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Abstract

The limited-memory BFGS (L-BFGS) algorithm is a popular method
of solving large-scale unconstrained minimization problems. Since L-
BFGS conducts a line search with the Wolfe condition, it may require
many function evaluations for ill-posed problems. To overcome this diffi-
culty, we propose a method that combines L-BFGS with the regularized
Newton method. The computational cost for a single iteration of the pro-
posed method is the same as that of the original L-BFGS method. We
show that the proposed method has global convergence under the usual
conditions. Moreover, we present numerical results that show the robust-
ness of the proposed method.

1 Introduction

In this paper, we consider the following unconstrained minimization problem:

minimize f(x)

subject to x ∈ Rn,
(1.1)

where f is a smooth function from Rn into R.
We focus on the large-scale case. Standard solution methods for (1.1), such as
the steepest decent method, Newton’s method, and the BFGS method [5, 12],
are not suitable for large-scale problems. This is because the steepest decent
method generally converges slowly, while Newton’s method needs to compute
the Hessian matrix and solve a linear equation at each iteration. Furthermore,
the BFGS method requires O(n2) memory to store the approximate Hessian of
f .

A popular method for large-scale problems (1.1) is the limited-memory
BFGS method (L-BFGS) proposed by Nocedal [9, 11]. The L-BFGS method
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uses m vector pairs, i.e., (sk−i, yk−i), i = 0, · · · ,m − 1, to compute a search
direction dk, where

sk = xk − xk−1,

yk = ∇f(xk)−∇f(xk−1),

and k denotes the iteration number. Whereas standard BFGS requires O(n2)
memory, the L-BFGS algorithm needs only O(mn) memory. Moreover, given
∇f(xk), we can compute the search direction dk = −Hk∇f(xk) in O(mn)
time. The L-BFGS method needs a line search to satisfy the Wolfe condition
to guarantee global convergence. However, the line search scheme may require
a large number of function evaluations for ill-posed problems. Since the main
burden of the L-BFGS method is function evaluation, it is preferable to reduce
the number of function evaluations as much as possible.

The trust region method (TR-method) can guarantee global convergence
without a line search. It is known that the TR-method needs fewer function
evaluations than the line search [2, 3, 10]. In fact, the L-BFGS method combined
with the TR-method [2] produces good performance for many benchmark prob-
lems in terms of the number of function evaluations. However, the TR-method
must solve the nonconvex subproblem

minimize f(xk) +∇f(xk)
T d+

1

2
dTH−1

k d

subject to ∥d∥ ≤ ∆k

(1.2)

in each step, where ∆k is a positive parameter called the trust region radius. It
takes a considerable amount of time to solve (1.2), even if Hk is given by the
L-BFGS scheme.

The regularized Newton method proposed by Ueda and Yamashita [19, 20,
21] implicitly solves (1.2). It computes the search direction dk by solving the
following linear equation:

(∇2f(xk) + µkI)d = −∇f(xk), (1.3)

where µk > 0 is called the regularized parameter. If µk is equal to the Lagrange
multiplier in the KKT condition of (1.2), then the search direction d given by
(1.2) is the solution to (1.2). Note that the linear equations (1.3) are much
simpler than the subproblem (1.2) of the TR-method. The regularized Newton
method [19] controls the parameter µk instead of computing the step length to
guarantee global convergence. However, since the regularized Newton method
in [19] is based on Newton’s method, it must compute the Hessian matrix of f .
Until now, using the regularized Newton method with the L-BFGS method has
not been considered.

In this paper, we propose a novel approach that combines the L-BFGS
method with the regularized Newton method. We call this the regularized L-
BFGS method. It might be natural to adopt a solution of the linear equation
(Bk + µI)d = −∇f(x) as the search direction, where Bk is the inverse of Hk
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computed by the L-BFGS method. However, we cannot determine Bk explic-
itly. Therefore, we construct an inverse approximate matrix of (Bk + µI)−1 by
the L-BFGS method using (sk, ŷk(µ)), where ŷk(µ) = yk + µsk. The term µsk
in ŷk(µ) plays the role of regularization. Then, the search direction dk can be
computed in O(mn) time, as for the conventional L-BFGS method. We also
control the regularized parameter µk for global convergence, as in the regular-
ized Newton method. To this end, we use the idea of updating the trust region
radius ∆k in the TR-method. We show that the proposed algorithm ensures
global convergence. Furthermore, we conduct numerical experiments using the
CUTEst test environment [7].

The paper is organized as follows. In Section 2, we describe the proposed
regularized L-BFGS method that controls the regularized parameter at each
iteration. In Section 3, we demonstrate its global convergence under certain
conditions, and in Section 4, we discuss some implementation issues for practical
use. Section 5 presents a series of numerical results, and Section 6 concludes
the paper.

