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Abstract. A graph is 1-planar, if it admits a 1-planar embedding, where each edge has at most one
crossing. Unfortunately, testirigplanarity of a graph is known as NP-complete.

This paper considers the problem of testiiglanarity of a graph, in particular,testinfyll outer-2-
planarity of a graph. A graph ifully-outer-2-planar if it admits afully-outer-2-planar embedding

such that every vertex is on the outer boundary, no edge has more than two crossings, and no crossing
appears along the outer boundary. We present several structural properties of triconnected outer-2-
planar graphs and fully-outer-2-planar graphs, and prove that triconnected fully-outer-2-planar graphs
have constant number of fully-outer-2-planar embeddings. Based on these properties, we present
a linear-time algorithm for testing fully outer-2-planarity of a graphwhereG is triconnected,
biconnected and oneconnected. The algorithm also produce a fully outer-2-planar embedding of a
graph, if it exists. We also show that every fully-outer-2-planar embedding admits a straight-line
drawing.

1 Introduction

A recent research topic in topological graph theory generalises the notion of planaitydst planar
graphs i.e., non-planar graphs with some specific crossings, or with some forbidden crossing patterns.
Examples include:-planar graphs(i.e., graphs can be embedded with at mostrossings per edge),
k-quasi- planar graphgi.e., graphs can be embedded withéunutually crossing edgesiRAC graphs

(i.e., graphs can be embedded with right angle crossings)ia@madrossing-free graph§.e., graphs can

be embedded without fan-crossings) [2, 5, 7, 19].

Some mathematical results are known for these graphs, for example, desityof such graphs.
Pach and Toth [19] proved that a 1-planar graph witbertices has at mogin — 8 edges. Agarwal et
al. [2] (Ackerman [1]) showed th&t(4-) quasi-planar graphs have linear number of edges. Fox et al. [9]
proved thatk-quasi-planar graphs have at mastn 10g1+0(1) n) edges. Didimo et al. [7] showed that
RAC graphs have at mogt — 10 edges. Cheong et al. [5] showed that fan-crossing free graphs have at
most4n — 8 edges.

Recently, algorithmics and complexity for such graphs have been investigated. Grigoriev and Bod-
laender, and Kohrzik and Mohar proved that testing 1-planarity of a graph is NP-complete [13,17]. Ar-
gyriou et al. proved that testing whether a given graph is a RAC graph is NP-hard [3]. On the positive side,
Eades et al. [8] showed that the problem of testimaximal 1-planarityi.e., addition of an edge destroys
1-planarity) of a graph can be solved in linear time, ibtation systeni.e., the circular ordering of edges
for each vertex) is given. Hong et al. [15], and Auer et al. [4] independently proved that teatirgl-
planarity (i.e., 1-planar graphs with every vertex is on the outer face, introduced by Eggleton [10]) of a
graph, can be solved in linear time.
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This paper considers the problem of testifiglanarity of a graph, in particular, testinglly outer-
2-planarity of a graph. An embedding of a graphG in the plane i-planar, if no edge has more than
two crossings. A 2-planar embedding@fis calledouter-2-plananfO2PE), if every vertex is on the outer
boundary. An outer-2-planar embeddingefs calledfully outer-2-planar(FO2PE), if no edge crossings
appear along the outer boundary. A graplis 2-planar (resp.,outer-2-planar fully outer-2-planaj if it
admits a 2-planar (resputer-2-planar fully outer-2-planay embedding (see Fig. 1).
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Fig. 1. lllustration for outer2-plane embeddings of graphs: (a) An FO2REof a biconnected grapt¥y; (b) An
FO2PE~ of a triconnected grap&'s; (c) An O2PEys; of a triconnected graptys.

The problem of testing outer-2-planarity seems much harder than testing outer-1-planarity. In fact,
it was shown that outer-1-planar graphs are indeed planar graphs [4], halfgveran outer-2-planar
graph, which is not planar. Note that there is only one triconnected outer-1-planar §igmnd it has
unique outer-1-planar embedding [4, 15]. However, we can show that there is a triconnected outer-2-
planar graph which has exponentially many outer-2-planar embeddings.

Moreover, the outer boundary of an FO2PE of a biconnected grkaisha Hamiltonian cycle of5.

Note that testing whether a given graph has a Hamiltonian cycle is known to be NP-complete, even for
cubic graphs [12].

We first study several structural properties of outer-2-planar graphs and fully outer-2-planar graphs.
Based on these properties, we present a linear-time algorithm for testing fully outer-2-planarity of a graph
G. The following theorem summarizes our main results.

Theorem 1. There is a linear-time algorithm that tests whether a given graph is fully outer-2-planar, and
produces a fully outer-2-planar embedding of the graph if it exists.

We use connectivity approach to prove Theorem 1. dineconnectedase is easy; see Theorem 4 in
Section 3. Théviconnectedtase is more involved; see Theorem 5 in Section 4. The main thrust of this
paper is to solve theiconnectectase, described in Section 5. The following theorem is the key to design
linear-time algorithm for FO2PE.

Theorem 2. The number of all FO2PEs of a triconnected graglis constant, and the set of all FO2PEs
of G can be generated in linear time.

The well-known Fary’s theorem [11] proved that every plane graph admits a straight-line draw-
ing. However, Thomassen [20] presented two forbidden subgraphs for straight-line drawings of 1-plane
graphs. Hong et al. [16] gave a linear-time testing and drawing algorithm to construct a straight-line
1-planar drawing, if it exists. Recently, Nagamochi solved the more general problem of straight-line
drawability for wider class of embedded graphs [18]. On the otherhand, Eggleton [10] showed that every
outer-1-plane graph admits a straight-line drawing. We also show that every outer-2-plane graph admits
a straight-line drawing.

Theorem 3. Every outer-2-plane embedding admits a straight-line drawing.



2 Preliminaries

Let G = (V, E) be a graph, where denote§V| unless stated otherwise. L& Y C V be subsets of
vertices and” C F be a subset of edges. For a vertelet £ (v) denote the set of edges incident tov,
deg(v) denote the degred’(v)| of v, N(v) denote the set of neighbotsof v, and N [v] = N(v) U {v}.
We may indicate the underlying graghin these notations in such a way thafv) is written asE (v).
Let G — F denote the graph obtained fro@ by removing the edges i#', andG — X denote the
graph obtained frondz by removing the vertices iX together with the edges in,c x E(v). LetG/X
denote the graph obtained from a gra@hby contracting the vertices in a subsgtof vertices into a
single vertex, where any resulting loops and multiple edges are removed. A vertex of degoadied a
degreed vertex A simple cycle of lengttk is called ak-cycle where a 3-cycle is calledtaangle.

A topological graphor embeddingy of a graphG is a representation of a graph (possibly with
multiple edges) in the plane, where each vertex is a point and each edge is a Jordan arc between the points
representing its endpoints. Two edgesssif they have a point in common, other than their endpoints.
The point in common is @rossing To avoid pathological cases, standard non-degeneracy conditions
apply: (i) two edges intersect in at most one point; (i) an edge does not contain a vertex other than its
endpoints; (iii) no edge crosses itself; (iv) edges must not meet tangentially; (v) no three edges share a
crossing point; and (vi) no two edges that share an endpoint cross.

For an O2PEy of a graphG = (V, E), we denote by)y the outer boundary of, which may pass
though a crossing point made by two edges. An edgeF is called arouter (resp.,inner) edge ofy if
the whole drawing ot is part ofdy (resp.,0y passes though only the end-verticespfAn edge may
not be outer or inner when a crossing on it appears atbnd-et V., £, andCp., denote the sets of
vertices, outer edges and crossingéin

For two vertices:, v € V, the boundary path traversed franto v in the clockwise order is denoted
by 0v[u, v]. Let Vi, [u, v], Ea,[u,v] andCy,[u, v] denote the sets of vertices, outer edges and crossings
in 0y[u, v]. Also letVy, (u, v] = Vo [u, v] — {u}, Vay[u,v) = Vay[u, v] — {v}, Vay (u,v) = Vay[u,v] —

{u,v}. We call the boundary pai#ry[u, v] crossing-freef Cy,[u,v] = 0, i.e., it consists of outer edges.

3 Connected Graphs

We first observe that we can focus on biconnected graphs to design algorithms for testings (full) outer-2-
planarity.

Theorem 4. A graph is outer-2-planaresp., fully outer-2-plangrif and only if its biconnected compo-
nents are outer-2-planafresp., fully outer-2-plangr

Proof. Let~ be an O2PE (resp., FO2PE) of a graphTrhen the embeddingy induced by a biconnected
componenf{ of the graph is an O2PE (resp., FO2PE) since no new crossing is introduced and the vertices
in the component stay on the boundaryyef. Conversely assume that each biconnected compdiient

of the graphG admits an O2PE (resp., FO2Pg),. Starting withy* := ~y for some biconnected
componentd, we combiney* with vy for a biconnected componeft’ which shares a cut-vertex with

one of the scanned biconnected components. Since such a cut-vertex remains on the outer boundary of
~* and no new cycle through the cut-vertex is created, the newly combined embedding is also an O2PE
(resp., FO2PE). By repeating this, we can obtain an O2PE (resp., FO2BE) of ad

Thus, in what follows, we treat only biconnected graphas input. For a permutatidn;, ve, . . ., v;,]
of the vertices of a biconnected graph lety = (G, [v1, v, ..., v,]) denote an embedding ¢f such
that verticesvy, vo, . .., v, appear along~ in the clockwise manner. We can easily observe that the
number of crossings on each edge in an O2R&determined only by the ordering of all vertices along
.

To solve the problem of finding an FO2BEf a graphz, we consider the problem with an additional
constraint such that a sé&t of specified edges is required to appear along the boundaryBi.€.,Ey-,
and denote such an instance gy, B). An FO2PE ofy of G such thatB C Ej, is called anFO2PE
extensiorof (G, B), and an instancéz, B) is calledextendibldf it admits an FO2PE extension.



4 Biconnected Graphs

Our algorithm for biconnected case uses the decomposition of a biconnectedgmajghtriconnected
components, alternatively known as BBQR treedefined by di Battista and Tamassia [6], which can be
computed in linear time [14]. Each triconnected component consisgsaibédgedi.e., edges in the orig-
inal graph) andiirtual edges(i.e., edges introduced during the decomposition process, which represents
the other triconnected components, sharing the same virtual edges defined by cut-pairs).

Each node’ in the SPQR tree is associated with a graph calledskedetonof v, denoted by (v),
which corresponds to a triconnected component. There are four types of maudise SPQR tree: (i)
S-node, where (v) is a simple cycle with at least three vertices; (ii) P-node, whérg consists of two
vertices connected by at least three edges; (iii) Q-node, wheteconsists of two vertices connected by
two (real and virtual) edges; and (iv) R-node, whe(e) is a simple triconnected graph with at least four
vertices. The set of virtual edges in the skeleton of a nobg E.;, (v).

In this paper, we use the SPR tree, a simplified version of the SPQRitireaut Q-nodes, and treat
the SPR tree as @oted treeby choosing an arbitrary node as its root. lpebe the parent node of an
internal nodev. The grapho(p) has exactly one virtual edgein common witho(v); e is called the
parent virtual edgen o(v), and achild virtual edgein o(p). We denote the graph formed fromfr) by
deleting its parent virtual edge as (v), and denote the graph formed from the uniowof(v) over all
descendants of p by G, . We also denote the gragh, together with the parent virtual edge dgrtp)
by G,. Note thatE,;, () is the set of virtual edges in(p) including the parent virtual edge wheris a
non-root node.

