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Abstract. A graph is 1-planar, if it admits a 1-planar embedding, where each edge has at most one
crossing. Unfortunately, testing1-planarityof a graph is known as NP-complete.
This paper considers the problem of testing2-planarityof a graph, in particular,testingfull outer-2-
planarity of a graph. A graph isfully-outer-2-planar, if it admits afully-outer-2-planar embedding
such that every vertex is on the outer boundary, no edge has more than two crossings, and no crossing
appears along the outer boundary. We present several structural properties of triconnected outer-2-
planar graphs and fully-outer-2-planar graphs, and prove that triconnected fully-outer-2-planar graphs
have constant number of fully-outer-2-planar embeddings. Based on these properties, we present
a linear-time algorithm for testing fully outer-2-planarity of a graphG, whereG is triconnected,
biconnected and oneconnected. The algorithm also produce a fully outer-2-planar embedding of a
graph, if it exists. We also show that every fully-outer-2-planar embedding admits a straight-line
drawing.

1 Introduction

A recent research topic in topological graph theory generalises the notion of planarity toalmost planar
graphs, i.e., non-planar graphs with some specific crossings, or with some forbidden crossing patterns.
Examples includek-planar graphs(i.e., graphs can be embedded with at mostk crossings per edge),
k-quasi- planar graphs(i.e., graphs can be embedded withoutk mutually crossing edges),RAC graphs
(i.e., graphs can be embedded with right angle crossings), andfan-crossing-free graphs(i.e., graphs can
be embedded without fan-crossings) [2, 5, 7, 19].

Some mathematical results are known for these graphs, for example, lineardensityof such graphs.
Pach and Toth [19] proved that a 1-planar graph withn vertices has at most4n − 8 edges. Agarwal et
al. [2] (Ackerman [1]) showed that3-(4-) quasi-planar graphs have linear number of edges. Fox et al. [9]
proved thatk-quasi-planar graphs have at mostO(n log1+o(1) n) edges. Didimo et al. [7] showed that
RAC graphs have at most4n − 10 edges. Cheong et al. [5] showed that fan-crossing free graphs have at
most4n− 8 edges.

Recently, algorithmics and complexity for such graphs have been investigated. Grigoriev and Bod-
laender, and Kohrzik and Mohar proved that testing 1-planarity of a graph is NP-complete [13, 17]. Ar-
gyriou et al. proved that testing whether a given graph is a RAC graph is NP-hard [3]. On the positive side,
Eades et al. [8] showed that the problem of testingmaximal 1-planarity(i.e., addition of an edge destroys
1-planarity) of a graph can be solved in linear time, if arotation system(i.e., the circular ordering of edges
for each vertex) is given. Hong et al. [15], and Auer et al. [4] independently proved that testingouter-1-
planarity (i.e., 1-planar graphs with every vertex is on the outer face, introduced by Eggleton [10]) of a
graph, can be solved in linear time.
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This paper considers the problem of testing2-planarityof a graph, in particular, testingfully outer-
2-planarityof a graph. An embeddingγ of a graphG in the plane is2-planar, if no edge has more than
two crossings. A 2-planar embedding ofG is calledouter-2-planar(O2PE), if every vertex is on the outer
boundary. An outer-2-planar embedding ofG is calledfully outer-2-planar(FO2PE), if no edge crossings
appear along the outer boundary. A graphG is 2-planar (resp.,outer-2-planar, fully outer-2-planar) if it
admits a 2-planar (resp.,outer-2-planar, fully outer-2-planar) embedding (see Fig. 1).

Fig. 1. Illustration for outer-2-plane embeddings of graphs: (a) An FO2PEγ1 of a biconnected graphG1; (b) An
FO2PEγ2 of a triconnected graphG2; (c) An O2PEγ3 of a triconnected graphG3.

The problem of testing outer-2-planarity seems much harder than testing outer-1-planarity. In fact,
it was shown that outer-1-planar graphs are indeed planar graphs [4], howeverK5 is an outer-2-planar
graph, which is not planar. Note that there is only one triconnected outer-1-planar graph,K4, and it has
unique outer-1-planar embedding [4, 15]. However, we can show that there is a triconnected outer-2-
planar graph which has exponentially many outer-2-planar embeddings.

Moreover, the outer boundary of an FO2PE of a biconnected graphG is a Hamiltonian cycle ofG.
Note that testing whether a given graph has a Hamiltonian cycle is known to be NP-complete, even for
cubic graphs [12].

We first study several structural properties of outer-2-planar graphs and fully outer-2-planar graphs.
Based on these properties, we present a linear-time algorithm for testing fully outer-2-planarity of a graph
G. The following theorem summarizes our main results.

Theorem 1. There is a linear-time algorithm that tests whether a given graph is fully outer-2-planar, and
produces a fully outer-2-planar embedding of the graph if it exists.

We use connectivity approach to prove Theorem 1. Theoneconnectedcase is easy; see Theorem 4 in
Section 3. Thebiconnectedcase is more involved; see Theorem 5 in Section 4. The main thrust of this
paper is to solve thetriconnectedcase, described in Section 5. The following theorem is the key to design
linear-time algorithm for FO2PE.

Theorem 2. The number of all FO2PEs of a triconnected graphG is constant, and the set of all FO2PEs
ofG can be generated in linear time.

The well-known Fary’s theorem [11] proved that every plane graph admits a straight-line draw-
ing. However, Thomassen [20] presented two forbidden subgraphs for straight-line drawings of 1-plane
graphs. Hong et al. [16] gave a linear-time testing and drawing algorithm to construct a straight-line
1-planar drawing, if it exists. Recently, Nagamochi solved the more general problem of straight-line
drawability for wider class of embedded graphs [18]. On the otherhand, Eggleton [10] showed that every
outer-1-plane graph admits a straight-line drawing. We also show that every outer-2-plane graph admits
a straight-line drawing.

Theorem 3. Every outer-2-plane embedding admits a straight-line drawing.
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2 Preliminaries

Let G = (V,E) be a graph, wheren denotes|V | unless stated otherwise. LetX,Y ⊆ V be subsets of
vertices andF ⊆ E be a subset of edges. For a vertexv, letE(v) denote the set of edgesvu incident tov,
deg(v) denote the degree|E(v)| of v, N(v) denote the set of neighborsu of v, andN [v] = N(v) ∪ {v}.
We may indicate the underlying graphG in these notations in such a way thatE(v) is written asE(v).
Let G − F denote the graph obtained fromG by removing the edges inF , andG − X denote the
graph obtained fromG by removing the vertices inX together with the edges in∪v∈XE(v). Let G/X
denote the graph obtained from a graphG by contracting the vertices in a subsetX of vertices into a
single vertex, where any resulting loops and multiple edges are removed. A vertex of degreed is called a
degree-d vertex. A simple cycle of lengthk is called ak-cycle, where a 3-cycle is called atriangle.

A topological graphor embeddingγ of a graphG is a representation of a graph (possibly with
multiple edges) in the plane, where each vertex is a point and each edge is a Jordan arc between the points
representing its endpoints. Two edgescrossif they have a point in common, other than their endpoints.
The point in common is acrossing. To avoid pathological cases, standard non-degeneracy conditions
apply: (i) two edges intersect in at most one point; (ii) an edge does not contain a vertex other than its
endpoints; (iii) no edge crosses itself; (iv) edges must not meet tangentially; (v) no three edges share a
crossing point; and (vi) no two edges that share an endpoint cross.

For an O2PEγ of a graphG = (V,E), we denote by∂γ the outer boundary ofγ, which may pass
though a crossing point made by two edges. An edgee ∈ E is called anouter (resp.,inner) edge ofγ if
the whole drawing ofe is part of∂γ (resp.,∂γ passes though only the end-vertices ofe). An edge may
not be outer or inner when a crossing on it appears along∂γ. Let V∂γ , E∂γ andC∂γ denote the sets of
vertices, outer edges and crossings in∂γ.

For two verticesu, v ∈ V , the boundary path traversed fromu to v in the clockwise order is denoted
by ∂γ[u, v]. Let V∂γ [u, v], E∂γ [u, v] andC∂γ [u, v] denote the sets of vertices, outer edges and crossings
in ∂γ[u, v]. Also letV∂γ(u, v] = V∂γ [u, v]−{u}, V∂γ [u, v) = V∂γ [u, v]−{v}, V∂γ(u, v) = V∂γ [u, v]−
{u, v}. We call the boundary path∂γ[u, v] crossing-freeif C∂γ [u, v] = ∅, i.e., it consists of outer edges.

3 Connected Graphs

We first observe that we can focus on biconnected graphs to design algorithms for testings (full) outer-2-
planarity.

Theorem 4. A graph is outer-2-planar(resp., fully outer-2-planar) if and only if its biconnected compo-
nents are outer-2-planar(resp., fully outer-2-planar).

Proof. Let γ be an O2PE (resp., FO2PE) of a graphG. Then the embeddingγH induced by a biconnected
componentH of the graph is an O2PE (resp., FO2PE) since no new crossing is introduced and the vertices
in the component stay on the boundary ofγH . Conversely assume that each biconnected componentH
of the graphG admits an O2PE (resp., FO2PE)γH . Starting withγ∗ := γH for some biconnected
componentH, we combineγ∗ with γH′ for a biconnected componentH ′ which shares a cut-vertex with
one of the scanned biconnected components. Since such a cut-vertex remains on the outer boundary of
γ∗ and no new cycle through the cut-vertex is created, the newly combined embedding is also an O2PE
(resp., FO2PE). By repeating this, we can obtain an O2PE (resp., FO2PE) ofG. ⊓⊔

Thus, in what follows, we treat only biconnected graphsG as input. For a permutation[v1, v2, . . . , vn]
of the vertices of a biconnected graphG, let γ = (G, [v1, v2, . . . , vn]) denote an embedding ofG such
that verticesv1, v2, . . . , vn appear along∂γ in the clockwise manner. We can easily observe that the
number of crossings on each edge in an O2PEγ is determined only by the ordering of all vertices along
∂γ.

To solve the problem of finding an FO2PEγ of a graphG, we consider the problem with an additional
constraint such that a setB of specified edges is required to appear along the boundary; i.e.,B ⊆ E∂γ ,
and denote such an instance by(G,B). An FO2PE ofγ of G such thatB ⊆ E∂γ is called anFO2PE
extensionof (G,B), and an instance(G,B) is calledextendibleif it admits an FO2PE extension.
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4 Biconnected Graphs

Our algorithm for biconnected case uses the decomposition of a biconnected graphG into triconnected
components, alternatively known as theSPQR tree, defined by di Battista and Tamassia [6], which can be
computed in linear time [14]. Each triconnected component consists ofreal edges(i.e., edges in the orig-
inal graph) andvirtual edges. (i.e., edges introduced during the decomposition process, which represents
the other triconnected components, sharing the same virtual edges defined by cut-pairs).

Each nodeν in the SPQR tree is associated with a graph called theskeletonof ν, denoted byσ(ν),
which corresponds to a triconnected component. There are four types of nodesν in the SPQR tree: (i)
S-node, whereσ(ν) is a simple cycle with at least three vertices; (ii) P-node, whereσ(ν) consists of two
vertices connected by at least three edges; (iii) Q-node, whereσ(ν) consists of two vertices connected by
two (real and virtual) edges; and (iv) R-node, whereσ(ν) is a simple triconnected graph with at least four
vertices. The set of virtual edges in the skeleton of a nodeν by Evir(ν).

In this paper, we use the SPR tree, a simplified version of the SPQR treewithoutQ-nodes, and treat
the SPR tree as arooted treeby choosing an arbitrary node as its root. Letρ be the parent node of an
internal nodeν. The graphσ(ρ) has exactly one virtual edgee in common withσ(ν); e is called the
parent virtual edgein σ(ν), and achild virtual edgein σ(ρ). We denote the graph formed fromσ(ν) by
deleting its parent virtual edge asσ−(ν), and denote the graph formed from the union ofσ−(ν) over all
descendantsν of ρ by G−

ρ . We also denote the graphG−
ρ together with the parent virtual edge inσ(ρ)

by Gρ. Note thatEvir(ν) is the set of virtual edges inσ(ρ) including the parent virtual edge whenν is a
non-root node.

For a given biconnected graphG, we establish a recurrence relationship of FO2PE problem instances
(G,B) based on the SPR decomposition ofG. In fact we prove thatG admits an FO2PE if and only if for
each nodeν in the SPR decomposition ofG, the instance(σ(ν), Evir(ν)) is extendible. We easily see that
for S-nodeν (σ(ν), Evir(ν)) are cycles and always extendible. More specifically, we prove the following
Theorem.