Throughout the paper, we use the following notation. For a vector x ∈ Rn,
∥x∥ denotes the Euclidean norm defined by ∥x∥ :=

√
xTx. For a symmetric

matrix M ∈ Rn×n, we denote the maximum and minimum eigenvalues of M
as λmax(M) and λmin(M). Moreover, ∥M∥ denotes the l2 norm of M defined
by ∥M∥ :=

√
λmax(MTM). If M is a symmetric positive-semidefinite matrix,

then ∥M∥ = λmax(M). Furthermore, if the matrix M ∈ Rn×n is positive-
(semi)definite, the minimum eigenvalue of M is positive (non-negative), i.e.,
λmin(M) > (≥) 0.
Next, we give a definition of Lipschitz continuity.

Definition 1.1 Let S be a subset of Rn and f : S → R.

(i) The function f is said to be Lipschitz continuous on S if there exists a
positive constant Lf such that

|f(x)− f(y)| ≤ Lf∥x− y∥, ∀x, y ∈ S.

(ii) Suppose that the function f is differentiable. ∇f is said to be Lipschitz
continuous on S if there exists a positive constant Lg such that

|∇f(x)−∇f(y)| ≤ Lg∥x− y∥, ∀x, y ∈ S.

The constants Lf and Lg are called Lipschitz constants.

2 The regularized L-BFGS method

In this section, we propose a regularized L-BFGS method that controls the
regularized parameter at each iteration. In the following, xk denotes the k-th
iterative point, Bk denotes the approximate Hessian of f(xk), and H−1

k = Bk.
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We consider combining the L-BFGS method with the regularized Newton
method (1.3). For this purpose, we may replace the Hessian∇2f(xk) in equation
(1.3) with the approximate Hessian Bk. That is, we define a search direction dk
as a solution of

(Bk + µI)−1dk = −∇f(xk). (2.1)

However, since the L-BFGS method updates Hk, it is not easy to construct Bk

explicitly. Furthermore, even if we obtain Bk, it takes a considerable amount of
time to solve the linear equation (2.1) in large-scale cases.

Now, we may regard Bk+µI as an approximation of∇2f(x)+µI. Since Bk is
the approximate Hessian of f(xk), the matrix Bk+µI is an approximate Hessian
of f(x)+ µ

2 ∥x∥
2. The L-BFGS method uses the vector pair (sk, yk) to construct

the approximate Hessian, where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).
Note that yk consists of the gradients of f . Therefore, when we compute the
approximate Hessian of f(x) + µ

2 ∥x∥
2, we use the gradients of f(x) + µ

2 ∥x∥
2.

That is, we adopt the following ŷk(µ) instead of yk:

ŷk(µ) = (∇f(xk+1) + µxk+1)− (∇f(xk) + µxk) = yk + µsk.

Let Ĥk(µ) be the matrix constructed by the L-BFGS method with vector pair

(sk, ŷk(µ)) and an appropriate initial matrix Ĥ
(0)
k (µ). Then, the search direction

dk = −Ĥk(µ)∇f(xk) is calculated in O(mn) time, which is the same as for the
original L-BFGS.

Note that the conditions that sTk ŷk(µ) > 0 and Ĥ
(0)
k is positive-definite

are necessary for the positive-definiteness of Ĥk(µ)
−1. When the condition

sTk ŷk(µ) > 0 is not satisfied, we may replace ŷk(µ) by ỹk(µ):

ỹk(µ) = yk +

(
max

{
0,
−sTk yk
||sk||2

}
+ µ

)
sk.

Then, the condition sTk ỹk(µ) > 0 is satisfied, because

sTk ỹk(µ) = max{0, sTk yk}+ µ∥sk∥2 > 0.

In the following, Ĥk(µ) is the matrix constructed by the L-BFGS method us-

ing the initial matrix Ĥ
(0)
k (µ) and the vector pairs (sk−i, ŷk−i(µ)), i = 1, · · · ,m,

and the search direction is dk(µ) = −Ĥk(µ)∇f(xk). The L-BFGS method uses

γkI as the initial matrix H
(0)
k . Since (B

(0)
k )−1 = H

(0)
k and Ĥ

(0)
k is an approxi-

mation of (B
(0)
k + µI)−1, we can set the initial matrix Ĥ

(0)
k (µ) as

Ĥ
(0)
k (µ) = (B

(0)
k + µI)−1 =

(
1

γk
+ µ

)−1

I =
γk

1 + γkµ
I.

The proposed method sets xk+1 = xk + dk(µ) without a step length. This
controls the parameter µ to guarantee the global convergence, as in [19]. Note
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that the regularized parameter µ and dk(µ) have the following relations:{
dk(µ)→ −B−1

k ∇f(xk) (µ→ 0)
dk(µ)→ − 1

µ∇f(xk) (µ→∞).

These directions correspond to the steepest decent direction and the L-BFGS
direction, respectively. Figure 2.1 shows the relation between these search di-
rections. Namely, a large µ gives the descent direction of f , while a small µ
gives the L-BFGS direction.

We exploit the idea of updating the trust region radius in the TR-method
to control µ to find an appropriate search direction, that is, we use the ratio
of the reduction in the objective function value to that of the model function
value. We define a ratio function rk(dk(µ), µ) by

rk(dk(µ), µ) =
f(xk)− f(xk + dk(µ))

f(xk)− qk(dk(µ), µ)
, (2.2)

where qk : Rn × R→ R is the following model function at xk:

qk(dk(µ), µ) = f(xk) +∇f(xk)
T dk(µ) +

1

2
dk(µ)

T Ĥk(µ)
−1dk(µ).