For a given biconnected gragh we establish a recurrence relationship of FO2PE problem instances
(G, B) based on the SPR decompositior(hfln fact we prove thatf admits an FO2PE if and only if for
each node in the SPR decomposition ¢f, the instancéo (v), E;i,(v)) is extendible. We easily see that
for S-nodev (o(v), Eyir(v)) are cycles and always extendible. More specifically, we prove the following
Theorem.

Theorem 5. A biconnected graplr = (V, E) admits an FO2PE if and only if the following holds: for
each P-node, |E,;.(v)| < 2; and for each R-node, (o(v), Eyi:(v)) is extendible. Moreover, there is a
linear-time algorithm for constructing a FO2PE 6f; if it exists.

Before we prove Theorem 5, we first show the following lemma.

Lemma 1. Let~y be an arbitrary FO2PE of = (V, E), and H be a component ity — {u, v} for a cut-
pair {u,v}. Theryy is given by a cyclic ordefvy, va, . . ., v, ] such that; = u, {va,vs,...,v;} = V(H)
andwv; 1 = v appear in this order.

Proof for Necessity of Theorem 5Let~y be an arbitrary FO2PE &f = (V, E). To derive a contradiction,
first assume thatF,, ()| > 3 for some P-node. Thus for the two vertices, v in the skeletorv(v),
G — {u,v} has at least three components, $&y, H, and H;. By Lemma 1, for each = 1,2, 3, the
verticesu, V(H;) andv must appear consecutively alotgy. However, this is impossible unless the
vertexu appear more than once alofyg.

Assume thatE.i,(v)| < 2 for each P-node. Next we show that thalo (v), Eyi;(v)) is extendible
for any R-nodev. For each virtual edge = st € Eyi,(v), there are exactly two componerdi& and H,
in G — {s,t} by the assumption of P-nodes, whé&feH ) U {s,t} C V(o(v)). ClearlyH, andH, are
disjoint for any two virtual edges, ¢’ € E,;.(v). Hence by Lemma 1, the vertices ifi. for each virtual
edgee = st € Ey;(v) appear consecutively betweemndt alongdy. Hence we can obtain an FO2PE
extensior¢, of (o(v), Eyi;(v)) from ~ by shortening the subsequence for the verticdg(if.) U {s, ¢}
for each virtual edge = st € E,;,(v) into s, t. This proves the necessity of Theorem 5. O

Proof for Sufficiency of Theorem 5 We construct an FO2PE of G by an induction along the parent-

child relationship of the rooted SPR tréeof GG, as shown in the algorithm below. For a given graph

we have computed the SPR trBef G and computed an FO2PE extens{prof (o (v), Eyi:(v)) for each

nodev in T, and assume that the necessary condition in Theorem 5 holds. Note that for a P- and/S-node
its skeletory (v) is a pair of real and virtual edges with the same end-vertices, two virtual edges (possibly
with one real edge) with the same end-vertices, and a simple cycle of length at least 3, respectively, each
of which admits an FO2PE extensignof (o(v), Evir(v)).



Let v be a P-, R- or S-node chosen in the for-loop of lines 7-12, where we have obtained an FO2PE
extensiort, = [vi,vs,...,vy] Of (o(v), Eyi;(v)) in line 2 and an FO2PE extension of (G, {st})
for each childu of » and the corresponding child virtual edge € E.;.(v) in the previous iterations
of the for-loop. Since the parent edge of 1 is contained inEyi, (1), v, is given by a cyclic order
[ur = s,u2,us,...,up—1,u, = t| Of the vertices inG,,. Also in &,, the virtual edgest appears as
an outer edge; i.e., verticesandt appear consecutively ds; = s,v;1+1 = t] in &,. Therefore by
replacing each child virtual edge in &, with the corresponding FO2PE extensigp i.e., replacing the

subsequencp; = s,v;+1 = t] in &, with [u1 = s, ug,us,...,uy—1,u, = t], we can obtain an FO2PE
extensiory, of (G,, {ab}) with the parent virtual edgeb of v or of (G, ) whenv = v*. This proves
the sufficiency of Theorem 5. ad

See below for the detailed descriptionAforithm BICONNECTED FO2PE and time complexity
analysis. Essentially, the algorithm can be implemented to run in linear time, if the R-node (i.e., tricon-
nected) case can be solved in linear time.

Algorithm BICONNECTED FO2PE

Input: A biconnected simple graph.

Output: An FO2PEy of G if any or () otherwise.

: Construct the SPR treéé of G;

: Compute an FO2PE extensignof (o(v), Eyi;(v)) for each node in T

if | Evi(v)] > 3 for some P-node or (o(v), Eyi:()) is not extendible
for some R-node then

4: Return()

5: else

6: Regard a node as the ragtof T,

7

8

WN P

for each non-root node of T' chosen from the bottom to the top alofigdo
Compute an FO2PE extensignof (G, {ab}) with the parent virtual edgebof v

(or (G, 0) whenv = v*) from &, = [v1,va,...,v,/] as follows:
9: for each childu of v and the corresponding child virtual edgilec E.;,(v) do
10: Replace the subsequereg = s, v, 11 = t] in &, with an FO2PE extension
Yo = [u1 = s,u2,u3, ..., up_1,up =t] of (G, {st})
11: end for
12: end for;
13: Returny := v«
14: end if

We show that when Theorem 2 holds the above algorithm can be implemented to run in linear time.
The time complexity of the Algorithm for line 1 is linear [14]. After this, we see that any operation
on a nodev in T takes inO(|o(v)|) time. In lines 2-3, we can test whether there is no P-nodéth
|Evic(v)| > 3in O(|o(v)|) = O(1) time, and finding an FO2PE extensignof (o (v), Ei, (1)) takes
O(|o(v)]) time for a P- or S-node (since the structure af(v) is nearly a cycle) and(|o(v)|) time
for an R-nodes by Theorem 2. The for-loop of lines 7-12 takes(xin) time in total, because inserting
a subsequence, = [u1 = S,u2,U3,...,Up—1,Up = t] INtOE, = [v1,0v2,...,v,] at the position
[v; = s,v;4+1 = t] can be carried out i®(1) time using doubly-liked lists for storing all sequences such
as¢, andv,. Hence to prove Theorem 1, it suffices to show Theorem 2.

5 Triconnected Graphs

In this section, we prove Theorem 2, i.e., every triconnected gfaphs a constant number of FO2PEs,
and they can be generated in linear time. Note that Theorems 5 and 2 imply that FO2PE testing for
biconnected graphs can be done in linear time.

To prove Theorem 2, we derive a recurrence relationship over FO2PE problem ingt@néssfor
special local structureB, called “rims.” First, we prove several structural results on triconnected O2PE
and FO2PE.



5.1 Structural results on triconnected O2PE and FO2PE
We first present structural results on triconnected O2PE.
Lemma 2. Every O2PE of a triconnected grafghis quasi-planar unlesé is K3 3.

Proof. Let~ be an O2PE with three pairwise crossing edges u;v;,i = 1,2, 3, whereu, us, us, v1, vs

andvs appear in this order alongy. Note that each of these three edges already has two crossings on it.
Hence ifVy, (u1,u2) # 0, then there must be an edge= ab that joins a vertex € V. (u1,uz) and a
vertexb € V. (u2,us), since otherwisgu,us} would be a cut-pair in a triconnected graph. However,

~ cannot admit such an edge= ab, since it would cross one of the three pairwise crossing edges. Hence
Vo (u1,u2) = 0. Analogously we havé&y. (u,v) = () for two end-vertices: andv of the three pairwise
crossing edges which consecutively appear aldpgndicating that” = {u, us, ug, v1, v, v3}.

Vertex u, is of degree at least 3, and it has at least two incident edgesid e; other than edge
usvg, Where neither of edges, ande’ can cros; or ez. This implies that vertex.; has exactly three
incident edgesusvs, usu; andusus. Analogously with other vertices ilf, we see that each vertex in
V is of degree 3 and’y, = 0, indicating that is a complete bipartite graphi’; ; between vertex sets
{ul,u;g,’vg}and{’llg,vl,’l}g}. (|

Lemma 3. No triconnected grapld: with a vertex of degreg 5 admits an O2PE.

Proof. Let v be a vertex of degreé > 5 in G, and~y be an O2PE of=. SinceG contains a vertex of
degree> 5, G is not K3 3 and-y is quasi-planar by Lemma 2. Without loss of generality, the neighbors
up,us, . .., uq Of v appear in this order alongry|uy, ug].

Since{v, uz} is not a cut-pair, there is an edge= ab that joins a vertex. € Vy, (v, u3) and a vertex
b € Vo, (us,v), wheree = ab crosses edgeus and can cross at most onewf; andvu.

First assume that = ab crossesus, or vug, sayvug, wherea € Vy, [uq, u3) holds, and we choose
e = ab so that vertex: is closest tai; among all choices of such edgés Since{a, v} is not a cut-pair,
there is an edge* = «*b* that joins a vertex.* € Vy,(v,a) and a vertex* € Vy,(a,v). Sincey is
quasi-planar and* cannot crosg, it holdsa™ € Vj,[ug, a) andb* € Vp, (b, v), wheree* crossesuy
andvug but cannot crossus. This, however, contradicts the choice of edge ab.

Next assume that no edgé with a € Vy,(v,u3) andb € V. (us,v) crosseus or vuy. Hence
a € Vay[ug, uz) andb € V., (us, uq]. Since{b, v} is not a cut-pair, there is an edge= o'’ that joins a
vertexa’ € Vy,(v,b) and a vertex’ € Vj, (b, v). Sincey is quasi-planar, edgg does not crossu;z and
itholdsa’ € Vi, [us, b). Analogously with paifb, v}, there must be an edgé = «*b* that joins a vertex
a* € Vyy(v,a) and a verted* € Vj,(a, us]. However, in this case, edge= ab has three crossings on
it, a contradiction.

This proves that no graph with a vertex of degred admits an O2PE. d

Lemmad4. LetG = (V, E) be a triconnected graph which contaif§, as a subgraph. 15 admits an
O2PE, them < 6.

Proof. Let H be a subgraph af isomorphic toK,, and Lety be an O2PE of7, where the four vertices
u1, uz, ug anduy in H appear in this order along To derive a contradiction, assume that 7. Without
loss of generality, leVy., (u1,u2) # 0. Since{u1, us} is not a cut-pair in a triconnected graph, there is an
edgee = ab that joins a vertex: € Vy,(u1,u2) and a vertex € V., (u2,u1). Note thath can be vertex
ug Or vertexuy, sayb = uy, Since otherwise edge would cross three edges fii. Now edgeusuy has
two crossings on it. Then for each ordered gairv) € {(a, v2), (v2,v3), (vs,v4), (v4,v1)}, We see that
no edge: = ab can join a vertex. € Vy,(u,v) and a verted € Vy, (v, u), and that/s, (u, v) = 0 holds,
since otherwisdu, v} would be a cut-pair.

By n > 7, we havely, (u1,a) # 0. Since{uy,a} is not a cut-pair in a triconnected graph, there is an
edgee’ = o'b’ that joins a vertex’ € Vj,(u1,a) and a verteX’ € Vy,(a, ). In this case, it holds’ =
u4, Since otherwise’ would cross three edges. Now for each ordered Qaiv) € {(u1,d’), (a’,us2)},
we see that no edge = ab can join a vertexa € V4 (u,v) and a vertexd € Vy,(v,u), and that
Vo (u,v) = 0 holds, since otherwisgu, v} would be a cut-pair. This, however, contradicts that 7.

O

By Lemmas 2 and 4, we have the next.



