
Exact Algorithms for Maximum Independent Set 1

Mingyu Xiao

School of Computer Science and
Engineering, University of Electronic

Science and Technology of China, China,
myxiao@gmail.com

Hiroshi Nagamochi

Department of Applied Mathematics and
Physics, Graduate School of Informatics,

Kyoto University, Japan,
nag@amp.i.kyoto-u.ac.jp

Abstract

We show that the maximum independent set problem (MIS) on an n-vertex graph
can be solved in 1.1996nnO(1) time and polynomial space, which even is faster than Rob-
son’s 1.2109nnO(1)-time exponential-space algorithm published in 1986. We also obtain im-
proved algorithms for MIS in graphs with maximum degree 6 and 7, which run in time of
1.1893nnO(1) and 1.1970nnO(1), respectively. Our algorithms are obtained by using fast al-
gorithms for MIS in low-degree graphs in a hierarchical way and making a careful analyses
on the structure of bounded-degree graphs.
Key words. Exact Algorithm, Independent Set, Graph, Polynomial-space, Branch-and-
reduce, Measure-and-conquer,

1 Introduction

Over the last few decades, an extensive research has been done on exact exponential algorithms.
Many interesting methods and results have been obtained in this area, which can be found in
a nice survey by Woeginger [14] and a recent monograph by Fomin and Kratsch [5]. In the
line of research on worst-case analysis of exact algorithms for NP-hard problems, the maximum
independent set problem (MIS) is undoubtedly one of the most fundamental problems. The
problem is used to test the efficiency of some new techniques of exact algorithms and often in-
troduced as the first problem in some textbooks and lecture notes of exact algorithms. However,
despite of a large number of contributions on exact algorithms and their worst-case analyses for
MIS during the last 30 years, no published algorithm runs faster than the 1.2109nnO(1)-time
exponential-space algorithm by Robson in 1986 [10]. Fomin and Kratsch say that ‘the running
time of current branching algorithms for MIS with more and more detailed analyses seems to
converge somewhere near 1.2n’ [5]. Researchers are interesting in how fast we can exactly solve
MIS and believe that some new techniques are required to get a further significant improvement.

Related work. The first nontrivial exact algorithm for MIS is back to Tarjan and Tro-
janowski’s 2n/3nO(1)-time algorithm in 1977 [12]. Later, Jian obtained a 1.2346nnO(1)-time
algorithm [7]. Robson gave a 1.2278nnO(1)-time polynomial-space algorithm and a 1.2109nnO(1)-
time exponential-space algorithm [10]. Robson also claimed better running times in a technical
report [11]. Fomin et al. [4] introduced the “measure-and-conquer” method and got a simple
1.2210nnO(1)-time polynomial-space algorithm by using this method. Also based on this method,
Kneis et al. [8] and Bourgeois et al. [1] improved the running time bound to 1.2132nnO(1) and
1.2114nnO(1) respectively, which are the current fastest polynomial-space algorithms for MIS
in published articles. There is also a large amount of contributions to MIS in degree-bounded
graphs [9, 6, 15, 16, 17, 18]. Let MIS-i mean MIS in graphs with maximum degree i. Now MIS-3
can be solved in 1.0836nnO(1) time [16], MIS-4 can be solved in 1.1376nnO(1) time [17], MIS-5
can be solved in 1.1737nnO(1) time [18] and MIS-6 can be solved in 1.2050nnO(1) time [1], where

1 Technical report 2013-006, November 1, 2013. A preliminary version of this paper was presented at
the 24th international symposium on algorithms and computation (ISAAC 2013).

1

all of them use only polynomial space. The measure-and-conquer method is a powerful tool to
design or analyze exact algorithms. Most fast polynomial-space algorithms for MIS are designed
based on the method. By combining this method with a bottom-up method, Bourgeois et al. [1]
got the 1.2114nnO(1)-time polynomial-space algorithm for MIS. Their algorithm is based on fast
algorithms for MIS in low-degree graphs.

Our contributions. In this paper, we will design a 1.1996nnO(1)-time polynomial-space
algorithm for MIS, which is faster than Robson’s 1.2109nnO(1)-time exponential-space algo-
rithm [10] obtained in 1986. We also show that MIS-6 and MIS-7 can be solved in 1.1893nnO(1)

and 1.1970nnO(1) time, respectively. Our algorithms use the measure-and-conquer method. But
the improvement is not obtained by studying more cases in previous algorithms. Instead, we
will introduce some new methods to reduce a large number of cases and make the algorithm and
its analysis easy to follow. Our algorithms also need to use our previous fast algorithms for MIS
in low-degree graphs. The improvement is mainly obtained by using the following ideas:

1. We exploit a divide-and-conquer method to get the improved algorithms for MIS in high-
degree graphs based on fast algorithms for MIS in low-degree graphs. In the method, we
design an algorithm for MIS made of two procedures. One procedure is an algorithm to
solve MIS in graphs with maximum degree at most i. The other procedure is to effectively
deal with vertices of degree at least i+ 1 in the graph. We also use the idea to design fast
algorithms for MIS in degree bound graphs. Once an algorithm for MIS-i is obtained, we
design a procedure for eliminating vertices of degree at least i+1 by reduction/branching
operations, which together with the algorithm for MIS-i will give an algorithm for MIS-
(i+ 1). Similar bottom-up ideas have been used in some previous algorithms, such as the
algorithm for MIS in [1] and the algorithm for the parameterized vertex cover problem
in [2]. One advantage of our method is that, the divide-and-conquer method can combine
the measure-and-conquer method well to design exact algorithms. Then we can catch the
properties of fast algorithms for MIS in low-degree graphs and propagates the improvement
from instances of low-degree graphs to those of high-degree graphs.

2. We devise a method that can reduce a huge number of case analyses in the algorithms and
then our algorithms become much easier to check the correctness. This method is based
on Lemma 6 in Section 4. It can also be directly used to reduce a large number of cases
in the analysis of previous algorithms without modifying the algorithms.

3. We introduce a new branching rule, called “branching on edges,” to deal with edges between
end-vertices with many common neighbors, for which the standard branching on a vertex
of maximum degree has not lead to a sufficiently high performance to improve the previous
time bounds.

2 Preliminaries

2.1 Notation system

Let G = (V,E) stand for a simple undirected graph with a set V of vertices and a set E of edges.
Let |G| denote |V |. We will use n to denote |V | = |G| and ni to denote the number vertices of
degree i in G, and α(G) to denote the size of a maximum independent set of G. The vertex set
and edge set of a graph G are denoted by V (G) and E(G), respectively. For simplicity, we may
denote a singleton set {v} by v.

For a vertex subset X ⊆ V in a graph G, we define the following notations. Let G − X
denote the graph obtained from G by removing X together with edges incident on any vertex in
X, G[X] = G− (V −X) be the graph induced from G by the vertices in X, and G/X denote the

2

graph obtained from G by contracting X into a single vertex (removing self-loops and parallel
edges). Also we let N(X) denote the set of all vertices in V −X that are adjacent to a vertex
in X, and N [X] = X ∪N(X).

For a vertex v in a graph G of maximum degree d, we define the following notations. Let
δ(v) = |N(v)| denote the degree of v, and N2(v) denote the set of vertices with distance exactly
2 from v, and let N2[v] = N2(v) ∪ N [v]. Let ev denote the number of edges in the subgraph
G[N(v)] induced by the neighbors of v (i.e., ev = |E(G[N(v)])|), let fv denote the number
of edges between N [v] and N2(v), and let qv denote the number of vertices of degree < d in
N2(v). Also define the neighbor-degree kv of v to be the sequence (k1, k2, . . . , kd) (where d is
the maximum degree of the graph) of the number ki of degree-i neighbors u ∈ N(v). Then∑

1≤i≤d iki =
∑

u∈N(v) δ(u) = δ(v) + 2ev + fv. We may denote kv = (k3, k4, k5, k6) when
k1 = k2 = 0 and ki = 0 for i ≥ 7.

For each neighbor u ∈ N(v) of v, we call a vertex z ∈ N(u) adjacent to v (resp., not adjacent
to v) the inner-neighbor of u at v (resp., outer-neighbor of u at v). Define the inner-degree
(resp., outer-degree) of u at v to be the number of inner-neighbors (resp., outer-neighbors) of u
at v.

2.2 Branching algorithms and the measure-and-conquer method

Our algorithms use a branch-and-reduce paradigm. We branch the current problem instance
into several smaller instances to search a solution. The iterative algorithm will create a search
tree. To scale the size of the instance, we need to select a measure for it. A common measure
of a graph problem is the number of vertices or edges in the graph. By bounding the size of
the search tree to a function of the measure, we will get a running time bound related to the
measure for the problem. In MIS, a branching rule will branch on the current instance G into
several instances G1, G2, . . . , Gl such that the measure µi of each Gi is less than the measure
µ of G, and a solution to G can be found in polynomial time if a solution to each of the l
instances G1, G2, . . . , Gl is known. Usually, Gi (i = 1, 2, . . . , l) are obtained by deleting some
vertices in G. We will use C(µ) to denote the worst-case size of the search tree in the algorithm
when the measure of the instance is at most µ. The above branch creates the recurrence relation
C(µ) ≤

∑l
i=1C(µ−µ′

i), where µ
′
i = µ−µi. The largest root of the function f(x) = 1−

∑l
i=1 x

−µ′
i ,

denoted by τ(µ′
1, µ

′
2, . . . , µ

′
l), is also called the branching factor of the above recurrence relation.

Let τ be the maximum branching factor among all branching factors in the search tree. Then
the size of the search tree is C(µ) = O(τµ). More details about the analysis and how to solve
recurrences can be found in the monograph [5].

In some cases, the worst branch in the algorithm will not always happen. We can use the
following idea of amortization to get better analysis. Consider two branching operations A and
B with recurrences C(µ)≤C(µ−t(A1))+C(µ−t(A2)) and C(µ)≤C(µ−t(B1))+C(µ−t(B2)) such
that the branching operation B leads to a better recurrence (with a smaller branching factor)
than A does, where the recurrence for the branching operation A may be the bottleneck in the
run time analysis of the algorithm. Suppose that branching operation B is always applied to
the subinstance G1 generated by the first branch of A in the algorithm. In this case, we can
obtain a better recurrence than that for A if we derive a recurrence by combining branching
operation A and branching operation B applied to G1. However, in general, there may be many
branching operations B1, B2, . . . that can be applied to G1. To ease such an analysis without
generating all combined recurrences, we introduce a notion of “shift.” To improve the branching
factor of the recurrence for operation A, we transfer some amount from the measure decrease in
the recurrence for operation B to that for A as follows. We save an amount σ > 0 of measure
decrease from B by evaluating the branch operation B with recurrence

C(µ)≤C(µ− (t(B1) −σ)) + C(µ− (t(B2) −σ)),

3

which is worser than its original recurrence. The saved measure decrease σ will be included into
the recurrence for operation A to obtain

C(µ)≤C(µ− (t(A1) +σ)) + C(µ− t(A2)).

The saved amount is also called a shift, where the best value for σ will be determined so that
the maximum branching factor τ is minimized. In our algorithm, we introduce one shift σ in
the analysis of our algorithm for MIS-6.

To reduce the size of the search tree, we wish to find good branching rules, and try to
avoid using bad branching rules with poor performance in designing algorithms. The selection
of the measure is also an important issue in order to evaluate how quickly problem instances
can decrease after each branching operation. The measure-and-conquer method [4] allows us to
define a sophisticated way of measuring the size of problem instances. In this method, we set
a weight to each vertex in the graph according to the degree of the vertex (usually vertices of
the same degree receive the same weight) and define the sum of the weights in the graph to be
the measure. Note that when a vertex v is deleted, we may decrease the measure not only from
v but also from the neighbors of v since the degrees of the neighbors will decrease by 1. This
yields an effect of amortizing branching factors from several different recurrences. Compared to
the traditional measures, the weighted measure may catch more structural information of the
graph and leads to a further improvement without modifying the algorithms; in fact, algorithms
can be designed so that the target measure decreases as fast as possible before a final algorithm
is proposed. Currently, the best exact algorithms for many NP-hard problems are designed by
using this method. An important step in this method is to set vertex weights as valuables. We
sometime solve a quasiconvex program to determine the best values of them to minimize the
maximum branching factor τ . In this paper we also employ the branch-and-reduce paradigm as
our algorithms and the measure-and-conquer method to analyze their run times.

2.3 Reduction operations

Before applying our branching rules, we may first apply some reduction rules to reduce some
local structures, branching on which may lead to a bad performance. Reduction rules can be
applied in polynomial time to find a part of the solution or decrease the size of the instance
directly. Many nice reduction rules have been developed. In this paper, we only use three known
reduction rules.

Reduction by removing unconfined vertices
A vertex v in an instance G is called removable if α(G) = α(G −v). A sufficient condition for
a vertex to be removable has been studied in [16]. In this paper, we only use a simple case
of the condition. A neighbor u ∈ N(v) of v is called an extending child of v if u has exactly
one outer-neighbor su ∈ N2(v) at v, where su is also called an extending grandchild of v. Let
N∗(v) denote the set of all extending children u ∈ N(v) of v, and Sv be the set of all extending
grandchildren su (u ∈ N∗(v)) of v together with v itself. We call v unconfined if there is a
neighbor u ∈ N(v) which has no outer-neighbor or Sv−{v} is not an independent set (i.e., some
two vertices in Sv ∩ N2(v) are adjacent) 2. It is known in [16] that any unconfined vertex is
removable.