Note that we do not have to compute the matrix Ĥk(µ)
−1 explicitly in qk(dk, µ).

Since dk(µ) = −Ĥk(µ)∇f(xk), we have dk(µ)
T Ĥk(µ)

−1dk(µ) = −dk(µ)T∇f(xk).
If the ratio rk(dk(µ), µ) is large, i.e., the reduction in the objective function f
is sufficiently large compared to that of the model function, we adopt dk(µ)
and decrease the parameter µ. On the other hand, if rk(dk, µ) is small, i.e.,
f(xk)− f(xk + dk) is small, we increase µ and compute dk(µ) again.

Based on the above ideas, we propose the following regularized L-BFGS
method.

Algorithm 2.1 Regularized L-BFGS method

Step 0 Choose the parameters µ0, µmin, γ1, γ2, η1, η2,m such that 0 < µmin ≤
µ0, 0 < γ1 ≤ 1 < γ2, 0 < η1 < η2 ≤ 1, and m > 0. Choose an initial point

x0 ∈ Rn and an initial matrix Ĥ
(0)
0 . Set k := 0.

Step 1 If some stopping criteria are satisfied, then terminate. Otherwise, go
to Step 2.

Step 2

Step 2-0 Set lk := 0 and µ̄lk = µk.

Step 2-1 Compute dk(µ̄lk) using the L-BFGS method.

Step 2-2 Compute rk(dk(µ̄lk), µ̄lk). If rk(dk(µ̄lk), µ̄lk) < η1,
then update µ̄lk+1 = γ2µ̄lk , set lk = lk + 1, and go to Step 2-1.
Otherwise, go to Step 3.
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Step 3 If η1 ≤ rk(dk(µ̄lk), µ̄lk) < η2, then update µk+1 = µ̄lk .
If rk(dk(µ̄lk), µ̄lk) ≥ η2, then update µk+1 = max[µmin, γ1µ̄lk ].
Update xk+1 = xk + dk(µ̄lk). Set k = k + 1, and go to Step 1.

In Step 2-1, we compute dk(µ) from (sk, ŷk(µ)) by the L-BFGS updating scheme
in [11]. The details of Step 2-1 are as follows.

Algorithm 2.2 Regularized L-BFGS update at kth iteration with
parameter µ

Step 0 Set p← ∇f(xk).

Step 1 Repeat the following process with i = k − 1, k − 2, · · · , k − t:

ri ← τis
T
i p

p ← p− ri(yk + µsk),

where τi = (sTi (yk + µsk))
−1.

Step 2 Set q ← Ĥ
(0)
k (µ)p.

Step 3 Repeat the following process with i = k − t, k − t+ 1, · · · , k − 1:

β ← τi(yk + µsk)
T q

q ← q + (ri − β)si.

Step 4 Obtain the search direction as dk(µ) = −q.

Note that, since µk may vary in each iteration, it is impractical to store yk(µ)
for all µk. Fortunately, Algorithm 2.2 uses yk and sk. Thus, we do not have
to store ŷk(µ). When the regularized parameter changes, we get ŷk(µ) from sk
and yk immediately.

3 Global convergence

In this section, we show the global convergence of the proposed algorithm. To
this end, we need the following assumptions.

Assumption 3.1

(i) The objective function f is twice continuously differentiable.

(ii) The level set of f at the initial point x0 is compact, i.e., Ω = {x ∈
Rn|f(x) ≤ f(x0)} is compact.
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(iii) There exist positive constants M1 and M2 such that

M1∥z∥2 ≤ zT∇2f(x)z ≤M2∥z∥2, ∀x ∈ Ω.

(iv) There exists a minimum fmin of f .

(v) There exists a constant γ such that γk ≥ γ > 0 for all k.

The above assumptions are the same as those for the global convergence of the
original L-BFGS method.

Under these assumptions, we have the following properties. First, we define

G(x) = ∇2f(x), Gk = G(xk), Ḡk =

∫ 1

0

G(xk + τsk)dτ.

It then follows from Taylor’s theorem that

f(xk + dk(µ)) = f(xk) +∇f(xk)
T dk(µ) +

1

2

∫ 1

0

dk(µ)
TG(xk + τdk(µ))dk(µ)dτ.

Furthermore, since sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk), we have

yk = Ḡksk. (3.1)

ŷk(µ) = yk + µsk = (Ḡk + µI)sk. (3.2)

It follows from Assumption 3.1 (iii) that λmin(Ḡk) ≥ M1 and λmax(Ḡk) ≤ M2.
Therefore, we have that

M1∥s∥2 ≤ sTk yk ≤M2∥sk∥2,
1

M2
∥yk∥2 ≤ sTk yk ≤

1

M1
∥yk∥2, (3.3)

(M1 + µ)∥sk∥2 ≤ sTk ŷk(µ) ≤ (M2 + µ)∥sk∥2.