Lemma 5. Let G be a triconnected graph with at least seven vertice& Hdmits an O2PEy, thenG
contains no subgraph isomorphic 16, and~ is quasi-planar.

For an O2PE;y of a triconnected grapty = (V, E) with n > 7, the cyclic ordeffvy,vs, . .., v,] of
the vertices i)y completely determines the embeddinpy Lemma 5. In what follows, an O2Pfof
a graphG is simply denoted by the cyclic order of the vertice$in

For aninner edgev in an FO2PEy of a triconnected grap&, there is an edgeb that crossesv; i.e.,
ab joins a vertexa € V., (u,v) and a verteX € Vy, (v, u), since otherwisdw, v} would be a cut-pair.
We call an edgeb (u, v)-hookedif ab crossesiv and some edge’a” (# uv) with o/, a” € Vy,[u, v].
We frequently use the following technical lemma.

Lemma 6. Let v be an FO2PE of a triconnected graph, and letu and v be two vertices such that
uv € B — Ey,.

(i) If Vo (u,v)| > 3, then there is du, v)-hooked edgeb.
(i) If |Vay(u,v)| = 2 and there is nqu, v)-hooked edge, then each of the two verticeBgn(u, v) is of
degree 3 and the inner edge incident to it crosses

Proof. Assume thatVs, (u,v)| > 2 and there is nqu, v)-hooked edge iny. To prove the lemma, it
suffices to show thai/s. (u,v)| = 2 holds and each of the two vertices¥p, (u, v) is of degree 3 and
has an incident edge crossing.

Since{u, v} is not a cut-pair, there is an edgé that joins a vertexe € Vy,(u,v) and a vertex
b € Va,(v,u). We choose an edge so thata is closest tou among all edgesb crossinge = ww. If
Vay(u,a) # 0, then{u,a} would be a cut-pair, since each inner edge incident to a vert&-jfu, a)
cannot cross a nofu, v)-hooked edgeb or edgeuv by the choice ofi. Hence we hav&y., (u,a) = 0.

Similarly we choose an edgél’ so thata’ € V., (u,v) is closest tay among all edges’d’ crossing
e = uv, and we see thdty., (a’, v) = 0.

Now no edge incident to a vertex iy, (a,a’) other thanub or a’d’ can cross any of edges, ab
anda’b’. This means thaVy, (u,v) = {a,a’} (otherwise{a,a’} would be a cut-pair) andeg(a) =
deg(a’) = 3, as required. O

5.2 Identifying a constant number of candidate partial embeddings

Let~y be an O2PE of a triconnected grafhA triangleuvw is called a(3, 3)-rim (resp.,(3, 4)-rim) of v
if uv andvw are outer edges i andv is a degree-3 (resp., degree-4) vertex. A 4-cyale’w is a4-rim
of v if v andv’ are degree-3 vertices ana, vv’ andvw are outer edges in. A (3, 3)-, (3,4)- or 4-rim
is called arim. For example, see Fig. 2.

U2 %) vy v3
vy 2] U1 U3
U1 Uy
w wa wi wy w1
(@) (3,3)-rim B=[v},v5,03] (b) (3,4)-rim B=[v1,02,03] (¢) 4-rim B=[v1,V2,U3,04]

Fig. 2. lllustration for rims: (a) a (3,3)-rim for a triangle; v2v3 with a degree-3 vertex,; (b) a (3,4)-rim for a
trianglev; vovs With a degree-4 vertexs; (c) a 4-rim for 4-cyclev; vavzva With degree-3 vertices, andvs.

We show that any FO2PE of a triconnected grépbontains a rim.

Lemma 7. Any FO2PEy of a triconnected grapliz has a rim.



Proof. By Lemma 3, each vertex i¥ is of degree 3 or 4. Consider an inner edgesuch thaty|u, v]
is the shortest. Hence there is (w v)-hooked edge, since otherwise there exists an inner edde
with o', a” € Vp,(u,v), wheredy[a’,a”] would be shorter thad[u, v]. By Lemma 6(i), we have
|V (u,0)] < 2.

If |[Vay(u,v)| = 1, then for the vertexv € Vy (u,v), trianglevwu is a 3-rim ofy.

Assume thatVy, (u,v)| = 2. By Lemma 6(ii), each of the two vertices Iy, (u, v) is of degree 3,
indicating that the 4-cycle with the four verticeslip,, [u, v] is a 4-rim of~. ad

Our algorithm for constructing an FO2PE of a given triconnected gfafirst generates triangles/4-
cycles as rims of possible FO2PEs and tries to extend each of the triangles/4-cycles into an FO2PE. By
Lemma 3, we can assume that a given triconnected gralpits a maximum degree at most 4. Then there
areO(n) triangles and 4-cycles for candidates of rims in an FO2PE& .ofhe next lemma reduces the
number of triangles/4-cycles to be generated as rims of possible FO2PEs to a constant number.

Lemma 8. Let~ be an FO2PE of a triconnected grajgh= (V, E) withn > 10.

(i) Assume thafr has a triangle, and let; be a triangle inG. Thend~ contains a sequende, v, w] for
the set of vertices, v andw of some triangle’ = uwvw sharing an edge with; (possiblyt’ = t;)
as its subsequence.

(i) Assume thatd has no triangle, and let,; ususuy be a 4-cycle with degree-3 verticas and us in
G. Thendry (or its reversal) containguy, ug, us, uq] (OF [us, ug, u1, uz] if deg(uq) = deg(ui) = 3)
as its subsequence.

Proof. Sincen > 7, embeddingy is quasi-planar by Lemma 2. (i) Leéf = ujuous be a triangle in
G. Assume that, is not a 3-rim ofv; i.e., at least two edges in triangle are inner edges ify. Since
n > 10, we can assume without loss of generality thatu, andus appear in this order along and let
[Vay (u1,u2)| > 3 andVpy (uz,us) # 0. By Lemma 6(i), there is &1, uz)-hooked edge:; b, joining
avertexa; € Vay(u1,u2) and a vertex; € Vy,(uq,u1). Note thath; = ug holds because edgg b,
already has two crossings.

If |V, (u2, us)| = 1, then triangleuszug for the vertexe € Vi, (u2, ug) satisfies the lemma. Assume
that|Va, (u2, u3)| > 2. If there is a(us, us)-hooked edgeb, that joins a vertexi, € Vi, (u2, us) and
a vertexby € Vy,(us, uz), then edgerzb, would have the third crossing with edgeu, or edgea; b,

a contradiction. Hence there is §@., u3)-hooked edge. By Lemma 6(ii), there are two edges that cross
usuz. However, these edges cannot cross edde, and must cross;us, creating three crossings on
edgeu;uq, a contradiction.

(i) Assume thatz has no triangle. Let; ususuy be a 4-cycle with degree-3 vertices andus in G.
We distinguish three cases.

(a) The vertices in the 4-cycle appear in the orderQfus, usz, uy OF ug, us, us, u; alongoy: Let
u1, ug, ug, ug appear in this order alongy. It suffices to show thatVy., (usz, us) = 0" or “ Vo, (ug, u1) =
0 anddeg(us) = deg(u1) = 3.” Assume thatll/y., (us, us) # 0, whereusus is an inner edge iy and it
holds Vi, (u1,u2) = Vay (u3, us) = 0. Then if Vy, (us, u1) = 0, then we see thateg(us) = deg(u1) =
3 holds, as required.

To derive a contradiction, we consider the cas&©f(u4, u1) # 0, where it holdgVy., (uy, uq)| > 2
sinceG has no triangle.

If |Vay(ua,u1)| > 3, then there is du4, u;)-hooked edgeb by Lemma 6(i), which crosses edges
uguq andugus, since no other inner edge is incidentipor us. This is a contradiction, because edge
has at least three crossings.

Hence|Vy, (u4,u1)| = 2 and|Vy, (uz,us)| > 3 by n > 10. By Lemma 6(i), there is &us, us)-
hooked edge’ = a'b’ wheree’ is incident tou; or uy4 Since it cannot cross; u, any more.

SinceG has no triangle anVy., (u4, u1)| = 2, each of the two vertices i, (u4, u1) has an incident
edge that crosses edgeu, and edges;u3. Hence edgasus crosses these two edges incident to vertices
in Vo, (us4,ur) and edge’ = o'/, creating three crossings, a contradiction.

(b) The vertices in the 4-cycle appear in the ordewfuy, us, us Or us, us, uqg, u; alongoy: Let
u1, ua, Uz, ug appear in this order alon@y. Sincedeg(uz) = deg(us) = 3, we haveVy, (ug, u3) =
(. Sincen > 10, it holds one of|Vy, (us, u1)| > 2, |Vay(ua,uz)| > 2 and|Vy,(ur,uq)| > 3. If
[Vay (u1,us)| > 3, then there is gu;, usa)-hooked edge = ab by Lemma 6(i), where = ab must cross
edgeu,u, or edgeusug creating three crossings on it. Hengé, (us, uq)| > 2 or [V, (ua, uz)| > 2.



Without loss of generality assume theb- (us, u1)| > 2. Then|Vy, (ug, uq)| > 3, and there is &ua, u1)-
hooked edge = ab by Lemma 6(i), wherewb # usuy Sinceusuy does not cross any edge incident to
uz. However, in this case, edge= ab crossesu u, creating three crossings on it in the quasi-planar
embeddingy.

(c) The vertices in the 4-cycle appear in the ordewofus, uy, us O usz, ug, us, u; alongoy: Let
w1, u2, ug, ug appear in this order alondy. Sincedeg(us) = deg(us) = 3, we haveVy, (ui,us) =
Voy(usa,u3) = 0. SinceG has no triangle}Vy., (uz, us) # 0 # Vo (us, u1). Hence there is an edge
e = ab that joins a vertexs € Vp,(us,u1) andb € Vp,(uq,us), whereb = uy holds sincey is quasi-
planar. Symmetrically there is an edge= a'u; that joins a vertexe € V. (us,u1) and vertexu;.
However, edgeisus crosses three edges in this case. ad

In an FO2PEy of a triconnected grap&y, an outer edge joining a degree-3 vertex and a degree-4
vertexw is called dfrill if y contains a subsequen(eg, sz, s3, s4] With {s2, s3} = {u, v} such thak; sas3
andsys3sy are triangles, where the degree-4 ventgxesp., degree-3 vertey is called thehead(resp.,
tail) of the frill e. We call[sy, s2, s3, s4] thespanof frill e. An operation of exchanging the positionssef
andss in the cyclic ordery is calledflippingfrill e. It is easy to observe that the cyclic ordérobtained
from ~ by flipping a frill is also an FO2PE df.

Lemma 9. Let~ be an FO2PE of a triconnected grajgh= (V, E) withn > 7. Then there are at most
two frills in ~, and if there are two frills, then their spans share at most one vertex. Moreover flipping a
frill in ~ never introduces a new frill in the resulting cyclic ordgr

Proof. Assume that there are two frills= zy ande’ = 2’y’ in ~. Denote their spans by, x, y, b] and
[a', 2, y', b']. Without loss of generality assume that vertiees, y, b (resp.,a’, 2’,y’,b’) appear in this
order alongy and{a, z,y,b} U {d’, 2", y',b'} C Vy,(a, V). If the spans share at least two vertices, then
we see thatt = o/, y = 2’ (deg(y) = 4) andb = y'" or “y = o’ andb = 2’ (deg(y) = deg(a’) = 4)"
holds. Hence there is no edge betwéén(a,b’) and Vs, (b, a), whereVy, (b',a) # 0 by n > 7. This
means thafa, b’} is a cut-pair, contradicting the triconnectivity 6f Hence their spans share at most
one vertex. This also implies that flipping a frill tncannot create a triangle for a new frill and thereby
never introduces a new frill.