Theorem 5. A biconnected graphG = (V,E) admits an FO2PE if and only if the following holds: for
each P-nodeν, |Evir(ν)| ≤ 2; and for each R-nodeν, (σ(ν), Evir(ν)) is extendible. Moreover, there is a
linear-time algorithm for constructing a FO2PE ofG, if it exists.

Before we prove Theorem 5, we first show the following lemma.

Lemma 1. Letγ be an arbitrary FO2PE ofG = (V,E), andH be a component inG−{u, v} for a cut-
pair {u, v}. Thenγ is given by a cyclic order[v1, v2, . . . , vn] such thatv1 = u, {v2, v3, . . . , vi} = V (H)
andvi+1 = v appear in this order.

Proof for Necessity of Theorem 5: Letγ be an arbitrary FO2PE ofG = (V,E). To derive a contradiction,
first assume that|Evir(ν)| ≥ 3 for some P-nodeν. Thus for the two verticesu, v in the skeletonσ(ν),
G − {u, v} has at least three components, sayH1,H2 andH3. By Lemma 1, for eachi = 1, 2, 3, the
verticesu, V (Hi) andv must appear consecutively along∂γ. However, this is impossible unless the
vertexu appear more than once along∂γ.

Assume that|Evir(ν)| ≤ 2 for each P-nodeν. Next we show that that(σ(ν), Evir(ν)) is extendible
for any R-nodeν. For each virtual edgee = st ∈ Evir(ν), there are exactly two componentsH∗

e andHe

in G− {s, t} by the assumption of P-nodes, whereV (H∗
e ) ∪ {s, t} ⊆ V (σ(ν)). ClearlyHe andHe′ are

disjoint for any two virtual edgese, e′ ∈ Evir(ν). Hence by Lemma 1, the vertices inHe for each virtual
edgee = st ∈ Evir(ν) appear consecutively betweens andt along∂γ. Hence we can obtain an FO2PE
extensionξν of (σ(ν), Evir(ν)) from γ by shortening the subsequence for the vertices inV (He) ∪ {s, t}
for each virtual edgee = st ∈ Evir(ν) into s, t. This proves the necessity of Theorem 5. ⊓⊔

Proof for Sufficiency of Theorem 5: We construct an FO2PEγ of G by an induction along the parent-
child relationship of the rooted SPR treeT of G, as shown in the algorithm below. For a given graphG,
we have computed the SPR treeT of G and computed an FO2PE extensionξν of (σ(ν), Evir(ν)) for each
nodeν in T , and assume that the necessary condition in Theorem 5 holds. Note that for a P- and S-nodeν,
its skeletonσ(ν) is a pair of real and virtual edges with the same end-vertices, two virtual edges (possibly
with one real edge) with the same end-vertices, and a simple cycle of length at least 3, respectively, each
of which admits an FO2PE extensionξν of (σ(ν), Evir(ν)).
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Let ν be a P-, R- or S-node chosen in the for-loop of lines 7-12, where we have obtained an FO2PE
extensionξν = [v1, v2, . . . , vn′ ] of (σ(ν), Evir(ν)) in line 2 and an FO2PE extensionγµ of (Gµ, {st})
for each childµ of ν and the corresponding child virtual edgest ∈ Evir(ν) in the previous iterations
of the for-loop. Since the parent edgest of µ is contained inEvir(µ), γµ is given by a cyclic order
[u1 = s, u2, u3, . . . , up−1, up = t] of the vertices inGµ. Also in ξν , the virtual edgest appears as
an outer edge; i.e., verticess and t appear consecutively as[vi = s, vi+1 = t] in ξν . Therefore by
replacing each child virtual edgest in ξν with the corresponding FO2PE extensionγµ, i.e., replacing the
subsequence[vi = s, vi+1 = t] in ξν with [u1 = s, u2, u3, . . . , up−1, up = t], we can obtain an FO2PE
extensionγν of (Gν , {ab}) with the parent virtual edgeab of ν or of (G, ∅) whenν = ν∗. This proves
the sufficiency of Theorem 5. ⊓⊔

See below for the detailed description ofAlgorithm BICONNECTED FO2PE and time complexity
analysis. Essentially, the algorithm can be implemented to run in linear time, if the R-node (i.e., tricon-
nected) case can be solved in linear time.

Algorithm BICONNECTED FO2PE
Input: A biconnected simple graphG.
Output: An FO2PEγ of G if any or∅ otherwise.
1: Construct the SPR treeT of G;
2: Compute an FO2PE extensionξν of (σ(ν), Evir(ν)) for each nodeν in T ;
3: if |Evir(ν)| ≥ 3 for some P-nodeν or (σ(ν), Evir(ν)) is not extendible

for some R-nodeν then
4: Return∅
5: else
6: Regard a node as the rootν∗ of T ;
7: for each non-root nodeν of T chosen from the bottom to the top alongT do
8: Compute an FO2PE extensionγν of (Gν , {ab}) with the parent virtual edgeabof ν

(or (G, ∅) whenν = ν∗) from ξν = [v1, v2, . . . , vn′ ] as follows:
9: for each childµ of ν and the corresponding child virtual edgest ∈ Evir(ν) do
10: Replace the subsequence[vi = s, vi+1 = t] in ξν with an FO2PE extension

γµ = [u1 = s, u2, u3, . . . , up−1, up = t] of (Gµ, {st})
11: end for
12: end for;
13: Returnγ := γν∗

14: end if

We show that when Theorem 2 holds the above algorithm can be implemented to run in linear time.
The time complexity of the Algorithm for line 1 is linear [14]. After this, we see that any operation
on a nodeν in T takes inO(|σ(ν)|) time. In lines 2-3, we can test whether there is no P-nodeν with
|Evir(ν)| ≥ 3 in O(|σ(ν)|) = O(1) time, and finding an FO2PE extensionξν of (σ(ν), Evir(ν)) takes
O(|σ(ν)|) time for a P- or S-nodeν (since the structure ofσ(ν) is nearly a cycle) andO(|σ(ν)|) time
for an R-nodeν by Theorem 2. The for-loop of lines 7-12 takes inO(n) time in total, because inserting
a subsequenceγµ = [u1 = s, u2, u3, . . . , up−1, up = t] into ξν = [v1, v2, . . . , vn′ ] at the position
[vi = s, vi+1 = t] can be carried out inO(1) time using doubly-liked lists for storing all sequences such
asξν andγµ. Hence to prove Theorem 1, it suffices to show Theorem 2.

5 Triconnected Graphs

In this section, we prove Theorem 2, i.e., every triconnected graphG has a constant number of FO2PEs,
and they can be generated in linear time. Note that Theorems 5 and 2 imply that FO2PE testing for
biconnected graphs can be done in linear time.

To prove Theorem 2, we derive a recurrence relationship over FO2PE problem instances(G,B) for
special local structuresB, called “rims.” First, we prove several structural results on triconnected O2PE
and FO2PE.

5



5.1 Structural results on triconnected O2PE and FO2PE

We first present structural results on triconnected O2PE.

Lemma 2. Every O2PE of a triconnected graphG is quasi-planar unlessG isK3,3.

Proof. Letγ be an O2PE with three pairwise crossing edgesei = uivi, i = 1, 2, 3, whereu1, u2, u3, v1, v2
andv3 appear in this order along∂γ. Note that each of these three edges already has two crossings on it.
Hence ifV∂γ(u1, u2) ̸= ∅, then there must be an edgee = ab that joins a vertexa ∈ V∂γ(u1, u2) and a
vertexb ∈ V∂γ(u2, u3), since otherwise{u1, u2} would be a cut-pair in a triconnected graph. However,
γ cannot admit such an edgee = ab, since it would cross one of the three pairwise crossing edges. Hence
V∂γ(u1, u2) = ∅. Analogously we haveV∂γ(u, v) = ∅ for two end-verticesu andv of the three pairwise
crossing edges which consecutively appear along∂γ, indicating thatV = {u1, u2, u3, v1, v2, v3}.

Vertex u2 is of degree at least 3, and it has at least two incident edgese′2 ande′′2 other than edge
u2v2, where neither of edgese′2 ande′′2 can crosse1 or e3. This implies that vertexu2 has exactly three
incident edges,u2v2, u2u1 andu2u3. Analogously with other vertices inV , we see that each vertex in
V is of degree 3 andC∂γ = ∅, indicating thatG is a complete bipartite graphK3,3 between vertex sets
{u1, u3, v2} and{u2, v1, v3}. ⊓⊔

Lemma 3. No triconnected graphG with a vertex of degree≥ 5 admits an O2PE.

Proof. Let v be a vertex of degreed ≥ 5 in G, andγ be an O2PE ofG. SinceG contains a vertex of
degree≥ 5, G is notK3,3 andγ is quasi-planar by Lemma 2. Without loss of generality, the neighbors
u1, u2, . . . , ud of v appear in this order along∂γ[u1, ud].

Since{v, u3} is not a cut-pair, there is an edgee = ab that joins a vertexa ∈ V∂γ(v, u3) and a vertex
b ∈ V∂γ(u3, v), wheree = ab crosses edgevu3 and can cross at most one ofvu2 andvu4.

First assume thate = ab crossesvu2 or vu4, sayvu4, wherea ∈ V∂γ [u2, u3) holds, and we choose
e = ab so that vertexa is closest tou2 among all choices of such edgesab. Since{a, v} is not a cut-pair,
there is an edgee∗ = a∗b∗ that joins a vertexa∗ ∈ V∂γ(v, a) and a vertexb∗ ∈ V∂γ(a, v). Sinceγ is
quasi-planar ande∗ cannot crosse, it holdsa∗ ∈ V∂γ [u2, a) andb∗ ∈ V∂γ(b, v), wheree∗ crossesvu4

andvu3 but cannot crossvu2. This, however, contradicts the choice of edgee = ab.
Next assume that no edgeab with a ∈ V∂γ(v, u3) andb ∈ V∂γ(u3, v) crossesvu2 or vu4. Hence

a ∈ V∂γ [u2, u3) andb ∈ V∂γ(u3, u4]. Since{b, v} is not a cut-pair, there is an edgee′ = a′b′ that joins a
vertexa′ ∈ V∂γ(v, b) and a vertexb′ ∈ V∂γ(b, v). Sinceγ is quasi-planar, edgee′ does not crossvu3 and
it holdsa′ ∈ V∂γ [u3, b). Analogously with pair{b, v}, there must be an edgee∗ = a∗b∗ that joins a vertex
a∗ ∈ V∂γ(v, a) and a vertexb∗ ∈ V∂γ(a, u3]. However, in this case, edgee = ab has three crossings on
it, a contradiction.

This proves that no graph with a vertex of degree≥ 5 admits an O2PE. ⊓⊔

Lemma 4. LetG = (V,E) be a triconnected graph which containsK4 as a subgraph. IfG admits an
O2PE, thenn ≤ 6.

Proof. LetH be a subgraph ofG isomorphic toK4, and Letγ be an O2PE ofG, where the four vertices
u1, u2, u3 andu4 in H appear in this order alongγ. To derive a contradiction, assume thatn ≥ 7. Without
loss of generality, letV∂γ(u1, u2) ̸= ∅. Since{u1, u2} is not a cut-pair in a triconnected graph, there is an
edgee = ab that joins a vertexa ∈ V∂γ(u1, u2) and a vertexb ∈ V∂γ(u2, u1). Note thatb can be vertex
u3 or vertexu4, sayb = u4, since otherwise edgeab would cross three edges inH. Now edgeu2u4 has
two crossings on it. Then for each ordered pair(u, v) ∈ {(a, v2), (v2, v3), (v3, v4), (v4, v1)}, we see that
no edgee = ab can join a vertexa ∈ V∂γ(u, v) and a vertexb ∈ V∂γ(v, u), and thatV∂γ(u, v) = ∅ holds,
since otherwise{u, v} would be a cut-pair.

By n ≥ 7, we haveV∂γ(u1, a) ̸= ∅. Since{u1, a} is not a cut-pair in a triconnected graph, there is an
edgee′ = a′b′ that joins a vertexa′ ∈ V∂γ(u1, a) and a vertexb′ ∈ V∂γ(a, u1). In this case, it holdsb′ =
u4, since otherwisee′ would cross three edges. Now for each ordered pair(u, v) ∈ {(u1, a

′), (a′, u2)},
we see that no edgee = ab can join a vertexa ∈ V∂γ(u, v) and a vertexb ∈ V∂γ(v, u), and that
V∂γ(u, v) = ∅ holds, since otherwise{u, v} would be a cut-pair. This, however, contradicts thatn ≥ 7.

