b} such that a and b appear along fows(f), as shown in Fig. 14(d),(f). This, however, is
impossible since the skeleton skn(ν) has no such cut-pair along each inner facial cycle. This proves
that I ′ has no zipped-chain or squashed chain.

By (1), it holds |M ′| < |M |. By induction hypothesis on the size ofM , I ′ admits an FSL-drawing
D′, as shown in Fig. 23(c).

Construction of Drawing
Due to the edges assigned to all inner faces of FM ′ in Step 2, every inner face f ∈ FM ′ is now drawn
as a convex polygon Pf . The remaining task is to replace each inner edge that corresponds to a
virtual edge e in the skeleton skn(ν) with the subgraph G−(µe) of GM , which is a convex/concave
link or a pair of convex/concave link. By Lemma 16, we can replace all virtual edges with such
links so that the convex polygon Pf drawn for each inner face f becomes a pseudo-convex polygon.
See Fig. 23(c). This gives a straight-line drawing D for I. Recall that when a u, v-path in G−(µe)
for a virtual edge e = uv is required to be a concave link to a face f ∈ {f(uv), f(vu)}, the subgraph
G−(µe) is fully exposed along its side facing f . Therefore, now in D, for each edge ab ∈ E −M is
M -visible in the assigned inner face f which is now drawn as a pseudo-convex polygon. Therefore
D is an FSL-drawing for I.

Case 2. ν is not the root node, but the subgraph G−(ν) contains a subpath of Pout (see Fig. 24(a)-
(f)): Let st = parent(ν), H = G−(ν), and assume without loss of generality that fots(H) is a
subpath of Pout, as shown in Fig. 24(a) (the case where all corners on the subpath are flat is a hard
instance). Now f left = facest(H) ∈ FM is an inner face.

Since ν is an R-node, any cut-pair {a, b} of the skeleton skn(ν) separates s and t (i.e., one of a
and b is in V o

ts(ν)− {s, t} and the other in V o
st(ν)− {s, t}).

Let Fskn−(ν) denote the set of all inner faces in the induced plane embedding of skn−(ν). Let

(s0 = s, s1, s2, . . . , sq, sq+1 = t) denote the s, t-boundary path fost(skn
−(ν)) of the skeleton skn−(ν).

Let Chst(ν) denote the set of child nodes µi ∈ Ch(ν) of ν such that the corresponding virtual edge
appears as an edge si−1si along f

o
st(skn

−(ν)), and let Qi = G−(µi), which is an si−1, si-path of GM

or a cycle consisting of two si−1, si-path of GM , since each child node µi is a reduced S- or P-node.
Let H left be the subgraph induced from H = G−(ν) by the vertices in ∪µ∈Chst(ν)V (G−(µ)). Thus

H left is a concatenation of cycles/paths Q1, . . . , Qq+1, which isl a line-cactus.
We convert I into a standard instance I ′ as follows.

Reduction
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1. Let M ′ := M and E′ := E. For each reduced child S- or P-node µ ∈ Ch(ν) − Chst(ν), we
remove vertices in G−(µ) − {u, v} (where uv = parent(µ)) from the embedding and from
M ′, and add a single edge uv to the embedding and to M ′. We remove any edges that were
incident to vertices in V (G−(µ)) − {u, v} from the embedding and from E′, as shown in
Fig. 24(b). Now the set of inner faces enclosed by fo(H) consists of those in Fskn−(ν) and in

the line-cactus H left;

2. Within each inner face f ∈ Fskn−(ν), add a new edge vw for every adjacent edges vu, uw ∈
E(f) unless v and w are contained in the same path of G−(µ) of a child µ ∈ Chst(ν). Let I

′

be the resulting instance.

For example, in Step 1, each facial cycle f ∈ {f1, f2, . . . , f5} in Fig. 24(b) contains such a path
from the subgraph G−(µ) of a child µ ∈ Chst(ν), while the other face f will receive new edges as
in the reduction for Case 1.

Lemma 35 The new instance I ′ has no zipped-chains or squashed chains.

Proof: The lemma can be proved analogously with Lemma 34 for Case 1.
Clearly Step 1 creates no zipped-chain or squashed chain. We show that no zipped-chain or

squashed chain will be created either during Step 2. After Step 2, the graph GM ′ in I ′ can have
a cut-pair {a, b} only along a subpath of the outer facial cycle foM = foM ′ . We show that adding
a new edge vw within an inner face f with |V (f)| ≥ 4 creates no zipped-chain or squash chains.
Since the end-vertices v and w of vw are two non-adjacent vertices in the skeleton skn(ν), there
are two other vertices s, t ∈ V (f) − {v, w} such that s, v, t and w appear in the clockwise order
along f and there is an s, t-path Q in GM disjoint with V (f)− {s, t}, as shown in Fig. 14(a).