To derive a contradiction, assume that there are threedills, andes in . LetV; andE;,i = 1,2, 3
be the set of vertices in the spanepfaind the set of edges in the two triangles sharingdyilFor each frill
e; = x;y;, there is exactly one edgé between the head vertex € V; of e; and a vertexy;, € V — V.
Note thatf; = z;y; already crosses an edgelih and no other edge thafy crosses any edge ;.

We now define a seb* of edges as follows. If; = f;, then assume thgt = f, and letE* =
EiUEyU{f1 = fa}. If fi # f; foranyl < i < j < 3 but f; crossesf; for somel < i < j < 3, then
assume thaf; crossesf, and letE* = E; U Es U {f1, f2}.

Assume thatf; # f; and f; does not crosg; for anyl < ¢ < j < 3. Without loss of generality

thatVo C Vi, (x1,y1). Consider frilles, whereV, U {y2} C Vy, (21, y1) since f, does not crosg;.
In fact, V> U {y2} is contained inVy., (a, y2) or Vs, (y2, a) for an end-vertexs € V5 of the span ok,
and an edgé:; crossesf,. Similarly if h; does not crosg;, then we can find a sequence of edges
hs, ..., h, such thath; crosses edgds;,_; andh;; for eachi = 2,3,...,p — 1 andh,, crossesf;. Let
E* = E1 U E2 @] {fl,fg} @] {hl, hQ, e ,hp}.

In any of the above three cases, no edggfrcrosses any edge i; since only edggs can cross an
edge inF5 andf, # fs # fo by the choice off; and f>. We denote the set of all end-vertices of edges in
E* by 21,29, ..., 7, In the order they appear alofly. Then for eachi = 1,2,. .., ¢, setVay(2;, zi+1)
(wherez, 1 = z1) must be empty, since otherwise no edgéincan cross any other edge afid z;1 }
would be a cut-pair. This means that filj cannot exist anywhere aloidy, a contradiction. O

We start with a triangle or 4-cycle fixed in Lemma 8 as a rim of a possible FO2PE where the
rim is a “partial embedding” of7. For a triangleuvw (resp., a 4-cyclewv’w) in a graphG, the instance
where edgesv andvw (resp.,uv, vv’ andv’w) are required to appear as outer edges is givefthy3)
with B = {uv,vw} (resp.,B = {uv,vv’,v’w}). In what follows, we denote the constraiitsimply by
a vertex sequencB = [u, v, w] (resp.,B = [u, v, v, w]).

Our next aim is to design a procedure for constructing a possible FO28Esfan extension of the
fixed rim. Suppose thatlgorithm EXTEND (G, B) is a procedure that returns all FO2PE extensions



of (G, B). By executing such a procedure to each candidate of rims, we can enumerate all FO2PE of a
triconnected graplt/, as described iAlgorithm TRICONNECTED FO2PE below.

Algorithm TRICONNECTED FO2PE
Input: A triconnected simple graph with maximum degree at most 4 and> 10.
Output: The sef” of all FO2PEs of5.
1. I':=B:=0;
2: if G contains a triangléhen
Choose a trianglg in G,
for each triangle’ sharing an edge with, (possiblyt’ = ¢;) do
B := BU {[u,v,w], [v,w,u], [w, u,v]} for the verticess, v, w in trianglet’
end for;
for eachlu, v, w] € B for a trianglevvw do
I' .= ' U{EXTEND (G, [u,v,v",w])}
: end for
10: else/* G has no triangles */
11: if G contains a 4-cycle with two adjacent degree-3 vertthes

o R®

12: Choose a 4-cycle, ususus with degree-3 verticess andus;
13: B := {[u1, u2, ug, ugl};

14: if u; anduy are degree-3 verticedhen

15: B := B U {[us, ug, u1, us]}

16: end if;

17: for each[u,v,v’,w| € B for a 4-cycleuvv'w do

18: I' := "'U{EXTEND (G, [u,v,v',w])}

19: end for

20: end if

21: endif, /* |[I'| = O(1) ¥/
22: Outputl” after discarding duplications if.

Supposing Lemma 10, we show that the above algorithm correctly runérintime. By Lemma 8,
the setB of sequences of triangles/4-cycles is a candidate of a rim of some FO2PE exten&iamBof
if any. Hence the sefEXTEND (G, B) | B € B} contains all FO2PE extensions @, B). Clearly
|B] = O(1) in each of lines 7 and 15. TheiEXTEND (G, B) | B € B} can be obtained i®(n) time,
where|[{EXTEND (G, B) | B € B}| = O(|B]) = O(1) by Lemma 10. We can test if two sequences in
{EXTEND (G, B) | B € B} are the same cyclic order or not@(n) time. Sincel{EXTEND (G, B) |
B € B}| = O(1), we can outpuf after discarding duplications frofEXTEND (G, B) | B € B} in
O(n) time. Now to prove Theorem 2, it suffices to show Lemma 10. In the next section, we show how to
designEXTEND (G, B).

5.3 Reducing instances with fixed rims
In this section, we prove the following result by designE)TEND (G, B).

Lemma 10. For a triconnected instanc@, B) with a fixed rim, the maximum number of FO2PE exten-
sions of(G, B) is constant, and all FO2PE extensions(6f, B) can be generated i®(n) time.

To prove Theorem 2, it suffices to show Lemma 10. We call an insté@¢®) triconnectedf G
is triconnected. To prove the lemma, we establish a reduction over triconnected ingt@né&gswith
fixed rims. We try to extend a given partial embedding B) by fixing some other vertices, and simplify
the instance with the newly fixed vertices into a triconnected insta&fiteB’) so that the new instance
(G’, B') admits an FO2PE extension if and only if so does the original instance.

For an instancéG, B), a sequencésy, s, . . ., si| is calledinevitableif any FO2PE extension =
[v1,v9,...,v,] Of (G, B) contains the sequence as its subsequence. Given an ingtainBg with a
fixed rim, we identify an inevitable sequence or a frill contained in any FO2PE extensi@H, &)
without generating all possible permutations of the vertices.iBased on the identified local structure
of inevitable sequences or frills, we redue@g, B) into a smaller new instandé&:’, B’) with a new fixed
rim B’ such tha{ G, B) is extendible if and only if so i§G’, B’).
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When we construct a new instan@@’ = G/X, B’) by contracting a vertex subsat in G into a
single vertexv* and settingB’ to be the sel’’ of a new triangle or 4-cycle, we call a vertexe X an
attaching pointof (G’, B’) if each edge: = wv* € E(v*; G') corresponds to an edgec E(v; G). We
introduce how to reduce an instance with a fixag3)-rim.

Before we give proofs of Lemmas 12, 13 and 14, we introduce the following technical lemma.

Lemma 11. Let G be a triconnected graph with > 8, and letB = [v1,va,...,v,] (p = 3 or 4),
where B = [v1,v2,v3] for a triangle vy v2v3 with a degree-3 vertex, and N (vy) = {v1,v2, w} (Or
a degree-4 vertexs and N (v2) = {v1,v2, w,w'}) or B = [v1, va, v3,v4] fOr @ 4-cyclevy vavzvy With
degree-3 vertices, and vz with N(vy) = {v1,v3, w} and N(vs) = {va,v4,w’}. Lety be an FO2PE
extension of G, B), where we assume that € V., (v, w’) whenp = 3 anddeg(v,) = 4. Assume that
Vo (w,v1) # 0.

(i) If some edge = ab between a vertex € Vs, (w,v;) and a vertex € Vj,[v,, w) has no crossing
with any edger’a” (# viw) witha’, a” € Vo, [w, v1], then it holdsVy, (w, v1) = {a}.

(i) If |[Vay(w,v1)] > 2, thenviw ¢ E holds, there is exactly one edge= ab between a vertex
a € Vyy(w,v1) and a vertexb € Vy,[vp, w), and edgee crosses some edgéa” (# viw) with
a',a" € Vo, [w, v1].

Proof. Sincen > 8, embeddingy is quasi-planar by Lemma 2, and € Vy, (v4, w) holds forp = 4.

(i) Let e = ab be an edge between a veriex V. (w,v:1) and a vertex € Vj,[v,, w) such that no
edged’a” (# viw) with a’,a” € Vy,[w, v1] crosses. Note that edge,w has two crossings on it and
edgev; v, crosses only edge,w for p = 3 (edgesvow andvsw’ for p = 4). Also now no edge’a” (#
viw) with @', a” € V4w, v1] crosses. Hence ifVy, (u,v) # 0 for a pair(u,v) € {(w,a), (a,v1)},
then (u, v) would be a cut-pair since any possible edge betwiégriu, v) and Vs, (v, u) would create
another crossing on edgew oOr vy vp.

(if) Now |V, (w,v1)| > 2. Since{v;, w} is not a cut-pair, there is an edge= ab between a vertex
a € Vp,(w,v1) and a verted € Vy,[v,, w). By (i), edgee has a crossing with some edge” (# v, w)
with a’,a” € Va4 [w,v;]. However, in this case,would cross three edgesw, a’a” andv,w if viw € E.
Hencevyw ¢ E also holds. O

Lemma 12. (3, 3)-rim reduction) Let (G, B) be a triconnected extendible instance with> 7 for a
fixed (3, 3)-rim B = [v1, va, v3] With N (vy) = {v1, v2, w}. Then one of the following conditio§ and
(i) holds, and the instancgs’, B’) defined in each condition is triconnected and extendible.

(i) Assume that; or vs, sayv; is a degree-4 vertex adjacentta (See Fig. 3. Then[w, vy, vq, v3] IS
inevitable to(G, B). LetG' = G/{va,v3} and B’ = [w,v1,v*]. Any FO2PE extension ¢t7, B)
is obtained by modifying an FO2PE extensign= [u; = w,uz = vi,us = 0*,Ug,...,Up] Of
(G',B") Intoy = [w, v1,vV2,V3,Usg, -« ., U]

(i) Assume that; or vs, sayv; is a degree-3 vertex not adjacentdo (See Fig. 4. Then[z, vy, va, v3]
is inevitable to(G, B). LetG' = G/{z,v1} and B’ = [v*, v, v3]. Any FO2PE extension ¢z, B)

is obtained by modifying any FO2PE extensign= [u; = v*,us = va,u3 = v3,Uq, ..., Up] Of
(G',B") intoy = [z,v1, V2, V3, Ug, - . ., Ups]-
Proof. Lety = [v1,v9,...,v,] be an arbitrary FO2PE extension(@f, B). By Lemma 3, each vertex in

G is of degree 3 or 4. [fVp, (w,v1)| > 2 and| Vs, (vs, w)| > 2, theny has a(w, v2)-hooked edgeb (#
viv3) and a(vq, w)-hooked edge’d’ (# vivs) by Lemma 11(ii). However, itb = a’d’ then the edge
would have three crossings; otherwiaé ¢ a'd’) edgevsw would get three crossings, a contradiction in
any way. Hence we hav&y, (w,v1)| < 1 or |Vy,(vs, w)| < 1. First consider the case where or vs,
sayw; is adjacent tav. If deg(vi) = 3, thenVp, (vs, w) # 0 by n > 7 and{vs, w} would be a cut-pair.
Hencedeg(v1) = 4, satisfying condition (i).

Next assume that neither of andvs is adjacent tav. Recall thatVy., (w, v1)| < 1 0r|Va, (vs, w)| <
1. Assume without loss of generality th@fy, (w,v1)| < 1. Sincev, is not adjacent tav, we see that
deg(vy) = 3, satisfying condition (ii).

