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Abstract. An edge dominating set of a graphG = (V,E) is a subsetM ⊆ E of edges such that each
edge inE \M is incident to at least one edge inM . In this paper, we consider the parameterized edge
dominating set problem which asks us to test whether a given graph has an edge dominating set with
size bounded from above by an integerk or not, and we design anO∗(2.2351k)-time and polynomial-
space algorithm. This is an improvement over the previous best time bound ofO∗(2.3147k). We also
show that a related problem: the parameterized weighted edge dominating set problem can be solved
in O∗(2.2351k) time and polynomial space.

1 Introduction

An edge dominating setof a graphG = (V,E) is a subsetM ⊆ E of edges in the graph such that each
edge inE \M is incident with at least one edge inM . Theedge dominating set problem(EDS) is to find a
minimum edge dominating set of a given graph. The problem is one of the basic problems highlighted by
Garey and Johnson [4] in their work on NP-completeness. Yanakakis and Gavril [13] showed that EDS
is NP-hard even in planar or bipartite graphs of maximum degree 3. Randerath and Schiermeyer [6] de-
signed anO∗(1.4423m)-time and polynomial-space algorithm for EDS, wherem = |E| andO∗ notation
suppresses all polynomially bounded factors. The result was improved toO∗(1.4423n) by Ramanet al.
[5], wheren = |V |. Considering the treewidth of the graph, Fominet al. [3] obtained anO∗(1.4082n)-
time and exponential-space algorithm. With the measure and conquer method, Rooij and Bodlaender [7]
designed anO∗(1.3226n)-time and polynomial-space algorithm and an improvedO∗(1.3160n)-time and
polynomial-space algorithm was presented by Xiao and Nagamochi [11]. For EDS in graphs of maxi-
mum degree 3, the best algorithm is anO∗(1.2721n)-time and polynomial-space algorithm due to Xiao
and Nagamochi [12].

The parameterized edge dominating set problem(PEDS) is, given a graphG = (V,E) with an in-
tegerk, to decide whether there is an edge dominating set of size up tok. It is known that there is an
FPT algorithm for PEDS; we can design an algorithm with the running timef(k)poly(n) to solve the
problem, wheref(k) is a function ofk andpoly(n) is a polynomial of the number of vertices inG.
For PEDS, anO∗(2.6181k)-time and polynomial-space algorithm was given by Fernau [2]. Fominet al.
[3] obtained anO∗(2.4181k)-time and exponential-space algorithm based on dynamic programming on
treewidth-bounded graphs. With the measure and conquer method, Binkele-Raible and Fernau [1] de-
signed anO∗(2.3819k)-time and polynomial-space algorithm. Xiaoet al. [9] give anO∗(2.3147k)-time
and polynomial-space branching algorithm. For PEDS in graphs of maximum degree 3, the best param-
eterized algorithm is anO∗(2.1479k)-time and polynomial-space algorithm due to Xiao and Nagamochi
[10].
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EDS and PEDS are related to thevertex cover problem. A vertex coverof a graph is a set of vertices
such that each edge of the graph is incident to at least one vertex in the set. The set of endpoints of
all edges in any edge dominating set is a vertex cover. To find an edge dominating set of a graph, we
may enumerate vertex covers of the graph and construct edge dominating sets from the vertex covers.
Many previous algorithms are based on enumeration of vertex covers. We enumerate candidates of such
edge dominating sets by branching on a vertex: fixing it as a vertex incident on at least one edge in an
edge dominating set with a bounded size or not. In theO∗(2.3147k)-time algorithm to PEDS, Xiaoet
al. [9] observed that branching on vertices in a local structure called “2-path component” is the most
inefficient among branchings on other local structures, and that reducing the number of branchings on
2-path components leads to an improvement over the time complexity. For this, they retained branching
on 2-path components until no other structure remains, and effectively skipped subinstances that will not
deliver edge dominating sets with a bounded size by systematically treating the set of 2-path components.
In this paper, identifying new local structures, called “bi-claw,” “leg-triangle” and “tri-claw components”
and establishing a refined lower bound on the size of edge dominating sets, we design anO∗(2.2351k)-
time and polynomial-space algorithm.

Section 2 gives some terminologies and notations and introduces our branching operations of our
algorithm. After Section 3 describes our algorithm that consists of three major stages, Section 4 analyzes
the time complexity by deriving an upper bound on the number of all subinstances. Section 5 discusses
a weighted variant of PEDS. Section 6 makes some concluding remarks. For space limitation, the proofs
of lemmata are moved into Appendix A.

2 Preliminaries

2.1 Terminology and notation

For non-negative integersk1, k2, . . . , km, a multinomial coefficient(
∑m

i=1 ki)!

k1!···km! is denoted by
(∑m

i=1 ki

k1,...,km

)
.