Lemma 1 [16] For an unconfined vertex v in graph G, it holds that

α(G) = α(G−v).

2Unconfined vertices in [16] are defined in a more general way.

4

A vertex u dominates another vertex v if N [u] ⊆ N [v], where v is called dominated. We see
that dominated vertices are unconfined vertices.

Reduction by folding complete k-independent sets
We call a set A = {v1, . . . , vk} of k degree-(k + 1) vertices a complete k-independent set if they
have common neighbors N(v1) = · · · = N(vk).

Lemma 2 [16] For a complete k-independent set A, we have that

α(G) = α(G⋆) + k,

where G⋆ = G/N [A] if N(A) is an independent set and G⋆ = G−N [A] otherwise.

Folding a complete k-independent set A is to eliminate the set N [A] from an instance in
the above way. In our algorithm, we only fold complete k-independent set with k ≤ 2, since
this operation is good enough for our analysis. Folding a complete 1-independent set A = {v}
consisting of a degree-2 vertex v is also called folding a degree-2 vertex v.

Reduction by removing line graphs
If a graph H is the line graph of a graph H ′, then a maximum independent set of H can be
obtained as the set of vertices that corresponds the set of edges in a maximum matching in
H ′. To reduce some worst cases, we need to remove the line graphs of 4-regular graphs, the
line graphs of (4,5)-bipartite graphs (a bipartite graph with edges between two sets V1 and V2

is a (d1, d2)-bipartite graph if every vertex in Vi is of degree di (i = 1, 2)) and the line graphs
of 5-regular graphs. A graph is the line graph of a 4-regular graph (resp., 5-regular graph) if
and only if the graph has only degree-6 vertices (resp., degree-8 vertices) and each of them is
contained in two edge-disjoint cliques of size 4 (resp., 5). A graph is the line graph of a (4,5)-
bipartite graph if and only if the graph has only degree-7 vertices and each of them is contained
in two edge-disjoint cliques of size 4 and 5, respectively. More characterizations of line graphs
can be found in [13]. Removing line graphs of 4-regular graphs (resp., (4,5)-bipartite graphs and
5-regular graphs) is useful in the analysis of our algorithm for MIS-6 (resp., MIS-7 and MIS-8).

Definition 3 A graph is called a reduced graph, if it contains none of unconfined vertices,
complete k-independent sets with k = 1 or 2, and a component of a line graph of a 4-regular
graph, a (4,5)-bipartite graph or a 5-regular graph.

The algorithm in Figure 1 is a collection of all above reduction operations. When the graph
is not a reduced graph, we can use the algorithm in Figure 1 as a preprocessing to reduce it.
Notice that even if a graph of maximum degree θ is given as an instance to MIS-θ (θ ∈ {6, 7, 8}),
a vertex of degree d ≥ θ + 1 may be created by contraction of vertices during an execution of
algorithm reduce.

3 Divide-and-conquer method

We exploit a divide-and-conquer approach to design algorithms for solving MIS and MIS-i
(i ≥ 3). In this method, we divide the class of instances of MIS into two classes, one consisting
of instances of maximum degree at least i for some i ≥ 3, and the other consisting of those
of maximum degree at most i − 1. For the first class of instances, we design a procedure that
applies reduction/branching operations until the maximum degree of the instance decreases to
at most i − 1. Then we switch to an algorithm that solves the second class of instances, i.e.,
MIS-(i − 1). We combine a procedure for the instances of maximum degree at least i with an
algorithm for solving MIS-(i− 1) to obtain an algorithm for MIS.

5

Input: A graph G = (V,E).
Output: A reduced graph G′ = (V ′, E′) and the size s = |S| of a subset S ⊆
V −N [V ′] such that for any maximum independent set X of G′, the union X ∪ S is
a maximum independent set to G.
Initialize s := 0 and G′ := G;
Execute the following steps as long as at least one of them is applicable before
returning the resulting pair (G′, s);

1. For each component H of G′ that is the line graph of a 4-regular graph, a (4,5)-
bipartite graph or a 5-regular graph, compute α(H), and let G′ := G′ − V (H)
and s := s+ α(H);

2. For each unconfined vertex v ∈ V , let G′ = G′ − v;

3. For each complete k-independent set A with k = 1 or 2, let G′ := G⋆ and
s := s+ k for G⋆ = G−N [A] if N(v) is an independent set, and G⋆ = G/N [A]
otherwise.

Figure 1: Algorithm reduce(G, s)

For MIS-j for each 3 ≤ j ≤ i − 1, we can use the same idea. Namely, we split the class
of instances of MIS-j into two classes, one consisting of instances of maximum degree j, the
other consisting of those of maximum degree at most j − 1. For the first class of instances, we
design a procedure that applies reduction/branching operations until the maximum degree of the
instance decreases by at least one. We obtain an algorithm for MIS-j by combining a procedure
for the instances of maximum degree at least j with an algorithm for solving MIS-(j − 1). For
MIS-3, we only need to design a procedure that applies reduction/branching operations until no
vertex of degree at least 3 is left, since a maximum independent set in an instance of maximum
degree at most 2 can be found in linear time.

Our algorithm for each classes of instances are designed by branch-and-paradigm and ana-
lyzed by the measure-and-conquer method. For MIS or MIS-θ, we let wi ≥ 0 denote the weight
of a degree-i vertex in an instance of the problem such that and define the measure µ of a graph
G with ni degree-i vertices (i ≥ 0) to be

µ(G) =
∑
i

wini.

Wemay assign different values to wi depending on the problem MIS or MIS-θ under the condition
that wi ≤ 1 for each vertex of a given instance of MIS or MIS-θ so that µ(G) ≤ n holds (during
an execution of our algorithm to MIS-θ, a vertex of degree i > θ may be created and wi > 1 is
allowed for such a vertex). In any of MIS and MIS-θ, we see that any instance G with µ(G) = 0
can be solved in polynomial time. Hence if the measure never increases after any reduction or
branching operation, then we can bound the size of search trees from above by a function τµ(G)

of µ(G) (≤ n).
However, sometimes it is not easy to analyze the running time of the combined algorithms

since that a different measure (vertex weight) may be used for the algorithm to each class. We
will introduce a method to effectively deal with this difficulty, especially for the case where the
measure is set as the sum of total weight of vertices in the graph.

Let Ai denote an algorithm that solves MIS-i in a graph G of maximum degree ≤ i in

(τi)
µi(G)|G|O(1) time, where τi is a positive number and µi(G) =

∑
1≤j≤iw

⟨i⟩
j nj is the measure of

6

G (recall that nj is the number of degree-j vertices in G and w
⟨i⟩
j ≥ 0 is the weight of a degree-

j vertex). Let B>i denote a procedure that branches on a graph G of maximum degree > i

with branching factor τ ′i on measure µi+1(G) =
∑

j≥1w
⟨i+1⟩
j nj , where w

⟨i+1⟩
j ≥ 0 is the weight

of a degree-j vertex in the procedure. We have the following lemma for analyzing combined
algorithms for MIS:

Lemma 4 For an integer i ≥ 3, let λ = max{ w
⟨i⟩
j

w
⟨i+1⟩
j

| 0 ≤ j ≤ i, w
⟨i+1⟩
j ̸= 0} and τi+1 =

max{τ ′i , (τi)λ}. Then MIS can be solved in (τi+1)
µi+1(G)|G|O(1) time.

Proof. We will construct an algorithm Ai+1 that solves MIS in O∗((τi+1)
µi+1(G)) time. It

iteratively applies the procedure B>i to branch when the graph has maximum degree > i, and
calls the algorithm Ai when the graph has maximum degree at most i. We analyze the running
time of Ai+1.

In Ai+1, we use µi+1(G) as the measure (the same measure in B>i). When the graph has
a vertex of degree at least i + 1, the algorithm can branch with branching factor τ ′i ≤ τi+1.
When the graph becomes a graph of maximum degree at most i, the algorithm will execute

Ai. In this part, the algorithm uses time O∗((τi)
µi(G0)), where µi(G0) =

∑
1≤j≤iw

⟨i⟩
j nj ≤

λ
∑

1≤j≤iw
⟨i+1⟩
j nj = λµi+1(G0) (note that nj = 0 for j > i). This implies that the algorithm

can always branch with branching factor (τi)
λ ≤ τi+1 on measure µi+1(G) in this part. Therefore,

the algorithm Ai+1 runs in O∗((τi+1)
µi+1(G)) time.

We can analyze combined algorithms for MIS-θ.
Here is an application of Lemma 4. We will show that MIS-8 can be solved in time

1.19951µ8(G)|G|O(1) time, where µ8(G) = 0.65844n3 + 0.78844n4 + 0.88027n5 + 0.95345n6 +
0.98839n7 + n8, and that in a graph with maximum degree at least 9 we can branch with
branching factor 1.19749 on the measure µ9(G) =

∑
j nj . In Lemma 4, we have τ ′8 = 1.19749,

τ8 = 1.19951, and λ = max{0.65844, 0.78844, 0.88027, 0.95345, 0.98839, 1} = 1. Then MIS can
be solved in 1.19951nnO(1) time.

In the above method, we let τi+1 = max{τ ′i , (τi)λ}, where τ ′i is decided by B>i, τi is decided by
Ai, and λ is related to the vertex weights in both of B>i and Ai. So sometimes simple reductions
on τ ′i or τi may not lead to improvement on the algorithm Ai+1. To get more properties and
further improvements on the problem, in our algorithm, we may not design Ai and B>i totally
independently. Instead, we will design B>i based on Ai by considering the result (the values of
τi and vertex weight) of Ai as some constraints to set the vertex weight in B>i.

This divide-and-conquer method provides a way to solve MIS by solving two subproblems
and to design fast algorithms for MIS based on fast algorithms for MIS in low-degree graphs.
We will focus on the subalgorithm B>i. Fast algorithms Ai for MIS-i with i = 3, 4 and 5 can be
found in references [16, 17, 18].

In this paper, by using this divide-and-conquer method, first, we design an algorithm for MIS-
6 based on fast algorithm for MIS-5 in [18], second, we design an algorithm for MIS-7 based on
the algorithm for MIS-6, third, we design an algorithm for MIS-8 based on the algorithm for
MIS-7, and finally, we design an algorithm for MIS in general graphs based on the algorithm for
MIS-8. Our results are listed in Table 1.

4 Branching on High-Degree Vertices

There is an easy way to deal with high-degree vertices. We can simply branch on a high-degree
vertex v into two branches by including it to the solution set or not. In the branch where v is
included to the solution, N [v] will be deleted from the graph since the neighbors of v cannot be

7

Problem Running time Vertex weight References

MIS-6 1.18922nnO(1) (w3, w4, w5) = (0.49969, 0.76163, 0.92401) Section 7

MIS-7 1.19698nnO(1) (w3, w4, w5, w6) = (0.65077, 0.78229, 0.89060, 0.96384) Section 8

MIS-8 1.19951nnO(1) (w3, w4, w5, w6, w7) = Section 9
(MIS) (0.65844, 0.78844, 0.88027, 0.95345, 0.98839)

Table 1: Our algorithms designed by the divide-and-conquer method

selected into the solution anymore. If the degree of v is higher, then the graph can be reduced
more in this branch. We extend the simple branch rule based on this following observation. For
a vertex v, there are only two possible cases: (i) there is a maximum independent set of the
graph which does not contain v; and (ii) every maximum independent set of the graph contains
v. Recall here the set Sv of all extending grandchildren of v together with v itself. As is shown
in [16], we see that for Case (ii), Sv is always contained in any maximum independent set of the
graph. We get the following branching rule.

Branching on a vertex v means generating two subinstances by excluding v from the inde-
pendent set or including Sv to the independent set. In the first branch we will delete v from the
instance whereas in the second branch we will delete N [Sv] from the instance.

Branching on a vertex v of maximum degree d is one of the most fundamental operations
in our algorithm. We analyze this operation. Throughout the paper, we use ∆wi = wi − wi−1

(i ≥ 3), and assume that

0 ≤ ∆i+1 ≤ ∆i (i ≥ 2); 2∆θ ≤ ∆θ−1 for MIS-θ (θ ∈ {6, 7, 8}) (1)

(these inequalites will be automatically satisfied with the optimized weights wi in our algorithms
to MIS-θ).

Let ∆out(v) and ∆in(v) to denote the decrease of the measure of µ in the branches of excluding
v and including Sv, respectively. Then we get recurrence C(µ) = C(µ−∆out(v))+C(µ−∆in(v)).
By letting kv = (k3, k4, . . . , kd) be the neighbor-degree of v, we give more details about lower
bounds on ∆out(v) and ∆in(v).

For the first branch, we get

∆out(v) = wd +
d∑

i=3

ki∆wi.