(i) Assume that; or vs, saywv; is a degree-4 vertex adjacentdo To prove thafw, vy, va, v3] IS
inevitable to(G, B), it suffices to show théty., (w, v1) = 0 in . Sincev;w € E, itholds|Vy., (w, v1)| <
1 by Lemma 11(ii). To derive a contradiction, assume thgt (w, v1)| = 1, where an edge = ab joins
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(3,3)-rim B=[v1,0,03]

U1

(2) G=(V.E)

(3,3)-tim B =[w,v},0%]

(b) G'=G/{vy,v3}

Fig. 3. lllustration for the reduction in Lemma 12(i) from an instari¢g B = [v, vz, v3]) with a fixed(3, 3)-rim of
a trianglev; vov3 with a degree-3 vertex to a new instancéG’, B'): (a) a graphG such thab is a degree-3 vertex
adjacent tav; (b) a new instancéG’ = G/{v2,vs}, B’ = [w, v1,v*]) with a new(3, 3)-rim of trianglewwv; v* with

a degree-3 vertey .

(3,3)-rim B=[v1,v2,03]

<

N mmmmmmm o

(a) G=(V.E)

2

(3,3)-rim B'=[0*,05,03]

(b) G=G/{z.v1}

Fig. 4. lllustration for the reduction in Lemma 12(ii) from an instar{€g, B = [v1, vz, v3]) with a fixed (3, 3)-rim
of a trianglev,vevs with a degree-3 vertex; to a new instancéG’, B'): (a) a graphG such that; is a degree-3
vertex not adjacent to; (b) a new instancéG’ = G/{z,v1}, B’ = [v*, v2,v3]) with a new(3, 3)-rim of triangle

v*vavs With a degree-3 vertexo.
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the vertexa € Vy,(w, v1) and a vertex € Vy, [vs, w) since{w, v1} is not a cut-pair. Also by > 7, it
holds|Vy., (v2, w)| > 3, and there is &v», w)-hooked edge’ = o'V’ that joins a vertex’ € {a, v; } and
avertext/ € Vyp,[vs, w). However, ife’ = e then the edge would have three crossings; otherwise ')
edgev,w would get three crossings, a contradiction in any way. Therdfgréw, v1) = (), as required.

We show thatG’ = G/{vs,vs} is triconnected, IfG’ is not triconnected, i.e., there is a pair of
verticesu and v’ such thatG’ — {u, v’} is disconnected, then* € {u,u'} holds, since otherwise a
componentd in G’ — {u,w’} not containingv* still can be separated i — {u, v}, contradicting the
triconnectivity of G. Therefore, to show tha®#’ = G/{v2,vs} is triconnected, it suffices to show that
G — {vq,v3,z} remains connected for any vertexin G. Let N(vy;G) = {v2,v3, w,w’}. Note that
v3 is an attaching point ofG’, B’) (i.e., any edgee = w* € E(v*;G’) — {v1v*,wv*} corresponds
to an edgee € E(vs;G)). Sincew is a Hamiltonian cycle where; and v, appear consecutively, if
G—{v2, v3, 2} is not connected then one of the components Baythe graph is given bz [V, (z, v1]],
wherew’ € Vy,(z,w) by viw’ € E. Sincevs is an attaching point ofG’, B’), H is still a component of
G — {vs,z}, contradicting the triconnectivity af.

We next show thatG’, B’ = [w,v1,v*]) is extendible. Lety” be the cyclic order obtained from
v = [v1,v2,...,v,] by replacingv, andvs with v*. ThenCy,» = 0 holds,B" = [w, vy, v*] is a(3, 3)-
rim with degree-3 vertex; in 7", and each edge not in the new triangle;v* has the same number of
crossing on it, implying that” is a FO2PE extension ¢&’, B').

Conversely for any FO2PE extensioh = [u; = w,us = z,u3 = v*,uy,...,u,| of (G',B’),
let v = [w,z,v1,v2,v3,u4,...,u,| be the cyclic order obtained fromf by replacing subsequence
[z, v*, uq] With subsequencg, vy, va, v3, uq). In 7, NO New crossing is introduced by the expansion of
v* into {vy, v3} becauses is an attaching point ofG’, B’). Hencey is an FO2PE extension ¢¢, B).
The way of constructing from +’ is the reverse operation of the way of constructing the above FO2PE
extensiom” of (G’, B’) from an FO2PE extension of (G, B). Hence ify’ = +”, then the original
FO2PE extension can be obtained from”. This means that any FO2PE extensiofi@f B) is obtained
by modifying an FO2PE extensiop of (G', B').

(i) Assume thatv, or vs, saywv; is a degree-3 vertex not adjacentdo Sincedeg(v;) = 3, the
remaining incident edgev; must be an outer edge in any FO2PE extensiaffB), and[z, vy, va, vs]
is inevitable to(G, B). Note that vertex is an attaching point ofG’ = G/{z,v1}, B’ = [v*, v2,v3]).

To prove that?’ = G/{z, v, } istriconnected, it suffices to show th@t{z, v;, 2} remains connected
for any vertex: in G. Sincey is a Hamiltonian cycle whereandv, appear consecutively,@f—{z, v, z}
is not connected then one of the components, Baiy the graph is given by=[Vy., (z, v1]], andw ¢
Vay(z,2) 2 N(z) — {v1} holds. Sincez is an attaching point ofG’, B’), H is still a component of
G — {z,z}, contradicting the triconnectivity aF.

Analogously with (i), we can show th&’, B’) is extendible and that any FO2PE extensio((®fB)
can be obtained by modifying an FO2PE extensjon= [u; = v*,us = v, us = Vs, Us, ..., U] Of
(G',B')intoy = [z,v1,v2, U3, Ug, - . ., Up]. O

The next lemma provides how to reduce an instance with a fixef)-rim. Note that for an instance
(G,B = [v1,v2,v3]) With N(ve) = {v1,v2, w1, w2} for a (3,4)-rim, we do not know the order of
verticesw; andws along the boundary of an FO2PE extensioni@f B).

Lemma 13. ((3,4)-rim reduction) Let (G, B) be a triconnected extendible instance with> 7 for a
fixed (3,4)-rim B = [v1,va,v3] With N(v2) = {v1, va, w1, w2}. Then one of the following conditions
(i)-(iv) holds, and the instandg=’, B’) defined in each condition is triconnected and extendible.

(i) Assume that; or v4, Sayv; is a degree-3 vertex, whet¥(v;) = {va,vs, z}. (See Fig. 5. Then
[2,v1,v2,v3] IS inevitable to(G, B). LetG' = G/{v1,z} and B’ = [v*,vq, v3]. Any FO2PE ex-
tension of(G, B) is obtained by modifying an FO2PE extensign= [u; = v*,us = vo,u3 =
V3, Ug,y - - -, Upr] OF (G, B') INtOy = [2,v1, 02, U3, Ug, . . ., Up].

(i) Assume that; or vy, sayv is a degree-4 vertex adjacent to exactly onevgfand ws, sayw, and
there is a pair of a degree-3 vertexand a vertexy such thatvwz andw:zy are triangles. Let = v,
without loss of generality(See Fig. 6. Then any FO2PE extension ¢, B) has zw as a frill.
LetG' = G/{y,z,w,v1} and B’ = [v*, vy, v3]. Any FO2PE extension ¢f7, B) is obtained by
modifying an FO2PE extensiofl = [u; = v*,us = vy, u3 = v3,uy,...,u,| of (G', B’) into
v =y, z,w, V1, V2, U3, Ug, . . ., Up| ANA[Y, W, 2, V1, V2, V3, Ug, - -« , Ups].
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(i) Assume thab; or vy, saywv is a degree-4 vertex adjacent to exactly oneugfand ws, sayw,
but there is no pair of a degree-3 vertexand a vertexy such thatvwz and wzy are triangles.
Let (v,w) = (v1,ws) without loss of generalitySee Fig. 7). Then[wsz, v1, v, v3] IS inevitable to
(G, B). Let G’ be the graph obtained fro¥ by replacing edges;vs and vows with a new edge
wyvs, and B’ = [wq, v1, v2, v3]. Any FO2PE extension ¢f7, B) is obtained as an FO2PE extension
v = [u1, ug, ug, ug, . . ., un] of (G, B').

(iv) Assume that none of the above conditidixgiii) holds and there is an edgg z; € F between
two degree-3 vertices; € N(w) andze € N(w’) for {w,w'} = {wy, w2} or a degree-4 ver-
tex z € N(wi) N N(ws). (See Fig. 8. Then any FO2PE extension ¢f7, B) contains exactly
one of[w, z1, 29, w'] and [w’, 24, 21, w] (or exactly one ofw, z,w’] and [w’, z, w]) as a sequence.
Let G’ be the graph obtained fror& by removing vertex, and adding a new edgew-, and
B' = [w, 21,22, w'] (or B" = [wy, z, ws]). Verticesv; and vz appear consecutively in any FO2PE
extensiony’ of (G', B’). Any FO2PE extension ¢€7, B) is obtained by modifying an FO2PE exten-
siony’ = [u; = v1,us = V3, U3, ..., Uy ] OF (G', B') INtOy = [v1,v2, V3, us, . . ., Up].

U2

(3,4)rim B'=[v*,02,03]

w2

(3,4)-rim B=[v1,02,03]

U] &
'

(c) G=(V,E) (d) G=G/{vy.z}

Fig. 5. lllustration for the reduction in Lemma 13(i) from an instar{€& B = [v1, v2, v3]) with a fixed (3, 4)-rim
of a triangleviv2vs with a degree-4 vertex, and a degree-3 vertex (N(vi) = {v2,vs, z}) to a new instance
(G', B'): (@) agraphG such that: & {w1,w2}; (b) anew instancéG’ = G/{z,v1}, B’ = [v*, v2, v3]) with a new
(3,4)-rim of trianglev*vovs with a degree-4 vertex; (c) a graphG such that: € {w1,w2}; (d) a new instance
(G" = G/{z,v1}, B' = [v*,v2,v3]) with @ new(3, 3)-rim of trianglev*vavs with a degree-3 vertexs.

Proof. (i) Sincedeg(v1) = 3, clearly [z, v1, va, vs] IS inevitable to(G, B). Note that vertex: is an
attaching point of G’ = G/{z, v, }, B’ = [v*, v2,v3]). Analogously with the proof of Lemma 12(i)-(ii),
we can show thatG’, B’) is triconnected and extendible and that for any FO2PE extensien|[u; =
V¥, U = V2, U3 = V3, U4, ..., Uy | OF (G', B'), v = [2,v1, V2, U3, Ug, . . ., Uy’] iS an FO2PE extension of
(G, B).

(i) Assume that is a degree-4 vertex adjacent to exactly onepaindws, sayw, and there is a pair
of a degree-3 vertexand a vertey such that, wz andwzy are triangles. Lew’ € N (v1) —{va, v3, w}.

14



(3,3)-rim B '=[v*,0p,v3]

(a) G=(V,E) (b) G=G/{y.z,w,v1}

Fig. 6. lllustration for the reduction in Lemma 13(ii) from an instar{€@, B = [v1, vz, vs]) with a fixed (3, 4)-rim
of a trianglev,vovs With a degree-4 vertex, to a new instancéG’, B'): (a) a graph such that; is a degree-4
vertex adjacent to exactly one @fi andw-, sayws, and there is a pair of a degree-3 verteand a verteyy such that
viwaz andws zy are triangles; (b) a new instant@”’ = G/{y, z, w2, v1}, B’ = [v*, v2, v3]) with a new(3, 3)-rim
of trianglev™vav3 with a degree-3 vertex,.