⊓⊔

By Lemmas 2 and 4, we have the next.
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Lemma 5. LetG be a triconnected graph with at least seven vertices. IfG admits an O2PEγ, thenG
contains no subgraph isomorphic toK4 andγ is quasi-planar.

For an O2PEγ of a triconnected graphG = (V,E) with n ≥ 7, the cyclic order[v1, v2, . . . , vn] of
the vertices in∂γ completely determines the embeddingγ by Lemma 5. In what follows, an O2PEγ of
a graphG is simply denoted by the cyclic order of the vertices in∂γ.

For an inner edgeuv in an FO2PEγ of a triconnected graphG, there is an edgeab that crossesuv; i.e.,
ab joins a vertexa ∈ V∂γ(u, v) and a vertexb ∈ V∂γ(v, u), since otherwise{u, v} would be a cut-pair.
We call an edgeab (u, v)-hookedif ab crossesuv and some edgea′a′′ ( ̸= uv) with a′, a′′ ∈ V∂γ [u, v].
We frequently use the following technical lemma.

Lemma 6. Let γ be an FO2PE of a triconnected graphG, and letu and v be two vertices such that
uv ∈ E − E∂γ .

(i) If |V∂γ(u, v)| ≥ 3, then there is a(u, v)-hooked edgeab.
(ii) If |V∂γ(u, v)| = 2 and there is no(u, v)-hooked edge, then each of the two vertices inV∂γ(u, v) is of

degree 3 and the inner edge incident to it crossesuv.

Proof. Assume that|V∂γ(u, v)| ≥ 2 and there is no(u, v)-hooked edge inγ. To prove the lemma, it
suffices to show that|V∂γ(u, v)| = 2 holds and each of the two vertices inV∂γ(u, v) is of degree 3 and
has an incident edge crossinguv.

Since{u, v} is not a cut-pair, there is an edgeab that joins a vertexa ∈ V∂γ(u, v) and a vertex
b ∈ V∂γ(v, u). We choose an edgeab so thata is closest tou among all edgesab crossinge = uv. If
V∂γ(u, a) ̸= ∅, then{u, a} would be a cut-pair, since each inner edge incident to a vertex inV∂γ(u, a)
cannot cross a non(u, v)-hooked edgeab or edgeuv by the choice ofa. Hence we haveV∂γ(u, a) = ∅.

Similarly we choose an edgea′b′ so thata′ ∈ V∂γ(u, v) is closest tov among all edgesa′b′ crossing
e = uv, and we see thatV∂γ(a

′, v) = ∅.
Now no edge incident to a vertex inV∂γ(a, a

′) other thanab or a′b′ can cross any of edgesuv, ab
anda′b′. This means thatV∂γ(u, v) = {a, a′} (otherwise{a, a′} would be a cut-pair) anddeg(a) =
deg(a′) = 3, as required. ⊓⊔

5.2 Identifying a constant number of candidate partial embeddings

Let γ be an O2PE of a triconnected graphG. A triangleuvw is called a(3, 3)-rim (resp.,(3, 4)-rim) of γ
if uv andvw are outer edges inγ andv is a degree-3 (resp., degree-4) vertex. A 4-cycleuvv′w is a4-rim
of γ if v andv′ are degree-3 vertices anduv, vv′ andvw are outer edges inγ. A (3, 3)-, (3, 4)- or 4-rim
is called arim. For example, see Fig. 2.

Fig. 2. Illustration for rims: (a) a (3,3)-rim for a trianglev1v2v3 with a degree-3 vertexv2; (b) a (3,4)-rim for a
trianglev1v2v3 with a degree-4 vertexv2; (c) a 4-rim for 4-cyclev1v2v3v4 with degree-3 verticesv2 andv3.

We show that any FO2PE of a triconnected graphG contains a rim.

Lemma 7. Any FO2PEγ of a triconnected graphG has a rim.
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Proof. By Lemma 3, each vertex inG is of degree 3 or 4. Consider an inner edgeuv such that∂γ[u, v]
is the shortest. Hence there is no(u, v)-hooked edge, since otherwise there exists an inner edgea′a′′

with a′, a′′ ∈ V∂γ(u, v), where∂γ[a′, a′′] would be shorter than∂γ[u, v]. By Lemma 6(i), we have
|V∂γ(u, v)| ≤ 2.

If |V∂γ(u, v)| = 1, then for the vertexw ∈ V∂γ(u, v), triangleuwv is a 3-rim ofγ.
Assume that|V∂γ(u, v)| = 2. By Lemma 6(ii), each of the two vertices inV∂γ(u, v) is of degree 3,

indicating that the 4-cycle with the four vertices inV∂γ [u, v] is a 4-rim ofγ. ⊓⊔

Our algorithm for constructing an FO2PE of a given triconnected graphG first generates triangles/4-
cycles as rims of possible FO2PEs and tries to extend each of the triangles/4-cycles into an FO2PE. By
Lemma 3, we can assume that a given triconnected graphG has a maximum degree at most 4. Then there
areO(n) triangles and 4-cycles for candidates of rims in an FO2PE ofG. The next lemma reduces the
number of triangles/4-cycles to be generated as rims of possible FO2PEs to a constant number.

Lemma 8. Letγ be an FO2PE of a triconnected graphG = (V,E) with n ≥ 10.

(i) Assume thatG has a triangle, and lett1 be a triangle inG. Then∂γ contains a sequence[u, v, w] for
the set of verticesu, v andw of some trianglet′ = uvw sharing an edge witht1 (possiblyt′ = t1)
as its subsequence.

(ii) Assume thatG has no triangle, and letu1u2u3u4 be a 4-cycle with degree-3 verticesu2 andu3 in
G. Then∂γ (or its reversal) contains[u1, u2, u3, u4] (or [u3, u4, u1, u2] if deg(u4) = deg(u1) = 3)
as its subsequence.

Proof. Sincen ≥ 7, embeddingγ is quasi-planar by Lemma 2. (i) Lett1 = u1u2u3 be a triangle in
G. Assume thatt1 is not a 3-rim ofγ; i.e., at least two edges in trianglet1 are inner edges inγ. Since
n ≥ 10, we can assume without loss of generality thatu1, u2 andu3 appear in this order alongγ, and let
|V∂γ(u1, u2)| ≥ 3 andV∂γ(u2, u3) ̸= ∅. By Lemma 6(i), there is a(u1, u2)-hooked edgea1b1 joining
a vertexa1 ∈ V∂γ(u1, u2) and a vertexb1 ∈ V∂γ(u2, u1). Note thatb1 = u3 holds because edgea1b1
already has two crossings.

If |V∂γ(u2, u3)| = 1, then triangleu2xu3 for the vertexx ∈ V∂γ(u2, u3) satisfies the lemma. Assume
that |V∂γ(u2, u3)| ≥ 2. If there is a(u2, u3)-hooked edgea2b2 that joins a vertexa2 ∈ V∂γ(u2, u3) and
a vertexb2 ∈ V∂γ(u3, u2), then edgea2b2 would have the third crossing with edgeu1u2 or edgea1b1,
a contradiction. Hence there is no(u2, u3)-hooked edge. By Lemma 6(ii), there are two edges that cross
u2u3. However, these edges cannot cross edgea1b1, and must crossu1u2, creating three crossings on
edgeu1u2, a contradiction.

(ii) Assume thatG has no triangle. Letu1u2u3u4 be a 4-cycle with degree-3 verticesu2 andu3 in G.
We distinguish three cases.

(a) The vertices in the 4-cycle appear in the order ofu1, u2, u3, u4 or u4, u3, u2, u1 along∂γ: Let
u1, u2, u3, u4 appear in this order along∂γ. It suffices to show that “V∂γ(u2, u3) = ∅” or “V∂γ(u4, u1) =
∅ anddeg(u4) = deg(u1) = 3.” Assume thatV∂γ(u2, u3) ̸= ∅, whereu2u3 is an inner edge inγ and it
holdsV∂γ(u1, u2) = V∂γ(u3, u4) = ∅. Then ifV∂γ(u4, u1) = ∅, then we see thatdeg(u4) = deg(u1) =
3 holds, as required.

To derive a contradiction, we consider the case ofV∂γ(u4, u1) ̸= ∅, where it holds|V∂γ(u4, u1)| ≥ 2
sinceG has no triangle.

If |V∂γ(u4, u1)| ≥ 3, then there is a(u4, u1)-hooked edgeab by Lemma 6(i), which crosses edges
u4u1 andu2u3, since no other inner edge is incident tou2 or u3. This is a contradiction, because edgeab
has at least three crossings.

Hence|V∂γ(u4, u1)| = 2 and |V∂γ(u2, u3)| ≥ 3 by n ≥ 10. By Lemma 6(i), there is a(u2, u3)-
hooked edgee′ = a′b′ wheree′ is incident tou1 or u4 since it cannot crossu1u4 any more.

SinceG has no triangle and|V∂γ(u4, u1)| = 2, each of the two vertices inV∂γ(u4, u1) has an incident
edge that crosses edgeu3u4 and edgeu2u3. Hence edgeu2u3 crosses these two edges incident to vertices
in V∂γ(u4, u1) and edgee′ = a′b′, creating three crossings, a contradiction.

(b) The vertices in the 4-cycle appear in the order ofu1, u4, u2, u3 or u3, u2, u4, u1 along∂γ: Let
u1, u4, u2, u3 appear in this order along∂γ. Sincedeg(u2) = deg(u3) = 3, we haveV∂γ(u2, u3) =
∅. Sincen ≥ 10, it holds one of|V∂γ(u3, u1)| ≥ 2, |V∂γ(u4, u2)| ≥ 2 and |V∂γ(u1, u4)| ≥ 3. If
|V∂γ(u1, u4)| ≥ 3, then there is a(u1, u4)-hooked edgee = ab by Lemma 6(i), wheree = ab must cross
edgeu1u2 or edgeu4u3 creating three crossings on it. Hence|V∂γ(u3, u1)| ≥ 2 or |V∂γ(u4, u2)| ≥ 2.
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Without loss of generality assume that|V∂γ(u3, u1)| ≥ 2. Then|V∂γ(u2, u1)| ≥ 3, and there is a(u2, u1)-
hooked edgee = ab by Lemma 6(i), whereab ̸= u3u4 sinceu3u4 does not cross any edge incident to
u2. However, in this case, edgee = ab crossesu4u1 creating three crossings on it in the quasi-planar
embeddingγ.

(c) The vertices in the 4-cycle appear in the order ofu1, u2, u4, u3 or u3, u4, u2, u1 along∂γ: Let
u1, u2, u4, u3 appear in this order along∂γ. Sincedeg(u2) = deg(u3) = 3, we haveV∂γ(u1, u2) =
V∂γ(u4, u3) = ∅. SinceG has no triangle,V∂γ(u2, u4) ̸= ∅ ̸= V∂γ(u3, u1). Hence there is an edge
e = ab that joins a vertexa ∈ V∂γ(u3, u1) andb ∈ V∂γ(u1, u3), whereb = u4 holds sinceγ is quasi-
planar. Symmetrically there is an edgee′ = a′u1 that joins a vertexa ∈ V∂γ(u3, u1) and vertexu1.
However, edgeu2u3 crosses three edges in this case. ⊓⊔

In an FO2PEγ of a triconnected graphG, an outer edgee joining a degree-3 vertexu and a degree-4
vertexv is called afrill if γ contains a subsequence[s1, s2, s3, s4] with {s2, s3} = {u, v} such thats1s2s3
ands2s3s4 are triangles, where the degree-4 vertexv (resp., degree-3 vertexu) is called thehead(resp.,
tail) of the frill e. We call[s1, s2, s3, s4] thespanof frill e. An operation of exchanging the positions ofs2
ands3 in the cyclic orderγ is calledflipping frill e. It is easy to observe that the cyclic orderγ′ obtained
from γ by flipping a frill is also an FO2PE ofG.

Lemma 9. Letγ be an FO2PE of a triconnected graphG = (V,E) with n ≥ 7. Then there are at most
two frills in γ, and if there are two frills, then their spans share at most one vertex. Moreover flipping a
frill in γ never introduces a new frill in the resulting cyclic orderγ′.