Observe that, for a fixed neighbor-degree kv, the decrease ∆out(v) in the first branch is small
when the neighbors of v have higher degrees since ∆i ≥ ∆i+1.

In the second branch, we will delete N [Sv] from the graph. Let ∆(N [v]) denote the decrease
of weight of vertices in V (G) − N [v] by removing N [Sv] from G together with possibly weight
decrease attained by reduction operations applied to G−N [Sv]. Then we have

∆in(v) ≥ wd +

d∑
i=3

kiwi +∆(N [v]).

We observe that, for a fixed neighbor-degree kv, the decrease ∆in(v) in the second branch is
determined by ∆(N [v]).

Then we can branch on a vertex v of maximum degree d with recurrence

C(µ) = C(µ−∆out(v)) + C(µ−∆in(v))

≤ C(µ−(wd +
∑d

i=3 ki∆wi)) + C(µ−(wd +
∑d

i=3 kiwi +∆(N [v]))).
(2)

A simple lower bound on ∆(N [v]) is obtained as follows.

8

Lemma 5 For a vertex v of maximum degree d, it holds

∆(N [v]) ≥ (fv+(fv−|N2(v)|) + qv)∆wd ≥ fv∆wd.

Proof. Let ℓz denote the number of edges between N(v) and z, where fv =
∑

z∈N2(v)
ℓz.

Since the degree of z decreases by ℓz after removing N [v] from G, we see that ∆(N [v]) ≥∑
z∈N2(v)

(wδ(z)−wδ(z)−ℓz). The number of degree-d vertices inN2(v) is |N2(v)|−qv (recall that qv
is the number of vertices of degree ≤ d−1 in N2(v)). Since ∆i ≥ ∆i+1 and ∆d−1 ≥ 2∆d, we have∑

z∈N2(v)
(wδ(z) −wδ(z)−ℓz) =

∑
z∈N2(v):d(z)=d(wd −wd−ℓz) +

∑
z∈N2(v):d(z)<d(wd−1 −wd−1−ℓz) ≥

(|N2(v)| − qv)∆wd + qv∆wd−1 + ∆wd−1
∑

z∈N2(v)
(ℓz − 1) ≥ (|N2(v)| − qv)∆wd + 2∆wdqv +

2∆wd(fv−|N2(v)|) = (fv+(fv−|N2(v)|) + qv)∆wd, as required.

We here remark about some feature on the recurrence (2). In the recurrence (2), usually
the measure decrease in the first branch of removing a vertex v is much smaller than that in
the second branch, and the branching factor of the recurrence tends to be easily large when
the measure decrease in the first branch is small; i.e., the neighbors of v have higher degrees.
Another remark is a special effect of the condition of N∗(v) ̸= ∅ to the term ∆(N [v]). Recall that
the second branch of including Sv into the solution removes not only N [v] but also N [Sv]−N [v].
This provides a larger lower bound on ∆(N [v]) than that in Lemma 5 (see Lemma 15(ii) for a
detailed analysis).

As for branching on vertices of maximum degree in our algorithms, we examine the recurrence
(2) for all possible neighbor-degrees (k3, k4, . . . , kd) to evaluate the branching factor precisely,
and show the existence of vertices that attain a large value in the lower bound on ∆(N [v]) in
Lemma 5 based on a graph theoretical argument.

Before closing this section, we propose a new method for knowing the maximum branching
factor of recurrences (2) over all neighbor-degrees of v. Assume that we use a fixed lower bound
on ∆(N [v]). A straightforward method is to create a concrete recurrence for each neighbor-
degree kv = (k3, k4, . . . , kd) of v. However, the number of neighbor-degrees kv = (k3, k4, . . . , kd)
is (d + 1)d−3 (the number of integer solutions to the function k3 + k4 + · · · + kd = d). Thus
(2) actually consists of (d + 1)d−3 concrete recurrences. We introduce a technical lemma that
can eliminate redundant recurrences to determine the largest branching factor among a set of
systematically generated recurrences. With this, we can reduce the number of recurrences in (2)
from (d+ 1)d−3 to only d− 2.

Lemma 6 Let C(x) = τx for a positive τ > 1. For any nonnegative p, µ, ai, bi, i = 1, 2, . . . , ℓ
(ℓ ≥ 1), the maximum of

C(µ− (
∑

i=1,2,...,ℓ

kiai+c)) + C(µ− (
∑

i=1,2,...,ℓ

kibi+d))

over all k1, k2, . . . , kℓ ≥ 0 subject to k1 + k2 + · · ·+ kℓ = p is equal to the maximum of

C(µ−(pai+c)) + C(µ− (pbi+d))

over all i = 1, 2, . . . , ℓ.

Proof. It suffices to show that for nonnegative w, a1, b1, b2, c, d ≥ 0, it holds C(µ−(a1+ a2+
c)) + C(µ−(b1+ b2+ d)) ≤ max{C(µ−(2a1+ c)) + C(µ−(2b1+ d)), C(µ−(2a2+ c)) + C(µ−
(2b2+ d))}. The lemma can be obtained by applying this repeatedly. Note that function f(t) =
τ−(2a1(1−t)+2a2t+c−µ)+ τ−(2b1(1−t)+2b2t+d−µ) is convex since the second derivative is nonnegative.
Hence f(0.5) ≤ max{f(0), f(1)} holds, as required.

9

By applying Lemma 6, in (2), we only need to consider d − 2 concrete recurrences with
neighbor-degrees (k3, k4, . . . , kd) = (d, 0, . . . , 0), (0, d, 0, . . . , 0), · · · , (0, . . . , 0, d), respectively. For
example, if d = 6, we can decrease the number of recurrences from 74 = 2401 to only 5. Lemma 6
is introduced to simplify the analysis of recurrences for the first time. It can be used to reduced
thousands of recurrences in the analysis of previous algorithms for MIS, such as the algorithms
in [8] and [1]. Note that the authors of [8] used a computer-added method to create all possible
recurrences in the web page [20]. There are more than 10 thousands recurrences listed. By using
Lemma 6, we need to generate a set of about 50 recurrences, which is now easily checkable by
hand.

5 Branching on Edges

As we have remarked in the previous section, the maximum branching factor of recurrences
(2) becomes larger when N∗(v) = ∅, v has high degree neighbors and ∆(N [v]) is small. By
considering that ∆(N [v]) = fv∆d can hold in Lemma 5, we wish to avoid branching on a vertex
v with a small fv, particularly when N∗(v) = ∅ and kd = d.

Our solution to this situation is to introduce a new branching rule that can deal with the
dense local graph G[N(v)] caused for a small fv (a large ev). That is “branching on edges.”

Branching on edges Two disjoint independent subsets A and B of vertices in a graph G are
called alternative if |A| = |B| ≥ 1 and there is a maximum independent set SG ofG which satisfies
SG∩(A∪B) = A or B. Let G† be the graph obtained from G by removing A∪B∪(N(A)∩N(B))
and adding an edge ab for every two nonadjacent vertices a ∈ N(A)−N [B] and b ∈ N(B)−N [A].

Lemma 7 [16] For alternative subsets A and B in a graph G, α(G) = α(G†) + |A|.

Lemma 8 Let vv′ be an edge. Then

α(G) = max{α(G− {v, v′}), α(G†) + 1},

where G† be the graph obtained from G by removing {v, v′}∪ (N(v)∩N(v′)) and adding an edge
ab for every two nonadjacent neighbors a ∈ N(v)−N [v′] and b ∈ N(v′)−N [v].

Proof. We easily observe that either (i) every maximum independent set SG of G satisfies
SG ∩{v, v′} = ∅; or (ii) there is a maximum independent set SG of G such that SG ∩{v, v′} ̸= ∅.
In (i), we have α(G) = α(G− {v, v′}). In (ii), sets A = {v} and B = {v′} are alternative in G,
and we have α(G) = α(G†) + 1 by Lemma 7.

Branching on an edge vv′ means generating two subinstances according to Lemma 8. This is
to either remove {v, v′} from the graph G or construct the graph G† from G− ({v, v′}∪ (N(v)∩
N(v′))) by making each pair a ∈ N(v) − N [v′] and b ∈ N(v′) − N [v] adjacent. Branching on
an edge may not always be very effective. In our algorithms, we will apply it to edges vv′ when
N(v) ∩N(v′) is large, which are called “short edges.”

We denote our algorithm for solving an instance of MIS-θ by misθ(G). The definitions of
“short edges” in algorithm misθ(G) are slightly different with θ. In misθ(G), an edge vv′ in a
reduced graph of maximum degree θ ∈ {6, 7, 8} is called short if
(i) δ(v) = 6, δ(v′) ∈ {5, 6} and |N(v) ∩N(v′)| ≥ 3 for θ = 6; and
(ii) δ(v) = δ(v′) = θ and |N(v) ∩N(v′)| ≥ 4 for θ ∈ {7, 8}.

A short edge is called optimal if |N(v) ∩N(v′)| − δ(v′) is maximized. In our algorithms, we
only branch on optimal short edges in graphs of maximum degree 6, 7 and 8.

10

6 Algorithms

In this section, we describe our algorithms misθ(G), θ = 6, 7, 8, and then discuss MIS in general
graphs.

6.1 Algorithms for MIS-6, MIS-7 and MIS-8

Our algorithm misθ(G), θ ∈ {6, 7, 8} is simple:

First keep branching on vertices of maximum degree d > θ, then keep branching
on short edges, choosing an optimal one, and then keep branching on vertices of
maximum degree θ, choosing an “optimal” one. During the execution, we switch to
an algorithm for MIS-(θ − 1) whenever the maximum degree of the graph becomes
smaller than θ.

See Figure 2 for their descriptions. In the rest of this section, we describe which vertices of
maximum degree should be chosen as “optimal” vertices. When no short edge is left in a graph
G of maximum degree θ ∈ {6, 7, 8}, the inner-degree of each neighbor u of a degree θ-vertex v is
at most 2 for θ = 6 and 3 for θ ∈ {7, 8} (otherwise vu would be a short edge). In particular, for
every degree θ-vertex v with N∗(v) = ∅, the outer-degree of every neighbor u ∈ N(v) is at least
2 at v, and we have fv ≥ 2δ(v) + kδ(v) for θ ∈ {6, 7}; fv ≥ 2δ(v) + 2kδ(v) for θ = 8. As we have
remarked, we know that the branching factor of recurrence (2) tends to be larger when N∗(v)
is empty and the neighbor-degree kv consists of higher degrees. As a vertex v to branch on first
should be one with N∗(v) ̸= ∅, or with a neighbor-degree kv which is lexicographically small.
When kv is close to (k3 = 0, 0, . . . , 0, kθ = θ), we choose a vertex that attains a large value in
the lower bound (fv+(fv−|N2(v)|) + qv) in Lemma 5. This is our priority for selecting vertices
of maximum degree θ. We define “optimal” vertices for each misθ(G), θ = 6, 7, 8 according to
this.

In a reduced graph of maximum degree 6 in MIS-6, a degree-6 vertex v is called optimal if
at least one of the following (i)-(vi) is holds:
(i) k3 ≥ 1 or k6 ≤ 3;
(ii) k6 = 4 and k5 ≤ 1;
(iii) k6 = 4, k5 = 2 and fv + (fv−|N2(v)|) + qv ≥ 17;
(iv) k6 = 5, k4 = 1 and fv + (fv−|N2(v)|) + qv ≥ 18;
(v) k6 = 5, k5 = 1 and fv + (fv−|N2(v)|) + qv ≥ 19; and
(vi) k6 = 6 and fv + (fv−|N2(v)|) + qv ≥ 22.

In a reduced graph of maximum degree 7 in MIS-7, a degree-7 vertex v is called optimal if
at least one of the following (i)-(iv) is holds:
(i) N∗(v) ̸= ∅;
(ii) the vertex v has at most 5 degree-7 neighbors (k7 ≤ 5);
(iii) k7 = 6 and fv + (fv−|N2(v)|) ≥ 22− 2k3 − k4; and
(iv) k7 = 7 and fv + (fv−|N2(v)|) ≥ 26.

In a reduced graph of maximum degree 8 in MIS-8, a degree-8 vertex v is called optimal if
(i) k8 ≤ 7 or (ii) k8 = 8 and fv + (fv−|N2(v)|) ≥ 36.

Note that in the definitions of optimal vertices in graphs of maximum degree 7 and 8, we do
not need to use qv.

Lemma 9 Let G be a reduced graph of maximum degree θ in MIS-θ (θ ∈ {6, 7, 8}). If G has no
short edges, then G has at least one optimal vertex.

In order to focus on the mechanism of our algorithms first, we move the proof of this purely
analytical lemma to Section 10.

11

Input: A graph G.
Output: The size of a maximum independent set in G.

1. Reduce the graph by (G, s) := reduce(G, 0), and let d be the maximum degree
of G.

2. If {d ≥ (θ + 1) }, pick up a vertex v of maximum degree d, and return
s+max{misθ(G−v), |Sv|+ misθ(G−N [Sv])}.

3. Elseif{d = θ and G has a short edge}, pick up an optimal short edge vv′, and
return s+max{misθ(G−{v, v′}), 1 + misθ(G†)}.