Lemma 1. Let k1, k2, . . . , km be non-negative integers, wherem ≥ 1. Then for any positive realsγ1,
γ2, . . ., γm such that

∑m
i=1 1/γi ≤ 1, it holds that( ∑m

i=1ki
k1, k2, . . . , km

)
≤

m∏
i=1

γki
i .

The set of vertices and edges in a graphH is denoted byV (H) andE(H), respectively. For a vertex
v in a graph, letN(v) denote a set of neighbors ofv and letN [v] denote a set ofv and its neighbors (i.e.,
N [v] = {v}∪N(v)). A vertex of degreed is called adegree-d vertex. The degree of a vertexv in a graph
H is denoted byd(v;H). For a setF of edges, we useV (F ) to denote a set of vertices incident on at
least one edge inF , and we say thatF coversa vertex setS ⊆ V if V (F ) ⊇ S. For a subsetS ⊆ V
of vertices,G[S] denote the subgraph ofG induced byS. A cycle of lengthℓ is called anℓ-cycle, and is
denoted by the sequencev1v2 . . . vℓ of vertices in it, where the cycle contains edgesv1v2, . . . , vℓ−2vℓ−1

andvℓv1. A connected component containing only one vertex is calledtrivial . We define five types of
connected components as follows:
aclique component, a connected component that is a complete subgraph;
- a 2-path component, a connected component consisting of a degree-2 vertexu1 and its two degree-1
neighborsu0, u2 ∈ N(u1), denoted byu0u1u2, as illustrated in Fig. 1(a);
- a bi-claw component, a connected component consisting of two adjacent degree-3 verticesu1 andv1
and their four degree-1 neighborsu0, u2 ∈ N(u1) andv0, v2 ∈ N(v1), denoted by(u0u1u2)(v0v1v2),
as illustrated in Fig. 1(b);
- a legged triangle component(or leg-triangle component), a connected component consisting of two
adjacent degree-3 verticesu1 andv1, their two degree-1 neighborsu0 ∈ N(u1) andv0 ∈ N(v1) and one
common degree-2 neighborw ∈ N(u1) ∩ N(v1), denoted byu0(u1wv1)v0, as illustrated in Fig. 1(c);
and
- a tri-claw component, a connected component consisting of three degree-3 verticesu1, v1 andw1, their
six degree-1 neighborsu0, u2 ∈ N(u1), v0, v2 ∈ N(v1) andw0, w2 ∈ N(w1) and their common degree-
3 neighbort ∈ N(u1) ∩ N(v1) ∩ N(w1), denoted byt(u0u1u2)(v0v1v2)(w0w1w2), as illustrated in
Fig. 1(d).
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The last four types of components, 2-path, bi-claw, leg-triangle and tri-claw components are calledbad
componentscollectively.

(a) A 2-path componentu0u1u2 (b) A bi-claw component(u0u1u2)(v0v1v2)

(c) A leg-triangle componentu0(u1wv1)v0

(d) A tri-claw component
t(u0u1u2)(v0v1v2)(w0w1w2)

Fig. 1.The four types of bad components

2.2 Instances with covered and discarded vertices

Throughout our algorithm, we do not modify a given graphG = (V,E) or a parameterk, but fix vertices
to coveredvertices ordiscardedvertices so that a pair of the setsC andD of covered and discarded
vertices gives an instance(C,D) that asks to find an edge dominating setM of G such thatC ⊆ V (M) ⊆
V \D. We call such an edge dominating set a(C,D)-edsfor short. An instance(C,D) is calledfeasible
if it admits a(C,D)-eds, and is calledk-feasibleif it admits a(C,D)-edsM of size|M | ≤ k. We call
vertices inV \ (C ∪D) undecidedand denote byU the set of undecided vertices.

We use two kinds of fundamental branching operations. One is to branch on an undecided vertex
v ∈ U in (C,D): fix v as a new covered vertex in the first branch or as a new discarded vertex in the
second branch. This is based on the fact that there is a(C,D)-edsM with v ∈ V (M) or there is no such
(C,D)-eds. Then we also fix all the vertices inN(v) as covered vertices in the second branch, since any
edgee = vw incident tov needs to be incident to an edge dominating set at the vertexw. The other is to
branch on a 4-cyclev0v1v2v3 over undecided vertices: fix verticesv0 andv2 as new covered vertices or
fix verticesv1 andv3 as new covered vertices. This is based on the fact that for any edge dominating set
M , the setV (M) is a vertex cover and one of{v0, v2} and{v1, v3} is contained in any vertex cover [8].
Rooij and Bodlaender [7] found the following solvable case.

Lemma 2. [7] A minimum(C,D)-eds of an instance(C,D) such thatG[U ] contains only clique com-
ponents can be found in polynomial time.