By Lemma 20, if adding a new edge vw within such a face f creates a zipped-chain or a squashed
chain, then there is a bad component of type I or II for {v, w}. Since {v, w} ∩ {s, t} = ∅, there is
no type I bad component for {v, w} by Lemma 20(i). By Lemma 20(ii), a type I bad component is
an a, b-component H∗ for a cut-pair {a, b} such that a and b appear in the clockwise order along
fows(f) from t to s, as shown in Fig. 14(d),(f). This can happen only when foab(f) is a subpath of
G−(µ) of a child µ ∈ Chst(ν). However, in this case GM is given by the union of the a, b-path foab(f)
and H∗, which cannot be connected to the outer boundary Pout, contradicting the biconnectivity
of GM . This proves that I ′ has no zipped-chain or squashed chain.

By (1), it holds |M ′| < |M |. By induction hypothesis on the size ofM , I ′ admits an FSL-drawing
D′, as shown in Fig. 24(c).

Construction of Drawing
In D′, the polygon Pf drawn for each inner face f ∈ Fskn−(ν) is a convex polygon or a pseudo-

convex polygon Pf with one concave link which is a convex link to a cycle Qi in H left (such
as f ∈ {f1, f2, . . . , f5} in Fig. 24(b)). Note that these convex links appear only along fost(H).
Hence the straight-line drawing Dν that consists of polygons Pf with f ∈ Fskn−(ν) is a pseudo-

convex drawing. In Fig. 24(b), Dν is given by the polygons enclosed by (s, v1, v2, . . . , v17, t). As in
Case 1, the remaining task is to replace each inner virtual edge that corresponds to a child node
µ ∈ Ch(ν) − Chst(ν) with the subgraph G−(µ) of GM , which is a convex/concave link or a pair
of convex/concave link. By Lemma 17, we can replace all virtual edges with such links so that
all inner faces become pseudo-convex polygons, as shown in Fig. 24(d). This gives a straight-line
drawing D for I. In D, any two vertices u and v in the same inner face f ∈ Fskn−(ν) is now
M -visible within a pseudo-convex polygon Pf unless u and v are on the same concave link of Pf .
This gives an FSL-drawing D for I.

Case 3. ν is not the root node, and the subgraph G−(ν) contains no subpath of Pout: Let
st = parent(ν). See Fig. 25(a)-(b):

Let H = G−(ν), and denote f left = facest(H) and f right = facets(H), where f left and f right

are inner faces in FM . Let V right (resp., V left) denote the set of vertices in f right − V o
ts(H)− {s, t}
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(resp., f left − V o
st(H) − {s, t}). As in the case of S-nodes, we here assume the following left/right

relationship with respect to (s, t) without loss of generality:
(i) If H is not exposed along fost(H) or fots(H), then it is not exposed along fots(H), i.e., there is a
t, s-chain S∗ along fots(H) (possibly S∗ = {ts});
(ii) Otherwise (H is exposed along both fost(H) and fots(H)), if the parent node of ν is an R- or
S-node, then an edge st ∈ E −M is assigned within f right (see Lemma 24(ii)), where S∗ = {ts} is
a t, s-chain along fots(H); and
(iii) Otherwise, if the parent node of ν is a P-node, then ν corresponds to a left edge in the skeleton
of the P-node and an edge st ∈ E −M is assigned within the face f ′ in Lemma 27, where fots(f

′)
and fots(H) surround the region f right.

By the above assumption on the ordering (s, t), we see that H is exposed along fots(H) (note
that st ̸∈M even if st ∈ E).

Let W denote the set of vertices w ∈ V right such that an edge wv ∈ E −M for some vertex
v ∈ V o

ts(H)− {s, t} is assigned to f right. Let w1, w2, . . . , wℓ denote the vertices in W which appear
in this order along fots(f

right) from t to s. Analogously with Lemma 31(i), we have the next result
on additional new edges within f right.

Lemma 36 For each vertex w ∈ W and vertex v ∈ V o
ts(H)− {s, t}, adding a new edge wv within

face f right does not create a new zipped-chain or squashed chain.

By (1), the skeleton skn−(ν) contains only virtual edges. Analogously with Case 2, we define
Chst(ν) to be the set of child nodes corresponding virtual edges on the left side fost(skn

−(ν)), let
Qi = G−(µi) for each µi ∈ Chst(ν), and let H left = (Q1, . . . , Qq+1) be the line-cactus induced from
H = G−(ν) by the vertices in ∪µ∈Chst(ν)V (G−(µ)). Let V o

ts(skn
−(ν)) = {v0 (= t), v1, . . . , vq′+1 (=

s)} denote the vertices in fots(skn
−(ν)), where v0 (= t), v1, . . . , vq′+1 (= s) appear in this order from

t to s along fots(skn
−(ν))).