Proof. Assume that there are two frillse = xy ande′ = x′y′ in γ. Denote their spans by[a, x, y, b] and
[a′, x′, y′, b′]. Without loss of generality assume that verticesa, x, y, b (resp.,a′, x′, y′, b′) appear in this
order along∂γ and{a, x, y, b}∪ {a′, x′, y′, b′} ⊆ V∂γ(a, b

′). If the spans share at least two vertices, then
we see that “x = a′, y = x′ (deg(y) = 4) andb = y′” or “ y = a′ andb = x′ (deg(y) = deg(x′) = 4)”
holds. Hence there is no edge betweenV∂γ(a, b

′) andV∂γ(b
′, a), whereV∂γ(b

′, a) ̸= ∅ by n ≥ 7. This
means that{a, b′} is a cut-pair, contradicting the triconnectivity ofG. Hence their spans share at most
one vertex. This also implies that flipping a frill inγ cannot create a triangle for a new frill and thereby
never introduces a new frill.

To derive a contradiction, assume that there are three frillse1, e2 ande3 in γ. LetVi andEi, i = 1, 2, 3
be the set of vertices in the span ofei and the set of edges in the two triangles sharing frillei. For each frill
ei = xiyi, there is exactly one edgefi between the head vertexxi ∈ Vi of ei and a vertexyi ∈ V − Vi.
Note thatfi = xiyi already crosses an edge inEi and no other edge thanfi crosses any edge inEi.

We now define a setE∗ of edges as follows. Iffi = fj , then assume thatf1 = f2 and letE∗ =
E1 ∪ E2 ∪ {f1 = f2}. If fi ̸= fj for any1 ≤ i < j ≤ 3 butfi crossesfj for some1 ≤ i < j ≤ 3, then
assume thatf1 crossesf2 and letE∗ = E1 ∪ E2 ∪ {f1, f2}.

Assume thatfi ̸= fj andfi does not crossfj for any 1 ≤ i < j ≤ 3. Without loss of generality
thatV2 ⊆ V∂γ(x1, y1). Consider frille2, whereV2 ∪ {y2} ⊆ V∂γ(x1, y1) sincef2 does not crossf1.
In fact,V2 ∪ {y2} is contained inV∂γ(a, y2) or V∂γ(y2, a) for an end-vertexa ∈ V2 of the span ofe2,
and an edgeh1 crossesf2. Similarly if h1 does not crossf1, then we can find a sequence of edgesh2,
h3, . . . , hp such thathi crosses edgeshi−1 andhi+1 for eachi = 2, 3, . . . , p − 1 andhp crossesf1. Let
E∗ = E1 ∪ E2 ∪ {f1, f2} ∪ {h1, h2, . . . , hp}.

In any of the above three cases, no edge inE∗ crosses any edge inE3 since only edgef3 can cross an
edge inE3 andf1 ̸= f3 ̸= f2 by the choice off1 andf2. We denote the set of all end-vertices of edges in
E∗ by z1, z2, . . . , zq in the order they appear along∂γ. Then for eachi = 1, 2, . . . , q, setV∂γ(zi, zi+1)
(wherezp+1 = z1) must be empty, since otherwise no edge inE∗ can cross any other edge and{z, zi+1}
would be a cut-pair. This means that frille3 cannot exist anywhere along∂γ, a contradiction. ⊓⊔

We start with a triangle or 4-cycle fixed in Lemma 8 as a rim of a possible FO2PE ofG, where the
rim is a “partial embedding” ofG. For a triangleuvw (resp., a 4-cycleuvv′w) in a graphG, the instance
where edgesuv andvw (resp.,uv, vv′ andv′w) are required to appear as outer edges is given by(G,B)
with B = {uv, vw} (resp.,B = {uv, vv′, v′w}). In what follows, we denote the constraintB simply by
a vertex sequenceB = [u, v, w] (resp.,B = [u, v, v′, w]).

Our next aim is to design a procedure for constructing a possible FO2PE ofG as an extension of the
fixed rim. Suppose thatAlgorithm EXTEND (G,B) is a procedure that returns all FO2PE extensions
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of (G,B). By executing such a procedure to each candidate of rims, we can enumerate all FO2PE of a
triconnected graphG, as described inAlgorithm TRICONNECTED FO2PE below.

Algorithm TRICONNECTED FO2PE
Input: A triconnected simple graphG with maximum degree at most 4 andn ≥ 10.
Output: The setΓ of all FO2PEs ofG.
1: Γ := B := ∅;
2: if G contains a trianglethen
3: Choose a trianglet1 in G;
4: for each trianglet′ sharing an edge witht1 (possiblyt′ = t1) do
5: B := B ∪ {[u, v, w], [v, w, u], [w, u, v]} for the verticesu, v, w in trianglet′

6: end for;
7: for each[u, v, w] ∈ B for a triangleuvw do
8: Γ := Γ ∪ {EXTEND(G, [u, v, v′, w])}
9: end for
10: else/* G has no triangles */
11: if G contains a 4-cycle with two adjacent degree-3 verticesthen
12: Choose a 4-cycleu1u2u3u4 with degree-3 verticesu2 andu3;
13: B := {[u1, u2, u3, u4]};
14: if u1 andu4 are degree-3 verticesthen
15: B := B ∪ {[u3, u4, u1, u2]}
16: end if;
17: for each[u, v, v′, w] ∈ B for a 4-cycleuvv′w do
18: Γ := Γ ∪ {EXTEND(G, [u, v, v′, w])}
19: end for
20: end if
21: end if; /* |Γ | = O(1) */
22: OutputΓ after discarding duplications inΓ .

Supposing Lemma 10, we show that the above algorithm correctly runs inO(n) time. By Lemma 8,
the setB of sequences of triangles/4-cycles is a candidate of a rim of some FO2PE extension of(G,B)
if any. Hence the set{EXTEND(G,B) | B ∈ B} contains all FO2PE extensions of(G,B). Clearly
|B| = O(1) in each of lines 7 and 15. Then{EXTEND(G,B) | B ∈ B} can be obtained inO(n) time,
where|{EXTEND(G,B) | B ∈ B}| = O(|B|) = O(1) by Lemma 10. We can test if two sequences in
{EXTEND(G,B) | B ∈ B} are the same cyclic order or not inO(n) time. Since|{EXTEND(G,B) |
B ∈ B}| = O(1), we can outputΓ after discarding duplications from{EXTEND(G,B) | B ∈ B} in
O(n) time. Now to prove Theorem 2, it suffices to show Lemma 10. In the next section, we show how to
designEXTEND(G,B).

5.3 Reducing instances with fixed rims

In this section, we prove the following result by designingEXTEND(G,B).

Lemma 10. For a triconnected instance(G,B) with a fixed rim, the maximum number of FO2PE exten-
sions of(G,B) is constant, and all FO2PE extensions of(G,B) can be generated inO(n) time.

To prove Theorem 2, it suffices to show Lemma 10. We call an instance(G,B) triconnectedif G
is triconnected. To prove the lemma, we establish a reduction over triconnected instances(G,B) with
fixed rims. We try to extend a given partial embedding(G,B) by fixing some other vertices, and simplify
the instance with the newly fixed vertices into a triconnected instance(G′, B′) so that the new instance
(G′, B′) admits an FO2PE extension if and only if so does the original instance.

For an instance(G,B), a sequence[s1, s2, . . . , sk] is calledinevitableif any FO2PE extensionγ =
[v1, v2, . . . , vn] of (G,B) contains the sequence as its subsequence. Given an instance(G,B) with a
fixed rim, we identify an inevitable sequence or a frill contained in any FO2PE extension of(G,B)
without generating all possible permutations of the vertices inG. Based on the identified local structure
of inevitable sequences or frills, we reduce(G,B) into a smaller new instance(G′, B′) with a new fixed
rim B′ such that(G,B) is extendible if and only if so is(G′, B′).
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When we construct a new instance(G′ = G/X,B′) by contracting a vertex subsetX in G into a
single vertexv∗ and settingB′ to be the setV ′ of a new triangle or 4-cycle, we call a vertexv ∈ X an
attaching pointof (G′, B′) if each edgee = uv∗ ∈ E(v∗;G′) corresponds to an edgee ∈ E(v;G). We
introduce how to reduce an instance with a fixed(3, 3)-rim.

Before we give proofs of Lemmas 12, 13 and 14, we introduce the following technical lemma.

Lemma 11. Let G be a triconnected graph withn ≥ 8, and letB = [v1, v2, . . . , vp] (p = 3 or 4),
whereB = [v1, v2, v3] for a triangle v1v2v3 with a degree-3 vertexv2 andN(v2) = {v1, v2, w} (or
a degree-4 vertexv2 andN(v2) = {v1, v2, w, w′}) or B = [v1, v2, v3, v4] for a 4-cyclev1v2v3v4 with
degree-3 verticesv2 andv3 with N(v2) = {v1, v3, w} andN(v3) = {v2, v4, w′}. Let γ be an FO2PE
extension of(G,B), where we assume thatw ∈ V∂γ(v1, w

′) whenp = 3 anddeg(v2) = 4. Assume that
V∂γ(w, v1) ̸= ∅.

(i) If some edgee = ab between a vertexa ∈ V∂γ(w, v1) and a vertexb ∈ V∂γ [vp, w) has no crossing
with any edgea′a′′ (̸= v1w) with a′, a′′ ∈ V∂γ [w, v1], then it holdsV∂γ(w, v1) = {a}.

(ii) If |V∂γ(w, v1)| ≥ 2, thenv1w ̸∈ E holds, there is exactly one edgee = ab between a vertex
a ∈ V∂γ(w, v1) and a vertexb ∈ V∂γ [vp, w), and edgee crosses some edgea′a′′ (̸= v1w) with
a′, a′′ ∈ V∂γ [w, v1].

Proof. Sincen ≥ 8, embeddingγ is quasi-planar by Lemma 2, andw′ ∈ V∂γ(v4, w) holds forp = 4.
(i) Let e = ab be an edge between a vertexa ∈ V∂γ(w, v1) and a vertexb ∈ V∂γ [vp, w) such that no

edgea′a′′ (̸= v1w) with a′, a′′ ∈ V∂γ [w, v1] crossese. Note that edgev2w has two crossings on it and
edgev1vp crosses only edgev2w for p = 3 (edgesv2w andv3w′ for p = 4). Also now no edgea′a′′ (̸=
v1w) with a′, a′′ ∈ V∂γ [w, v1] crossese. Hence ifV∂γ(u, v) ̸= ∅ for a pair(u, v) ∈ {(w, a), (a, v1)},
then(u, v) would be a cut-pair since any possible edge betweenV∂γ(u, v) andV∂γ(v, u) would create
another crossing on edgev2w or v1vp.

(ii) Now |V∂γ(w, v1)| ≥ 2. Since{v1, w} is not a cut-pair, there is an edgee = ab between a vertex
a ∈ V∂γ(w, v1) and a vertexb ∈ V∂γ [vp, w). By (i), edgee has a crossing with some edgea′a′′ ( ̸= v1w)
with a′, a′′ ∈ V∂γ [w, v1]. However, in this case,e would cross three edgesv2w, a′a′′ andv1w if v1w ∈ E.
Hencev1w ̸∈ E also holds. ⊓⊔

Lemma 12. ((3, 3)-rim reduction) Let (G,B) be a triconnected extendible instance withn ≥ 7 for a
fixed(3, 3)-rim B = [v1, v2, v3] with N(v2) = {v1, v2, w}. Then one of the following conditions(i) and
(ii) holds, and the instance(G′, B′) defined in each condition is triconnected and extendible.

(i) Assume thatv1 or v3, sayv1 is a degree-4 vertex adjacent tow. (See Fig. 3.) Then[w, v1, v2, v3] is
inevitable to(G,B). LetG′ = G/{v2, v3} andB′ = [w, v1, v

∗]. Any FO2PE extension of(G,B)
is obtained by modifying an FO2PE extensionγ′ = [u1 = w, u2 = v1, u3 = v∗, u4, . . . , un′ ] of
(G′, B′) into γ = [w, v1, v2, v3, u4, . . . , un′ ].

(ii) Assume thatv1 or v3, sayv1 is a degree-3 vertex not adjacent tow. (See Fig. 4.) Then[z, v1, v2, v3]
is inevitable to(G,B). LetG′ = G/{z, v1} andB′ = [v∗, v2, v3]. Any FO2PE extension of(G,B)
is obtained by modifying any FO2PE extensionγ′ = [u1 = v∗, u2 = v2, u3 = v3, u4, . . . , un′ ] of
(G′, B′) into γ = [z, v1, v2, v3, u4, . . . , un′ ].