We denote byU1 the set of vertices of all clique components inG[U ], and letU2 = U \ U1. An
instance(C,D) is called aleaf instanceif U2 = ∅. By Lemma 2, we only need to select vertices fromU2

to apply branching operations until all instances become leaf instances.
The next lower bound on the size of(C,D)-edses is immediate since for each clique componentQ in

G[U ], it holds that|V (Q) ∩ V (M)| ≥ |V (Q)| − 1.

Lemma 3. For any(C,D)-edsM in a graphG, it holds that

|V (M)| ≥ |C|+
∑

{|V (Q)| − 1 | clique componentsQ in G[U ]}.
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Based on this, we define themeasureµ of an instance(C,D) to be

µ(C,D) = 2k − |C| −
∑

{|V (Q)| − 1 | clique componentsQ in G[U ]}.

We do not need to generate any instances(C,D) with µ(C,D) < 0 since they are notk-feasible. In this
paper, we introduce the following new lower bound.

Lemma 4. LetM be a(C,D)-eds in a graphG. Then for any subsetS ⊆ C it holds that

|M | ≥
∑

{⌈|V (H)|/2⌉ | componentsH in G[S]} ≥ ⌈|S|/2⌉.

Branching on a bad componentH in G[U2] means to keep branching on vertices inU2 ∩ V (H) until
all vertices inV (H) are contained inC ∪D ∪U1. We treat a series of such branchings as an operation of
branching onH that generatesr new instances defined as follows. For each type of a bad componentH,
we define the numberr andC(j)(H) (resp.,D(j)(H)), j = 1, 2, . . . , r to be a set of vertices ofH fixed
as covered (resp., discarded) vertices in thej-th branch:
For a 2-path componentH1 = u0u1u2, by branching onu1, we can branch onH1 into r = 2 branches:
1. C(1)(H1) = {u1} andD(1)(H1) = ∅; and
2. C(2)(H1) = {u0, u2} andD(2)(H1) = {u1}.

For a bi-claw componentH2 = (u0u1u2)(v0v1v2), where at least one of adjacent verticesu1 andv1 must
be inV (M) of any(C,D)-edsM , we can branch on this component intor = 3 branches:
1. C(1)(H2) = {u1, v1} andD(1)(H2) = ∅;
2. C(2)(H2) = {u0, u2, v1} andD(2)(H2) = {u1}; and
3. C(3)(H2) = {u1, v0, v2} andD(3)(H2) = {v1}.

For a leg-triangle componentH3 = u0(u1wv1)v0, where at least one of adjacent verticesu1 andv1 must
be inV (M) of any(C,D)-edsM , we can branch on this component intor = 3 branches:
1. C(1)(H3) = {u1, v1} andD(1)(H3) = ∅;
2. C(2)(H3) = {u0, v1, w} andD(2)(H3) = {u1}; and
3. C(3)(H3) = {u1, v0, w} andD(3)(H3) = {v1}.

For a tri-claw componentH4 = t(u0u1u2)(v0v1v2)(w0w1w2), we can branch onu1, v1 andw1 sequen-
tially to generate the followingr = 8 branches:
1. C(1)(H4) = {u1, v1, w1} andD(1)(H4) = ∅;
2. C(2)(H4) = {t, u0, u2, v1, w1} andD(2)(H4) = {u1};
3. C(3)(H4) = {t, u1, v0, v2, w1} andD(3)(H4) = {v1};
4. C(4)(H4) = {t, u1, v1, w0, w2} andD(4)(H4) = {w1};
5. C(5)(H4) = {t, u0, u2, v0, v2, w1} andD(5)(H4) = {u1, v1};
6. C(6)(H4) = {t, u1, v0, v2, w0, w2} andD(6)(H4) = {v1, w1};
7. C(7)(H4) = {t, u0, u2, v1, w0, w2} andD(7)(H4) = {u1, w1}; and
8. C(8)(H4) = {t, u0, u2, v0, v2, w0, w2} andD(8)(H4) = {u1, v1, w1}.

For each of the above branch, we define two kinds of valuesα andβ which will be summed up to give
lower bounds on the size of a(C ′, D′)-eds of a leaf instance(C ′, D′). For each(i, j), let

αi,j = |C(j)(Hi)| andβi,j =
∑

{⌈|V (T )|/2⌉ | componentsT in G[C(j)(Hi)]}.

Observe thatβi,j is a lower bound on the size of a(C(j)(Hi), ∅)-eds by Lemma 4. For(i, j) ∈
{(1, 1), (1, 2), (2, 2), (2, 3), (3, 2), (4, 8)}, the graphG[C(j)(Hi)] contains only isolated vertices, and
βi,j = |C(j)(Hi)| = αi,j . For other(i, j), the graphG[C(j)(Hi)] consists of exactly one nontrivial com-
ponent of sizep ∈ {2, 3} and|C(j)(Hi)| − p isolated vertices, andβi,j = ⌈p/2⌉ + (|C(j)(Hi)| − p) =
|C(j)(Hi)| − 1 = αi,j − 1.