In Case 3, we present two reduction methods (A) and (B). The first one (A) uses a result on
inner convex drawings with star-shaped boundaries (Corollary 22), and the second (B) does not
rely on it.

(A) We design a reduction using Corollary 22.
Reduction

1. Let M ′ := M and E′ := E. Choose a vertex v∗ (̸= s, t) along the right side fots(H), and add
to E′ edges {v∗w : w ∈W} assigned to f right;

2. Let X = V (H) − V o
ts(H) − V (H left) (i.e., the set of vertices surrounded by the right side

fots(H) and the left line-cactus H left). Remove X from the current graph (letting V ′ = V −X,
E′ := E′ − E(X) and M ′ :=M ′ − E(X)). See Fig. 26(a);

3. Replace the remaining boundary fots(H) with a t, s-path of two edges tv∗ and v∗s, updating
M ′ := (M ′ − E(fots(H)) ∪ {tv∗, v∗s};

4. Let fν be the inner face enclosed by H left and the new path (tv∗, v∗s). Add to E′ edges
{v∗z : z ∈ V o

ts(H
left)} (see Fig. 26(b)). Let I ′ denote the resulting instance.

Lemma 37 The new instance I ′ has no zipped-chains or squashed chains.

Proof: Note that Steps 2 and 3 never introduce new zipped-chains or squashed chains, since they
simply remove vertices/edges or ignore degree 2 vertices in a path of G. Step 1 does not introduce
new zipped-chains or squashed chains by Lemma 36.

Finally we prove that adding a new edge v∗z in Step 4 does not introduce any new zipped-chains
or squashed chains. To see this, we apply Lemma 20 to the face f = fν with a cut-pair {s, t} and
the new edge between v = v∗ and w = z. After Step 3, along f right and f left, there are s, t-paths
Q1 and Q2 each of which is disjoint with fν except at s and t, and paths Q1 and Q2 surrounds
the region fν . Since {s, t} ∩ {v = v∗, w = z} = ∅, no type I bad component for {v = v∗, w = z}
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exists in I ′ by the condition (i) of Lemma 20. We also see that no type II bad component for
{v = v∗, w = z} exists due to the path Q2 by the condition (ii) of Lemma 20.

This completes a proof that I ′ has no zipped-chains or squashed chains.

By (1), it holds |M ′| < |M |. By induction hypothesis on the size ofM , I ′ admits an FSL-drawing
D′, as shown in Fig. 26(c).

Construction of Drawing
We construct an FSL-drawing D for the original instance I by replacing the interior of fν in D′

with a straight-line drawing Dν for the subgraph H = G−(ν). In what follows, we fix the positions
of vertices other than v∗ in D′ as those in a final drawing D for I.

An adequate drawing Dν for H = G−(ν) will be constructed by several steps:
(1) First construct a convex-interior drawing Dskn(ν) for the skeleton skn−(ν) plus edge st; and

(2) Then convert Dskn(ν) into a desired drawing Dν for H = G−(ν).
To describe these steps, we introduce some more notations. Let Q∗ be the cycle formed by the

right side fots(skn
−(ν)) of the skeleton skn−(ν) plus edge st assigned within f right (even if st ̸∈ E′).

Let f∗ denote the face whose boundary is given by Q∗ (see Fig. 26(d)). Let skn(ν) denote the
plane embedding obtained from skn−(ν) plus edge st within f right, as shown in Fig. 26(d). The
important observation here is that skn(ν) is triconnected. Note that the current outer boundary
fo(skn(ν)) forms a star-shaped polygon Pfν , since all the vertices on the face fν are joined to the
vertex v∗ in I ′, and the kernel K(Pfν ) contains v

∗ in D′.
For each vertex w ∈ W , we define conew to be the set of half-lines L starting from w that do

not intersect any segment in D′ except segment L[s, v∗] or L[v∗, t]. Let K∗ be the intersection of
K(Pfν ) and conew over all w ∈ W , where K∗ contains v∗ properly inside and has a positive area.
We are ready to describe how to construct an FSL-drawing D for I.