Proof. Let γ = [v1, v2, . . . , vn] be an arbitrary FO2PE extension of(G,B). By Lemma 3, each vertex in
G is of degree 3 or 4. If|V∂γ(w, v1)| ≥ 2 and|V∂γ(v3, w)| ≥ 2, thenγ has a(w, v2)-hooked edgeab (̸=
v1v3) and a(v2, w)-hooked edgea′b′ ( ̸= v1v3) by Lemma 11(ii). However, ifab = a′b′ then the edge
would have three crossings; otherwise (ab ̸= a′b′) edgev2w would get three crossings, a contradiction in
any way. Hence we have|V∂γ(w, v1)| ≤ 1 or |V∂γ(v3, w)| ≤ 1. First consider the case wherev1 or v3,
sayv1 is adjacent tow. If deg(v1) = 3, thenV∂γ(v3, w) ̸= ∅ by n ≥ 7 and{v3, w} would be a cut-pair.
Hencedeg(v1) = 4, satisfying condition (i).

Next assume that neither ofv1 andv3 is adjacent tow. Recall that|V∂γ(w, v1)| ≤ 1 or |V∂γ(v3, w)| ≤
1. Assume without loss of generality that|V∂γ(w, v1)| ≤ 1. Sincev1 is not adjacent tow, we see that
deg(v1) = 3, satisfying condition (ii).

(i) Assume thatv1 or v3, sayv1 is a degree-4 vertex adjacent tow. To prove that[w, v1, v2, v3] is
inevitable to(G,B), it suffices to show thatV∂γ(w, v1) = ∅ in γ. Sincev1w ∈ E, it holds|V∂γ(w, v1)| ≤
1 by Lemma 11(ii). To derive a contradiction, assume that|V∂γ(w, v1)| = 1, where an edgee = ab joins
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Fig. 3. Illustration for the reduction in Lemma 12(i) from an instance(G,B = [v1, v2, v3]) with a fixed(3, 3)-rim of
a trianglev1v2v3 with a degree-3 vertexv2 to a new instance(G′, B′): (a) a graphG such thatv1 is a degree-3 vertex
adjacent tow; (b) a new instance(G′ = G/{v2, v3}, B′ = [w, v1, v

∗]) with a new(3, 3)-rim of trianglewv1v
∗ with

a degree-3 vertexv1.

Fig. 4. Illustration for the reduction in Lemma 12(ii) from an instance(G,B = [v1, v2, v3]) with a fixed(3, 3)-rim
of a trianglev1v2v3 with a degree-3 vertexv2 to a new instance(G′, B′): (a) a graphG such thatv1 is a degree-3
vertex not adjacent tow; (b) a new instance(G′ = G/{z, v1}, B′ = [v∗, v2, v3]) with a new(3, 3)-rim of triangle
v∗v2v3 with a degree-3 vertexv2.
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the vertexa ∈ V∂γ(w, v1) and a vertexb ∈ V∂γ [v3, w) since{w, v1} is not a cut-pair. Also byn ≥ 7, it
holds|V∂γ(v2, w)| ≥ 3, and there is a(v2, w)-hooked edgee′ = a′b′ that joins a vertexa′ ∈ {a, v1} and
a vertexb′ ∈ V∂γ [v3, w). However, ife′ = e then the edge would have three crossings; otherwise (e ̸= e′)
edgev2w would get three crossings, a contradiction in any way. ThereforeV∂γ(w, v1) = ∅, as required.

We show thatG′ = G/{v2, v3} is triconnected, IfG′ is not triconnected, i.e., there is a pair of
verticesu andu′ such thatG′ − {u, u′} is disconnected, thenv∗ ∈ {u, u′} holds, since otherwise a
componentH in G′ − {u, u′} not containingv∗ still can be separated inG − {u, u′}, contradicting the
triconnectivity ofG. Therefore, to show thatG′ = G/{v2, v3} is triconnected, it suffices to show that
G − {v2, v3, x} remains connected for any vertexx in G. Let N(v1;G) = {v2, v3, w, w′}. Note that
v3 is an attaching point of(G′, B′) (i.e., any edgee = uv∗ ∈ E(v∗;G′) − {v1v∗, wv∗} corresponds
to an edgee ∈ E(v3;G)). Sinceγ is a Hamiltonian cycle wherev1 and v2 appear consecutively, if
G−{v2, v3, x} is not connected then one of the components, sayH in the graph is given byG[V∂γ(x, v1]],
wherew′ ∈ V∂γ(x,w) by v1w′ ∈ E. Sincev3 is an attaching point of(G′, B′), H is still a component of
G− {v3, x}, contradicting the triconnectivity ofG.

We next show that(G′, B′ = [w, v1, v
∗]) is extendible. Letγ′′ be the cyclic order obtained from

γ = [v1, v2, . . . , vn] by replacingv2 andv3 with v∗. ThenC∂γ′′ = ∅ holds,B′ = [w, v1, v
∗] is a(3, 3)-

rim with degree-3 vertexv1 in γ′′, and each edge not in the new trianglewv1v
∗ has the same number of

crossing on it, implying thatγ′′ is a FO2PE extension of(G′, B′).
Conversely for any FO2PE extensionγ′ = [u1 = w, u2 = z, u3 = v∗, u4, . . . , un′ ] of (G′, B′),

let γ = [w, z, v1, v2, v3, u4, . . . , un′ ] be the cyclic order obtained fromγ′ by replacing subsequence
[z, v∗, u4] with subsequence[z, v1, v2, v3, u4]. In γ, no new crossing is introduced by the expansion of
v∗ into {v2, v3} becausev3 is an attaching point of(G′, B′). Henceγ is an FO2PE extension of(G,B).
The way of constructingγ from γ′ is the reverse operation of the way of constructing the above FO2PE
extensionγ′′ of (G′, B′) from an FO2PE extensionγ of (G,B). Hence ifγ′ = γ′′, then the original
FO2PE extensionγ can be obtained fromγ′′. This means that any FO2PE extension of(G,B) is obtained
by modifying an FO2PE extensionγ′ of (G′, B′).

(ii) Assume thatv1 or v3, sayv1 is a degree-3 vertex not adjacent tow. Sincedeg(v1) = 3, the
remaining incident edgezv1 must be an outer edge in any FO2PE extension of(G,B), and[z, v1, v2, v3]
is inevitable to(G,B). Note that vertexz is an attaching point of(G′ = G/{z, v1}, B′ = [v∗, v2, v3]).

To prove thatG′ = G/{z, v1} is triconnected, it suffices to show thatG−{z, v1, x} remains connected
for any vertexx inG. Sinceγ is a Hamiltonian cycle wherez andv1 appear consecutively, ifG−{z, v1, x}
is not connected then one of the components, sayH in the graph is given byG[V∂γ(x, v1]], andw ̸∈
V∂γ(x, z) ⊇ N(z) − {v1} holds. Sincez is an attaching point of(G′, B′), H is still a component of
G− {z, x}, contradicting the triconnectivity ofG.

Analogously with (i), we can show that(G′, B′) is extendible and that any FO2PE extension of(G,B)
can be obtained by modifying an FO2PE extensionγ′ = [u1 = v∗, u2 = v2, u3 = v3, u4, . . . , un′ ] of
(G′, B′) into γ = [z, v1, v2, v3, u4, . . . , un′ ]. ⊓⊔

The next lemma provides how to reduce an instance with a fixed(3, 4)-rim. Note that for an instance
(G,B = [v1, v2, v3]) with N(v2) = {v1, v2, w1, w2} for a (3, 4)-rim, we do not know the order of
verticesw1 andw2 along the boundary of an FO2PE extension of(G,B).

Lemma 13. ((3, 4)-rim reduction) Let (G,B) be a triconnected extendible instance withn ≥ 7 for a
fixed(3, 4)-rim B = [v1, v2, v3] with N(v2) = {v1, v2, w1, w2}. Then one of the following conditions
(i)-(iv) holds, and the instance(G′, B′) defined in each condition is triconnected and extendible.

(i) Assume thatv1 or v4, sayv1 is a degree-3 vertex, whereN(v1) = {v2, v3, z}. (See Fig. 5.) Then
[z, v1, v2, v3] is inevitable to(G,B). Let G′ = G/{v1, z} andB′ = [v∗, v2, v3]. Any FO2PE ex-
tension of(G,B) is obtained by modifying an FO2PE extensionγ′ = [u1 = v∗, u2 = v2, u3 =
v3, u4, . . . , un′ ] of (G′, B′) into γ = [z, v1, v2, v3, u4, . . . , un′ ].

(ii) Assume thatv1 or v4, sayv is a degree-4 vertex adjacent to exactly one ofw1 andw2, sayw, and
there is a pair of a degree-3 vertexz and a vertexy such thatvwz andwzy are triangles. Letv = v1
without loss of generality.(See Fig. 6.) Then any FO2PE extension of(G,B) has zw as a frill.
Let G′ = G/{y, z, w, v1} andB′ = [v∗, v2, v3]. Any FO2PE extension of(G,B) is obtained by
modifying an FO2PE extensionγ′ = [u1 = v∗, u2 = v2, u3 = v3, u4, . . . , un′ ] of (G′, B′) into
γ = [y, z, w, v1, v2, v3, u4, . . . , un′ ] and[y, w, z, v1, v2, v3, u4, . . . , un′ ].
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(iii) Assume thatv1 or v4, say v is a degree-4 vertex adjacent to exactly one ofw1 and w2, sayw,
but there is no pair of a degree-3 vertexz and a vertexy such thatvwz and wzy are triangles.
Let (v, w) = (v1, w2) without loss of generality.(See Fig. 7.) Then[w2, v1, v2, v3] is inevitable to
(G,B). LetG′ be the graph obtained fromG by replacing edgesv1v3 and v2w2 with a new edge
w1v3, andB′ = [w2, v1, v2, v3]. Any FO2PE extension of(G,B) is obtained as an FO2PE extension
γ′ = [u1, u2, u3, u4, . . . , un′ ] of (G′, B′).

(iv) Assume that none of the above conditions(i)-(iii) holds and there is an edgez1z2 ∈ E between
two degree-3 verticesz1 ∈ N(w) and z2 ∈ N(w′) for {w,w′} = {w1, w2} or a degree-4 ver-
tex z ∈ N(w1) ∩ N(w2). (See Fig. 8.) Then any FO2PE extension of(G,B) contains exactly
one of[w, z1, z2, w′] and [w′, z2, z1, w] (or exactly one of[w, z, w′] and [w′, z, w]) as a sequence.
Let G′ be the graph obtained fromG by removing vertexv2 and adding a new edgew1w2, and
B′ = [w, z1, z2, w

′] (or B′ = [w1, z, w2]). Verticesv1 andv3 appear consecutively in any FO2PE
extensionγ′ of (G′, B′). Any FO2PE extension of(G,B) is obtained by modifying an FO2PE exten-
sionγ′ = [u1 = v1, u2 = v3, u3, . . . , un′ ] of (G′, B′) into γ = [v1, v2, v3, u3, . . . , un′ ].

Fig. 5. Illustration for the reduction in Lemma 13(i) from an instance(G,B = [v1, v2, v3]) with a fixed(3, 4)-rim
of a trianglev1v2v3 with a degree-4 vertexv2 and a degree-3 vertexv1 (N(v1) = {v2, v3, z}) to a new instance
(G′, B′): (a) a graphG such thatz ̸∈ {w1, w2}; (b) a new instance(G′ = G/{z, v1}, B′ = [v∗, v2, v3]) with a new
(3, 4)-rim of trianglev∗v2v3 with a degree-4 vertexv2; (c) a graphG such thatz ∈ {w1, w2}; (d) a new instance
(G′ = G/{z, v1}, B′ = [v∗, v2, v3]) with a new(3, 3)-rim of trianglev∗v2v3 with a degree-3 vertexv2.

Proof. (i) Since deg(v1) = 3, clearly [z, v1, v2, v3] is inevitable to(G,B). Note that vertexz is an
attaching point of(G′ = G/{z, v1}, B′ = [v∗, v2, v3]). Analogously with the proof of Lemma 12(i)-(ii),
we can show that(G′, B′) is triconnected and extendible and that for any FO2PE extensionγ′ = [u1 =
v∗, u2 = v2, u3 = v3, u4, . . . , un′ ] of (G′, B′), γ = [z, v1, v2, v3, u4, . . . , un′ ] is an FO2PE extension of
(G,B).