Since the sequence {xk} is included in the compact set Ω, and f is twice
continuously differentiable under Assumption 3.1 (ii), there exists a positive
constant Lf such that

∥∇f(xk)∥ ≤ Lf , for all k. (3.4)

Now, we investigate the behavior of the eigenvalues of B̂k(µ), which is the
inverse of Ĥk(µ). Note that the matrix B̂k(µ) is constructed by the BFGS

formula with vector pairs (sk, ŷk(µ)) and initial matrix B̂
(0)
k (µ) = Ĥ

(0)
k (µ)−1.

Thus, we have

B̂k(µ) = B̂
(m̃k)
k (µ)

B̂
(l+1)
k (µ) = B̂

(l)
k (µ)−

B̂
(l)
k (µ)sjls

T
jl
B̂

(l)
k (µ)

sTjlB̂
(l)
k (µ)sjl

+
yjly

T
jl

yTjlsjl
, l = 0, · · · , m̃k − 1

(3.5)
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where m̃k = min{k+1,m} and jl = k− m̃+ l. Note that these expressions are
used in [4, 9].

We now focus on the trace and determinant of B̂k(µ). First, we show that

the trace of B̂
(l)
k (µ) is O(µ).

Lemma 3.1 Suppose that Assumption 3.1 holds. Then,

tr(B̂
(l)
k (µ)) ≤M3 + (2m+ n)µ, l = 0, · · · , m̃k

where
M3 =

n

γ
+mM2.

Proof We have from Assumption 3.1, (3.1), and (3.3) that

∥ŷk(µ)∥2

sTk ŷk(µ)
=
∥yk∥2 + 2µsTk yk + µ2∥sk∥

sTk yk + µ∥sk∥2

=
∥yk∥2 + µsTk yk
sTk yk + µ∥sk∥2

+
µ(sTk yk + µ∥sk∥2)
sTk yk + ∥sk∥2

≤ ∥yk∥2 + µsTk yk
sTk yk

+ µ

≤ ∥yk∥2
1

M2
∥yk∥2

+ 2µ

= M2 + 2µ. (3.6)

From the updating formula (3.5) of matrix B̂k(µ),

tr(B̂
(l)
k (µ)) = tr(B̂

(0)
k (µ)) +

l−1∑
t=0

(
−
∥B̂(t)

k (µ)sjt∥2

sTjtB̂
(t)
k (µ)sjt

+
∥ŷjt(µ)∥2

sTjt ŷjt(µ)

)
,

where
∥B̂(t)

k (µ)sjt∥2

sTjtB̂
(t)
k (µ)sjt

≥ 0.

It then follows from (3.6) that

tr(B̂
(l)
k (µ)) ≤ tr(B̂

(0)
k (µ)) +

l−1∑
t=0

∥ŷjt(µ)∥2

sTjt ŷjt(µ)

≤ tr(B̂
(0)
k (µ)) + l(M2 + 2µ)

= n

(
1

γk
+ µ

)
+ l(M2 + 2µ)

≤ n

(
1

γ
+ µ

)
+m(M2 + 2µ)

≤ M3 + (2m+ n)µ.

This completes the proof. 2
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The next lemma gives a lower bound for the determinant of B̂k(µ).

Lemma 3.2 Suppose that Assumption 3.1 holds. Then,

det(B̂k(µ)) ≥M4µ
n,

where

M4 =

(
1

2m+ n

)m

.

Proof Note that the determinant of the approximate matrix updated by the
BFGS updating scheme has the following property [14, 15]:

det(B̂
(l+1)
k (µ)) = det(B̂

(l)
k (µ))

sTjl ŷjl(µ)

sTjlB̂
(l)
k−1(µ)sjl

.

Then, we have

det(B̂k(µ)) = det(B̂
(0)
k (µ))

m̃−1∏
l=0

sTjl ŷjl(µ)

sTjlB̂
(0)
k−1(µ)sjl

= det(B̂
(0)
k (µ))

m̃−1∏
l=0

sTjl ŷjl(µ)

sTjlsjl

sTjlsjl

sTjlB̂
(l)
k (µ)sjl

≥ det(B̂
(0)
k (µ))

m̃−1∏
l=0

sTjl ŷjl(µ)

sTjlsjl

sTjlsjl

λmax(B̂
(l)
k (µ))sTjlsjl

= det(B̂
(0)
k (µ))

m̃−1∏
l=0

sTjl ŷjl(µ)

∥sjl∥2
1

λmax(B̂
(l)
k (µ))

.

SinceB
(0)
k (µ) is symmetric positive-definite, Lemma 3.1 implies that λmax(B̂

(l)
k (µ)) ≥

M3+(2m+n)µ. Furthermore, we have
sTjl

ŷjl
(µ)

∥sjl∥2 ≥M1+µ from (3.3). Therefore,

it follows that

det(B̂k(µ)) ≥ det(B̂k(µ)
(0))

(
M1 + µ

M3 + (2m+ n)µ

)m̃

= det

(
1 + γkµ

γk
I

)(
M1 + µ

M3 + (2m+ n)µ

)m̃

≥
(

1

γk
+ µ

)n(
1

2m+ n

)m̃

≥
(

1

2m+ n

)m

µn

= M4µ
n.