1. Compute an inner convex drawing Dconvex
skn(ν) of the triconnected plane graph skn(ν) with the

star-shaped polygon drawn for the outer boundary fo(skn(ν)) such that all the inner vertices
are contained in the prescribed area K∗ (⊆ K(Pfν )) and no flat corner appears at any inner
vertex. This can be done in polynomial time by Corollary 22;

2. For each virtual edge e = zz′ along the left side of Dconvex
skn(ν) (i.e., the edges corresponding child

nodes in µe ∈ Chst(ν)), replace its current drawing L[z, z′] with the straight-line drawing of
G−(µe) obtained in D′. Let Dskn(ν) be the resulting straight-line drawing consisting of the

polygons Pf with f ∈ F (skn−(ν)) ∪ {f∗} (thus Dskn(ν) is obtained from by replacing the left

side of Dconvex
skn(ν) with the right side of H left in D′). See Fig. 27(a). Note that Dskn(ν) is a

convex-interior drawing;

3. Let Pf right be the polygon drawn for the region f right in D′. We choose a vertex subset W̃ with

W ⊆ W̃ ⊆ V right so that the position of vertices in V o
ts(H)∪W̃ inD′ form a polygon P

W̃
whose

convex corners are only from W (hence the region P
W̃

is contained in Pf right). Let D+
skn(ν)

be the drawing obtained from Dskn(ν) by replacing Pf∗ with P
W̃
. Since all inner vertices in

Dskn(ν) are placed inside K∗, for each edge vivi+1 along fots(H)−{s, t}, its drawing L[vi, vi+1]

with 1 < i < q′ is visible from any vertex in W̃ , and L[a, v2] for some point a ∈ L[t, v2] (a ̸= t)

and L[vq′ , b] for some point b ∈ L[vq′ , s] (b ̸= s) are commonly visible from any vertex in W̃ .
Hence D+

skn(ν) is still a convex-interior drawing;

4. Apply Lemma 17 to D+
skn(ν) to replace all inner virtual edges in D

+
skn(ν) with the corresponding

required concave/convex links so that the convex-interior polygons Pf for all inner faces f in
D+

skn(ν) attain the visibility of two vertices u, v ∈ V (f) as long as they are not on the same

link or on the outer boundary of Dskn+(ν). Let Dν be the resulting drawing converted from

Dskn+(ν). See Fig. 27(b).
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Let D be the resulting drawing for the original instance I obtained by extending Dν with the
positions of the other vertices in D′.

Lemma 38 The resulting drawing D is an FSL-drawing for I.

Proof: Clearly the set ofM induces a straight-line plane drawing from D. It suffices to show that
each edge in E −M is M -visible. We consider the followings cases:
(i) edges in E −M assigned to an inner face f ∈ FM such that the region f is contained inside the
cycle formed by fots(H

right) and fots(H);
(ii) edges in E −M assigned to f right and incident to only vertices in V o

ts(H)− {s, t};
(iii) edges in E −M assigned to f right and incident to a vertex v ∈ V o

ts(H) − {s, t} and a vertex
w ∈W ; and
(iv) edges in E −M not satisfying (i) or (ii).

Clearly the edges in E −M in case (iv) are M -visible in the FSL-drawing D′ (by definition)
and remain M -visible in D (since the construction step is applied only inside the region enclosed
by fots(H

right) and fots(H)).
The edges in E−M in case (i) are M -visible in D because each of them is assigned to an inner

face f ∈ FM whose polygon Pf is drawn in Dν such that two vertices u, v ∈ V (f) are visible as
long as they are on the same link or on the outer boundary of Dskn+(ν).

The edges vv′ E−M in case (ii) are M -visible in D because vertices v and v′ are inner vertices
in an internally convex-interior drawing Dskn+(ν) and they remain visible in the resulting polygon
P
W̃

in Dν .
Similarly, the edges vw ∈ E −M are also M -visible in D because an inner vertex v and an

outer vertex w remains visible in the resulting polygon P
W̃

in Dν .

(B) We design another reduction without using Corollary 22.

Lemma 39 For any two vertices v,vh ∈ V o
ts(skn

−(ν)) with 0 ≤ j and j + 2 ≤ h ≤ q′ + 1 and
{vj , vh} ̸= {s, t}, adding a new edge vjvh within face f right does not create a new zipped-chain or
squashed chain.

Proof: By the assumption on (s, t), recall that there is a t, s-chain S∗ along fots(H) or the current
R-node ν corresponds to a left edge in the skeleton of the parent P-node. To prove the lemma, we
apply Lemma 18 with uv = vjvh and f = f right. Let I ′ be the instance obtained by assigning a
new edge uv = vjvh within face f = f right. We distinguish two cases according to (i) and (ii) in
Lemma 18.