4. Elseif {d = θ (G has no short edges)}, pick up an optimal degree-θ vertex v,
and return s+max{misθ(G−v), |Sv|+ misθ(G−N [Sv])}.

5. Else {The maximum degree of G is smaller than θ}, use our algorithm for MIS-
(θ−1) to solve the instance G and return s + α(G), where the algorithm for
MIS-5 is in [18].

Note: With a few modifications, the algorithm can deliver a maximum independent
set.

Figure 2: Algorithms misθ(G)

In our algorithms misθ (θ = 6, 7, 8), we set the vertex weight wi (i ≥ 3) as follows (recall
that w1 = w2 = 0): For 3 ≤ i ≤ θ − 1, wi is set as that in Table 1; and

wθ = 1; wi = wθ + (i− θ)∆wθ i ≥ θ + 1. (3)

To simplify our analyses, the weights of vertices of degree ≥ θ+1 are allowed to be greater than
1. Recall that a vertex of degree ≥ θ+1 may be created after applying reduction rules. As will
be observed, we create vertices of degree ≥ θ+1 only when the measure does not increase. This
ensures that the running time bound of our algorithms still can be expressed by τnnO(1) with
the largest branching factor τ .

Lemma 10 With the above vertex weight setting, each recurrence generated by the algorithm
mis6(G) (resp., mis7(G) and mis8(G)) in Figure 2 has a branching factor not greater than
1.18922 (resp., 1.19698 and 1.19951).

We will give detailed analysis of our algorithms mis6(G), mis7(G) and mis8(G) in Sections 7,
8 and 9, respectively, and then complete a proof of Lemma 10. Since the measure µ is not greater
than the number n of vertices in the initial graph in mis6(G), mis7(G) and mis8(G), we establish
the next.

Theorem 11 A maximum independent set in an n-vertex graph with maximum degree θ ∈
{6, 7, 8} can be found in time of 1.1893nnO(1) for θ = 6, 1.1970nnO(1) for θ = 7, and 1.1996nnO(1)

for θ = 8, respectively.

6.2 MIS in general graphs

Our algorithm for MIS in general graphs is also simple. It only contains two steps: Keep
branching on a vertex of maximum degree while the degree of the graph is 9 or lager, and invoke

12

our algorithm mis8 for MIS-8 whenever the maximum degree of the graph becomes less than 9.
For the procedure for dealing with vertices of degree ≥ 9, we set the measure as the number of
vertices in the graph (the weight of each vertex is 1). Then we can get the following recurrence:

C(µ) ≤ C(µ− 1) + C(µ− 10), (4)

which has a branching factor 1.19749, better than 1.19951 for MIS-8. The analysis in Section 3
shows that MIS in general graphs can also be solved in 1.19951nnO(1) time.

Theorem 12 A maximum independent set in an n-vertex graph can be found in 1.1996nnO(1)

time and polynomial space.

7 Analysis of mis6(G)

For MIS-6, we first give some properties of the subgraph G[N(v)] of the neighbors of an optimal
vertex v, and then derive recurrences for all branching operations in mis6(G).

7.1 Weight setting

Recall that, for MIS-6, we assume that w0 = w1 = w2 = 0 ≤ w3 ≤ w4 ≤ w5 ≤ w6 = 1 ≤ w7 ≤
w8 ≤ · · · , and the values of w3, w4 and w5 will be determined after we analyze how the measure
changes after each step of the algorithm.

To simplify our analysis, we assume that

6∆w6 ≤ w3, (5)

where this condition is satisfied by the optimized values in Table 1. We impose the next
constraint in order to ensure that contracting vertices will never increase the measure.

wi + wj ≥ wi+j−2, 3 ≤ i, j ≤ 6. (6)

Lemma 13 wi + wj ≥ wi+j−2 holds for all i, j ≥ 1.

Proof. If i or j is at most 2, say i ≤ 2, then wi+wj = wj ≥ wi+j−2. Let i, j ≥ 3. For 3 ≤ i, j ≤ 5,
we have wi + wj ≥ wi+j−2 by (6). Let at least one of i and j, say i, is at least 6. Then we
have that i + j − 2 ≥ 7 and wi+j−2 = wi + (j − 2)∆w6 by the definition of wk (k ≥ 7). Since
wj ≥ (j − 2)∆w6, this implies that wi+j−2 = wi + (j − 2)∆w6 ≤ wi + wj .

Lemma 14 The measure µ of a graph G never increases in RG(G, s) (Step 1 of mis6(G)).
Moreover, in a graph of maximum degree d and minimum degree ≥ 3, the measure µ decreases
by at least 2∆wd after applying RG(G, s) if the maximum degree of the graph decreases by at
least one.

Proof. RG(G, s) contains three reduction steps. In Step 1, when a componentH of the line graph
of a 4-regular graph, a (4,5)-bipartite graph or a 5-regular graph is removed, the measure never
increases. If a vertex of maximum degree is removed in this step, then the measure decreases
by at least wd ≥ 2∆wd. In Step 2, when an unconfined vertex is removed, the measure will
not increase, since the vertex weight is monotonic with the degree of the vertices. If a vertex of
maximum degree is reduced, then the measure decreases either by wd ≥ 2∆wd from this vertex
or by 2∆wd from this vertex and a neighbor of it. In Step 3, folding a complete k-independent
set (k = 1 or 2) is applied. By Lemma 13, we know that the measure will never increase in
this step. Note that in this step, either N [A] is removed or a graph G/N [A] is generated by

13

contracting N [A]. For the former case, the measure decreases by at least w3 ≥ 2∆wd. For the
latter case, we can see that either the measure decreases by at least 2∆wd directly or the new
created vertex has a degree not less than the degree of any vertex in N [A] and all vertices other
than N [A] keep the same degree, which means that the maximum degree of the graph does not
decrease. This completes the proof.

Next we will analyze the recurrence of each branching step of mis6(G).

7.2 Branching on vertices of maximum degree in Step 2 of mis6(G)

We will derive recurrences for branchings in Step 2 of mis6(G). Let G be a reduced graph after
Step 1 of mis6(G). The next property holds for every vertex v in G.

Lemma 15 Let v be a vertex in a reduced graph G, and fv denote the number of edges between
N(v) and N2(v), where fv ≥ δ(v).
(i) If N∗(v) = ∅, then fv ≥ 2δ(v) and ∆(N [v]) ≥ 2δ(v)∆w6.
(ii) If N∗(v) ̸= ∅, then ∆(N [v]) ≥ min{2w3, w3 + 2(δ(v)− 3)∆w6}.

Proof. In general, we have ∆(N [v]) ≥ fv∆w6 since ∆wi ≥ ∆w6 by (1) and 6∆w6 ≤ w3 by (5).
Each neighbor of v has a neighbor in N2(v) and fv ≥ δ(v), since otherwise it would dominate
some other neighbor of v.
(i) IfN∗(v) = ∅, then there are at least 2δ(v) edges betweenN(v) andN2(v) and then fv ≥ 2δ(v).
(ii) Assume that N∗(v) ̸= ∅; i.e., Sv − {v} ̸= ∅. If |Sv − {v}| ≥ 2, then clearly ∆(N [v]) ≥∑

t∈(Sv−{v})wδ(t) ≥ 2w3. Assume that |Sv − {v}| = 1 and u is the unique vertex in Sv − {v}.
Each vertex in N∗(v) is adjacent to u and each vertex in N(v) −N∗(v) is adjacent to at least
two vertices in N2(v). Let d∗ = |N∗(v)|. Then ∆(N [v]) ≥ wδ(u) + 2(δ(v) − d∗)∆w6. Note that

δ(u) ≥ max{3, d∗}. We know that ∆(N [v]) ≥ min{wi + 2(δ(v) − i)∆w6 | 3 ≤ i ≤ δ(v)} ≥
w3 + 2(δ(v)− 3)∆w6 (by (1)).

In particular, for vertices v with δ(v) ≥ 7, we obtain ∆(N [v]) ≥ min{2δ(v)∆w6, 2w3, w3 +
2(δ(v)− 3)} ≥ 12∆w6 by (5) and (1).

Now we derive recurrence of branching on a vertex of degree ≥ 7 in Step 2 of mis6(G). To
evaluate the largest branching factor of the recurrences (2) with the lower bound ∆(N [v]) for
all d ≥ 7, we only need to consider those for vertices with no neighbors of degree d ≥ 7, since
∆w6 = min{∆wi} for all i ≥ 3 and wi+1 ≥ wi for all i ≥ 3. Furthermore, this means that we
only have to consider the case of d = 7 in cases of ki = 7 (3 ≤ i ≤ 7) by Lemma 6. Thus we get
recurrences:

C(µ) ≤ C(µ−(wd +
∑d

i=3 ki∆wi)) + C(µ−(wd +
∑d

i=3 kiwi +∆(N [v])))
≤ max3≤i≤7[C(µ−(w7+7∆wi)) + C(µ−(w7+7wi+12∆w6))].

These recurrences will not leads to the largest branching factor. In fact, two of the recurrences
for branching on short edges in Step 3 of algorithm mis6(G) ((10) with i = 6 and j = 6 and (12)
where i = 6 and j = 6) will be the worst recurrences. Since we know that a vertex of degree
≥ 7 always will be created after the second branch in such short edge branching, we here save a
shift σ > 0 from the recurrence for branching on vertices of degree ≥ 7 so that the shift σ > 0
will be included into the recurrences for the short edge branchings. Then in this step we use the
following recurrences indeed:

C(µ) ≤ max
3≤i≤7

[C(µ−(w7+7∆wi − σ)) + C(µ−(w7+7wi+12∆w6 − σ))]. (7)

14

7.3 Branching on short edges in Step 3 of mis6(G)

We derive recurrences for branching on optimal short edges vv′ in Step 3 of mis6(G). Let v be
a degree-6 vertex, d′ = δ(v′) ∈ {5, 6}, and k ∈ {3, 4} be the number of common neighbors of v
and v′. Denote N(v) − {v′} = {ui | i = 1, 2, 3, 4, 5}, N(v′) − {v} = {u′i | i = 1, 2, . . . , d′ − 1},
where ui = u′i, 1≤ i≤ k are the common neighbors, and let i∗ denote the number of degree-3
vertices u ∈ {u1, . . . , uk}, where we assume that for each i ≤ i∗, ui is a degree-3 neighbor of v.
Let X = {v, v′} ∪ (N(v) ∩N(v′)). We distinguish three cases: (i) d′ = 6 and k = 4; (ii) d′ = 5
and k = 3; and (iii) d′ = 6 and k = 3. By the optimality of the selected short edge vv′ in this
step, we know that: when vv′ satisfies (ii) then no short edge satisfies (i); and when vv′ satisfies
(iii) then no short edge satisfies (i) or (ii). This is the reason why we need to define optimal
short edges.

Case (i) d′ = 6 and k = 4: The first branch of deleting vertices v and v′ decreases the degree
of ui (1≤ i≤ 4) by two and that of u5 and u′5 by one. Each degree-3 neighbor ui (i ≤ i∗) will
be a degree-1 vertex in G− {v, v′} and its unique neighbor zi ∈ N2(v) ∩N2(v

′) will be removed
since it is an unconfined vertex, where zi ̸∈ {u5, u′5} (otherwise ui would dominate zi (= u5, u

′
5))

and zℓ ̸= zℓ′ for 1 ≤ ℓ < ℓ′ ≤ i∗ (otherwise (uℓ, uℓ′) would a complete k-independent set which
must have been reduced in reduce). Hence in the first branch the measure decreases by at least
2w6 +

∑
1≤i≤4(wδ(ui) − wδ(ui)−2) + ∆wδ(u5) +∆wδ(u′

5)
+ i∗w3, where i∗w3 is from deleting zi.

In the second branch we delete X = {v, v′, u1, u2, u3, u4} to construct graph G†, joining
u5 and u′5 with a new edge if they are not adjacent in G. Note that G has at least four
edges between X and V −X other than edges vu5 and v′u′5. The second branch decreases the
weight of vertices in V − (X ∪ {u5, u′5}) by at least 4∆w6 even after an edge u5u

′
5 is introduced

(since edges vu5 and v′u′5 are not included to evaluate the measure decrease). Hence in the
second branch, the measure decreases by at least 2w6 +

∑
1≤i≤4wδ(ui) + 4∆w6. By Lemma 6,

we only need to consider the following four recurrences each of which corresponds to the case of
δ(u1) = δ(u2) = δ(u3) ∈ {3, 4, 5, 6}:

C(µ) ≤ C(µ−(2w6 + 4(wi−wi−2) + 2∆w6))
+C(µ−(2w6 + 4wi + 4∆w6)) (i = 4, 5, 6);

(8)

and

C(µ) ≤ C(µ−(2w6 + 8w3 + 2∆w6)) + C(µ−(2w6 + 4w3 + 4∆w6)). (9)

Next, we assume that there is no short edges vv′ with δ(v) = δ(v′) = 6 and |N(v)∩N(v′)| = 4.
Then the outer-degree of every degree-6 neighbor of a degree-6 vertex is at least 2.