(ii) Assume thatv1 is a degree-4 vertex adjacent to exactly one ofw1 andw2, sayw, and there is a pair
of a degree-3 vertexz and a vertexy such thatv1wz andwzy are triangles. Letw′ ∈ N(v1)−{v2, v3, w}.
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Fig. 6. Illustration for the reduction in Lemma 13(ii) from an instance(G,B = [v1, v2, v3]) with a fixed(3, 4)-rim
of a trianglev1v2v3 with a degree-4 vertexv2 to a new instance(G′, B′): (a) a graphG such thatv1 is a degree-4
vertex adjacent to exactly one ofw1 andw2, sayw2, and there is a pair of a degree-3 vertexz and a vertexy such that
v1w2z andw2zy are triangles; (b) a new instance(G′ = G/{y, z, w2, v1}, B′ = [v∗, v2, v3]) with a new(3, 3)-rim
of trianglev∗v2v3 with a degree-3 vertexv2.

Fig. 7. Illustration for the reduction in Lemma 13(iii) from an instance(G,B = [v1, v2, v3]) with a fixed(3, 4)-rim
of a trianglev1v2v3 with a degree-4 vertexv2 to a new instance(G′, B′): (a) a graphG such thatv1 is a degree-4
vertex adjacent to exactly one ofw1 andw2, sayw2, but there is no pair of a degree-3 vertexz and a vertexy such that
v1w2z andw2zy are triangles; (b) a new instance(G′, B′ = [w2, v1, v2, v3]) with a new4-rim of 4-cyclew2v1v2v3
with degree-3 verticesv1 andv2, whereG′ is obtained fromG by replacing edgesv1v3 andv2w2 with a new edge
w1v3.
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Fig. 8. Illustration for the reduction in Lemma 13(iv) from an instance(G,B = [v1, v2, v3]) with a fixed(3, 4)-rim of
a trianglev1v2v3 with a degree-4 vertexv2 to a new instance(G′, B′): (a) a graphG such that none of conditions (i)-
(iii) in Lemma 13 holds and there is an edgez1z2 ∈ E between two degree-3 verticesz1 ∈ N(w) andz2 ∈ N(w′)
for {w,w′} = {w1, w2}; (b) a new instance(G′, B′ = [w, z1, z2, w

′]) with a new4-rim of 4-cyclewz1z2w
′ with

degree-3 verticesz1 andz2, whereG′ is obtained fromG by removing vertexv2 and adding a new edgew1w2; (c) a
graphG such that none of conditions (i)-(iii) in Lemma 13 holds and there is a degree-4 vertexz ∈ N(w1)∩N(w2);
(d) a new instance(G′, B′ = [w1, z, w2]) with a new(3, 4)-rim of 3-cyclewzw′ with a degree-3 vertexz, whereG′

is obtained fromG by removing vertexv2 and adding a new edgew1w2.
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Let γ = [v1, v2, . . . , vn] be an arbitrary FO2PE extension of(G,B), wherew2 ∈ V∂γ(w1, v1) without
loss of generality. Note that vertexy is an attaching point of(G′ = G/{y, z, w, v1}, B′ = [v∗, v2, v3]).

We first show thatγ contains[y, z, w, v1, v2] or [y, w, z, v1, v2] as a subsequence. Clearlyγ contains
[w, v1, v2] or [z, v1, v2], since it is Hamiltonian. Consider the case whereγ contains[w, v1, v2]. Since
N(z) = {v1, w, y}, verticesy, z andw must appear consecutively in this order (otherwisez would
have only one outer edge incident to it inγ). Similarly whenγ contains[z, v1, v2] we see fromN(w) =
{v1, v2, z, y} that verticesy,w andz appear consecutively in this order (otherwisew would have only one
outer edge incident to it inγ). Thereforeγ contains frillzw, andw = w2 for the vertexw2 ∈ V∂γ(w1, v1).

We next show thatG′ = G/{y, z, w, v1} is triconnected. For this, it suffices to show thatG −
{y, z, w = w2, v1, x} remains connected for any vertexx in G. Sinceγ is a Hamiltonian cycle where the
verticesy, {z, w2} andv1 appear consecutively in this order, ifG − {y, z, w = w2, v1, x} is not con-
nected then one of the components, sayH in the graph is given byG[V∂γ(x, y)], wherew1 ∈ V∂γ(v3, x)
holds byv2w1 ∈ E. Sincey is an attaching point of(G′, B′), H is still a component ofG − {y, x},
contradicting the triconnectivity ofG.

Analogously with the proof of Lemma 12(i)-(ii), we can show that(G′, B′ = [v∗, v2, v3]) is ex-
tendible, and that any FO2PE extension of(G,B) can be obtained by modifying an FO2PE extension
γ′ = [u1 = v∗, u2 = v2, u3 = v3, u4, . . . , un′ ] of (G′, B′) into [y, z, w, v1, v2, v3, u4, . . . , un′ ] and
[y, w, z, v1, v2, v3, u4, . . . , un′ ].

(iii) Assume thatv1 is a degree-4 vertex adjacent to exactly one ofw1 andw2, sayw, but there is no
pair of a degree-3 vertexz and a vertexy such thatvwz andwzy are triangles. Let(v, w) = (v1, w2)
without loss of generality. Letz ∈ N(v1)− {v2, v3, w}, andγ = [v1, v2, . . . , vn] be an arbitrary FO2PE
extension of(G,B).

We first claim that edgev1w is an outer edge inγ. Otherwise by applying Lemma 11(ii) to inner edge
v2w, we see thatV∂γ(w, v1) = {z} andz has exactly one inner edgeza incident to it. Nowdeg(z) = 3
andv1zw is a triangle, but we see thata is not adjacent tow, sincewz is not in two triangles by the
assumption on (iii). HenceV∂γ(a,w) ̸= ∅, which, however, implies that{a,w} is a cut-pair since each
of edgeswv2 andza has already two crossings. This proves the claim, and[w, v1, v2, v3] is inevitable to
(G,B). Thenw = w2 without loss of generality, wherew2 ∈ V∂γ(w1, v1) holds.

Let G′ be the graph obtained fromG by replacing edgesv1v3 andv2w2 with a new edgew1v3. To
show thatG′ remains triconnected, we assume thatG′ has a cut-pair{u, u′}. We remove edgesv1v3 and
v2w2 and add a new edgew1v3 in the FO2PE extensionγ = [v1, v2, . . . , vn] of (G,B). Since the same
set of outer edges still forms a Hamiltonian cycle in the resulting embedding, we see thatu andu′ are
not consecutive along the cycle and both of them must be contained inV∂γ [v3, w2] or V∂γ [w2, v3] in G′.
In the former case, the componentH in G′ − {u, u′} with V (H) ⊆ V∂γ [v3, w2] would be separated in
G−{u, u′}, contradicting the triconnectivity ofG. In the latter,{u, u′} is given by{w2, v2} or {v1, v3},
which, however cannot be a cut-pair inG′ due to edgesv1w′ andv2w1. This proves thatG′ is triconnected.

Any edgee incident to a vertex inV (G) − {w2, v1, v2, v3} = V (G′) − {w2, v1, v2, v3} has the
same number crossings inγ even forG′, implying thatγ is also an FO2PE extension of(G′, B′ =
[w2, v1, v2, v3]). Hence(G′, B′) is extendible. Similarly for any FO2PE extensionγ′ = [u1, u2, . . . , un]
of (G′, B′), any edgee incident to a vertex inV (G)− {w2, v1, v2, v3} has the same number crossings in
γ′ even forG, γ′ is also an FO2PE extension of(G,B).

(iv) Assume that inG, each ofv1 andv3 is a degree-4 vertex which is adjacent to both ofw1 and
w2 or neither of them inG. Let γ = [v1, v2, . . . , vn] be an arbitrary FO2PE extension of(G,B), where
w2 ∈ V∂γ(w1, v1) without loss of generality. By Lemma 3, each vertex inG is of degree 3 or 4.

We first claim that neither ofv1 andv4 is adjacent to both ofw1 andw2. To derive a contradiction,
let N(v1) = {v2, v4, w1, w2}. ThenV∂γ(w2, v1) = ∅. If |V∂γ(w1, v1)| ≥ 3 (resp.,|V∂γ(v2, w1)| ≥ 3),
thenγ would have a(w2, v1)-hooked edge (resp., a(v2, w1)-hooked edge)e, which, however crosses
edgesw1v1 andw1v2 too, a contradiction. Hence|V∂γ(w1, v1)| ≤ 2 and |V∂γ(v2, w1)| ≤ 2, where
|V∂γ(w1, w2)| = |V∂γ(v3, w1)| = 1 holds byn ≥ 7 and an edgeab joins the vertexa ∈ V∂γ(w1, w2)
and the vertexb ∈ V∂γ(v3, w1). However, the edgev3x with x ∈ N(v3)− {v1, v2, b} crosses edgeab or
edgew1v2, creating the third crossing there, a contradiction. This proves the claim. Now each ofv1 and
v3 is a degree-4 vertex which is adjacent to neither ofw1 andw2 in G.

Let the two neighborsx1 andx2 in N(v1) − {v2, v3} appear in this order along∂γ(v3, v1). We
show thatx1, x2 ∈ V∂γ(w2, v1). Sincev1 is not adjacent tow2, we havex2 ∈ V∂γ(w2, v1). If x1 ∈
V∂γ(v3, w2), then an edgeab joins a vertexa ∈ V∂γ(w2, v1) and a vertexb ∈ V∂γ(v1, w2) since{w2, v1}
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is not a cut-pair. However, edgeab creates the third crossing on edgew2v2. Hence we have{x1, x2} ⊆
V∂γ(w2, v1). Symmetrically we haveN(v3) − {v2, v3} ⊆ V∂γ(v3, w1). Since|V∂γ(w2, v2)| ≥ 3 (resp.,
|V∂γ(v2, w1)| ≥ 3), there is a(w2, v2)-hooked edgey2z2 betweeny2 ∈ V∂γ(w2, v1) andz2 ∈ V∂γ(v3, w2)
(resp., a(v2, w1)-hooked edgey1z1 betweeny1 ∈ V∂γ(v3, w1) andz1 ∈ V∂γ(w1, v1)). In fact, it must
hold thatz1 ∈ V∂γ(w1, z2] andz2 ∈ V∂γ [z1, w2) since otherwise one of edgesv2w1, v2w2, y1z1 and
y2z2 would get three crossings. Note that possiblyz1 = z2. Since each of these four edges already has
two crossings, we see thatV∂γ(w1, w2) = {z1, z2} (otherwise one of{w1, z1}, {z1, z2} and{z2, w2}
would be a cut-pair), and thatdeg(z1) = deg(z2) = 3 whenz1 ̸= z2. We easily see that there is no
other pair{z′1, z′2} than{z1, z2} which satisfies condition (iv), since otherwise edgey1z1 would further
cross some edge in the cyclew1z1z2w2z

′
2z

′
1 (in other words, if a vertex pair{z′1, z′2} satisfies condition

(iv) then{z′1, z′2} = {z1, z2}). Therefore for{w,w′} = {w1, w2}, any FO2PE extension of(G,B) con-
tains exactly one of[w, z1, z2, w′] and [w′, z2, z1, w] (whenz1 ̸= z2) or exactly one of[w1, z, w2] and
[w2, z, w1] (whenz = z1 = z2) as a sequence.

Let G′ be the graph obtained fromG − v2 by adding a new edgew1w2, andB′ = [w, z1, z2, w
′]

(or B′ = [w, z, w′]). We show that(G′, B′) is triconnected and extendible. Given any FO2PE extension
γ = [v1, v2, v3, . . . , vn] of (G,B), we easily see thatγ′′ = [v1, v3, . . . , vn] is an FO2PE extension of
(G′, B′), since the added edgew1w2 has two crossings with edgesy1z1 andy2z2. Hence(G′, B′) is
extendible.

To prove the triconnectivity ofG′, we assume thatG′ has a cut-pair{u, u′}. In γ′′, only a vertex
pair {u, u′} such that|{u, u′} ∩ {a, b}| ∈ {0, 2} for any inner edgeab ∈ {y1z1, y2z2, w1w2} can be a
cut-pair inG′. Thus,{u, u′} is contained in one ofV∂γ′′ [y1, w1], V∂γ′′ [w2, w2] andV∂γ′′ [y2, y1]. Also
if {u, u′} ⊆ V∂γ′′ [v3, w1] or {u, u′} ⊆ V∂γ′′ [w2, v1], then clearly{u, u′} is also a cut-pair inG. Hence
it must hold thatu ∈ V∂γ′′ [v3, y1], u′ ∈ V∂γ′′ [y2, v1] and{u, u′} ̸= {v1, v3}. Let H be the component
in G′ − {u, u′} containing vertexv1 or v3, sayv3. Note that no vertex inV∂γ′′ [v3, u) has a neighbor
in V∂γ′′ [y2, v1) since edgev2w2 has two crossings inγ. Consider the vertex setV∂γ′′(v3, u) ⊆ V (H),
whereV∂γ′′(v3, u) ̸= ∅ sincedeg(v3;G′) = 3 andv3 has no neighbor inV∂γ′′ [y2, v1). This means that
the vertex setV∂γ′′(v3, u) will be separated inG− {v3, u}, contradicting the triconnectivity ofG.