In this paragraph, we introduce criteria in choosing 4-cycle/vertices to branch on used in our algo-
rithm. For a subsetS ⊆ U2 of vertices, we letqS andbS denote the sum of|V (Q)| − 1 over all clique
componentsQ and the number of bad components newly generated by removingS from G[U2], respec-
tively. A 4-cyclev0v1v2v3 in G[U2] is calledadmissibleif b{v0,v2} + b{v1,v3} ≤ 1. A vertexv in G[U2]
such thatbv = x andbN [v] = y is called an(x, y)-vertex. A vertexv in G[U2] is calledoptimal if it
satisfies a condition (c-i) below with the minimumi over all vertices inG[U2]:
(c-1) v is a degree-3(0, 0)-vertex;
(c-2) v is a degree-2(x, y)-vertex withx+ y ≤ 1 andqv ≥ 1;
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(c-3) (i) v is in an admissible 4-cycle;
(ii) v is a degree-d (x, y)-vertex such that2 ≤ d ≤ 3, x+ y ≤ 1 andqv + qN [v] ≥ 4− d;
(iii) v is a degree-d (x, y)-vertex such that2 ≤ d ≤ 3, x+ y ≤ 1, qN [v] = 3−d and removing each
of v andN [v] produces no new 2-path component; or
(iv) v is a degree-3(0, 1)-vertex such thatG[U2 \ {v}] contains at least one degree-3(0, 0)-vertex
and removingN [v] produces exactly one new 2-path component;

(c-4) v is a degree-2 vertex withqv = 1;
(c-5) v is a degree-3 vertex; and
(c-6) v is a degree-2 vertex.

3 The Algorithm

Given a graphG and an integerk, our algorithm returnsTRUE if it admits an edge dominationg set of
size≤ k or FALSE otherwise. The algorithm is designed to be a procedure that returnsTRUE if a given
instance(C,D) is k-feasible orFALSE otherwise, by branching on a vertex/4-cycle/bad component in
(C,D) to generate new smaller instances(C(1), D(1)), . . . , (C(r), D(r)), to each of which the procedure
is recursively applied. The procedure is initially given an instance(∅, ∅), and always returnsFALSE
wheneverµ(C,D) < 0 holds.

Our algorithm takes three stages. The first stage keeps branching on vertices of degree≥ 4, and
retains the setB of all the produced bad components without branching on them. The second stage
keeps branching on optimal vertices of degree≤ 3, immediately branching on any newly produced bad
component before it chooses the next optimal vertex to branch on. The third stage generates leaf instances
by fixing all undecided vertices in the bad components inB, where we try to decrease the number of leaf
instances to be generated based on some lower bound on the size of solutions of leaf instances. To derive
the lower bounds in the third stage, we letCi store all vertices fixed to covered vertices during branching
operations in thei-th stage. Formally EDSSTAGE1 is described as follows.

Algorithm EDSSTAGE1(C,D)

Input: A graphG = (V,E) with an integerk, and subsetsC andD of V (initially, C = D = ∅).
Output: TRUE if (C,D) is k-feasible orFALSE otherwise.
1: if µ(C,D) < 0 then
2: return FALSE
3: else ifthere is a vertexv of degree≥ 4 in G[U2] then
4: return EDSSTAGE1(C ∪ {v}, D) ∨ EDSSTAGE1(C ∪N(v), D ∪ {v})
5: else
6: C1 := C; C2 := ∅;
7: LetB store all bad components inG[U2];
8: return EDSSTAGE2(C1, C2,B, D)
9: end if

For a given instance(G, k) of PEDS, letI1 denote the set of all instances constructed immediately
after the first stage. LetV (B) denote the set of vertices in the bad components inB. Given an instance
(C1, C2,B, D) ∈ I1, the second stage EDSSTAGE2 fixes all vertices inU2 \ V (B) to covered/discarded
vertices by repeatedly branching on optimal vertices or any newly produced bad component inG[U2 \
V (B)] if it exists. During the second stage, the setsC1 andB obtained in the first stage never change.
When no vertex is left inU2 \ V (B), we switch to the third stage. Formally EDSSTAGE2 is described as
follows.

Algorithm EDSSTAGE2(C1, C2,B, D)

Input: A graphG = (V,E) with an integerk, disjoint subsetsC1, C2, D ⊆ V and a set of bad componentsB in
G[U2].