(i) Assume that I ′ contains a zipped-chain (S, S′) with terminal a and b, where the a, b-chain
S contains uv without loss of generality. Then by Lemma 18(i), {a, b} is contained in the u, v-
boundary path fouv(f) or v, u-boundary path fovu(f) of the facial cycle f , and instance I has a b, a-
chain S′ which together with the a, b-boundary path foab(f) surrounds the region f (see Fig. 12(a)).
Let H ′ be the a, b-component surrounded by S and S′. Since {a, b} is a cut-pair in I, it appears
either along fost(G

−(ν)) or fots(G
−(ν)). First consider the case where a and b appear in this order

along fovjvh(G
−(ν)) from vj to vh. Since any cut-pair of I along fost(G

−(ν)) is either {s, t} or vjvj+1

for some j, vertices a and b must appear along fots(G
−(ν)). In this case, if there is a t, s-chain S∗

along fots(H), then (S∗, S′) would be a zipped-chain, a contradiction. Hence the current R-node ν
must correspond to a left edge in the skeleton of the parent P-node. This case can occur only when
a = t and b = s, since f right is shared by the subgraph G−(ν ′) of another child ν ′ of the parent
P-node. However, in this case, the b, a-chain S′ is an s, t-chain along fost(H

′), which contradicts
that ν corresponds to a left edge in the skeleton of the P-node (see Lemma 26).

Consider the remaining case, where a and b appear in this order along fovhvj (G
−(ν)) from vh

to vj . This case can happen only when a = s and b = t, since the boundary of f left needs to be
disjoint with fo(H ′) except at s and t. However, this is impossible since a and b are contained in
fovhvj (G

−(ν)) and {vj , vh} ̸= {s, t} by the choice of j and h.

(ii) Assume that I ′ contains a squashed a, b-chain S. Then by Lemma 18(ii), there is an a, b-
component H such that u, v ∈ V o

ab(H) and foba(H) is a b, a-path S′ = Pba of the boundary of
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Pout from b to a in the clockwise order which contains no convex corner (see Fig. 12(b)). Let H ′

be the a, b-component surrounded by S and S′. Since {a, b} is a cut-pair in I, it appears either
along fost(G

−(ν)) or fots(G
−(ν)). First consider the case where a and b appear in this order along

fovjvh(G
−(ν)) from vj to vh. Since any cut-pair of I along fost(G

−(ν)) is either {s, t} or vjvj+1 for

some j, vertices a and b must appear along fots(G
−(ν)). In this case, if there is a t, s-chain S∗ along

fots(H), then (S∗, S′) would be a squashed chain, a contradiction. Hence the current R-node ν must
correspond to a left edge in the skeleton of the parent P-node. This case can occur only when a = t
and b = s, since f right is shared by the subgraph G−(ν ′) of another child ν ′ of the parent P-node.
However, in this case, the b, a-path S′ would contradicts that ν corresponds to a left edge in the
skeleton of the P-node (see Lemma 26).

Consider the remaining case, where a and b appear in this order along fovhvj (G
−(ν)) from vh

to vj . This case can happen only when a = s and b = t, since no vertex in fots(G
−(ν)) except s or

t is an inner vertex. However, this is impossible since a and b are contained in fovhvj (G
−(ν)) and

{vj , vh} ̸= {s, t} by the choice of j and h.

Reduction

1. Let M ′ := M and E′ := E. Add to E′ edges {wv2 : w ∈ W, wv2 ̸∈ E} ∪ {wvq′ : w ∈
W, wvq′ ̸∈ E} assigned to f right; when q′ ≥ 3, add to E′ a convex-support {vjvj+2 : 1 ≤ j ≤
q′ − 1} ∪ {tvq′ , v2s} assigned to f right (see Fig. 28(a));

2. Let X = V (H) − V (H left) − V (skn−(ν)) (recall that H left = (Q1, . . . , Qq+1) is the line-
cactus along the left side of H), and remove X from the current graph (letting V ′ = V −X,
E′ := E′−E(X) and M ′ :=M ′−E(X)). Let E∗ be the set of virtual edges in E(skn−(ν))−
E(fost(skn

−(ν))) (i.e., those not appear along fost(skn
−(ν))), and add E∗ toM ′ (see Fig. 28(b)).

3. Within each inner face f ∈ Fskn−(ν), add a new edge vw for every adjacent edges vu, uw ∈
E(f) unless v and w are contained in the same path of G−(µ) of a child µ ∈ Chst(ν) (see
Fig. 28(b)). Let I ′ denote the resulting instance.

Lemma 40 The new instance I ′ has no zipped-chains or squashed chains.