This completes the proof. 2
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From the above two lemmas, we have λmax(Ĥk(µ))→ 0 as µ→∞.

Lemma 3.3 Suppose that Assumption 3.1 holds. Then, for all k ≥ 0,

λmax(Ĥk(µ)) ≤M5
1

µ
, ∀µ ∈ [µmin,∞),

where

M5 =
1

M4nn−1

(
M3

µmin
+ (2m+ n)

)n−1

.

Furthermore, limµ→∞ λmax(Ĥk(µ)) = 0.

Proof We have from Lemmas 3.1 and 3.2 that

tr(B̂k(µ)) ≤ M3 + (2m+ n)µ,

det(B̂k(µ)) ≥ M4µ
n.

Since B̂k(µ) is symmetric positive-definite, we have

tr(B̂k(µ)) ≥ nλmin(B̂k(µ))

det(B̂k(µ)) ≤ λmin(B̂k(µ)){λmax(B̂k(µ))}n−1.

Therefore, we have

λmin(B̂k(µ)) ≥ det(B̂k(µ))

{λmax(B̂k(µ))}n−1

≥ M4µ
n

{ 1n (M3 + (2m+ n)µ)}n−1
.

It then follows from Assumption 3.1 (v) that

λmax(Ĥk(µ)) =
1

λmin(Ĥ
−1
k (µ))

=
1

λmin(B̂k(µ))

≤
{ 1n (M3 + (2m+ n)µ)}n−1

M4µn

=
1

M4nn−1

(
M3 + (2m+ n)µ

µ

)n−1
1

µ
. (3.7)

Since µ ≥ µmin, we have

M3 + (2m+ n)µ

µ
=

M3

µ
+ (2m+ n) ≤ M3

µmin
+ (2m+ n).
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It then follows from (3.7) that

λmax(Ĥk(µ)) ≤ 1

M4nn−1

(
M3

µmin
+ (2m+ n)

)n−1
1

µ

= M5
1

µ
.

Hence, we have
lim
µ→∞

λmax(Ĥk(µ)) = 0.

This completes the proof. 2

Now, we give an upper bound for ∥dk(µ)∥.

Lemma 3.4 Suppose that Assumption 3.1 holds. Then,

∥dk(µ)∥ ≤ Ud,

where

Ud =
LfM5

µmin
.

Proof From the definition of dk(µ), (3.4), and Lemma 3.3, we have that

∥dk(µ)∥ = ∥Ĥk(µ)∇f(xk)∥
≤ ∥Ĥk(µ)∥∥∇f(xk)∥
= λmax(Ĥk(µ))∥∇f(xk)∥
≤ λmax(Ĥk(µ))Lf

≤ LfM5

µ

≤ LfM5

µmin
= Ud.

This completes the proof. 2

Lemma 3.4 implies that

xk + νdk(µ) ∈ Ω+ B(0, Ud), ∀ν ∈ [0, 1], ∀µ ∈ [µmin,∞), ∀k ≥ 0.

Moreover, since Ω + B(0, Ud) is compact and f is twice continuously differen-
tiable, ∇f(xk) is Lipschitz continuous on Ω + B(0, Ud). That is, there exists a
positive constant Lg such that

∥∇2f(xk)∥ ≤ Lg, ∀xk ∈ Ω+ B(0, Ud). (3.8)

Next, we investigate the values of µ that satisfy the termination condition
rk(dk(µ), µ) ≥ η1 in the inner iterations of Step 2-2 in Algorithm 2.1.
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Lemma 3.5 Suppose that Assumption 3.1 holds. Then, we have

f(xk)− f(xk + dk(µ))− η1(f(xk)− qk(dk(µ), µ)) ≥
1

2
((2− η1)λmin(Ĥk(µ)

−1)− Lg)∥dk(µ)∥2.

Proof We have from Taylor’s theorem that

f(xk + dk(µ)) = f(xk) +

∫ 1

0

∇f(xk + τdk(µ))
T dk(µ)dτ

= f(xk) +∇f(xk)
T dk(µ) +

∫ 1

0

(∇f(xk + τdk(µ))−∇f(xk))
T dk(µ)dτ.

From the Lipschitz continuity of ∇f(xk) in (3.8), we get

f(xk) − f(xk + dk(µ))− η1(f(xk)− qk(dk(µ), µ))

= −∇f(xk)
T dk(µ)−

∫ 1

0

(∇f(xk + τdk(µ))−∇f(xk))
T dk(µ)dτ −

η1
2
dk(µ)

T (Ĥk(µ)
−1)dk(µ)

=
(2− η1)

2
dk(µ)

T (Ĥk(µ)
−1)dk(µ)−

∫ 1

0

(∇f(xk + τdk(µ))−∇f(xk))
T dk(µ)dτ

≥ (2− η1)

2
λmin(Ĥk(µ)

−1)∥dk(µ)∥2 −
∫ 1

0

Lgτ∥dk(µ)∥2dτ

=
1

2
((2− η1)λmin(Ĥk(µ)

−1)− Lg)∥dk(µ)∥2.