U2

(3,:4)-rim B=[v1,02,03]

U1

(a) G=(V.E)

Fig. 7. lllustration for the reduction in Lemma 13(iii) from an instan@&, B = [v1, v2, v3]) with a fixed(3, 4)-rim
of a trianglev,vevs With a degree-4 vertexs to a new instancéG’, B'): (a) a graphG such thatv; is a degree-4
vertex adjacent to exactly onef andws, sayws, but there is no pair of a degree-3 verteaind a vertey such that
viwez andwszy are triangles; (b) a new instant@”’, B’ = [w2, v1, v2, v3]) with a new4-rim of 4-cyclewsvivovs
with degree-3 vertices; andwvs, whereG’ is obtained fromG' by replacing edges; vs andvsw> with a new edge

wi1v3.
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() G=(V.E) @G’

Fig. 8. lllustration for the reduction in Lemma 13(iv) from an instai¢g B = [v1, v2, v3]) with a fixed(3, 4)-rim of

a trianglev; vov3 With a degree-4 vertex, to a new instancéG’, B’): (a) a graphG such that none of conditions (i)-
(iii) in Lemma 13 holds and there is an edge:» € E between two degree-3 vertices € N(w) andzz € N(w')
for {w,w'} = {w1,w2}; (b) a new instancéG’, B’ = [w, 21, 22, w']) with a new4-rim of 4-cyclewz1 zow’ with
degree-3 vertices; andz», whereG’ is obtained fronG' by removing vertex- and adding a new edge; w2; (c) a
graphG such that none of conditions (i)-(iii) in Lemma 13 holds and there is a degree-4 veateX (w1) N N (w2);
(d) a new instancéG’, B’ = [wi, z, w2]) with a new(3, 4)-rim of 3-cyclewzw’ with a degree-3 vertex, whereG’

is obtained fromG by removing vertex, and adding a new edge; w-.
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Lety = [v1,v9,...,v,] be an arbitrary FO2PE extension @, B), wherew, € Vj, (w1, v1) without
loss of generality. Note that vertexis an attaching point ofG' = G/{y, z,w,v1}, B’ = [v*, v, v3]).

We first show thaty containsly, z, w, vy, v2] OF [y, w, z, v1, v2] as a subsequence. Cleaslyontains
[w,v1,v2] OF [2,v1,v2], Since it is Hamiltonian. Consider the case whereontains|w, vy, vs]. Since
N(z) = {v1,w,y}, verticesy, z andw must appear consecutively in this order (otherwiseould
have only one outer edge incident to ity Similarly wheny containg|z, vq, v2] we see fromV (w) =
{v1,v9, 2, y} that verticegy, w andz appear consecutively in this order (otherwisesould have only one
outer edge incident to it ify). Thereforey contains frillzw, andw = w, for the vertexw, € Vy, (w1, v1).

We next show that?’ = G/{y,z,w,v1} is triconnected. For this, it suffices to show ti@t—
{y, z, w = wq, vy, 2} remains connected for any vertexn G. Sincey is a Hamiltonian cycle where the
verticesy, {z, w2} andv; appear consecutively in this order,Gf — {y, z,w = ws,v1, 2} iS Not con-
nected then one of the components, &ain the graph is given by Vs (2, y)], wherew, € Vy, (vs, x)
holds byw,w; € E. Sincey is an attaching point ofG’, B’), H is still a component o7 — {y, =},
contradicting the triconnectivity af.

Analogously with the proof of Lemma 12(i)-(ii), we can show thi&t', B’ = [v*,vq, v3]) IS €X-
tendible, and that any FO2PE extension(6f, B) can be obtained by modifying an FO2PE extension
v = [u; = v*us = vo,uz = v3,uUy,...,uy| Of (G',B’) into [y, z,w, v, va, U3, Uy, . . ., U] @Nd
[y, w, z, 01,02, V3, Ug, - . ., Up].

(iif) Assume thatv, is a degree-4 vertex adjacent to exactly onewpfandw-, sayw, but there is no
pair of a degree-3 vertex and a vertexy such thatwz andwzy are triangles. Lefv, w) = (v1,ws)
without loss of generality. Let € N (v1) — {v2,vs3, w}, andy = [v1, va, ..., v,] be an arbitrary FO2PE
extension of G, B).

We first claim that edge; w is an outer edge in. Otherwise by applying Lemma 11(ii) to inner edge
vow, We see thalp, (w, v1) = {z} andz has exactly one inner edge incident to it. Nowdeg(z) = 3
andv; zw is a triangle, but we see thatis not adjacent tav, sincewz is not in two triangles by the
assumption on (iii). Henc&y. (a, w) # 0, which, however, implies thda, w} is a cut-pair since each
of edgeswv, andza has already two crossings. This proves the claim,[and;, v-, v3] is inevitable to
(G, B). Thenw = w, without loss of generality, where, € Vj, (w1, v1) holds.

Let G’ be the graph obtained fro@ by replacing edges; vs andvsw, with a new edgev,vs. To
show that?’ remains triconnected, we assume tahas a cut-paifu, v’ }. We remove edges, vs and
vowo and add a new edge; v; in the FO2PE extension = [vy, vs, ..., v,] Of (G, B). Since the same
set of outer edges still forms a Hamiltonian cycle in the resulting embedding, we seeghdt.’ are
not consecutive along the cycle and both of them must be contairiég, jns, w2] or V., [wa, vs] in G'.
In the former case, the componéiitin G’ — {u, v’} with V(H) C V. [vs, ws] would be separated in
G — {u, v}, contradicting the triconnectivity a¥. In the latter,{u, v’} is given by{wa, v2} or {v1,vs},
which, however cannot be a cut-pairi due to edges; w’ andv,w, . This proves thaf’ is triconnected.

Any edgee incident to a vertex iV (G) — {wa,v1,v2,v3} = V(G') — {wa, v1,v2,v3} has the
same number crossings ineven forG’, implying that~y is also an FO2PE extension ¢f', B’ =
[wa, v1,v2,v3]). Hence(G', B’) is extendible. Similarly for any FO2PE extensigh= [uy, usa, . .., ty)
of (G', B’), any edge: incident to a vertex iV (G) — {ws, v1,v3, v3} has the same number crossings in
~" even forG, 4/ is also an FO2PE extension @, B).

(iv) Assume that inGG, each ofv; andvs is a degree-4 vertex which is adjacent to bothugfand
ws or neither of them irG. Lety = [v1, v9, ..., v,] be an arbitrary FO2PE extension (@f, B), where
wy € Va, (w1, v1) without loss of generality. By Lemma 3, each vertexdiis of degree 3 or 4.

We first claim that neither of; andwv, is adjacent to both ofv; andw,. To derive a contradiction,
let N(v1) = {v2,va, w1, ws}. ThenVpy (wa,v1) = 0. If [Vay(wi,v1)] > 3 (resp.,|Vay (ve, w1)| > 3),
then~ would have aws,v1)-hooked edge (resp., @2, w,)-hooked edge}, which, however crosses
edgesw;v; andw,v, t00, a contradiction. Hencl/s, (w1, v1)| < 2 and|Vy,(ve, w1)| < 2, where
|V (w1, w2)| = |Vay(vs,w1)| = 1 holds byn > 7 and an edgeb joins the vertexa € Vy, (w1, wo)
and the verted € Vj, (vs, w1 ). However, the edgesx with z € N(v3) — {v1,v2, b} crosses edgeb or
edgew; vq, creating the third crossing there, a contradiction. This proves the claim. Now eagclaind
vg IS a degree-4 vertex which is adjacent to neithewpfindw, in G.

Let the two neighbors:;; andz, in N(vy) — {ve,v3} appear in this order alongy(vs,vy). We
show thatzq,zo € Va, (w2, v1). Sincev; is not adjacent tavy, we havexs € Vy,(wa,v1). If 21 €
Vo (v3, w2), then an edgeb joins a vertexa € Vy, (w2, v1) and a verted € Vy, (v1, wa) sincef{ws, vy }
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is not a cut-pair. However, edgeé creates the third crossing on edgev.. Hence we havéz,, x2} C
Vo (w2, v1). Symmetrically we haveN (vs) — {va, vs} C Vi (vs, wr). Since|Va, (w2, v2)| > 3 (resp.,
[Vay (v2,w1)| > 3), there is dws, v2)-hooked edge. z; betweeny, € Vg, (we, v1) andze € Va, (v3, w2)
(resp., a(vq, wq)-hooked edgey, z; betweeny; € Vapy(vs, wr) andzy € Vy, (w1, v1)). In fact, it must
hold thatz; € Vay (w1, 22] andzy € Vy,[21,w2) since otherwise one of edgesw:, vaws, y121 and
Y222 would get three crossings. Note that possibly= z,. Since each of these four edges already has
two crossings, we see théih, (w1, w2) = {z1, 22} (otherwise one ofw1, 21}, {#1, 22} and {2z, wa}
would be a cut-pair), and thaleg(z) = deg(z2) = 3 whenz; # z. We easily see that there is no
other pair{z1, z5} than{z;, z2} which satisfies condition (iv), since otherwise edge; would further
cross some edge in the cyelg z; zow2 2421 (in other words, if a vertex paifz}, 2} satisfies condition
(iv) then{z], 25} = {z1, 22}). Therefore fo{w, w’'} = {w1, w2}, any FO2PE extension ¢&, B) con-
tains exactly one ofw, z1, z2, w'] and[w’, z3, z1, w] (Whenz; # zo) or exactly one ofws, z, wy] and
[wa, 2z, w1] (Whenz = z; = z5) as a sequence.

Let G’ be the graph obtained fro@ — v, by adding a new edge;wy, and B’ = [w, z1, 22, w']
(or B = [w, z,w']). We show tha{G’, B’) is triconnected and extendible. Given any FO2PE extension
v = [v1,v2,vs,...,0,] Of (G, B), we easily see that” = [v,vs,...,v,] is an FO2PE extension of
(G, B'), since the added edge;w, has two crossings with edgesz; andy,z.. Hence(G’, B’) is
extendible.

To prove the triconnectivity ofy’, we assume thaf’ has a cut-paifu,u'}. In 4", only a vertex
pair {u, '} such thaf{u, '} N {a,b}| € {0,2} for any inner edgab € {y121, y222, wiwz} can be a
cut-pair inG’. Thus,{u,u’} is contained in one 0¥y, [y1, w1], Vo [wa, wa] and Vo, [y, y1]. Also
if {u,u'} C Vayrlvg,wi]or {u,u'} € Vo wa,v1], then clearly{u, '} is also a cut-pair irG. Hence
it must hold thaty € Vay»[vs, y1], &' € Vayr [y, v1] and{u,w'} # {v1,vs}. Let H be the component
in G’ — {u,u'} containing vertexy; or vz, saywvs. Note that no vertex iV, [vs, u) has a neighbor
in V. [y2, v1) since edgesw, has two crossings in. Consider the vertex séf.» (vs,u) € V(H),
whereVy, (vs,u) # 0 sincedeg(vs; G') = 3 andvs has no neighbor iy, [y2, v1). This means that
the vertex set,~ (vs, u) will be separated it/ — {vs, u}, contradicting the triconnectivity af.