Finally we show how to construct an FO2PE extension of(G,B) from an FO2PE extensionγ′ of
(G′, B′) after deriving an important property onγ′. We first examine the graph structure of(G,B) which
admits an FO2PE extensionγ. Let A1 = V∂γ(v3, z1) andA2 = V∂γ(z2, v1) whenz1 ̸= z2, andA1 =
V∂γ(v3, z) andA2 = V∂γ(z, v1) whenz1 ̸= z2. Consider the case ofz1 ̸= z2 (the case ofz = z1 = z2
can be treated analogously). Without loss of generality denotew ∈ N(z1) by w1 andw′ ∈ N(z1) by
w2. ThenB′ = [w, z1, z2, w

′] = [w1, z1, z2, w2], and any FO2PE extensionγ′ of (G′, B′) contains
[w1, z1, z2, w2] as a subsequence by definition. ThenG′ has only two edges betweenA1 andA2, i.e.,
edgesz1z2 andv1v3. This means that the vertices inA1 appear in some order consecutively along∂γ′ of
any FO2PE extensionγ′ of (G′, B′), since otherwise a crossing would be generated on the boundary∂γ′.
Thus any FO2PE extensionγ′ = [u1 = v1, u2 = v3, u3, . . . , un′ ] of (G′, B′) satisfiesA1 ⊆ V∂γ′(u3, ui)
for ui = z1 andA2 ⊆ V∂γ′(ui+1 = z2, u1). In particularv1, v3, w1, z1, z2, w2 appear in this order andv1
andv3 appear consecutively along∂γ′ (recall that verticesw1, z1, z2, w2 appear in this order in an FO2PE
extensionγ of (G,B)). Note that there is no edge betweenV∂γ′(u3, ui = z1) andV∂γ′(ui+1 = z2, u1).
Therefore the cyclic orderγ = [v1, v2, v3, u3, . . . , un′ ] obtained fromγ′ by insertingv2 betweenu1 = v1
andu2 = v2 is an FO2PE extension of(G,B), since the edgew1w2 is replaced with edgesw1v2 and
w2v2 in G without creating any new crossings on the other edges inG. The way of constructingγ from
γ′ is the reverse operation of the way of constructing the above FO2PE extensionγ′′ of (G′, B′) from
an FO2PE extensionγ of (G,B). Hence any FO2PE extension of(G,B) is obtained by modifying an
FO2PE extensionγ′ of (G′, B′).

We here remark that computing the setsA1 andA2 would takeΩ(n) time. However, without know-
ing {A1, A2}, in particular for the case ofz = z1 = z2, we can reduce(G,B) into (G′, B′) only by
identifyingz1 andz2 (or z = z1 = z2), which can be done inO(1) time. ⊓⊔

The next lemma provides how to reduce an instance with a fixed4-rim. Note that for an instance
(G,B = [v1, v2, v3, v4]) with N(v2) = {v1, v3, w2} andN(v3) = {v2, v4, w1} for a 4-rim, we see
thatw1 andw2 appear always in this order after verticesv1, v2, v3, v4 appear along the boundary of any
“quasi-planar” FO2PE extension of(G,B).
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Lemma 14. (4-rim reduction) Let (G,B) be a triconnected extendible instance withn ≥ 8 for a fixed
4-rim B = [v1, v2, v3, v4] with N(v2) = {v1, v3, w2} andN(v3) = {v2, v4, w1} (possiblyw1 = w2).
Then one of the following conditions(i)-(v) holds, and the instance(G′, B′) defined in each condition is
triconnected and extendible.

(i) Assume thatv1 or v4, sayv1 is a degree-3 vertex adjacent to neither ofw1 andw2. (See Fig. 9.) Then
for z ∈ N(v1) − {v2, v3}, [z, v1, v2, v3, v4] is inevitable to(G,B). LetG′ = G/{v1, z} andB′ =
[v∗, v2, v3, v4]. Any FO2PE extension of(G,B) is obtained by modifying an FO2PE extensionγ′ =
[u1 = v∗, u2 = v2, u3 = v3, u4 = v4, u5, . . . , un′ ] of (G′, B′) intoγ = [z, v1, v2, v3, v4, u5, . . . , un′ ].

(ii) Assume that for(v, w) = (v1, w2) or (v4, w1), v is a degree-3 vertex adjacent tow. Let (v, w) =
(v1, w2) without loss of generality.(See Fig. 10.) Then[w2, v1, v2, v3, v4] is inevitable to(G,B).
Let G′ = G/{w2, v1, v2} andB′ = [v∗, v3, v4]. Any FO2PE extension of(G,B) is obtained by
modifying an FO2PE extensionγ′ = [u1 = v∗, u2 = v3, u3 = v4, u4, . . . , un′ ] of (G′, B′) into
γ = [w2, v1, v2, v3, v4, u4, . . . , un′ ].

(iii) Assume that for(v, w) = (v1, w2) or (v4, w1), v is a degree-4 vertex adjacent tow, and there is a
pair of a degree-4 vertexz and a vertexy such thatvwz andwzy are triangles. Let(v, w) = (v1, w2)
without loss of generality.(See Fig. 11.) Then any FO2PE extensionγ = [v1, v2, . . . , vn] of (G,B)
haszw2 as a frill. LetG′ = G/{y, z, w2, v1, v2} andB′ = [v∗, v3, v4]. Any FO2PE extension of
(G,B) is obtained by modifying an FO2PE extensionγ′ = [u1 = v∗, u2 = v3, u3 = v4, u4, . . . , un′ ]
of (G′, B′) into γ = [y, z, w2, v1, v2, v3, v4, u4, . . . , un′ ] and[y, w2, z, v1, v2, v3, v4, u4, . . . , un′ ].

(iv) Assume that for(v, w) = (v1, w2) or (v4, w1), v is a degree-4 vertex adjacent tow, but there is no
pair of a degree-4 vertexz and a vertexy such thatvwz andwzy are triangles. Let(v, w) = (v1, w2)
without loss of generality.(See Fig. 12.) Then[w2, v1, v2, v3, v4] is inevitable to(G,B). LetG′ be
the graph obtained fromG by replacing edgesv1v4 andv2w2 with a new edgew2v4 and contracting
v1 and v2 into a single vertexv∗, andB′ = [w2, v

∗, v3, v4]. Any FO2PE extension of(G,B) is
obtained by modifying an FO2PE extensionγ′ = [u1 = w2, u2 = v∗, u3 = v,u4 = v4, u5, . . . , un′ ]
of (G′, B′) into γ = [w2, v1, v2, v3, v4, u5, . . . , un′ ].

(v) Assume that none of the above conditions(i)-(iv) holds,w1 ̸= w2, and there is an edgez1z2 ∈
E between two degree-3 verticesz1 ∈ N(w1) and z2 ∈ N(w2) (there is a degree-4 vertexz ∈
N(w1) ∩ N(w2)). (See Fig. 13.) Then[w1, z1, z2, w2] (or [w1, z, w2]) is inevitable to(G,B). Let
G′ be the graph obtained fromG by removing verticesv2 and v3 and adding a new edgew1w2,
andB′ = [w1, z1, z2, w2] (or B′ = [w1, z, w2]). Verticesv1 and v4 appear consecutively in any
FO2PE extensionγ′ of (G′, B′). Any FO2PE extension of(G,B) is obtained by modifying an FO2PE
extensionγ′ = [u1 = v1, u2 = v4, u3, . . . , un′ ] of (G′, B′) into γ = [v1, v2, v3, v4, u3, . . . , un′ ].

Fig. 9. Illustration for the reduction in Lemma 14(i) from an instance(G,B = [v1, v2, v3, v4]) with a fixed4-rim
of a 4-cyclev1v2v3v4 with degree-3 verticesv2 andv3 to a new instance(G′, B′): (a) a graphG such thatv1 is a
degree-3 vertex adjacent to neither ofw1 andw2; (b) a new instance(G′ = G/{v1, z}, B′ = [v∗, v2, v3, v4]) with
a new4-rim of 4-cyclev∗v2v3v4 with degree-3 verticesv2 andv3.

Proof. Let γ = [v1, v2, . . . , vn] be an arbitrary FO2PE extension of(G,B). By Lemma 3, each vertex
in G is of degree 3 or 4. Sincen ≥ 7, embeddingγ is quasi-planar by Lemma 2, and hence it holds
w2 ∈ V∂γ(w1, v1).

19



Fig. 10. Illustration for the reduction in Lemma 14(ii) from an instance(G,B = [v1, v2, v3, v4]) with a fixed4-rim
of a 4-cyclev1v2v3v4 with degree-3 verticesv2 andv3 to a new instance(G′, B′): (a) a graphG such thatv1 is a
degree-3 vertex adjacent tow2; (b) a new instance(G′ = G/{w2, v1, v2}, B′ = [v∗, v3, v4]) with a new(3, 3)-rim
of trianglev∗v3v4 with a degree-3 vertexv3.

Fig. 11. Illustration for the reduction in Lemma 14(iii) from an instance(G,B = [v1, v2, v3, v4]) with a fixed4-rim
of a 4-cyclev1v2v3v4 with degree-3 verticesv2 andv3 to a new instance(G′, B′): (a) a graphG such thatv1 is a
degree-4 vertex adjacent tow2, and there is a pair of a degree-4 vertexz and a vertexy such thatv1w2z andw2zy
are triangles; (b) a new instance(G′ = G/{y, z, w2, v1, v2}, B′ = [v∗, v3, v4]) with a new(3, 3)-rim of triangle
v∗v3v4 with a degree-3 vertexv3.

Fig. 12. Illustration for the reduction in Lemma 14(iv) from an instance(G,B = [v1, v2, v3, v4]) with a fixed4-rim
of a 4-cyclev1v2v3v4 with degree-3 verticesv2 andv3 to a new instance(G′, B′): (a) a graphG such thatv1 is a
degree-4 vertex adjacent tow2, but there is no pair of a degree-4 vertexz and a vertexy such thatv1w2z andw2zy
are triangles; (b) a new instance(G′, B′ = [w2, v

∗, v3, v4]) with a new4-rim of 4-cyclew2, v
∗v3v4 with degree-3

verticesv∗ andv3, whereG′ is obtained fromG by replacing edgesv1v4 andv2w2 with a new edgew2v4 and
contractingv1 andv2 into a single vertexv∗.
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Fig. 13. Illustration for the reduction in Lemma 14(v) from an instance(G,B = [v1, v2, v3, v4]) with a fixed4-
rim of a 4-cyclev1v2v3v4 with degree-3 verticesv2 andv3 to a new instance(G′, B′): (a) a graphG such that
none of conditions (i)-(iv) in Lemma 14 holds,w1 ̸= w2, and there is an edgez1z2 ∈ E between two degree-3
verticesz1 ∈ N(w1) andz2 ∈ N(w2); (b) a new instance(G′, B′ = [w1, z1, z2, w2]) with a new4-rim of 4-cycle
w1z1z2w2 with degree-3 verticesz1 andz2, whereG′ is obtained fromG by removing verticesv2 andv3 and adding
a new edgew1w2; (c) a graphG such that none of conditions (i)-(iv) in Lemma 14 holds,w1 ̸= w2, and there is a
degree-4 vertexz ∈ N(w1) ∩ N(w2); (d) a new instance(G′, B′ = [w1, z, w2]) with a new(3, 4)-rim of triangle
w1zw2 with degree-4 vertexz, whereG′ is obtained fromG by removing verticesv2 andv3 and adding a new edge
w1w2.

21



Let z ∈ N(v1) = {v2, v4, z}, wherez ∈ V∂γ(w2, v1). Hence ifv1 cannot be adjacent tow1, and
symmetricallyv4 cannot be adjacent tow2. This means that whenv1 or v4 is a degree-3 vertex, condition
(i) or (ii) holds. Also whenv1 is a degree-4 vertex adjacent tow2 or v4 is a degree-4 vertex adjacent to
w1, condition (iii) or (iv) holds.