This completes the proof. 2

From Lemma 3.5, if µ satisfies

λmin(Ĥ
−1
k (µ)) ≥ Lg

2− η1
, (3.9)

then we have
rk(dk(µ), µ) ≥ η1, (3.10)

that is, the inner loops of Algorithm 2.1 must terminate.
Next, we give an upper bound for the parameter µk.

Lemma 3.6 Suppose that Assumption 3.1 holds. Then, for any k ≥ 0,

µ∗
k ≤ Uµ,

where

Uµ = γ2M5
Lg

2− η1
.

Proof If µ̄lk satisfies (3.9), then rk(dk(µ̄lk), µ̄lk) ≥ η1 from Lemma 3.5. There-
fore, the inner loops must terminate, and we set µ∗

k = µ̄lk .
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Now, we give the termination condition on µ for the inner loop. We have
from Lemma 3.3 that

λmin(Ĥ
−1
k (µ)) =

1

λmax(Ĥk(µ))

≥ µ

M5
. (3.11)

It then follows from (3.9) that the termination condition of the inner loop holds
when

µ ≥M5
Lg

2− η1
. (3.12)

Note that, if the inner loop terminates at lk, then (3.12) does not hold with
µ = µlk−1, that is,

µ̄lk−1 < M5
Lg

2− η1
.

Since µ∗
k = µ̄lk = γ2µ̄lk−1, we have

µ∗
k = γ2µ̄lk−1 < γ2M5

Lg

2− η1
= Uµ. (3.13)

This completes the proof. 2

Next, we give a lower bound for the reduction in the model function qk.

Lemma 3.7 Suppose that Assumption 3.1 holds. Then, we have

f(xk)− qk(dk(µ), µ) ≥ M6∥∇f(xk)∥2,

where

M6 =
1

2(M3 + (2m+ n)µmin)
.

Proof It follows from the definition of the model function qk(dk(µ), µ) and
Lemmas 3.1, 3.6 that
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f(xk)− qk(dk(µ), µ) = −1

2
dk(µ)

T (Ĥ−1
k (µ))dk(µ)−∇f(xk)

T dk(µ)

= −1

2
∇f(xk)

T Ĥk(µ)∇f(xk) +∇f(xk)
T Ĥk(µ)∇f(xk)

=
1

2
∇f(xk)

T Ĥk(µ)∇f(xk)

≥ 1

2
λmin(Ĥk(µ))∥∇f(xk)∥2

=
∥∇f(xk)∥2

2λmax(Ĥ
−1
k (µ))

=
∥∇f(xk)∥2

2λmax(B̂k(µ))

≥ ∥∇f(xk)∥2

2tr(B̂k(µ))

≥ ∥∇f(xk)∥2

2(M3 + (2m+ n)µ)

=
1

2(M3 + (2m+ n)Uµ)
∥∇f(xk)∥2

= M6∥∇f(xk)∥2.

This completes the proof. 2

From this lemma, we can give a lower bound for the reduction in the objective
function value when xk is not a stationary point.

Lemma 3.8 Suppose that Assumption 3.1 holds. If there exists a positive con-
stant ϵg such that ∥∇f(xk)∥ ≥ ϵg, then we have f(xk) − f(xk+1) ≥ ρϵ2g, where
ρ = η1M6.

Proof It follows from Lemmas 3.6 and 3.7 that

f(xk)− f(xk+1) ≥ η1(f(xk)− qk(dk(µ
∗
k), µ

∗
k))

≥ η1M6∥∇f(xk)∥2

≥ ρϵ2g.

This completes the proof. 2

We are now in a position to prove the main theorem of this section.

Theorem 3.1 Suppose that Assumption 3.1 holds. Then, lim infk→∞ ∥∇f(xk)∥ =
0 or there exists K ≥ 0 such that ∥∇f(xK)∥ = 0.
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Proof Suppose the contrary, i.e., there exists a positive constant ϵg such that
∥∇f(xk)∥ ≥ ϵg for all k ≥ 0. It follows from Lemma 3.8 that

f(x0)− f(xk) =

k−1∑
j=0

(f(xj)− f(xj+1))

≥
k−1∑
j=0

ρϵ2g

= ρϵ2gk.

Taking k → ∞, the right-hand side of the final inequality goes to infinity, and
hence

lim
k→∞

f(xk) = −∞.

This contradicts the existence of fmin in Assumption 3.1 (iv). This completes
the proof. 2

4 Implementation issues

In this section, we discuss some issues regarding the practical implementation
of the regularized L-BFGS method.

Scaling parameter γk in the initial matrix.
The regularized L-BFGS method uses the following initial matrix in each iter-
ation:

Ĥ
(0)
k (µ) =

γk
1 + γkµ

I.

The parameter γk represents the scale of ∇2f(x). Thus, we exploit some prop-
erties of the scaling parameter γk used in [1, 3, 11, 16, 17], that is, we set

γk =
sTk−1yk−1

∥yk−1∥2
.

It is known that the L-BFGS method with this scaling in the initial matrix
has an efficient performance [3, 11]. Note that γk > 0 to ensure the positive-

definiteness of Ĥ
(0)
k (µ). If sTk−1yk−1 < α∥sk−1∥2, then we set γk = α ∥sk−1∥2

∥yk−1∥2 ,

where α is a small, positive constant.