Proof: By Lemma 34, adding to E′ edges {wv2 : w ∈W, wv2 ̸∈ E} ∪ {wvq′ : w ∈W, wvq′ ̸∈ E}
assigned to f right does not create a zipped-chain or squashed chain. By Lemma 39, adding to E′ a
convex-support {vjvj+2 : 1 ≤ j ≤ q′−1}∪{tvq′ , v2s} assigned to f right does not create a zipped-chain
or squashed chain, either. Analogously with Lemma 35, we see that neither of zipped-chains and
squashed chains will be created by adding a new edge vw for every adjacent edges vu, uw ∈ E(f) in
a face f ∈ Fskn−(ν) unless v and w are contained in the same path of G−(µ) of a child µ ∈ Chst(ν).

By (1), it holds |M ′| < |M |. By induction hypothesis on the size ofM , I ′ admits an FSL-drawing
D′, as shown in Fig. 28(c).

Construction of Drawing
We construct an FSL-drawing D for the original instance I from D′ as follows.

1. Let F (skn−(ν)) denote the set of inner faces of the skeleton skn−(ν), where D′ contains a
star-shaped polygon Pf for each face f ∈ F (skn−(ν)). We see that the drawing Dskn−(ν)

which is a collection of Pf , f ∈ F (skn−(ν)) is a convex-interior drawing. Let Pf right be the

polygon drawn for the region f right in D′. We choose a vertex subset W̃ withW ⊆ W̃ ⊆ V right

so that the position of vertices in V o
ts(H)∪ W̃ in D′ form a polygon P

W̃
whose convex corners

are only from W (hence the region P
W̃

is contained in Pf right). Let D+
skn(ν) be the drawing

obtained from Dskn(ν) by adding P
W̃
. Since all inner vertices in Dskn(ν) are placed inside K∗,

for each edge vivi+1 along fots(H) − {s, t}, its drawing L[vi, vi+1] with 1 < i < q′ is visible

from any vertex in W̃ , and L[a, v2] for some point a ∈ L[t, v2] (a ̸= t) and L[vq′ , b] for some

point b ∈ L[vq′ , s] (b ̸= s) are commonly visible from any vertex in W̃ . Hence D+
skn(ν) is still

a convex-interior drawing;
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2. Apply Lemma 17 to D+
skn(ν) to replace all inner virtual edges in D

+
skn(ν) with the corresponding

required concave/convex links so that the convex-interior polygons Pf for all inner faces f in
D+

skn(ν) attain the visibility of two vertices u, v ∈ V (f) as long as they are not on the same

link or on the outer boundary of Dskn+(ν). Let Dν be the resulting drawing converted from
Dskn+(ν). Let D be the resulting drawing for the original instance I obtained by extending

Dν with the positions of the other vertices in D′. See Fig. 28(d).

Analogously with Lemma 38, we have the next.

Lemma 41 The resulting drawing D is an FSL-drawing for I.

This completes design of reductions for all types of P-, R- and S-nodes. It is not difficult to see
that the entire constructive proof for Theorem 10 can be implemented to run in polynomial time.

16 Concluding Remarks

In this paper, we have shown that there are examples of embeddings of graphs that have no
straight-line drawings but have none of natural extensions of forbidden configurations of B- and
W-configurations. Such examples contain 3-plane and quasi-plane embeddings. To seek a straight-
line drawing problem that can be characterized by our collection of forbidden configurations, we
have formulated the frame straight-line drawability when crossing-free edges induce biconnected
spanning subgraphs. We have shown that our forbidden configurations completely characterize the
set of instances that admit no straight-line drawings by a divide-and-conquer method on SPQR
decomposition of biconnected graphs. Our constructing proof can be implemented to run in poly-
nomial time to test whether a given instance has a forbidden configuration or not and to construct
a straight-line drawing if any. Our result is not only an extension of the straight-line drawability
of 1-plane graphs but also a generalization of convex drawability of internally triconnected plane
graphs with prescribed convex boundaries.

The followings are left open in the new direction in this paper:
- Can the running time of our algorithm be improved, say to linear?
- For PSL-drawability, is there any 2-plane (or 2-plane and quasi-plane) embedding that has no

straight-line drawings but also contains none of our forbidden configurations?
- The current “fame” assumes the biconnectivity on the set of crossing-free edges. What if we

only assume the connectivity of the set of crossing-free edges to define the “frame” straight-line
drawability? We conjecture that Theorem 8 still holds for such a connectivity one case.
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Figure 16: Illustration for reducing a P-node ν: (a) A P-node ν such that j∗ ≥ 2 and G−(µ1) =
(s, u1, . . . , uℓ, t) is a subpath of the polygon Pout; (b) Reduce to an instance I ′ by removing the
vertices in G−(µ1) − {s, t} and fixing G−(µ2) = (s, v1, . . . , vk, t) as a convex link of a new convex
polygon P ′