We consider the remaining case wherev1 is a degree-4 vertex not adjacent tow2 andv4 is a degree-4
vertex not adjacent tow1.

Let the two neighborsx1, x2 ∈ N(v1)−{v2, v4} appear in this order along∂γ(v4, v1). We show that
x1, x2 ∈ V∂γ(w2, v1). Sincev1 is not adjacent tow2, we havex2 ∈ V∂γ(w2, v1). If x1 ∈ V∂γ(v4, w2),
then an edgeab joins a vertexa ∈ V∂γ(w2, v1) and a vertexb ∈ V∂γ(v1, w2) since{w2, v1} is not
a cut-pair. However, edgeab creates the third crossing on edgew2v2. Hence we have{x1, x2} ⊆
V∂γ(w2, v1). Symmetrically we haveN(v4) − {v1, v3} ⊆ V∂γ(v4, w1). Since|V∂γ(w2, v2)| ≥ 3 (resp.,
|V∂γ(v3, w1)| ≥ 3), there is a(w2, v2)-hooked edgey2z2 betweeny2 ∈ V∂γ(w2, v1) andz2 ∈ V∂γ(v4, w2)
(resp., a(v3, w1)-hooked edgey1z1 betweeny1 ∈ V∂γ(v4, w1) andz1 ∈ V∂γ(w1, v1)). In fact, it must
hold thatw1 ̸= w2, z1 ∈ V∂γ(w1, z2) andz2 ∈ V∂γ(z1, w2) since otherwise one of edgesv2w1, v2w2,
y1z1 andy2z2 would get three crossings. Note that possiblyz1 = z2. Since each of these four edges
already has two crossings, we see thatV∂γ(w1, w2) = {z1, z2} (otherwise one of{w1, z1}, {z1, z2} and
{z2, w2} would be a cut-pair), and thatdeg(z1) = deg(z2) = 3 whenz1 ̸= z2. This proves that condition
(v) holds when none of (i)-(iv) occurs.

(i) Since deg(v1) = 3, clearly [z, v1, v2, v3, v4] is inevitable to(G,B). Note that vertexz is an
attaching point of(G′ = G/{v1, z}, B′ = [v∗, v2, v3, v4]). Analogously with the proof of Lemma 12(i)-
(ii), we can show that(G′, B′) is triconnected and extendible and that any FO2PE extension of(G,B)
can be obtained by modifying an FO2PE extensionγ′ = [u1 = v∗, u2 = v2, u3 = v3, u4, . . . , un′ ] of
(G′, B′) into γ = [z, v1, v2, v3, v4, u5, . . . , un′ ].

(ii) Sincedeg(v1) = 3, clearly[w2, v1, v2, v3, v4] is inevitable to(G,B). Note that vertexw2 is an at-
taching point of(G′ = G/{w2, v1, v2}, B′ = [v∗, v3, v4]). We can show that(G′, B′) is triconnected and
extendible and that any FO2PE extension of(G,B) can be obtained by modifying an FO2PE extension
γ′ = [u1 = v∗, u2 = v2, u3 = v3, u4, . . . , un′ ] of (G′, B′) into γ = [w2, v1, v2, v3, v4, u4, . . . , un′ ].

(iii) Note that vertexy is an attaching point of(G′ = G/{y, z, w2, v1, v2}, B′ = [v∗, v3, v4]).
Analogously with the proof of Lemma 13(ii), we can show that any extensionB into an FO2PEγ =
[v1, v2, . . . , vn] of G haszw2 as a frill, and that any FO2PE extension of(G,B) can be obtained by
modifying any FO2PE extensionγ′ = [u1 = v∗, u2 = v3, u3 = v4, u4, . . . , un′ ] of (G′, B′) into
[y, z, w2, v1, v2, v3, v4, u4, . . . , un′ ] and[y, w2, z, v1, v2, v3, v4, u4, . . . , un′ ].

(iv) Assume that for(v, w) = (v1, w2) or (v4, w1), v is a degree-4 vertex adjacent tow, but there
is no pair of a degree-4 vertexz and a vertexy such thatvwz andwzy are triangles. Let(v, w) =
(v1, w2) without loss of generality. Analogously with the proof of Lemma 13(iii), we can show that
[w2, v1, v2, v3, v4] is inevitable to(G,B).

Let G† be the graph obtained fromG by replacing edgesv1v4 andv2w2 with a new edgew2v4, and
G′ = G†/{v1, v2}. Thenv1 is an attaching point to(G′, B′ = [w2, v

∗, v3, v4]). Analogously with the
proof of Lemma 13(iii), we can prove thatG† is triconnected. Analogously with the proof of Lemma 12(i),
we see thatG′ = G†/{v1, v2} remains triconnected.

Analogously with the proof of Lemma 13(iii), we can prove that(G′, B′ = [w2, v
∗, v3, v4]) is ex-

tendible and that any FO2PE extension of(G,B) can be obtained by modifying an FO2PE extensionγ′ =
[u1 = w2, u2 = v∗, u3 = v,u4 = v4, u5, . . . , un′ ] of (G′, B′) into γ = [w2, v1, v2, v3, v4, u5, . . . , un′ ].

(v) Analogously with the proof of Lemma 13(iv), we see that any FO2PE extensionγ of (G,B)
satisfies the following properties:N(v1) − {v2, v4} ⊆ V∂γ(w2, v1), N(v3) − {v2, v4} ⊆ V∂γ(v4, w1),
there is a(w2, v2)-hooked edgey2z2 betweeny2 ∈ V∂γ(w2, v1) andz2 ∈ V∂γ [z1, w2) (resp., a(v2, w1)-
hooked edgey1z1 betweeny1 ∈ V∂γ(v4, w1) andz1 ∈ V∂γ(w1, z2]) such thatV∂γ(w1, w2) = {z1, z2}
(possiblyz1 = z2), anddeg(z1) = deg(z2) = 3 when z1 ̸= z2. Hencew1 ̸= w2. Also no other
pair {z′1, z′2} than{z1, z2} satisfies condition (iv). Therefore any FO2PE extension of(G,B) contains
[w1, z1, z2, w2] (whenz1 ̸= z2) or [w1, z, w2] (whenz = z1 = z2) as a sequence.

Analogously with the proof of Lemma 13(iv), we can prove that(G′, B′) is triconnected and ex-
tendible and that any FO2PE extension of(G,B) can be obtained by modifying an FO2PE extension
γ′ = [u1 = v1, u2 = v4, u3, . . . , un′ ] of (G′, B′) into γ = [v1, v2, v3, v4, u3, . . . , un′ ]. ⊓⊔
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Note that in each of Lemmas 12, 13 and 14, constructing a new instance(G′, R′) and modifying an
FO2PE extensionγ′ of (G′, B′) into an FO2PE extensionγ of (G,B) can be executed inO(1) sinceG
is a degree-bounded graph andγ can be obtained by inserting a subsequence.

TheAlgorithm EXTEND (G,B), which takes a triconnected graphG and a permutationB of vertices
in a triangleuvw or a 4-cycleuvv′w with degree-3 verticesv andv′, and outputs all FO2PE extensions
of (G,B), is described below.

Algorithm EXTEND (G,B)
Input: A triconnected simple graphG = (V,E) with n ≥ 7 and a permutationB of vertices in a triangle
uvw or a 4-cycleuvv′w with degree-3 verticesv andv′.
Output: All FO2PE extensions of(G,B).
1: if n ≤ 7 then
2: Return all FO2PE extensionsγ of (G,B) (if any), or Return∅ (otherwise);
3: else

/* Partial embeddingB is specified as one of the following:
Case 1:B = [v1, v2, v3] for a trianglev1v2v3 with a degree-3 vertexv2,
whereN(v2) = {v1, v3, w};
Case 2:B = [v1, v2, v3] for a trianglev1v2v3 with a degree-4 vertexv2,
whereN(v2) = {v1, v3, w1, w2}; and
Case 3:B = [v1, v2, v3, v4] for a 4-cyclev1v2v3v4 with degree-3 verticesv2 andv3,
whereN(v2) = {v1, v3, w2} andN(v2) = {v2, v4, w1} */

4: if Case 1 (resp., Case 2, 3) holds, but none of the conditions (i)- (ii) in Lemma 12
(resp., (i)- (v) in Lemma 13, Lemma 14) holdsthen

5: Return∅;
6: else
7: Construct(G′, B′) according to the the conditions (i)- (ii) in Lemma 12

(resp., (i)- (v) in Lemma 13, Lemma 14) currently satisfied by(G,B);
8: if EXTEND (G′, B′) ̸= ∅ then
9: Modify eachγ′ ∈EXTEND(G′, B′) into an FO2PE extensionγ of (G,B) according to

the operation in Lemma 12 (resp., Lemma 13, Lemma 14), where two FO2PE extensions
of (G,B) will be constructed from the sameγ′ for the cases (ii)
in Lemma 13 and (iii) in Lemma 14;

10: Return all the resulting FO2PE extensionsγ
11: else
12: Return∅
13: end if
14: end if
15: end if.

Based onAlgorithm EXTEND (G,B), we finally prove Lemma 10. We first show thatAlgorithm
EXTEND(G,B) correctly delivers all FO2PE extensions of(G,B), if any. In line 9, if Algorithm
EXTEND(G′, B′) returns all FO2PE extensionsγ′ of (G′, B′), then all FO2PE extensions of(G,B)
can be obtained according to the modifications stated in Lemmas 12, 13 and 14. SinceAlgorithm
EXTEND(G′, B′) returns all FO2PE extensions whenn ≤ 7, we see by induction thatEXTEND(G,B)
correctly delivers all FO2PE extensions of(G,B).

We next show thatAlgorithm EXTEND (G,B) delivers a constant number of solutions. Whenn ≤ 7,
the graphG has at mostn − |B| ≤ 4 vertices to be arranged along the boundary of a possible FO2PE
extension of(G,B), and at most4! FO2PE extensions of(G,B) will be constructed. We construct exactly
one FO2PE extensionγ of (G,B) from an FO2PE extensionγ′ of (G′, B′), except for the cases (ii) in
Lemma 13 and (iii) in Lemma 14 wherein exactly two FO2PE extensions, sayγ1 andγ2 of (G,B) will
be generated from the same FO2PE extensionγ′ of (G′, B′). Note that in this case,γ1 is obtained from
γ2 by flipping a frill zw in the lemmas, and the frill inγi will be preserved in any extensions obtained
from γi until it is output as a final solution. By Lemma 9, any FO2PE of a graph can contain at most two
frills, which means that generating two FO2PE extensions in line 9 can occur at most twice. Therefore,
Algorithm EXTEND (G,B) delivers a constant number of FO2PE extensions of(G,B).
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As we have already observed, constructing a new instance(G′, R′) and modifying an FO2PE can be
done inO(1) time,Algorithm EXTEND (G,B) runs inO(n) time. This completes a proof of Lemma 10.

6 Proof of Theorem 3

In this section, we prove Theorem 3.

Proof. Assume that a given connected graphG = (V,E) admits an O2PEγ. WhenG is not biconnected,
we first augment the embeddingγ by adding new edges so that it remains to be an O2PEγ′ of the
resulting “biconnected graph”G′ = (V,E′). For this, we traverse the boundary∂γ in the clockwise order
starting with a vertexv1. During this, we skip visiting a cut-vertex already traversed to form a permutation
[v1, v2, . . . , vn] of the vertices inV in the order that we first visit. In the outer face ofγ, we add new edges
between non-adjacent verticesvi andvi+1, 1 ≤ i < n. Note that we have skipped a vertexv only when
it is a cut-vertex already traversed. The resulting embeddingγ′ remains outer-2-planar, and the boundary
∂γ′ forms a simple cycle of the augmented graphG′, which is now biconnected. Hence it suffices to
show the lemma only when a given graph is biconnected, since the added edges can be removed from any
straight-line drawing ofG′ to obtain any straight-line drawing ofG.

Let [v1, v2, . . . , vn] be the cyclic order of an O2PEγ of a biconnected graph. Then fix the positions
of vertices as the apices of a convexn-gonPn, which automatically determines straight-line segments of
all edges. Clearly two inner edgesvivj andvkvh cross only wheni < k < j < h on the cyclic order
in the topological embeddingγ. In the geometric embedding byPn, the straight-line segments of two
inner edgesvivj andvkvh intersect only wheni < k < j < h. This implies thatPn gives a straight-line
drawing ofγ. ⊓⊔
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