Nonmonotone decreasing technique.
In Algorithm 2.1, we control the regularized parameter µ to satisfy the descent
condition f(xk+1) < f(xk). However, µ sometimes becomes quite large when
treating ill-posed problems. In this situation, we require a large number of
function evaluations. Therefore, we use the concept of a nonmonotone line
search technique [8, 18] to overcome this difficulty. We replace the ratio function
rk(dk(µ), µ) with the following new ratio function r̄k(dk(µ), µ):

r̄k(dk(µ), µ) =
max0≤j≤m(k) f(xk−j)− f(xk + dk(µ))

f(xk)− qk(dk(µ), µ)
,

16



where
m(0) = 0, 0 ≤ m(k) ≤ min{m(k − 1) + 1,M},

and M is a nonnegative integer constant. This modification retains the global
convergence of the regularized L-BFGS method.

In the numerical experiments reported in the next section, when k < M , we
use the original ratio function rk(dk(µ), µ), and if k ≥M , we use the new ratio
function r̄k(dk(µ), µ).

Use of gradient information from rejected steps.
We focus on the rejected steps. These occur in Step 2-2 of the regularized L-
BFGS algorithm. Namely, if lk satisfies rk(dk(µlk), µlk) ≤ η1 in Step 2-2, then lk
is rejected, and we may exploit information about the gradient at this rejected
step. These gradients contain important information about the behavior of the
objective function. Therefore, we store (slk , ylk) at these rejected step to update
the approximate Hessian. We do not have to increase the number of pairs m.
Instead, when we store the new pair (slk , ylk) at the rejected step, we discard the
oldest vector pair. It is known that the L-BFGS method with this modification
has good performance [2].

5 Numerical results

In this section, we report some numerical results for the proposed algorithm.
We consider the following.

1. The influence of parameters contained in Algorithm 2.1.

2. Comparison of the proposed algorithm with the original L-BFGS method [13].

For each experiment, benchmark problems were chosen from CUTEst [7]. All
algorithms were coded in FORTRAN90 and run on a machine with an Intel
Core i5 1.7 GHz CPU and 4 GB RAM. We used the original L-BFGS algorithm
coded by Nocedal [13] with the default settings. We adopted an initial point x0

given by CUTEst, and set the termination criteria as

∥f(xk)∥
max(1, ∥xk∥)

< ϵ and nf > 10000,

where nf is the number of function evaluations. These criteria are similar to
those in [13]. We consider trials in which nf > 10000 to have failed.

We compared the algorithms using the following distribution function, which
was proposed in [6]. Let S be a set of solvers, and let PS be a set of problems
that can be solved by all methods in S. We denote a measure for the number of
evaluations required by solver s for problem p as tp,s, and the best tp,s for each
p is written as t∗p, i.e., t

∗
p := min{tp,s|s ∈ S}. Then, the distribution function

FS
s (τ) for a method s is defined by

FS
s (τ) =

|{p ∈ PS |tp,s ≤ τt∗p}|
|PS |

, τ ≥ 1.
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The algorithm for which FS
s (τ) is closest to 1 is considered to be superior to

the other algorithms in S.

5.1 Influence of various parameters in Algorithm 2.1

The proposed algorithm has several parameters. Therefore, we investigated
their influence, and identified favorable values.

First of all, we focused on γ1 and γ2, which are used to control the regularized
parameter µ. The other parameters were set as follows:

η1 = 0.01, η2 = 0.9, µmin = 1.0× 10−3, m = 5.

The nonmonotone parameter M was set to 8. We compare the parameter sets
P1, · · · , P9 in Table 5.1. The table also shows the number of successes and the
success rate for all 313 test problems.

Table 5.1: Number of successes and success rate at each (γ1, γ2).
γ1 γ2 Number of successes Success rate (%)

P1 0.1 2.0 266 85.0
P2 0.1 5.0 267 85.3
P3 0.1 10.0 268 85.6
P4 0.2 2.0 268 85.6
P5 0.2 5.0 267 85.3
P6 0.2 10.0 266 85.0
P7 0.5 2.0 267 85.3
P8 0.5 5.0 268 85.6
P9 0.5 10.0 265 84.7

Figure 5.1 shows the distribution function of these parameter sets in terms
of the CPU time.
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Figure 5.1: Comparison of (γ1, γ2).

We can see that the parameter set P3 gives the best results. Therefore, we set
γ1 = 0.1 and γ2 = 10.0 in the subsequent experiments.

Next, we focused on the number of memories m. In the original L-BFGS
method, we usually set m in the range 3 ≤ m ≤ 7 [11]. Thus, we compare
m = 3, 5, 7. The other parameters were set as follows:

γ1 = 0.1, γ2 = 10.0, η1 = 0.01, η2 = 0.9, µmin = 1.0× 10−3, M = 8.

Table 5.2 shows the number of successes and the success rate for all 313 test
problems.

Table 5.2: Number of successes and success rate at each m.
m Number of successes Success rate (%)
3 267 85.3
5 268 85.6
7 266 85.0

Figure 5.2 shows the distribution function of the number of memories in
terms of the CPU time.