Output: TRUE if (C1 ∪ C2, D) is k-feasible orFALSE otherwise.
1: if µ(C1 ∪ C2, D) < 0 then
2: return FALSE
3: else ifthere is a 2-path componentH1 in G[U2 \ V (B)] then
4: return

∨
j=1,2 EDSSTAGE2(C1, C2 ∪ C(j)(H1),B, D ∪D(j)(H1))
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5: else ifthere is a bi-claw componentH2 in G[U2 \ V (B)] then
6: return

∨
1≤j≤3 EDSSTAGE2(C1, C2 ∪ C(j)(H2),B, D ∪D(j)(H2))

7: else ifthere is a leg-triangle componentH3 in G[U2 \ V (B)] then
8: return

∨
1≤j≤3 EDSSTAGE2(C1, C2 ∪ C(j)(H3),B, D ∪D(j)(H3))

9: else ifthere is a tri-claw componentH4 in G[U2 \ V (B)] then
10: return

∨
1≤j≤8 EDSSTAGE2(C1, C2 ∪ C(j)(H4),B, D ∪D(j)(H4))

11: else ifU2 \ V (B) ̸= ∅ then
12: Choose an optimal vertexv in G[U2 \ V (B)];
13: if v is in an admissible 4-cyclev0v1v2v3 of condition (c-4)then
14: return EDSSTAGE2(C2 ∪ {v0, v2}, D,B, C1) ∨ EDSSTAGE2(C1, C2 ∪ {v1, v3},B, D)
15: else
16: return EDSSTAGE2(C1,C2 ∪{v},B, D)∨ EDSSTAGE2(C1, C2 ∪N(v),B, D ∪{v})
17: end if
18: else/* Now U2 = V (B) */
19: return EDSSTAGE3(C1, C2,B, D)
20: end if

Let I2 denote the set of all instances constructed immediately after the second stage. Consider an
instanceI = (C1, C2,B, D) ∈ I2, where the graphG[U2] consists of the bad components inB retained
at the first stage. LetB1 (resp.,B2,B3 andB4) be the sets of 2-path (resp., bi-claw, leg-triangle and tri-
claw) components inB, andyi = |Bi|, i = 1, 2, 3, 4 in I ∈ I2. To obtain a leaf instance from the instance
I, we need to fix all vertices inV (B). The number of all leaf instances that can be constructed from the
instanceI ∈ I2 is

∏4
i=1 r

yi

i = 2y1 · 3y2 · 3y3 · 8y4 , whereri is the number of subinstances generated by
branching on a bad componentH ∈ Bi.

In the third stage, we avoid constructing of some “k-infeasible” leaf instances among all leaf instances.
For a leaf instanceI ′ = (C ′ = C1 ∪ C2 ∪ C3, D

′) obtained from the instanceI ∈ I2, whereC3 denotes
the set of undecided vertices inV (B) that are fixed to covered vertices inI ′, we letwi,j be the number of
bad components inBi to which thej-th branch is applied to generateI ′, and call the vectorw with these
16 entrieswi,j theoccurrence vectorof I ′. Note that

∑
i,j αi,jwi,j = |C3| holds, and that

∑
i,j βi,jwi,j

is a lower bound on the size of(C3, D
′)-eds by Lemma 4, since no edge inG joins two components in

B. We derive two necessary conditions for a vectorw to be the occurrence vector of ak-feasible leaf
instanceI ′ = (C ′, D′). One is that2k ≥ 2|M | ≥ |V (M)| ≥ |C1|+ |C2|+ |C3|, i.e.,

2k ≥ |C1|+ |C2|+
∑
i,j

αi,jwi,j . (1)

Observe that there is no edge betweenC3 andC2 in I ′, since any vertex inC2 is contained in some
component inG[U2 \ V (B)] during an execution of EDSSTAGE2. Hence

∑
i,j βi,jwi,j + ⌈|C2|/2⌉ is a

lower bound on the size of a(C3 ∪C2, D
′)-eds by Lemma 4, and another necessary condition is given by

k ≥ |C2|/2 +
∑
i,j

βi,jwi,j . (2)

Note that the numberℓ(w) of leaf instancesI ′ whose occurrence vectors are given byw is

ℓ(w) =

(
y1

w1,1, w1,2

)(
y2

w2,1, w2,2, w2,3

)(
y3

w3,1, w3,2, w3,3

)(
y4

w4,1, w4,2, . . . , w4,8

)
. (3)

For each instanceI = (C1, C2,B, D) ∈ I2, the third stage EDSSTAGE3 generates an occurrence
vectorw satisfying the conditions (1) and (2) and

∑
j wi,j = yi, 1 ≤ i ≤ 4, and constructs all leaf

instancesI ′ = (C1 ∪ C2 ∪ C3, D
′) from I ∈ I2 with the vectorw, before it returnsTRUE if one of the

leaf instances isk-feasible orFALSE otherwise. Formally EDSSTAGE3 is described as follows.