out; (c) Putting back the removed vertices/edges to a straight-line drawing D′ of the
reduced instance I ′; (d) A P-node ν such that j∗ = 1 and G−(µ1) = (s, u1, . . . , uℓ, t) is a subpath
of the polygon Pout; (e) Reduce to an instance I ′ by removing the vertices in G−(µ1)− {s, t} and
fixing G−(µ2) = (s, v1, . . . , vk, t) to be segment L[s, t] as a side of a new convex polygon P ′

out (all
vertices vi in G

−(µ2)−{s, t} will be flat corners on it); (f) Find an FSL-drawing drawing D′ of the
reduced instance I ′; and (g) Putting back the removed vertices/edges to D′ after slightly pushing
the flat corners towards inside to obtain an FSL-drawing D of the original instance I.

[25] W. T. Tutte, Convex representations of graphs, Proc. of London Math. Soc., 10, no. 3, pp.
304-320, 1960.

[26] K. Wagner, Bemerkungen zum Vierfarbenproblem, Jahresbericht Deutsch Math. Verein, 46,
pp. 26-32, 1936.
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Figure 17: Illustration for reducing a P-node ν: (a) A P-node ν whose child nodes are reduced
S-nodes, where j∗ = 2 and G−(µ1) is not a subpath of the polygon Pout; (b) From an FSL-drawing
D′ of the reduced instance I ′ from I in (a), an FSL-drawing D for I is obtained by realizing G−(µ1)
as a concave link to the pseudo-convex polygon for the cycle G−(µ1) and G

−(µ2); (c) A P-node ν
whose child nodes are reduced S-nodes, where j∗ ≥ 3 and G−(µ1) is not a subpath of the polygon
Pout; and (d) From an FSL-drawing D′ of the reduced instance I ′ from I in (b), an FSL-drawing
D for I is obtained by realizing G−(µ1) as a concave link to the pseudo-convex polygon for the
cycle G−(µ1) and G

−(µ2).
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Figure 18: (a) An illustration for a cactus instance (G, γ, (V,M) = (Q1, Q2, . . . , Qq), where Q1,
Q2 and Qi are of central type, Qq is of right type, and Qi+1 is of left type; (b) A drawing of a
cactus instance, where the positions of s0 and sq are permanent while those of the other vertices
are temporarily placed on segment L[(a(s0), b

∗
0), (a(sq), b

∗
q)] joining the terminals s0 and sq; and (c)

An embedding D(b∗0, b
∗
j−1, b

∗
q) in Case 1, which generates two instances I1 and I2 by fixing a joint

vertex sj−1 on a permanent position (a(sj−1), b
∗
j−1).
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Figure 19: (a) A drawing of a cactus instance, where the positions of s0 and sq are permanent while
those of the other vertices are temporarily placed on segment L[(a(s0), b

∗
0), (a(sq), b

∗
q)] joining the

terminals s0 and sq; (b) Relationship among polygons PA, PB, PC and Pj ; and (c) Two instances
I1 and I2 in Case 2, which are generated by drawing the vertices in a central type cycle Qj as a
convex polygon with permanent positions.
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Figure 20: (a) A drawing of a cactus instance, where the positions of s0 and sq are permanent while
those of the other vertices are temporarily placed on segment L[(a(s0), b

∗
0), (a(sq), b

∗
q)] joining the

terminals s0 and sq; (b) Relationship among polygons PA, PB, PC and Pj ; and (c) Two instances
I1 and I2 in Case 3, which are generated by drawing the vertices in a left type cycle Qj as a
pseudo-convex polygon with permanent positions.
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Figure 21: Illustration for reducing an S-node ν: (a) An S-node ν whose child nodes are reduced S-
or P-nodes; (b) Reducing to an instance I ′ by replacing G−(ν) with an s, t-path P passing through
the set of left vertices exposed on their sides and introducing edges (called “shifts”) between P and
U1 ∪ U2 ∪ · · · ∪ Ur+1 ∪W , where edge u1s has not been introduced due to an s, u′-chain outside
f left; (c) An FSL-drawing D′ of the reduced instance I ′, where P forms a convex (r + 1)-gon due
to the convex-support on its right side; (d) Fix all vertices v∗1, . . . , v

∗
r and the cycles Qj containing

them, leaving cactus instances I1, I3 and Ir+1, which can be solved independently with an adequate
ϵ > 0; and (e) An FSL-drawing D of the original instance I obtained by combining straight-line
drawings of the cactus instances into D′.
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Figure 22: Illustration for constructing an FSL-drawing for I from a drawing D′ of the reduced
instance I ′: (a) A drawing for the s, t-path P for the reduced S-node, which forms a convex polygon
with convex corners of exposed vertices v∗1, . . . , v