19



1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tau

%

 

 

m=3
m=5
m=7

Figure 5.2: Comparison of m = 3, 5, 7.

We can see that m = 5 gives the best results. Therefore, we set m = 5 in the
subsequent experiments.

Next, we focused on the nonmonotone parameter M . We compared M =
4, 6, 8, 10, 12 and M = 0, which corresponds to the usual monotone decreasing
case. The other parameters were set as follows:

γ1 = 0.1, γ2 = 10.0, η1 = 0.01, η2 = 0.9, µmin = 1.0× 10−3, m = 5.

Table 5.3 shows the number of successes and the success rate for all 313 test
problems.

Table 5.3: Number of successes and success rate at each M .
M Number of successes Success rate (%)
Monotone (M=0) 225 71.9
4 263 84.0
6 265 84.7
8 265 84.7
10 268 85.6
12 268 85.6

Figure 5.3 shows the distribution function of the nonmonotone parameter in
terms of the CPU time.
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Figure 5.3: Comparison of M = 4, 6, 8, 10, 12 and monotone decreasing
(M = 0).

We can see that M = 8 produces the best results. Therefore, we set M = 8 in
subsequent experiments.

Finally, we compared the algorithm using the rejected information (Reject)
with the basic one (Basic) introduced in Section 4. The other parameters were
set as follows:

γ1 = 0.1, γ2 = 10.0, η1 = 0.01, η2 = 0.9, µmin = 1.0× 10−3, m = 5, M = 8.

Table 5.4 shows the number of successes and the success rate for all 313 test
problems.

Table 5.4: Number of successes and success rate of Reject and Basic.
Algorithm Number of successes Success rate (%)
Reject 268 85.6
Basic 270 86.3

Figure 5.4 shows the distribution function of these two algorithms in terms
of the CPU time.
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Figure 5.4: Comparison of Reject and Basic.

We see that the algorithm using the rejected information outperforms the
basic algorithm. Therefore, we used the algorithm that utilizes rejected informa-
tion to compare the regularized L-BFGS method and the conventional L-BFGS
method.

5.2 Comparison of the regularized L-BFGS method and
the conventional L-BFGS method

We compare the regularized L-BFGS method (RL-BFGS) and the L-BFGS
method in terms of the number of function evaluations and CPU time.

Table 5.5 shows the number of successes and the success rate for all 313 test
problems. Figures 5.5 and 5.6 show the results for PS , and Figures 5.7 and 5.8
show the results for large-scale problems. Here, we define a large-scale problem
as one in which the dimension of the decision variables is greater than 1000.
There are 147 large-scale test problems. PS

large denotes the set of large-scale
problems extracted from PS . Table 5.6 shows the number of successes and the
success rate for these 147 large-scale test problems.

The success rates in Tables 5.5 and 5.6 show that RL-BFGS solves 85% in
each case. However, the L-BFGS method only solves 71.9% of all test problems
and 68.7% of the large-scale test problems. Therefore, we argue that the RL-
BFGS method is superior to the L-BFGS method.

Figure 5.5 shows that RL-BFGS requires fewer function evaluations than
L-BFGS. Furthermore, Figure 5.7 illustrates that the results for large-scale test
problems show a slight improvement over those for all test problems. Figure 5.6
shows that the RL-BFGS method is slightly faster than the L-BFGS method.
However, from Figure 5.8, we can see that the results for large-scale test prob-
lems do not show such an improvement. As some large-scale problems are
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comparatively easy to solve, we can infer that the line search technique in the
L-BFGS method has good performance for these easy problems.

Table 5.5: Number of successes and the success rate of RL-BFGS and L-BFGS
for all 313 problems.

Algorithm Number of successes Success rate (%)
RL-BFGS 266 85.0
L-BFGS 225 71.9

Figure 5.5: Comparison of RL-BFGS and L-BFGS in terms of nf for PS .
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Figure 5.6: Comparison of RL-BFGS and L-BFGS in terms of CPU time for
PS .

Table 5.6: Number of successes and success rate of RL-BFGS and L-BFGS for
147 large-scale problems.

Algorithm Number of successes Success rate (%)
RL-BFGS 125 85.0
L-BFGS 101 68.7

Figure 5.7: Comparison of RL-BFGS and L-BFGS in terms of nf for PS
large.
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Figure 5.8: Comparison of RL-BFGS and L-BFGS in terms of CPU time for
PS

large.

6 Conclusion

In this paper, we proposed a regularized L-BFGS method for unconstrained
minimization problems, and demonstrated its global convergence under some
appropriate assumptions. From the numerical results, we saw that the regu-
larized L-BFGS method is able to solve more test problems than the original
L-BFGS. This result indicates that the proposed method is robust.

In future work, we will consider solving the following boxed constrained
optimization problems:

minimize f(x)

subject to l ≤ x ≤ u,

where l and u are vectors such that li ∈ [−∞,∞), ui ∈ (−∞,∞] and li <
ui for all i. It is known that boxed constrained optimization problems play
an important role in the development of algorithms for general constrained
problems.
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