Algorithm EDSSTAGE3(C1, C2,B, D)

Input: A graphG = (V,E) with an integerk, disjoint subsetsC1, C2, D ⊆ V and a set of bad componentsB in
G[U2].

Output: TRUE if (C1 ∪ C2, D) is k-feasible orFALSE otherwise.
1: LetB1 (resp.,B2,B3 andB4) be a set of 2-path (resp., bi-claw, leg-triangle and tri-claw) components inB, and

yi := |Bi|, i = 1, 2, 3, 4;
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2: for each occorrence vectorw that satisfies the conditions (1) and (2) and
∑

j wi,j = yi, 1 ≤ i ≤ 4 do
3: for each combination of partitions ofB1,B2,B3 andB4 into

B(1)
1 ∪ B(2)

1 = B1, B(1)
2 ∪ B(2)

2 ∪ B(3)
2 = B2, B(1)

3 ∪ B(2)
3 ∪ B(3)

3 = B3, and
B(1)

4 ∪ B(2)
4 ∪ · · · ∪ B(8)

4 = B4 such that|B(j)
j | = wi,j for all i andj; do

4: for eachj = 1, 2 and each 2-path componentH1 ∈ B(j)
1 do

5: C3 := C(j)(H1); D := D ∪D(j)(H1)
6: end for;
7: for eachj = 1, 2, 3 and each bi-claw componentH2 ∈ B(j)

2 do
8: C3 := C(j)(H2); D := D ∪D(j)(H2)
9: end for;

10: for eachj = 1, 2, 3 and each leg-triangle componentH3 ∈ B(j)
3 do

11: C3 := C(j)(H3); D := D ∪D(j)(H3)
12: end for;
13: for eachj = 1, 2, . . . , 8 and each tri-claw componentH4 ∈ B(j)

4 do
14: C3 := C(j)(H4); D := D ∪D(j)(H4)
15: end for; /* Now U2 = ∅ and(C1 ∪ C2 ∪ C3, D) is a leaf instance */
16: Test whether(C = C1 ∪ C2 ∪ C3, D) is k-feasible or not by computing a minimum(C,D)-eds by

Lemma 2
17: end for
18: end for;
19: if there is ak-feasible leaf instance(C1 ∪ C2 ∪ C3, D) in the for loopthen
20: return TRUE
21: else
22: return FALSE
23: end if

4 The Analysis

For a given instance(G, k) of PEDS, letIi, i = 1, 2, 3 be the set of all instances constructed immediately
after thei-th stage during the execution of EDSSTAGE1(∅, ∅), whereI3 is the set of all leaf instances,
which correspond to the leaf nodes of the search tree of the execution. To analyze the time complexity of
our algorithm, it suffices to derive an upper bound on|I3|.

Lemma 5. For any non-negative integerx1, the number of instancesI = (C1, ∅,B, D) ∈ I1 with
|C1| = x1 is O(1.380278x1).

Lemma 6. For any non-negative integerx2 and an instanceI = (C1, ∅,B, D) ∈ I1, the number of
instancesI ′ = (C1, C2,B, D′) ∈ I2 with |C2| = x2 that can be generated fromI isO(1.494541x2).

From these, we obtain the next.

Lemma 7. For any non-negative integersx1 andx2, the number of instances(C1, C2,B, D) ∈ I2 such
that |C1| = x1 and|C2| = x2 is O(1.380278x1 · 1.494541x2).

Note that the number of combinations(x1, x2) for (|C1|, |C2|) is O(n2). For a given instance
(C1, C2,B, D) ∈ I2, the number of possible occurrence vectorsw satisfying the conditions (1) and
(2) and

∑
j wi,j = yi, 1 ≤ i ≤ 4 is also bounded by a polynomial ofn. To show that our algorithm runs

in O∗(2.2351k) time, it suffices to prove that the number of leaf instances generated from an instance
I = (C1, C2,B, D) ∈ I2 with specified size|C1| = x1 and|C2| = x2 and a specified occurrence vector
w is O∗(2.2351k). Let I3(x1, x2,w) denote the set of all such leaf instances. By Lemma 7 and (3), we
see that|I3(x1, x2,w)| = O(1.380278x1 · 1.494541x2 · ℓ(w)).