Case (ii) d′ = 5 and k = 3: Analogously with Case (i), the first branch decreases the measure
by at least w6 + w5 +

∑
i=1,2,3(wδ(ui) − wδ(ui)−2) + ∆wδ(u4) + ∆wδ(u5) + ∆wδ(u′

4)
+ i∗w3 ≥

w6 + w5 +
∑

i=1,2,3(wδ(ui) − wδ(ui)−2) + 2∆w6 +∆wj + i∗w3, where j = δ(u′4) ∈ {3, 4, 5, 6}.
We consider the second branch of deleting X = {v, v′, u1, u2, u3} from G to construct G† by

adding edges u4u
′
4 and u5u

′
4, if necessary. Let p be the number of degree-6 vertices in {u1, u2, u3},

where each degree-6 neighbor of v has outer-degree at least 2. Let L denote the number of edges
in G between X and V − X other than the three edges vu4, vu5 and v′u′4, where L ≥ 3 + p.
Recall that j is the degree of u′4 in G. Then the degree of u′4 in G −X is j − ℓ − 1, where ℓ is
the number of edges between u′4 and {u1, u2, u3}. Then the degree of u′4 in G† will be at most
j − ℓ+ 1, and the weight change at vertex u′4 from G to G† is at least

wj−wj−ℓ+1 = −(wj+1−wj) + (wj+1−wj−ℓ+1) (≥ −(wj+1−wj) + ℓ∆w6).

Recall that L ≥ ℓ. Hence the decrease of the measure in the second branch is at least w6+w5+∑
i=1,2,3wδ(ui) + L∆w6 − (wj+1−wj) ≥ w6 + w5 +

∑
i=1,2,3wδ(ui) + (3 + p)∆w6 − (wj+1−wj).

15

By Lemma 6, we only need to consider the following recurrences:

C(µ) ≤ C(µ−(w6 + w5 + 3(wi−wi−2) + 2∆w6 +∆wj))
+C(µ−(w6 + w5 + 3wi + (3 + p)∆w6−(wj+1−wj))),

(10)

where 4 ≤ i ≤ 6 (p = 4 for i = 6 and p = 0 for i = 4 or 5) and 3 ≤ j ≤ 6; and

C(µ) ≤ C(µ−(w6 + w5 + 6w3 + 2∆w6 +∆wj))
+C(µ−(w6 + w5 + 3w3 + 3∆w6−(wj+1−wj))) (3 ≤ j ≤ 6).

(11)

We analyze a special case in (10) where i = 6 and j = 6. For this case, we get the recurrence

C(µ) ≤ C(µ−(w6 + w5 + 3(w6−w4) + 3∆w6)) + C(µ−(4w6 + w5 + 5∆w6)).

In the second branch we get the graph G†, where u′4 is a degree-7 vertex. In the next step,
either the degree-7 vertex is reduced by applying a reduction rule in Step 1 or the algorithm will
branch on the degree-7 vertex in Step 2. For the former case, the measure will decrease by at
least 2∆w6 by Lemma 14. For the latter case, we can get σ saved from the recurrence (7). We
assume that 2∆w6 ≥ σ. Then we can get following recurrence instead of the above one

C(µ) ≤ C(µ−(w6 + w5 + 3(w6−w4) + 3∆w6)) + C(µ−(4w6 + w5 + 5∆w6 + σ)).

Next, we further assume that there is no short edge vv′ with δ(v) = 6, δ(v′) = 5 and
|N(v) ∩N(v′)| = 3. Then the outer-degree of every degree-5 neighbor of a degree-6 vertex is at
least 2.

Case (iii) d′ = 6 and k = 3: Analogously with Case (ii), the first branch decreases the measure
by at least 2w6 +

∑
i=1,2,3(wδ(ui) − wδ(ui)−2) +

∑
x∈{u4,u5,u′

4,u
′
5}
∆wδ(x) + i∗w3. We consider the

second branch of deleting X = {v, v′, u1, u2, u3} from G to construct G† by adding edges u4u
′
4,

u4u
′
5, u5u

′
4 and u5u

′
5, if necessary. Let p be the number of degree-5, 6 vertices in {u1, u2, u3},

where each degree-5 or 6 neighbor of v has outer-degree at least 2. Let L denote the number
of edges in G between X and V −X other than the four edges vu4, vu5, v

′u′4 and v′u′5, where
L ≥ 3+p. For each vertex x ∈ {u4, u5, u′4, u′5}, the degree of the vertex x in G−X is δ(x)−ℓx−1,
where ℓx is the number of edges between x and {u1, u2, u3}. Then the weight change at x from
G to G† is at least

wδ(x) − wδ(x)−ℓx+1 ≥ −(wδ(x)+1 − wδ(x)) + ℓx∆w6,

where ℓx∆w6 is the lower bound on the weight decrease caused by the deletion of the ℓx edges
between x and {u1, u2, u3}. Recall that L ≥

∑
x∈{u4,u5,u′

4,u
′
5}
ℓx. Hence the measure decrease in

the second branch is at least 2w6+
∑

i=1,2,3wδ(ui)+L∆w6−
∑

x∈{u4,u5,u′
4,u

′
5}
(wδ(x)+1−wδ(x)) ≥

2w6 +
∑

i=1,2,3wδ(ui) + (3 + p)∆w6 −
∑

x∈{u4,u5,u′
4,u

′
5}
(wδ(x)+1 − wδ(x)). By Lemma 6, we only

need to consider the following recurrences:

C(µ) ≤ C(µ−(2w6 + 3(wi − wi−2) + 4∆wj))
+C(µ−(2w6 + 3wi + (3 + p)∆w6 − 4(wj+1−wj))),

(12)

where 4 ≤ i ≤ 6 (p = 3 for i = 5 or 6; and p = 0 for i = 4) and 3 ≤ j ≤ 6; and

C(µ) ≤ C(µ−(2w6+6w3+4∆wj)) + C(µ−(2w6+3w3+3∆w6 − 4(wj+1−wj))), (13)

where 3 ≤ j ≤ 6.
We also analyze a special case in (12) where i = 6 and j = 6. In the second branch we get

the graph G† with four degree-7 vertices u4, u5, u
′
4 and u′5. Analogously with the special case in

16

Case (ii), in the second branch, either the measure decreases by 2∆w6 ≥ σ directly or we get
shift σ saved from (7) by branching on a degree-7 vertex. Then for this case we can get the
following recurrence instead

C(µ) ≤ C(µ−(2w6 + 3(w6−w4) + 4∆w6)) + C(µ−(5w6 + 2∆w6 + σ)).

From now on, we can assume that there is no short edges vv′ with δ(v) = δ(v′) = 6 and
|N(v) ∩N(v′)| = 3. Then the outer-degree of every degree-6 neighbor of a degree-6 vertex is at
least 3.

After Step 3 of mis6(G), for each degree-6 vertex v in G, its degree-5 (resp., degree-6)
neighbor is of outer-degree ≥ 2 (resp., ≥ 3) at v, and it holds

fv ≥ k3 + k4 + 2k5 + 3k6. (14)

7.4 Branching on vertices of maximum degree 6 in Step 4 of mis6(G)

We will derive recurrences for branchings in Step 4 of mis6(G). After Step 3, we can assume
that the current graph G is a reduced graph with maximum degree 6 such that there is no short
edge. Let v be an optimal vertex v of degree 6 selected in Step 4 of mis6(G).

We define

λ6(k3, k4, k5, k6) =

min{(12 + k6)∆w6, w3 + 6∆w6} if k6 ≤ 3 and k3+k4 ≥ 2
(6 + k5 + 2k6)∆w6 if k6 ≤ 3 and k3+k4 ≤ 1
(6 + k5 + 2k6)∆w6 if k6 = 4 and k3+k4 ≥ 1

17∆w6 if k6 = 4 and k5 = 2
(16 + 2k4 + 3k5)∆w6 if k6 = 5

22∆w6 if k6 = 6.

(15)

Then we have:

Lemma 16 Let v be an optimal degree-6 vertex in Step 4 of mis6(G). Then ∆(N [v]) ≥
λ6(k3, k4, k5, k6).

Proof. By (14), we have ∆(N [v]) ≥ fv∆w6 ≥ (k3 + k4 + 2k5 + 3k6)∆w6 = (6 + k5 + 2k6)∆w6.
This proves the cases of “k6 ≤ 3 and k3+k4 ≤ 1,” “k6 = 4 and k3+k4 ≥ 1,” and “k6 = 5 and
k3 = 1” (the case of “k6 = 5 and k3 ̸= 1” will be treated next).

By Lemma 5 and the definition of optimal vertices imply the case of “k6 = 4 and k5 = 2”,
“k6 = 5 and k3 ̸= 1” and “k6 = 6.”

Finally we show the case of “k6 ≤ 3 and k3+k4 ≥ 2.” If N∗(v) = ∅ then each degree-3,4
neighbor of v also has at least two neighbors in N2(v), and we again obtain ∆(N [v]) ≥ fv∆w6 ≥
(12+ k6)∆w6. If N

∗(v) ̸= ∅, then Lemma 15(ii) implies that ∆(N [v]) ≥ min{2w3, w3+2(δ(v)−
3)∆w6} ≥ w3+6∆w6. This proves the case of “k6 ≤ 3 and k3+k4 ≥ 2.”

By Lemma 16, we obtain the recurrence (2) for d = 6 as follows:

C(µ) ≤ C(µ− (w6 + k3w3 + k4(w4 − w3) + k5(w5−w4) + k6(w6−w5)))
+C(µ− (w6 + k3w3 + k4w4 + k5w5 + k6w6 + λ6(k3, k4, k5, k6)))

(16)

for all nonnegative integers (k3, k4, k5, k6) with k3 + k4 + k5 + k6 = 6.

17

7.5 Finial step

We have derived recurrences for all branching operations in algorithm mis6(G) except for Step 5
which invokes the fast algorithms for MIS-5 in [18]. To determine the largest branching factor
to algorithm mis6(G) using our divide-and-conquer method in Section 3, we combine all the
above recurrences with the weight setting used to determine the branching factor to algorithms
for MIS-5 in [18].

The algorithm for MIS-5 in [18] runs in 1.17366µ5(G)µ5(G)O(1) time for a degree-5 graph G

with measure µ5(G) =
∑

1≤i≤5w
⟨5⟩
i ni where ni is the number of degree-i vertices in G, and

w
⟨5⟩
i is the weight of a degree-i vertex such that w

⟨5⟩
0 = w

⟨5⟩
1 = w

⟨5⟩
2 = 0, w

⟨5⟩
3 = 0.50907,

w
⟨5⟩
4 = 0.82427 and w

⟨5⟩
5 = 1. Based on Lemma 4, we include the following three constraints

into the current set of recurrences.

C(µ)≤1.17366
w
⟨5⟩
3
w3

µ
, C(µ)≤1.17366

w
⟨5⟩
4
w4

µ
, and

C(µ)≤1.17366
w
⟨5⟩
5
w5

µ
.

(17)

Recurrences (7) to (13) and (16) together with (17) generate the constraints in a quasicon-
vex program to minimize the largest branching factor τ . By solving the quasiconvex program
according to the method introduced in [3], we get an upper bound 1.18922 on the branching
factor for all recurrences by setting vertex weights as

wi =

0 for i = 0, 1 and 2
0.49969 for i = 3
0.76163 for i = 4
0.92401 for i = 5

1 for i = 6
w6 + (i− 6)(w6−w5) for i ≥ 7.

(18)

Now a feasible value of the shift σ is 0.10647. This verifies Lemma 10 with θ = 6.

8 Analysis of mis7(G)

In the same manner of Section 7, we analyze the largest branching factor of recurrences for the
branchings in mis7(G). All notations except for a new vertex weight in mis7(G) stand for the
same meaning in Section 7.

Recall that, for MIS-7, we assume that w0 = w1 = w2 = 0 ≤ w3 ≤ w4 ≤ w5 ≤ w6 ≤ w7 =
1 ≤ w8 ≤ · · · , and the values of w3, w4, w5 and w6 will be determined after we analyze how the
measure changes after each step of the algorithm.

To simplify our analysis, we assume that

18∆w7 ≤ w3. (19)

We impose the next constraint so that the measure does not increase after contracting vertices.

wi + wj ≥ wi+j−2, 3 ≤ i, j ≤ 7. (20)

We can see that Lemma 13 still holds in mis7(G) and then the measure of the graph will
not increase after Step 1 of mis7(G). Next we derive a recurrence of each branching step of
mis7(G).

18

Step 1: It is easy to see that the statement of Lemma 15 still holds for θ = 7 even after replacing
‘∆w6’ with ‘∆w7’ in it. Based on the θ = 7 version of Lemma 15, we see that every vertex v
with δ(v) ≥ 8 satisfies

∆(N [v]) ≥ min{2δ(v)∆w7, 2w3, w3 + 2(δ(v)− 3)} ≥ 14∆w7

by (1) and (19).

Step 2: We use recurrences (2) for branching on a vertex of degree ≥ 8 in Step 2 of mis7(G). By
Lemma 6, we only have to consider the case of d = 8 for the recurrences with ki = 8 (3 ≤ i ≤ 8).
Thus we get recurrences

C(µ) ≤ C(µ−(wd +
∑d

i=3 ki∆wi) + C(µ−(wd +
∑d

i=3 kiwi +∆(N [v])))
≤ max3≤i≤8[C(µ−(w8+8∆wi)) + C(µ−(w8+8wi+14∆w7))].