Finally we show how to construct an FO2PE extensiori®fB) from an FO2PE extension’ of
(G', B) after deriving an important property on. We first examine the graph structure(6f, B) which
admits an FO2PE extension Let A, = Vi, (vs, z1) and Ay = Vi, (22,v1) Whenz; # 2y, and A, =
Vo~ (vs, z) and Ay = V., (2, v1) whenz; # z,. Consider the case af # z; (the case ot = z; = 2
can be treated analogously). Without loss of generality demote N(z1) by w; andw’ € N(z;) by
we. Then B’ = [w, 21, 29, w'] = [wy, 21, 22, ws], and any FO2PE extensiey of (G’, B’) contains
[wy, 21, 22, w2] as a subsequence by definition. Th&hhas only two edges betweety and A, i.e.,
edges:; 2o andwvyvs. This means that the vertices.ih appear in some order consecutively aléhg of
any FO2PE extensioff of (G', B'), since otherwise a crossing would be generated on the bouéidary
Thus any FO2PE extensiof = [u; = vi,us = v3,us, ..., uy| Of (G, B') satisfiesd; C V., (us, u;)
for u; = 2z andAs C Vo (uir1 = 22, u1). In particularvy, vs, wi, 21, 22, we appear in this order and
andvs appear consecutively alodyy’ (recall that vertices, 21, 22, wo appear in this order in an FO2PE
extensiony of (G, B)). Note that there is no edge betweén, (us, u; = z1) andVa, (w11 = 22, u1).
Therefore the cyclic ordey = [vy, v2, v3, us, . . ., u,’] Obtained fromy’ by insertinguv, betweenu; = v,
andus = vq is an FO2PE extension @€+, B), since the edge; w- is replaced with edges, v, and
wavg iN G without creating any new crossings on the other edgés. ifihe way of constructing from
~" is the reverse operation of the way of constructing the above FO2PE exterfsafnG’, B') from
an FO2PE extension of (G, B). Hence any FO2PE extension @¥, B) is obtained by modifying an
FO2PE extension’ of (G’, B').

We here remark that computing the sdtsand A» would takef2(n) time. However, without know-
ing {41, A2}, in particular for the case of = z; = z,, we can reducéG, B) into (G’, B’) only by
identifying z; andzs (or z = z; = 23), which can be done i®(1) time. a

The next lemma provides how to reduce an instance with a fixaoh. Note that for an instance
(G, B = [v1,v9,v3,v4]) With N(vg) = {v1,vs,wa} and N(vs) = {vo,v4,w;} for a4-rim, we see
thatw; andws appear always in this order after vertiegsv,, vs, v4 appear along the boundary of any
“quasi-planar” FO2PE extension (f, B).
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Lemma 14. @-rim reduction) Let (G, B) be a triconnected extendible instance with> 8 for a fixed
4-rim B = [1}1,’02,’()3,1}4] with N(Ug) = {Ul, V3, wg} and N(U3) = {1)2, U4, wl} (pOSSiblyw1 = ’wg).
Then one of the following conditiofi§-(v) holds, and the instancg’, B’) defined in each condition is
triconnected and extendible.

(i) Assume that; or vy, Sayv, is a degree-3 vertex adjacent to neitherafandw,. (See Fig. 9. Then

(ii)

(iii)

(iv)

for z € N(v1) — {ve,vs}, [2,v1, V2,03, v4] iS inevitable to(G, B). LetG' = G/{v1,z} and B’ =
[v*, v2,v3,v4]. ANy FO2PE extension ¢z, B) is obtained by modifying an FO2PE extensign=
[ur = v*, ug = V2, ug = U3, Usg = Vg, Us, ..., Uy | OF (G', B') INtOy = [z, 01, V2, U3, Vg, Us, - - ., Ups].
Assume that fofv, w) = (v1,ws) Or (vq, wy), v is a degree-3 vertex adjacent ta Let (v, w) =
(v1,wz) without loss of generalitySee Fig. 10. Then[wsz, v1, v, v3,v4] IS inevitable to(G, B).
Let G’ = G/{ws,v1,v2} and B’ = [v*,v3,v4]. Any FO2PE extension ¢f7, B) is obtained by
modifying an FO2PE extensiofl = [u; = v*,uz = v3,u3 = U4, Uy,...,u,] of (G', B’) into
v = [wa, V1, V2, U3, Vg, Us, . ., U]

Assume that fofv, w) = (vi,ws) or (vg,w1), v IS a degree-4 vertex adjacent t@ and there is a
pair of a degree-4 vertexand a vertex such thatwz andwzy are triangles. Letv, w) = (v1, ws)
without loss of generalitySee Fig. 11. Then any FO2PE extension= [v1, va, . .., v,] Of (G, B)
haszw, as a frill. LetG’' = G/{y, z, w2, v1,v2} and B’ = [v*,v3,v4]. Any FO2PE extension of
(G, B) is obtained by modifying an FO2PE extensign= [u; = v*,ug = v3,u3 = V4, Ug, . - . , Up/]
of (G', B') intoy = [y, z, wa, U1, V2, U3, Vg, Usg, - . . , U] BN [y, Wa, 2, V1, Vo, Vg, Vg, Usgy - « - 5 Uy ]
Assume that fofv, w) = (v1,ws) or (vg, w1), v is @ degree-4 vertex adjacent t@ but there is no
pair of a degree-4 vertexand a vertex such thatwz andwzy are triangles. Letv, w) = (v1, ws)
without loss of generalitySee Fig. 12. Then[ws, v1, va, v3,v4] iS inevitable to(G, B). LetG’ be
the graph obtained froré: by replacing edges; v4 andvs,w, with a new edgev,v, and contracting

v; and vy into a single vertex*, and B’ = [ws,v*, vs, v4]. Any FO2PE extension df7, B) is
obtained by modifying an FO2PE extensign= [u1 = w2, us = v*,u3 = v U4 = V4, Us, . . . , Up/]
of (G', B) into y = [wa, v1,va, U3, Vg, Us, - - ., Ups].

(v) Assume that none of the above conditigipgiv) holds,w; # ws, and there is an edge 2z, €

E between two degree-3 vertices € N(w;) andzz € N(ws) (there is a degree-4 vertex €
N(wy) N N(wz)). (See Fig. 13. Then[wy, z1, 22, wa] (Or [w1, z, ws]) is inevitable to(G, B). Let
G’ be the graph obtained fror& by removing vertices, and v3 and adding a new edge;w,,
and B’ = [wy, 21, 22, w2 (or B’ = [wy, 2, ws]). Verticesv; and v, appear consecutively in any
FO2PE extension’ of (G’, B’). Any FO2PE extension ¢, B) is obtained by modifying an FO2PE
extensiony’ = [u; = vy, ug = vg,ug, ..., Uy OF (G', B') iNt0y = [v1, 02,3, V4, Us, . . ., Up/].

U2 U3 02 U3

4-rim B=[v1,02,V3,04]

4-rim B =[v*,v7,V3,04]

wy wy

(a) G=(V,E) (b) G'=G/{vy,2}

Fig. 9. lllustration for the reduction in Lemma 14(i) from an instari€& B = [v1, v2, vs, v4]) With a fixed4-rim
of a 4-cyclevvavsvs With degree-3 vertices, andwvs to a new instancéG’, B'): (a) a graphG such that; is a
degree-3 vertex adjacent to neitheref andws; (b) a new instancéG’ = G/{v1, z}, B’ = [v*, vz, v3, v4]) With
a new4-rim of 4-cyclev*vavzvs With degree-3 vertices, andvs.

Proof. Lety = [v1,vq,...,v,] be an arbitrary FO2PE extension @¥, B). By Lemma 3, each vertex
in G is of degree 3 or 4. Since > 7, embeddingy is quasi-planar by Lemma 2, and hence it holds
wy € Vo (wy,v1).
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vy 4-rim B=[v1,V2,U3,V4] 3

(3,3)-rim B’=[v*,v3,04]

(a) G=(V,E) (b) G'=G/{wy,v1,02}

Fig. 10. lllustration for the reduction in Lemma 14¢(ii) from an instar(€¢&, B = [v1, v2, v3, v4]) With a fixed4-rim
of a 4-cyclev,vavsvg With degree-3 vertices; andwvs to a new instancéG’, B'): (a) a graphG such that; is a
degree-3 vertex adjacentt®; (b) a new instancéG’ = G/{w2,v1,v2}, B’ = [v*,vs, va]) with a new(3, 3)-rim
of trianglev™vzv4 with a degree-3 vertexs.

4-rim B=[v],02,03,04]
- U3 %]

(3,3)-rim B =[v*,03,04]
U4

I v Tw
y ‘R/w ~X y S— X TTN————_X !
H H H
(a) G=(V,E) (b) G'=G/{y.z,wr,v1,02}

Fig. 11.lllustration for the reduction in Lemma 14¢iii) from an instan@@, B = [v1, v2, v3, v4]) With a fixed4-rim
of a 4-cyclev,vavsv4 With degree-3 vertices; andwvs to a new instancéG’, B'): (a) a graphG such that; is a
degree-4 vertex adjacent @, and there is a pair of a degree-4 verteand a vertexy such thaw wsz andwszy
are triangles; (b) a new instan¢&’ = G/{y, z, w2, v1,v2}, B’ = [v*,v3,v4]) with a new(3, 3)-rim of triangle
v*vzva With a degree-3 verteys.

4-rim B=[v1,02,U3,V4]
U2, U3 4-rim B'=[w,,0*,v3,04] U3
Q

w2

(a) G=(V.E) (b) G’

Fig. 12.lllustration for the reduction in Lemma 14(iv) from an instarf¢& B = [v1, v2, v, v4]) With a fixed4-rim
of a 4-cyclev,vavzv4 With degree-3 vertices; andwvs to a new instancéG’, B'): (a) a graphG such that; is a
degree-4 vertex adjacent 4, but there is no pair of a degree-4 verteand a vertexy such that; wsz andwszy
are triangles; (b) a new instan¢€”, B' = [ws, v*, v3, v4]) with @ new4-rim of 4-cyclews, v*vzv4 with degree-3
verticesv* andwvs, whereG’ is obtained fromG by replacing edges;vs and vows with a new edgewsvs and
contractingv; andv, into a single vertex™.
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(2) G=(V.E)
4rim B=[vy,02,03,04] Y2 U3
U1 U4
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X2 Y1
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(c) G=(V.E)

U1 U4

4-rim B =[w1,21,22,Ww2]
wy z 2z w1

b G

23] Ugq

| ()rim B~{w) zw]

wy w

z
(G’

Fig. 13. lllustration for the reduction in Lemma 14(v) from an instari€& B = [v1, vz, v3,v4]) With a fixed4-
rim of a 4-cyclevivevsvs With degree-3 vertices, and vz to a new instancéG’, B'): (a) a graphG such that
none of conditions (i)-(iv) in Lemma 14 holds;; # w», and there is an edga z2 € E between two degree-3
verticesz1 € N(w1) andzz € N(w2); (b) a new instancéG’, B’ = [w1, 21, 22, w2]) with a new4-rim of 4-cycle
w1 21 z2wo With degree-3 vertices; andz2, whereG’ is obtained fronG by removing vertices, andvs and adding
a new edgev; ws; (c) a graphG such that none of conditions (i)-(iv) in Lemma 14 holds, # w2, and there is a
degree-4 vertex € N(w1) N N(w2); (d) a new instancéG’, B’ = [w1, z, w2]) with a new(3, 4)-rim of triangle
w1 zwe With degree-4 vertex, whereG’ is obtained fronG' by removing vertices» andvs; and adding a new edge

wiLwa.
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Letz € N(v1) = {ve,v4, 2}, Wherez € Vy,(wa,v1). Hence ifv; cannot be adjacent to,, and
symmetricallyv, cannot be adjacent to,. This means that when or v, is a degree-3 vertex, condition
(i) or (ii) holds. Also whenwv, is a degree-4 vertex adjacentidg or v, is a degree-4 vertex adjacent to
ws, condition (iii) or (iv) holds.