In what follows, we derive an upper bound onO(1.380278x1 ·1.494541x2 ·ℓ(w)) under the constraints
(1) and (2). For this, we merge some entries inw into ten numbers byz1,1 = w1,1, z1,2 = w1,2, z2,1 =
w2,1, z2,2 = w2,2 + w2,3, z3,1 = w3,1, z3,2 = w3,2 + w3,3, z4,1 = w4,1, z4,2 = w4,2 + w4,3 + w4,4,
z4,3 = w4,5 + w4,6 + w4,7 andz4,4 = w4,8. Thenℓ(w) is restated as(

z1,1+z1,2
z1,1, z1,2

)
·
(
z2,1+z2,2
z2,1, z2,2

)
· 2z2,2 ·

(
z3,1+z3,2
z3,1, z3,2

)
· 2z3,2 ·

(
z4,1+z4,2+z4,3+z4,4
z4,1, z4,2, z4,3, z4,4

)
· 3z4,2+z4,3 ,
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which is bounded from above by an exponential function in Lemma 1

γ
z1,1
1,1 γ

z1,2
1,2 · γz2,1

2,1 γ
z2,2
2,2 · γz3,1

3,1 γ
z3,2
3,2 · γz4,1

4,1 γ
z4,2
4,2 γ

z4,3
4,3 γ

z4,4
4,4

for any positive realsγ1,1, γ1,2, γ2,1, γ2,2, γ3,1, γ3,2, γ4,1, γ4,2, γ4,3 andγ4,4 such that1/γ1,1+1/γ1,2 ≤ 1,
1/γ2,1 + 2/γ2,2 ≤ 1, 1/γ3,1 + 2/γ3,2 ≤ 1 and1/γ4,1 + 3/γ4,2 + 3/γ4,3 + 1/γ4,4 ≤ 1. Then we have

|I3(x1, x2,w)| = O(1.380278x1 · 1.494541x2γ
z2,1
2,1 γ

z2,2
2,2 γ

z3,1
3,1 γ

z3,2
3,2 γ

z4,1
4,1 γ

z4,2
4,2 γ

z4,3
4,3 γ

z4,4
4,4 ),

which is bounded by

O(max{1.3802781/c1 , 1.4945411/c2 , γ1/c1,1
11 , γ

1/c1,2
12 , γ

1/c2,1
21 , γ

1/c2,2
22 ,

γ
1/c3,1
31 , γ

1/c3,2
32 , γ

1/c4,1
41 , γ

1/c4,2
42 , γ

1/c4,3
43 , γ

1/c4,4
44 }k ) (4)

for any constantsc1, c2 and{ci,j} such that

k ≥ c1x1 + c2x2 + c1,1z1,1 + c1,2z1,2 + c2,1z2,1 + c2,2z2,2

+ c3,1z3,1 + c3,2z3,2 + c4,1z4,1 + c4,2z4,2 + c4,3z4,3 + c4,4z4,4. (5)

Conditions (1) and (2) are restated as

k ≥ x1/2 + x2/2 + (z1,1 + 2z1,2)/2 + (2z2,1 + 3z2,2)/2

+ (2z3,1 + 3z3,2)/2 + (3z4,1 + 5z4,2 + 6z4,3 + 7z4,4)/2; (6)

k ≥ x2/2 + (z1,1 + 2z1,2) + (z2,1 + 3z2,2)

+ (z3,1 + 2z3,2) + (3z4,1 + 4z4,2 + 5z4,3 + 7z4,4). (7)

As a linear combination of (6) and (7) withλ and(1− λ), we get (5) for constantsc1 = λ/2, c2 = 1/2,
c1,1 = 1 − λ/2, c1,2 = 2 − λ, c2,1 = 1, c2,2 = 3 − 3λ/2, c3,1 = 1, c3,2 = 2 − λ/2, c4,1 = 3 − 3λ/2,
c4,2 = 4− 3λ/2, c4,3 = 3− 2λ andc4,4 = 7− 7λ/2.

From (4), we obtain|I3(x1, x2,w)| = O
(
2.2351k

)
by settingλ = 0.80142, γ1,1 = 1.61804, γ1,2 =

2.61804, γ2,1 = 2.10457, γ2,2 = 3.81068, γ3,1 = 2.23510, γ3,2 = 3.61931, γ4,1 = 3.60818, γ4,2 =
7.36647, γ4,3 = 11.29854 andγ4,4 = 19.96819. This establishes the next theorem.

Theorem 1. Algorithm EDSSTAGE1, accompanied by AlgorithmEDSSTAGE2 and EDSSTAGE3, can
solve the parameterized edge dominating set problem inO∗(2.2351k) time and polynomial space.

5 A Related Problem: The Parameterized Weighted Edge Dominating Set
Problem

We also consider a weighted variant of PEDS. Theweighted edge dominating set problem(WEDS) is,
given a graphG = (V,E) with an edge weight functionω : E → R≥0, to find an edge dominating set
M of minimum total weightω(M) =

∑
e∈M ω(e). The parameterized weighted edge dominating set

problem(PWEDS) is, given a graphG = (V,E) with an edge weight functionω : E → R≥1 and a
positive realk, to test whether there is an edge dominating setM such thatω(M) ≤ k. We show that a
modification of our algorithm for PEDS can solve PWEDS in the same time and space complexities as
our algorithm does PEDS.