(21)

Step 3: We consider branching on an optimal short edge vv′ in Step 3 of mis7(G). We see that
|N(v) ∩N(v′)| ≥ 6 cannot occur otherwise v would dominate v′.
(i) We derive recurrences in case of |N(v)∩N(v′)| = 5. Analogously with Case (i) in Section 7.3,
we get recurrences

C(µ) ≤ C(µ−(2w7 + 5(wi−wi−2) + 2∆w7))
+C(µ−(2w7 + 5wi + 4∆w7)) (i = 4, 5, 6, 7);

(22)

and

C(µ) ≤ C(µ−(2w7 + 10w3 + 2∆w7)) + C(µ−(2w7 + 5w3 + 4∆w7)). (23)

(ii) We derive recurrences in case of |N(v) ∩N(v′)| = 4. Denote X = N(v) ∩N(v′) = {ui | i =
1, 2, 3, 4}, N(v) − N [v′] = {u5, u6} and N(v′) − N [v] = {u′5, u′6}. Let i∗ denote the number of
degree-3 vertices u ∈ {u1, u2, u3, u4}, where we assume that for each i ≤ i∗, ui is a degree-3 neigh-
bor of v. Analogously with Case (iii) in Section 7.3, the first branch of deleting vertices v and v′

decreases the measure by at least 2w7+
∑

i=1,2,3,4(wδ(ui)−wδ(ui)−2)+
∑

x∈{u5,u6,u′
5,u

′
5}
∆wδ(x)+

i∗w3. In the second branch of deleting X = {v, v′, u1, u2, u3, u4} from G to construct G† by
adding edges u5u

′
5, u5u

′
6, u6u

′
5 and u6u

′
6, if necessary. Let p be the number of degree-7 vertices

in {u1, u2, u3, u4}, where each degree-7 neighbor of v has outer-degree at least 2 (otherwise there
would be a short edge aa′ with |N(a) ∩ N(a′)| ≥ 5). Let L denote the number of edges in G
between X and V −X other than the four edges vu5, vu6, v

′u′5 and v′u′6, where L ≥ 4+ p. The
following analysis is the same as Case (iii) in Section 7.3. The decrease of the measure in the
second branch is at least 2w7+

∑
i=1,2,3,4wδ(ui)+(4+p)∆w6−

∑
x∈{u5,u6,u′

5,u
′
6}
(wδ(x)+1−wδ(x)).

By Lemma 6, we only need to consider the following recurrences:

C(µ) ≤ C(µ−(2w7 + 4(wi − wi−2) + 4∆wj))
+C(µ−(2w7 + 4wi + (4 + p)∆w7 − 4(wj+1−wj))),

(24)

where 4 ≤ i ≤ 7 (p = 4 for i = 7; and p = 0 for i = 4, 5 and 6) and 3 ≤ j ≤ 7; and

C(µ) ≤ C(µ−(2w7+8w3+4∆wj))+C(µ−(2w7+4w3+4∆w7 − 4(wj+1−wj))), (25)

where 3 ≤ j ≤ 7.

Step 4: We again use recurrences (2) for branching on an optimal vertex v in Step 4 of mis7(G).
Now the graph has no short edge, and every degree-7 vertex has outer-degree at least 3 at a
degree-7 neighbor of it. Hence it holds

fv ≥ k3 + k4 + k5 + k6 + 3k7. (26)

19

We define

λ7(k7) =

(14+k7)∆w7 if k7 ≤ 5

(22− 2k3 − k4)∆w7 if k7 = 6
26∆w7 if k7 = 7.

(27)

Then we have:

Lemma 17 Let v be an optimal degree-7 vertex in Step 4 of mis7(G). Then ∆(N [v]) ≥ λ7(k7).

Proof. First consider the case of N∗(v) = ∅. Then each neighbor of v has at least two
neighbors in N2(v) and each degree-7 neighbor of v has at least three neighbors in N2(v).
By (26), we obtain ∆(N [v]) ≥ fv∆w7 ≥ (14 + k7)∆w7 for k7 ≤ 5. By Lemma 5, it holds
∆(N [v]) ≥ (fv + (fv−|N2(v)|))∆w7. For k7 = 6 (resp., k7 = 7), this and the definition of
optimal vertices imply that ∆(N [v]) ≥ (fv + (fv−|N2(v)|))∆w7 ≥ (22 − 2k3 − k4)∆w7 (resp.,
≥ 26∆w7).

If N∗(v) ̸= ∅, then the θ = 7 version of Lemma 15(ii) implies that ∆(N [v]) ≥ min{2w3, w3+
2(δ(v) − 3)∆w7} ≥ w3+8∆w7, which is larger than any of (14 + k7)∆w7, (22 − 2k3 − k4)∆w7

and 26∆w7 by (19). This proves all the cases.

By Lemma 16, we obtain the recurrence (2) for d = 7 as follows.
Case 1 (k7 ≤ 5):

C(µ) ≤ C(µ− (w7 + 7(wi−wi−1))) + C(µ− (w7 + 7wi + 14∆w7)), (28)

where 3 ≤ i ≤ 6.
Case 2 (k7 = 6 and k3 = 1):

C(µ) ≤ C(µ− (w7 + 6(w7−w6) + w3)) + C(µ− (7w7 + w3 + 20∆w7)). (29)

Case 3 (k7 = 6 and k4 = 1):

C(µ) ≤ C(µ− (w7 + 6(w7−w6) + (w4 − w3))) + C(µ− (7w7 + w4 + 21∆w7)). (30)

Case 4 (k7 = 6 and k5 + k6 = 1):

C(µ) ≤ C(µ− (w7 + 6(w7−w6) + (wi−wi−1))) + C(µ− (7w7 + wi + 22∆w7)), (31)

where 5 ≤ i ≤ 6.

Case 5 (k7 = 7):

C(µ) ≤ C(µ− (w7 + 7(w7−w6))) + C(µ− (8w7 + 26∆w7)). (32)

We have derived recurrences for all branching operations in algorithm mis7(G) except for
Step 5 which invokes algorithms mis6(G). To determine the largest branching factor to algorithm
mis7(G) analogously with the previous section, we combine all the above recurrences with the
weight setting used for mis6(G). By Lemma 4, we include the following four constraints into
the current set of recurrences.

C(µ)≤1.18922
w
⟨6⟩
3
w3

µ
, C(µ)≤1.18922

w
⟨6⟩
4
w4

µ
,

C(µ)≤1.18922
w
⟨6⟩
5
w5

µ
, and C(µ)≤1.18922

w
⟨6⟩
6
w6

µ
,

(33)

where w
⟨6⟩
3 = 0.49969, w

⟨6⟩
4 = 0.76163, w

⟨6⟩
5 = 0.92401 and w

⟨6⟩
6 = 1.

20

The above assumptions and recurrences together with (33) generate the constraints in our
quasiconvex program. By solving the quasiconvex program, we get an upper bound 1.19698 on
the branching factor for all recurrences by setting vertex weights as

wi =

0 for i = 0, 1 and 2
0.65077 for i = 3
0.78229 for i = 4
0.89060 for i = 5
0.96384 for i = 6

1 for i = 7
w7 + (i− 7)(w7−w6) for i ≥ 8.

(34)

This verifies Lemma 10 with θ = 7.

9 Analysis of mis8(G)

Recall that for MIS-8, we assume w0 = w1 = w2 = 0 ≤ w3 ≤ w4 ≤ w5 ≤ w6 ≤ w7 ≤ w8 = 1 ≤
w9 ≤ · · · , and the values of w3, w4, w5, w6 and w7 will be determined after we analyze how the
measure changes after each step of the algorithm.

To simplify analysis, we assume that

26∆w8 ≤ w3. (35)

To ensure that contracting vertices never increase the measure, we impose the next constraint.

wi + wj ≥ wi+j−2, 3 ≤ i, j ≤ 8. (36)

Next we analyze each step of the algorithm.
Step 1: We can see that Lemma 13 still holds in mis8(G) and then the measure of the graph
will not increase after Step 1 of mis8(G).

Step 2: Using recurrences (2) for branching on a vertex of degree ≥ 9 in Step 2, we get recur-
rences:

C(µ) ≤ C(µ−(wd +
∑d

i=3 ki∆wi) + C(µ−(wd +
∑d

i=3 kiwi +∆(N [v])))
≤ max3≤i≤9[C(µ−(w9+9∆wi)) + C(µ−(w9+9wi+16∆w8))].

(37)

Step 3: We consider branching on an optimal short edge vv′ in Step 3. We see that |N(v) ∩
N(v′)| ≥ 7 cannot occur, otherwise v would dominate v′.
(i) For the case of |N(v)∩N(v′)| = 6, we get the following recurrences for the branch (analogously
with Case (i) in Section 7.3)

C(µ) ≤ C(µ−(2w8 + 6(wi−wi−2) + 2∆w8))
+C(µ−(2w8 + 6wi + 2∆w8)) (i = 3, 4, 5, 6, 7).

(38)

(ii) For the case of |N(v) ∩N(v′)| = 5, we get the following recurrences

C(µ) ≤ C(µ−(2w8 + 5(wi − wi−2) + 4∆wj))
+C(µ−(2w8 + 5wi + (5 + p)∆w8 − 4(wj+1−wj))),

(39)

where 4 ≤ i ≤ 8 (p = 5 for i = 8 and p = 0 for i = 4, 5, 6 and 7) and 3 ≤ j ≤ 8; and

C(µ) ≤ C(µ−(2w8+10w3+4∆wj)) + C(µ−(2w8+5w3+4∆w7 − 4(wj+1−wj))), (40)

21

where 3 ≤ j ≤ 8.
(iii) For the case of |N(v) ∩N(v′)| = 4, we get the following recurrences

C(µ) ≤ C(µ−(2w8 + 4(wi − wi−2) + 6∆wj))
+C(µ−(2w8 + 4wi + (4 + p)∆w8 − 6(wj+1−wj))),

(41)

where 4 ≤ i ≤ 8 (p = 8 for i = 8; p = 4 for i = 7; and p = 0 for i = 4, 5 and 6) and 3 ≤ j ≤ 8;
and

C(µ) ≤ C(µ−(2w8+8w3+6∆wj)) + C(µ−(2w8+4w3+4∆w7 − 6(wj+1−wj))), (42)

where 3 ≤ j ≤ 8.

Step 4: Using recurrences (2) for branching on an optimal vertex of degree 8 in Step 4, we can
get recurrences:

C(µ) ≤ C(µ− (w8 +
∑8

i=3 ki∆wi)) + C(µ− (w8 +
∑8

i=3 kiwi + λ8(k8))), (43)

for all nonnegative integers (k3, k4, k5, k6, k7, k8) with k3 + k4 + k5 + k6 + k7 + k8 = 8 and

λ8(k8) =

{
(16+2k8)∆w8 if k8 ≤ 7

36∆w8 if k8 = 8.
(44)

The correctness of the above recurrences relies on the following lemma, which corresponds
to Lemma 17.

Lemma 18 Let v be an optimal degree-8 vertex in Step 4 of mis8(G). Then ∆(N [v]) ≥ λ8(k8).

Proof. If N∗(v) = ∅. Then each neighbor of v has at least two neighbors in N2(v) and each
degree-8 neighbor of v has at least four neighbors in N2(v). We obtain ∆(N [v]) ≥ fv∆w8 ≥
(16+2k8)∆w8. By the definition of optimal vertices, we know that when k8 = 8, it holds fv ≥ 36
and then ∆(N [v]) ≥ 36∆w8.

We see thatthe statement of Lemma 15(ii) still holds for θ = 8 even after replacing ‘∆w6’ with
‘∆w8’ in it. This implies that if N∗(v) ̸= ∅, then ∆(N [v]) ≥ min{2w3, w3 + 2(δ(v)− 3)∆w8} ≥
w3+10∆w8, which is larger than any of (16 + 2k8)∆w8 and 36∆w8 by (35).

Step 5: In Step 5, the algorithm invokes mis7(G). Analogously with the previous section, we
include the following five constraints into the current set of recurrences.

C(µ)≤1.19698
w
⟨7⟩
3
w3

µ
, C(µ)≤1.19698

w
⟨7⟩
4
w4

µ
, C(µ)≤1.19698

w
⟨7⟩
5
w5

µ
,

C(µ)≤1.19698
w
⟨7⟩
6
w6

µ
, and C(µ)≤1.19698

w
⟨7⟩
7
w7

µ
,

(45)

where w
⟨7⟩
3 = 0.65077, w

⟨7⟩
4 = 0.78229, w

⟨7⟩
5 = 0.89060, w

⟨7⟩
6 = 0.96384 and w

⟨7⟩
7 = 1.

After solving the quasiconvex program, we get an upper bound 1.19951 on the branching
factor for all recurrences by setting vertex weight:

wi =

0 for i = 0, 1 and 2
0.65844 for i = 3
0.78844 for i = 4
0.88027 for i = 5
0.95345 for i = 6
0.98839 for i = 7

1 for i = 8
w8 + (i− 8)(w8−w7) for i ≥ 9.