We consider the remaining case wherés a degree-4 vertex not adjacentig andv, is a degree-4
vertex not adjacent ta; .

Let the two neighbors;, x5 € N(vy) — {vs, v4} appear in this order alongy(v4, v1). We show that
x1,22 € Vay(wz,v1). Sincev; is not adjacent tavy, we haver, € Vi, (wa,v1). If 1 € Vi, (va, w2),
then an edgew joins a vertexa € Va,(we,v1) and a verte € Vp,(v1, wa) since{ws,v1} is not
a cut-pair. However, edgeb creates the third crossing on edgguv,. Hence we havexy, x5} C
Vo (w2, v1). Symmetrically we haveN (vy) — {v1,vs} C Vi (va, wr). Since|Vy, (w2, v2)| > 3 (resp.,
[Va~y (vs, w1)| > 3), there is dws, v2)-hooked edge. z; betweeny, € Vg, (we, v1) andze € Vo, (va, we)
(resp., a(vs, w1 )-hooked edgey, z; betweeny; € Vapy(va, wr) andzy € Vy, (w1, v1)). In fact, it must
hold thatw, # wa, 21 € Vo, (w1, z2) andzy € V., (21, w2) Since otherwise one of edgesw:, vows,
y121 andyszo would get three crossings. Note that possibly= 2. Since each of these four edges
already has two crossings, we see tigf(w,, w2) = {z1, 22} (otherwise one ofw, 21}, {21, 22} and
{22, w2} would be a cut-pair), and thdbg(z;) = deg(z2) = 3 whenz; # zo. This proves that condition
(v) holds when none of (i)-(iv) occurs.

(i) Sincedeg(vy) = 3, clearly [z,v1,v2,v3,v4] IS inevitable to(G, B). Note that vertex: is an
attaching point of G’ = G/{v1, 2z}, B’ = [v*, v, v3, v4]). Analogously with the proof of Lemma 12(i)-
(i), we can show thatG’, B') is triconnected and extendible and that any FO2PE extensio@,aB)
can be obtained by modifying an FO2PE extensjon= [u; = v*,us = va,u3 = v3, Uy, ..., U] Of
(G',B')intoy = [z,v1, V2, U3, Vg, Us, « -« , Ups].

(i) Sincedeg(vq) = 3, clearly[ws, v1, va, v3, v4] i inevitable toG, B). Note that vertexw, is an at-
taching point of G’ = G/{ws,v1,v2}, B’ = [v*, v3,v4]). We can show thatG’, B’) is triconnected and
extendible and that any FO2PE extensior{@f B) can be obtained by modifying an FO2PE extension

/ / 7\
v = [ur = v*, ug = vo,us = V3, Uy, ..., U] Of (G', B") INtOy = [wa,v1, V2, V3, Vg, Ud, - .., Ups].

(iii) Note that vertexy is an attaching point of G’ = G/{y, z,ws,v1,v2}, B" = [v*,v3,v4]).
Analogously with the proof of Lemma 13(ii), we can show that any extensianto an FO2PEy =
[v1,v2,...,v,] OF G haszws as a frill, and that any FO2PE extension(df, B) can be obtained by
modifying any FO2PE extensioff = [u; = v*,us = v3,u3 = v4,uy,...,u,| of (G',B’) into
[y, z, w2, U1, V2, V3, Vg, Us, . . ., Up/| @NA[Y, W2, 2, V1, Vo, U3, Vg, Ugy -« -, Upys].

(iv) Assume that for{v, w) = (v1,ws) Or (v4,wn), v IS a degree-4 vertex adjacent«g but there
is no pair of a degree-4 vertexand a vertexy such thatvwz andwzy are triangles. Lefv,w) =
(v1,wz) without loss of generality. Analogously with the proof of Lemma 13(iii), we can show that
[’lUQ, U1, U2, U3, U4] is inevitable tO(G'7 B)

Let G be the graph obtained frod by replacing edges; v4 andv,w, with a new edgev,v,, and
G' = G'/{vy,v2}. Thenv, is an attaching point tG’, B’ = [ws,v*,v3,v4]). Analogously with the
proof of Lemma 13(iii), we can prove thét is triconnected. Analogously with the proof of Lemma 12(i),
we see thaG’ = GT/{v, v, } remains triconnected.

Analogously with the proof of Lemma 13(iii), we can prove tli&Y, B’ = [wa, v*, v, v4]) IS €X-
tendible and that any FO2PE extensiof@f B) can be obtained by modifying an FO2PE extensjba:
[u1 = wa,ug = v*, u3 = V,ug = Vg, Us, . .., Uy ] Of (G, B") INtOy = [wa, v1, V2, U3, Vg, Us, - . ., U]

(v) Analogously with the proof of Lemma 13(iv), we see that any FO2PE extensioh(G, B)
satisfies the following propertiesV (vi) — {ve,va} C Vo, (wa,v1), N(vs) — {v2,va} C Vo (va, wr),
there is aws, v2)-hooked edge, 2, betweery, € Vi, (w2, v1) andzy € Vy, (21, w2) (resp., ava, w1 )-
hooked edgey, z; betweeny;, € Vy,(vs, w1) andz; € Vy, (w1, 22]) such thatVy., (wy, we) = {21, 22}
(possiblyz; = 25), anddeg(z1) = deg(z3) = 3 whenz; # z,. Hencew; # ws. Also no other
pair {2z}, 25} than{z, 2o } satisfies condition (iv). Therefore any FO2PE extensiof(fB) contains
[w1, 21, 22, wa] (Whenzy # z9) OF [wy, 2, ws] (Whenz = z; = 29) as a sequence.

Analogously with the proof of Lemma 13(iv), we can prove tl@t, B’) is triconnected and ex-
tendible and that any FO2PE extension(6f, B) can be obtained by modifying an FO2PE extension
’yl = [ul = V1,U2 = V4,U3, ... 7un/} of (G/J BI) into’y = [1)17/0271]:% Vg, U3, - - ,Un’]- o
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Note that in each of Lemmas 12, 13 and 14, constructing a new instéficg’) and modifying an
FO2PE extensiony’ of (G’, B’) into an FO2PE extensionof (G, B) can be executed i@ (1) sinceG
is a degree-bounded graph apdan be obtained by inserting a subsequence.

TheAlgorithm EXTEND (G, B), which takes a triconnected graghand a permutatiofs of vertices
in a trianglevvw or a 4-cycleuvv’w with degree-3 vertices andv’, and outputs all FO2PE extensions
of (G, B), is described below.

Algorithm EXTEND (G, B)
Input: A triconnected simple graphl = (V, E') with n > 7 and a permutatio® of vertices in a triangle
uvw or a 4-cycleuvy’w with degree-3 vertices andv’.
Output: All FO2PE extensions ¢, B).
1: if n < 7then
2: Return all FO2PE extensionsof (G, B) (if any), or Return) (otherwise);
3: else
/* Partial embeddingB is specified as one of the following:
Case 1:B = [vy, v, v3] for a trianglev; vav3 with a degree-3 vertex,
whereN (vy) = {v1, v3, w};
Case 2B = [v1, vg, v3] for a trianglev, vov3 with a degree-4 vertexs,
WhereN(’UQ) = {’Ul, V3, W1, U)z}, and
Case 3:B = [v1, v9, v3, v4] fOr a 4-cyclev,vouzvy With degree-3 vertices, andvs,
whereN (vy) = {v1, v3, wa} and N (ve) = {va, vg, w1} */
4. if Case 1 (resp., Case 2, 3) holds, but none of the conditions (i)- (ii) in Lemma 12
(resp., (i)- (v) in Lemma 13, Lemma 14) holtsen

5: Returnf;

6: else

7 Construct{G’, B’) according to the the conditions (i)- (ii) in Lemma 12

(resp., (i)- (v) in Lemma 13, Lemma 14) currently satisfied 6y B);

8: if EXTEND (G’, B’) # () then

9: Modify eachy’ eEXTEND (G’, B’) into an FO2PE extensionof (G, B) according to
the operation in Lemma 12 (resp., Lemma 13, Lemma 14), where two FO2PE extensions
of (G, B) will be constructed from the samg for the cases (ii)
in Lemma 13 and (iii) in Lemma 14;

10: Return all the resulting FO2PE extensions

11: else

12: Return)

13: end if

14: endif

15: end if.

Based orAlgorithm EXTEND (G, B), we finally prove Lemma 10. We first show thalgorithm
EXTEND (G, B) correctly delivers all FO2PE extensions @, B), if any. In line 9, if Algorithm
EXTEND (G’, B') returns all FO2PE extensiong of (G’, B’), then all FO2PE extensions ¢, B)
can be obtained according to the modifications stated in Lemmas 12, 13 and 14 ARjncaéhm
EXTEND (G’, B’) returns all FO2PE extensions wher< 7, we see by induction th&XTEND (G, B)
correctly delivers all FO2PE extensions(df, B).

We next show thalgorithm EXTEND (G, B) delivers a constant number of solutions. Whes 7,
the graphG has at most — | B| < 4 vertices to be arranged along the boundary of a possible FO2PE
extension of G, B), and at most! FO2PE extensions ¢f7, B) will be constructed. We construct exactly
one FO2PE extension of (G, B) from an FO2PE extensioff of (G’, B’), except for the cases (ii) in
Lemma 13 and (iii) in Lemma 14 wherein exactly two FO2PE extensionsysapd~y, of (G, B) will
be generated from the same FO2PE extensiasf (G’, B’). Note that in this casey; is obtained from
~2 by flipping a frill zw in the lemmas, and the frill iR; will be preserved in any extensions obtained
from ~; until it is output as a final solution. By Lemma 9, any FO2PE of a graph can contain at most two
frills, which means that generating two FO2PE extensions in line 9 can occur at most twice. Therefore,
Algorithm EXTEND (G, B) delivers a constant number of FO2PE extensiongfB).
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As we have already observed, constructing a new instéteR’) and modifying an FO2PE can be
done inO(1) time, Algorithm EXTEND (G, B) runs inO(n) time. This completes a proof of Lemma 10.

6 Proof of Theorem 3

In this section, we prove Theorem 3.

Proof. Assume that a given connected graph-= (V, E') admits an O2PE. WhenG is not biconnected,

we first augment the embeddingby adding new edges so that it remains to be an O2P&f the

resulting “biconnected grapltz’ = (V, E’). For this, we traverse the bounddry in the clockwise order

starting with a vertex; . During this, we skip visiting a cut-vertex already traversed to form a permutation
[v1,v2,...,v,] Of the vertices irV in the order that we first visit. In the outer faceygfwe add new edges
between non-adjacent verticesandv; 1, 1 < i < n. Note that we have skipped a vertexonly when

it is a cut-vertex already traversed. The resulting embedgimgmains outer-2-planar, and the boundary

0~' forms a simple cycle of the augmented gra@h which is now biconnected. Hence it suffices to

show the lemma only when a given graph is biconnected, since the added edges can be removed from any
straight-line drawing ofy’ to obtain any straight-line drawing 61.

Let [v1,v9,...,v,] be the cyclic order of an O2PE of a biconnected graph. Then fix the positions
of vertices as the apices of a conwexgon P,,, which automatically determines straight-line segments of
all edges. Clearly two inner edgesgy; andv,vy, cross only when < k£ < j < h on the cyclic order
in the topological embedding. In the geometric embedding by, the straight-line segments of two
inner edges;v; andvgvy, intersect only whefi < k£ < j < h. This implies thatP,, gives a straight-line
drawing of~. ad
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