∗
r , v

∗
=s and v∗r+1 = t; (b) The initial positions of

the vertices in H = G−(ν) along guidelines L[s, v∗1], . . . , L[v
∗
r , t]; (c) Convex polygons Pj drawn

for corner cycles Qj ; and (d) Pseudo-polygons converted from the convex polygons in (c), where a
cactus instance Ij is left between two corner cycles Qij−1 and Qij .
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Figure 23: Illustration for reducing the root R-node ν: (a) A given instance I where the graph
G−(ν) for the root node is G(ν) = GM ; (b) A new instance is obtained by replacing the interior of
G(ν) = GM with that of skeleton skn(ν), and assigning a set of new edges to each inner face in order
to draw all inner faces as convex polygons; (c) An FSL-drawing D′ of the resulting instance I ′,
where all inner faces are drawn as convex polygons; and (d) An FSL-drawing D for I is obtained
by replacing the virtual edges in D′ with required convex/concave links so that each inner face
f ∈ FM becomes a pseudo-convex polygon.
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Figure 24: (a) The subgraph H = G−(ν) of GM for an R-node ν, where the t, s-boundary path
fots(H) is a subpath along Pout, where (s0 = s, s1, . . . , sq, sq+1 = t) denotes the s, t-boundary path
fost(skn

−(ν)), the vertices in skn−(ν) are depicted with larger circles compared with smaller circles
for the vertices in V o

st(H) − V (skn−(ν)) and black circles V (H) − V o
st(H) − V (skn−(ν)); (b) The

subgraph G−(µ) for each child S-, P-node µ not along fost(skn
−(ν)) is replaced with a single edge

eµ, and new edges in E′ are assigned within each inner face f ∈ Fskn−(ν) so that the polygon Pf

drawn for f will be convex or pseudo-convex. In this figure, Pf for faces f1, . . . , f5 will be pseudo-
convex polygons each of which has one concave link along fost(H), and Pf for the other inner faces
f ∈ Fskn−(ν) will be convex; (c) An FSL-drawing D′ of the reduced instance I ′, where each inner

face f in skn−(ν) is drawn as a convex or pseudo-convex polygon Pf ; and (d) Lemma 17 is applied
to the straight-line drawing Dnu (enclosed by (s, v1, v2, . . . , v17, t)) that consists of these polygons
for the inner faces f of skn(ν) to obtain an FSL-drawing D for I.
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Figure 25: (a) The subgraph H = G−(ν) of an R-node ν such that no side of fo(H) is contained in
a subpath of Pout, where no t, s-chain surrounds the region f right; and (b)The subgraph H = G−(ν)
of an R-node ν in another instance, which has a t, s-chain S surrounds the region f right.
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Figure 26: (a) The embedding after adding edges v∗w, w ∈W and removing the set X of vertices
surrounded by fots(H) and H left; (b) The embedding for I ′ after introducing edges v∗v for all
vertices v along the right side of H left; (c) An FSL-drawing D′ for the instance I ′ in (b); and (d)
The triconnected plane graph skn(ν) with the star-shaped polygon drawn for the outer boundary
fo(skn(ν)), where fo(skn(ν)) is depicted by blue lines.
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Figure 27: (a) An inner convex drawing Dconvex
skn(ν) of skn(ν) with boundary fo(skn(ν)) (depicted

by red and blue lines) such that all the inner vertices are contained in K∗ (where Dconvex
skn(ν) and

a convex-interior drawing Dskn+(ν) are depicted by red and green lines); and (b) A straight-line

drawing Dν consisting of polygons P
W̃

and Pf with f ∈ F (skn−(ν)) and P
W̃

such that two vertices
u, v ∈ V (f) are visible as long as they are not on the same link or on the outer boundary of Dskn+(ν)

(depicted by red and green lines).
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Figure 28: (a) The instance obtained after adding new edges {wv2 : w ∈W, wv2 ̸∈ E}∪{wvq′ : w ∈
W, wvq′ ̸∈ E} and a convex-support {vjvj+2 : 1 ≤ j ≤ q′ − 1} ∪ {tvq′ , v2s}; (b) The instance

obtained after removing the vertices in X = V (H) − V (H left) − V (skn−(ν)), adding the virtual
edges in E(skn−(ν))−E(fost(skn

−(ν))) to M ′, and adding a new edge vw for every adjacent edges
vu, uw ∈ E(f) in a face f ∈ Fskn−(ν) unless v and w are contained in the same path of G−(µ) of a

child µ ∈ Chst(ν); (c) An FSL-drawing D′ for a reduced instance I ′; and (d) An FSL-drawing D
for the given instance I.
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