(46)

This verifies Lemma 10 with θ = 8.

22

10 Proof of Lemma 9

We prove Lemma 9 by revealing some structural properties of graphs of maximum degree 6, 7
and 8. Recall that, for a vertex v, fv denotes the number of edges between N(v) and N2(v),
and ev denotes the number of edges in the graph G[N(v)]. For each neighbor u ∈ N(v), the
outer-degree (resp., inner-degree) of u at v is |N(u) ∩N2(v)| (resp., |N(u) ∩N(v)|).

10.1 Graphs of maximum degree 6

The existence of optimal vertices in a reduced graph G of maximum degree 6 without short
edges follows from Lemma 19. When there is not short edge in a reduced graph with maximum
degree 6, we see that for each degree-6 vertex v in G, the inner-degree of any vertex in N(v) at
v is at most 2. Such a graph can have the following types of vertices.

Lemma 19 Let G be a graph of maximum degree 6 and minimum degree ≥ 3 such that for
every degree-6 vertex v, the inner-degree of each neighbor u ∈ N(v) at v is at most 2. If G is
not the line graph of a 4-regular graph, then there is a degree-6 vertex v that satisfies one of the
following:

k3 ≥ 1 or k6 ≤ 3;
k6 = 4 and k5 ≤ 1;
k6 = 4, k5 = 2 and fv + (fv−|N2(v)|) + qv ≥ 17;
k6 = 5, k4 = 1 and fv + (fv−|N2(v)|) + qv ≥ 18;
k6 = 5, k5 = 1 and fv + (fv−|N2(v)|) + qv ≥ 19; and
k6 = 6 and fv + (fv−|N2(v)|) + qv ≥ 22.

Proof. Observe that fv is the sum of the out-degree of neighbors of v and

ev ≤ 6

holds, since the inner-degree of each neighbor at v is at most 2. We assume that G has no vertex
that satisfies one of “k3 ≥ 1 or k6 ≤ 3” and “k6 = 4 and k5 ≤ 1.” We consider several cases.

Case 1. There is a degree-6 vertex v with k6 = 5 and k4 = 1: Assume that fv+(fv−|N2(v)|)+qv ≤
16. Since fv ≥ 16 by ev ≤ 6, we see that fv−|N2(v)| = qv = 0 and the degree-4 neighbor u of v is
adjacent to a degree-6 vertex z ∈ N(u)∩N2(v). Now N(z)−{u} contains only degree-6 vertices,
since z has already one degree-4 neighbor. Note that z is not adjacent to any vertex in N [v]−{u},
and then the outer-degree of vertex u at z is three. This implies that fz ≥ 3× 5+ 3 = 18 and v
is a vertex satisfying the condition in the lemma.

In what follows, we further assume that there is no degree-6 vertex with k6 = 5 and k4 = 1.
We choose a degree-6 vertex v with minimum ev such that k6 < 6 (if possible) and then the
maximum component in G[N(v)] is maximized.

Case 2. ev ≤ 4: In this case, we are done because fv ≥ 16 + 2 × (6 − ev) = 20 for k6 = 4 and
k5 = 2; fv ≥ 17 + 4 = 21 for k6 = 5 and k5 = 1; and fv ≥ 18 + 4 = 22 for k6 = 6.

Case 3. ev = 5: In this case, fv ≥ 16+2× (6− ev) = 18 for k6 = 4 and k5 = 2; fv ≥ 17+2 = 19
for k6 = 5 and k5 = 1; and fv ≥ 18 + 2 = 20 for k6 = 6. We only need to consider the case of
k6 = 6, and assume that fv + (fv−|N2(v)|) + qv ≤ 21, where we have fv−|N2(v)| + qv ≤ 1 by
fv ≥ 20. Observe that G[N(v)] is either a path of length 5 or a disjoint union of a path of i and
a cycle of length 5− i (i = 0, 1, 2). We distinguish two subcases.

(i) G[N(v)] contains a path of length four u1u2u3u4u5 (possibly a cycle of length 4 with u1 = u5):
We show that u3 satisfies the lemma. By fv−|N2(v)| + qv ≤ 1, at most one of u2 and u4 can
be adjacent to a vertex in N(u3) ∩N2(v); i.e., the inner-degree of ui (i = 2, 4) at u3 is at most
1, implying that eu3 ≤ 5 and u3 has only degree-6 neighbors by our choice of v. Note that

23

fu3 − |N2(u3)| ≥ 2, since u1 and u5 are common neighbors of two neighbors in N(u3). This
means that fu3 + (fu3 − |N2(u3)|) ≥ 20 + 2 = 22.

(ii) G[N(v)] consists of a path u1u2u3 and a triangle: By fv−|N2(v)| ≤ 1, we see that for i = 1
or 3 (say i = 1), there is no edge between N(ui) ∩ N2(v) and N(v) − {ui}. In this case, the
inner-degree of each of v and u2 at u1 is 1, implying that eu1 ≤ 5 (hence eu1 = 5). Hence u1 has
only degree-6 neighbors by our choice of v. However, in this case, G[N(u1)] must be a union of
single edge vu2 and a cycle of length 4. Then u1 satisfies the condition of (i).

Case 4. ev = 6. In this case, fv ≥ 16 for k6 = 4 and k5 = 2; fv ≥ 17 for k6 = 5 and k5 = 1; and
fv ≥ 18 for k6 = 6.

We first consider the case of k6 = 4 and k5 = 2. Assume fv + (fv−|N2(v)|) + qv ≤ 16
(otherwise we are done), which implies that fv−|N2(v)| = qv = 0. Let u ∈ N(v) be a degree-5
neighbor of v, and z ∈ N(u)∩N2(v) be a neighbor of u not in N [v], where δ(z) = 6 (by qv = 0)
and z is not adjacent to any other vertices in N(v) − {u} (by fv−|N2(v)| = 0). Hence the
inner-degree of u at z is at most 1, and ez ≤ 5, contradicting our choice of vertex v.

Assume that v satisfies “k6 = 5 and k5 = 1” or “k6 = 6.” Now G[N(v)] with ev = 6 is either
a cycle of length 6 or a disjoint union of two triangles. We distinguish two subcases.

(i) G[N(v)] is a cycle of length six u1u2u3u4u5u6, where u1 is assumed to be of degree 5 if k5 = 1:
By our choice of v, it also holds eu2 = 6, implying that each of u1 and u3 is adjacent to a vertex
in N(u2)∩N2(v). Analogously each of u4 and u6 is adjacent to a vertex in N(u5)∩N2(v). Hence
we have fv−|N2(v)| ≥ 4 and fv + (fv−|N2(v)|) is at least 16 + 4 = 20 for “k6 = 5 and k5 = 1”
and 18 + 4 = 22 for k6 = 6, as required.

(ii) G[N(v)] is a disjoint union of two triangles: In this case, v satisfies “k6 = 5 and k5 = 1” only,
because otherwise by our choice G would be a 6-regular graph such that for each vertex v′ in it,
G[N(v)] is a disjoint union of two triangles and then G would be the line graph of a 4-regular
graph. Assume that fv+(fv−|N2(v)|)+qv ≤ 18 (otherwise we are done), where (fv−|N2(v)|)+qv ≤
1. Let u ∈ N(v) be the degree-5 neighbor of v, and let {z1, z2} = N(u) ∩ N2(v). By qv ≤ 1,
one of z1 and z2 (say z1) is of degree 6. Since ez1 = 6 by our choice of v, the inner-degree of
u at z1 is 2, and hence z1 is adjacent to a neighbor in N(v) ∩N(u). Now fv−|N2(v)| = 1 and
hence qv = 0. The vertex z2 also needs to be adjacent to a neighbor in N(v) ∩N(u), indicating
fv−|N2(v)| ≥ 2, a contradiction.

10.2 Graphs of maximum degree 7

To prove the existence of optimal vertices in graphs of maximum degree 7, we investigate the
structure of 7-regular graphs.

A vertex v is called a (j, k)-clique-type vertex if the induced graph G[N(v)] is a disjoint union
of a j-clique and a k-clique, where j + k = δ(v).

Lemma 20 Let G be a 7-regular graph such that the inner-degree of each neighbor u ∈ N(v) of
every vertex v is at most 3. If G is not the line graph of a (4,5)-bipartite graph, then it has a
vertex v such that fv + (fv−|N2(v)|) ≥ 26.

Proof. Now fv = 42−2ev is an even number. Assume that for every vertex v, fv+(fv−|N2(v)|) ≤
25 otherwise we are done. Before we prove that G is the line graph of a (4,5)-bipartite graph,
we first show four properties (P0), (P1), (P2) and (P3) on a vertex v in G.

(P0) It holds that fv ∈ {22, 24} and ev ≥ 9.
Now the inner-degree of each neighbor u ∈ N(v) at v is at most 3, i.e., the outer-degree of

u of v is at least 3 in a 7-regular graph, which implies fv ≥ 3 × 7 = 21 and hence fv ≥ 22 by
parity. By fv = 42− 2ev, we see that fv + (fv−|N2(v)|) ≤ 25 implies fv ≤ 24 and ev ≥ 9.

(P1) If a vertex v is not (3, 4)-clique-type, then there is no 4-clique in G[N(v)].

24

If G[X] is a 4-clique for some subset X ⊆ N(v), then the inner-degree of a neighbor u ∈ X
is already 3 and the remaining ev − 6 ≥ 9 − 6 = 3 edges must form a triangle in N(v) − X,
indicating that v would be (3,4)-clique-type.

(P2) If there is no 4-clique in G[N(v)], then there are four neighbors u1, u2, u3, u4 ∈ N(v) such
that there is at least one edge between N(ui) ∩N(v) and N(ui) ∩N2(v).

Since fv ≤ 24 by (P0), there are at least four neighbors u1, u2, u3, u4 ∈ N(v), each of which
has outer-degree 3 at v (i.e., |N(ui) − N2(v)| = 4). If there is no edge between N(ui) ∩ N(v)
and N(ui) ∩N2(v), then eui ≥ 9 by (P0) implies that N(ui) ∩N(v) and N(ui)−N2(v) induce
a 3-clique and 4-clique, respectively (where N(ui)∩N(v) induces a 3-clique), which contradicts
that {ui} ∪ (N(ui) ∩N(v)) does not induce a 4-clique.

(P3) If there is exactly one edge between X and X − N(v) for some set X of four vertices in
N(v), then v is not (3, 4)-clique-type and fv ≥ 24.

If fv ≤ 22 (i.e., ev ≥ 10) then G[X] needs to be a 4-clique and the inner-degree of some
vertex in X at v would be 4.

We are ready to prove the lemma by using (P0), (P1), (P2) and (P3). If the graph is
not the line graph of a (4,5)-bipartite graph, then we can always choose a vertex v that is
not (3, 4)-clique-type so that fv ∈ {22, 24} is maximized. By (P1) and (P2), there are four
neighbors ui ∈ N(v), i = 1, 2, 3, 4 such that there is at least one edge between N(ui)∩N(v) and
N(ui) ∩N2(v).

(i) For each i, there are two such edges: Then we get fv−|N2(v)| ≥ 4 and it would hold
fv + (fv−|N2(v)|) ≥ 22 + 4 = 26, a contradiction.

(ii) For some i, there is exactly one such edge: In this case, we get fv−|N2(v)| ≥ 2. Since ui
satisfies the condition of (P3), it holds fui ≥ 24, and by the choice of v, we have fv ≥ fui ≥ 24.
Hence it would hold fv + (fv−|N2(v)|) ≥ 24 + 2 = 26, a contradiction.

Lemma 21 Let G be a reduced graph of maximum degree 7. Assume that G has no short edges.
Then G has at least one optimal vertex.

Proof. We assume that every degree-7 vertex v has at least six neighbors of degree 7 and satisfies
N∗(v) = ∅, otherwise the lemma holds. Each neighbor of v is adjacent to at least two vertices
in N2(v) (since N∗(v) = ∅) and each degree-7 neighbor of v is adjacent to at least three vertices
in N2(v) (since here is no short edge). Hence fv ≥ 20. If v is adjacent to a degree-3 vertex, then
v is an optimal vertex by the definition of optimal vertices. If the graph is a 7-regular graph,
then there is an optimal vertex by Lemma 20. Otherwise, we can always find a vertex v with
k7 = 6 and k3 = 0.

Let u1 be the neighbor of v such that 4 ≤ δ(u1) ≤ 6. If u1 is not adjacent to any other
vertex in N(v), then fv ≥ δ(u1) − 1 + 3 × 6 = δ(u1) + 17 and v would be an optimal vertex.
Otherwise, u1 is adjacent to a degree-7 vertex u2 ∈ N(v). If u2 has outer-degree at least 5 at
v, then fv ≥ 5 + 3× 5 + 2 = 22 and v would be an optimal vertex. We can assume that u2 has
outer-degree 3 or 4 at v. If there are at least two edges between N(u2)∩N(v) and N(u2)∩N2(v),
then fv−|N2(v)| ≥ 2 and v would be an optimal vertex. Otherwise, there is at most one edge
between N(u2) ∩ N(v) and N(u2) ∩ N2(v). Since {|N(u2) ∩ N(v)|, |N(u2) ∩ N2(v)|} = {3, 4},
then eu2 ≤ 10 and fu2 ≥ 22. Note that u2 is also adjacent to a vertex u1 with degree < 7. Then
u2 will be an optimal vertex for this case.

10.3 Graphs of maximum degree 8

To prove the existence of optimal vertices in graphs of maximum degree 8, we investigate the
structure of 8-regular graphs.

First of all, we consider 8-regular graph such that the inner-degree of each neighbor u ∈ N(v)
of every vertex v is at most 3. Now fv = 56 − 2ev is an even number. This properties will be

25

used in the following lemmas several times. A vertex v is called bridge-type if G[N(v)] contains
a bridge u1u2 between X ⊆ N(v) and N(v) − X such that (i) |X| = |N(v) − X|; or (ii) the
inner-degree of each ui at v is 3.

Lemma 22 Let G be a 8-regular graph such that the inner-degree of each neighbor u ∈ N(v) of
every vertex v is at most 3. If G contains a bridge-type vertex, then there is a vertex v such that
fv + (fv−|N2(v)|) ≥ 36.

Proof. Let v a bridge-type vertex v, and u1u2 be the bridge of v betweenX1 andX2 = N(v)−X,
where ui ∈ Xi and |X1| ≤ |X2| without loss of generality.

We first prove that fv ≥ 34. Note that |X1| ≥ 3, since otherwise the inner-degree of u1 at v
would be at most |X1| − 1 ≤ 2. When |X1| = 3, the inner-degree of each of the two vertices in
X1 − {u1} is at most 2 at v, since u1u2 is a bridge in G[N(v)]. When |X1| = |X2| = 4, G[Xi]
contains at least one pair of non-adjacent vertices, since otherwise the inner-degree of ui would
be four, and Xi contains at least one vertex whose inner-degree at v is at most 2. In any case of
|X1| ∈ {3, 4}, N(v) contains at least two neighbors whose outer-degree at v is at least 5. This
implies that fv ≥ 6× 4 + 2× 5 = 34.

We further assume that N(v) consists of two (resp., six) neighbors whose inner-degree at v
are 2 (resp., 3), since otherwise fv ≥= 35 (hence fv ≥ 36 by parity) and we are done. Note that
there are at least three neighbors in N(v) whose inner-degree are 2 if |X1| = 3 (2 in X1 and 1
in X2). So it holds |X1| = 4 and the inner-degree of ui at v is 3.

The outer-degree of ui (i = 1, 2) at v is 4 (i.e., |N(ui) ∩N [v]| = 4), and the induced graph
G[N(ui)∩N [v]] contains at least two pairs of non-adjacent vertices (since there is only one edge
between N [ui] ∩N(v) and N(v)−N [ui] ∩N(v)). If there is no edge between N(ui) ∩N [v] and
N(ui) ∩N2(v), then eui ≤ 10 and fui ≥ 56 − 2 × 10 = 36. Hence we can assume that ui has a
common neighbor in N2(v) with a vertex in N(v)− {ui}.

Let u′i (i = 1, 2) be the two neighbors in N(v) whose inner-degree at v is 2. If there is no
edge between N(u′i)∩N [v] and N(ui)∩N2(v), then each vertex in N(u′i)∩N [v] has outer-degree
5 at u′i. We get that fu′

i
≥ 3× 5 + 5× 4 = 35 (hence fu′

i
≥ 36 by parity). Hence we can assume

that u′i has a common neighbor in N2(v) with a vertex in N(v)− {u′i}.
Thus there are four vertices {u1, u2, u′1, u′2} each of who has a common neighbor in N2(v)

with another vertex in N(v), which implies that fv−|N2(v)| ≥ 4/2 = 2, and we have that
fv + (fv−|N2(v)|) ≥ 34 + 2 = 36.

Recall that a vertex v is (j, k)-clique-type if the induced graph G[N(v)] is a disjoint union of a
j-clique and a k-clique, where j+k = δ(v). A vertex v is called semi-clique-type if a setX ⊆ N(v)
induces a 4-clique, there is no edge between X and N(v) −X, and X ⊆ N(v) contain at least
one pair of non-adjacent vertices. Hence a semi-clique-type vertex is not (4, 4)-clique-type.

Lemma 23 Let G be a 8-regular graph such that the inner-degree of each neighbor u ∈ N(v)
of every vertex v is at most 3. If G contains a semi-clique-type vertex, then there is a vertex v
such that fv + (fv−|N2(v)|) ≥ 36.

Proof. Let v be a semi-clique-type vertex, and assume that X ⊆ N(v) induce a 4-clique.
Clearly fv ≥ 56 − 2 × 11 = 34 (since ev ≤ 11). Assume that N(v) − X contains only one
pair of non-adjacent vertices u1 and u2, since otherwise we obtain fv ≥ 56 − 2 × 10 = 36. Let
N(v)−X = {u1, u2, u3, u4}. If each of u3 and u4 is adjacent to a vertex in N(u1)−N [v], then we
have fv − |N2(v)| ≥ 2, and fv + (fv−|N2(v)|) ≥ 34 + 2 = 36. If none of u3 and u4 is adjacent to
any vertex in N(u1)−N [v], then all of v, u3 and u4 have inner-degree 2 at u1, and this implies
that fu1 ≥ 36. Finally if exactly one of u3 and u4 is adjacent to a vertex in N(u1)−N [v], then
u1 is bridge-type, and fu1 + (fu1 − |N2(u1)|) ≥ 36 by Lemma 22.

26

Lemma 24 Let G be a 8-regular graph such that the inner-degree of each neighbor u ∈ N(v) of
every vertex v is at most 3. Assume that G is not the line graph of a 5-regular graph. Then G
has a vertex v such that fv + (fv−|N2(v)|) ≥ 36.

Proof. By Lemma 22 and Lemma 23, it suffices to show that there is a desired vertex or a
bridge-type or semi-clique-type vertex. Let v be a vertex that is not (4, 4)-clique-type. This
vertex always exists since the graph is not the line graph of a 5-regular graph. Assume that v
is not bridge-type or semi-clique-type. Hence no four neighbors of v induce a 4-clique.

Assume fv ≤ 34, otherwise we are done. This implies that there are at least six neighbors
ui ∈ N(v), i = 1, . . . , 6 each of which has outer-degree 4 at v (i.e., |N [ui] ∩N(v)| = 4).

If for each i, there are at least two edges between N(ui)∩N(v) and N(ui)∩N2(v), then we
have fv − |N2(v)| ≥ 12/2 = 6, and fv + (fv−|N2(v)|) ≥ 32 + 6 > 36. Assume that for some i,
there is at most one edge between N(ui)∩N(v) and N(ui)∩N2(v). If there is exactly one edge
between N(ui)∩N(v) and N(ui)∩N2(v), then ui is bridge-type. Assume that there is no edge
between N(ui)∩N(v) and N(ui)∩N2(v). Recall that no four vertices in N(v) induce a 4-clique.
Hence N(ui) ∩N [v] is not a 4-clique either, and this means that ui is semi-clique-type.

Lemma 25 Let G be a reduced graph of maximum degree 8. If G has no short edges, then G
has at least one optimal vertex.

Proof. This lemma follows from the definition of optimal vertices and Lemma 24 directly. If
the graph G is not a 8-regular graph, we can always find a degree-8 vertex such that k8 < 8,
which is an optimal vertex by the definition. Otherwise, G is a 8-regular graph. Since G has no
short edges, the inner-degree of each neighbor u ∈ N(v) of every vertex v is at most 3. Then by
Lemma 24 there is either an optimal vertex or the graph is the line graph of a 5-regular graph.
However, the later case is impossible, since the line graph of a 5-regular graph must have been
reduced by the reduction rules.

11 Concluding Remarks

Before the measure-and-conquer method was developed, most fast algorithms for the maximum
independent set problem consisted of a large number of branching rules, which may make the
algorithms impractical and hard to analyze. The measure-and-conquer method allows us to
design simple algorithms for the maximum independent set problem probably with an aid of
sophisticated analysis. With this method, we get the recurrence (2) for branching on a vertex
v of maximum degree d, which usually becomes the worst case of algorithms to any MIS-θ
(3 ≤ θ ≤ 8). To analyze (2), we need to do both of (i) checking all possible neighbor-degree
(k3, k4, . . . , kd) of the neighbors of v; and (ii) deriving lower bounds on the term ∆(N [v]).

For (i), the previous papers either to try to reduce the number of cases to be checked by a
relaxed argument (and then get worse recurrences) or list up a huge number of recurrences for
all possible combinations (which may not be easy to check by hand). In this paper, we devised
a new lemma (Lemma 6) that can reduce the number of cases to a quite small number without
losing the optimality of branching factors. In the branch-and-reduce paradigm, this is useful to
simplify analysis of algorithms and can make a design process of fast algorithms much easier.

For (ii), there are may techniques used to derive good bounds on ∆(N [v]). With the reduction
rule by domination, Fomin et al. [4] got that ∆(N [v]) ≥ d∆wd. With branching on vertices
with satellites (which is extended to unconfined vertices later in [16]), Kneis et al. [8] showed
∆(N [v]) ≥ 2d∆wd in the worst case kd = d of (2) (this is also used in Bourgeois et al.’s
algorithm [1]). In this paper, by using the new branching rule to short edges, for the worst case
of (2), we improved the bounds on ∆(N [v]) to 3d∆wd for d = 6, 7 and to 4d∆wd for d ≥ 8,

27

respectively. By choosing an optimal vertex whose existence is ensured by a graph theoretical
argument, we further increased the bound on ∆(N [v]) to (4d + 4)∆wd for the case of “d = 8
and kd = d,” which is the final worst case in our algorithms. Branching on a degree-8 vertex v
with eight degree-8 neighbors and 36 edges between N(v) and N2(v) (i.e., fv = 36 for k8 = 8) is
one of the crucial bottlenecks in our algorithm for MIS now.

Acknowledgements

A preliminary version of this paper with a result of 1.2002nnO(1) was presented in the 24th
international symposium on algorithms and computation (ISAAC 2013) and appeared as [19].
In the full version, we further reduce several bottlenecks by refining the definition of “optimal
vertices” and then finally break the barrier of 1.2 in the base of the running time. Part of the
work was done when the first author visited Kyoto University in 2013.

References

[1] Bourgeois, N., Escoffier, B., Paschos, V. T., van Rooij, J. M. M., Fast algorithms for max
independent set, Algorithmica 62(1-2), (2012) 382–415.

[2] Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411(40-42) (2010) 3736–3756

[3] Eppstein D.: Quasiconvex analysis of multivariate recurrence equations for backtracking
algorithms. ACM Transactions on Algorithms 2(4) (2006) 492–509

[4] Fomin, F. V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis
of exact algorithms. J. ACM 56(5) (2009) 1–32

[5] Fomin, F. V., Kratsch, D.: Exact Exponential Algorithms, Springer (2010)

[6] Fürer, M.: A faster algorithm for finding maximum independent sets in sparse graphs. In:
LATIN 2006. LNCS 3887, (2006) 491–501

[7] Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem. IEEE
Transactions on Computers 35(9) (1986) 847–851

[8] Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set
algorithm. In FSTTCS 2009. V. 4 LIPIcs., (2009) 287–298

[9] Razgon, I.: Faster computation of maximum independent set and parameterized vertex
cover for graphs with degree 3. J. of Disc. Alg. 7(2) (2009) 191–212

[10] Robson, J.: Algorithms for maximum independent sets. J. of Algorithms 7(3) (1986)
425–440

[11] Robson, J.: Finding a maximum independent set in time O(2n/4). Technical Report 1251-
01, LaBRI, Univsersite Bordeaux I (2001)

[12] Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM J. on Computing
6(3) (1977) 537–546

[13] West, D.: Introduction to Graph Theory. Prentice Hall. 1996

28

[14] Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Combinatorial
Optimization–Eureka! You shrink! LNCS 2570, (2003) 185–207

[15] Xiao, M.: A simple and fast algorithm for maximum independent set in 3-degree graphs.
In: M. Rahman and S. Fujita: WALCOM 2010, LNCS 5942, (2010) 281–292

[16] Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: A simple maximum
independent set algorithm in degree-3 graphs. Theoretical Computer Science 469 (2013)
92–104

[17] Xiao, M., Nagamochi, H.: A refined algorithm for maximum independent set
in degree-4 graphs. Technical report 2013-002, Kyoto University (2013) URL:

http://www.amp.i.kyoto-u.ac.jp/tecrep/abst/2013/2013-002.html

[18] Xiao, M., Nagamochi, H.: An exact algorithm for maximum independent set in degree-5
graphs. In: FAW-AAIM 2013, LNCS 7924, (2013) 72–83

[19] Xiao, M. and Nagamochi, H.: Exact algorithms for maximum independent set. In: ISAAC
2013. LNCS 8283 (2013) 328–338

[20] URL: http://www.tcs.rwth-aachen.de/independentset/

29