For PWEDS we use the same terminologies and notations as for PEDS; for example, an instance of
PWEDS is also denoted by(C,D). Rooij and Bodlaender [7] found the following solvable case for a
weighted variant of EDS.

Lemma 8. [7] A minimum(C,D)-eds of an instance(C,D) of WEDS such thatG[U ] contains only
clique components of size≤ 3 can be found in polynomial time.

Based on this lemma, for PWEDS we modifyU1 to be the set of vertices of clique components of
size≤ 3 in G[U ]. We call our algorithm to which this modification is applied a modified algorithm. This
modification brings the following corollary.
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Corollary 1. The modified algorithm can solve the parameterized weighted edge dominating set problem
in O∗(2.2351k) time and polynomial space.

Proof. We first show the correctness. If an edge dominating setM of G is k-feasible, i.e.,ω(M) ≤ k,
then it holds that|V (M)| ≤ 2k and |M | ≤ k sinceω(e) ≥ 1 for any edgee ∈ E. This ensures the
correctness of the measureµ(C,D) and the conditions (1) and (2) for an instance(C,D) of the weighted
variant. Therefore we can solve PWEDS by the same branching method as PEDS.

Second we show the time complexity is the same as PEDS. Only difference between our algorithm for
PEDS and one for PWEDS is treatment of clique components of size≥ 4. In what follows, we describe
the treatment by the modified algorithm and it guarantees that the time complexity isO∗(2.2351k). For
a clique componentH of size≥ 5 of an instance(C,D), the degree of a vertex ofH in G[U2] is
|V (H)| − 1 ≥ 4, on which therefore the modified algorithm branches in the first stage. For a clique
componentH of size4 of an instance(C,D), a vertex ofH satisfies condition (c-2), on which therefore
the algorithm branches in the second stage. ⊓⊔

6 Conclusion

In this paper, we have presented anO∗(2.2351k)-time and polynomial-space algorithm to PEDS. The
algorithm retains bad components produced at the first stage for branching on vertices of degree≥ 4, and
branching on the remaining undecided vertices not in clique components by choosing 4-cycles/vertices
to branch on carefully. Based on our new lower bound on the size of(C,D)-edses, we derived an upper
bound on the number of leaf instances generated in the third stage. We have also shown that a modification
of our algorithm can solve PWEDS in the same time and space complexities as PEDS.

For a possible achievement of further improved algorithms, it is still left to modify the first stage
of our algorithm to branch on vertices of degree≤ 4 in the second stage and to identify several new
components as bad components.
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Appendix A

Lemma 1. Letk1, k2, . . . , km be non-negative integers, wherem ≥ 1. Then for any positive realsγ1, γ2,
. . ., γm such that

∑m
i=1 1/γi ≤ 1, it holds that( ∑m

i=1ki
k1, k2, . . . , km

)
≤

m∏
i=1

γki
i .

Proof. We proceed by an induction on
∑m

i=1 ki to prove the lemma.
I. The lemma holds when

∑m
i=1 ki = 0, since the both sides of the inequality in the lemma become 1.

II. Assume that the lemma holds for any instance{k′1, k′2, . . . , k′m} such that
∑m

i=1 ki ≤ K for some
integerK ≥ 0. We show that the lemma holds for any instance{k1, k2, . . . , km} with

∑m
i=1 ki = K+1.

If kj = 0 for somej, wherem ≥ 2 by
∑m

i=1 ki = K + 1 > 0, then it suffices to show that the lemma

holds for the instance{k1, k2, . . . , km} \ {kj}, sinceγkj

j = 1 for any choice of{γ1, γ2, . . . , γm}. Hence
we assume without loss of generality thatki ≥ 1 for all i = 1, 2, . . . ,m. Let γ1, γ2, . . . , γm satisfy∑m

i=1 1/γi ≤ 1. Using Pascal’s rule and the inductive hypothesis, we obtain the following inequality:(
K + 1

k1, k2, . . . , km

)
=

(
K

k1 − 1, k2, . . . , km

)
+

(
K

k1, k2 − 1, . . . , km

)
+ · · ·+

(
K

k1, k2, . . . , km − 1

)
≤ γk1−1

1 γk2
2 · · · γkm

m + γk1
1 γk2−1

2 · · · γkm
m + · · ·+ γk1

1 γk2
2 · · · γkm−1

m

= γk1
1 γk2

2 · · · γkm
m

(
1

γ1
+

1

γ2
+ · · ·+ 1

γm

)
≤ γk1

1 γk2
2 · · · γkm

m .

This proves that the lemma also holds for any instance{k1, k2, . . . , km} with
∑m

i=1 ki = K + 1. ⊓⊔

Lemma 4. LetM be a(C,D)-eds in a graphG. Then for any subsetS ⊆ C it holds that

|M | ≥
∑

{⌈|V (H)|/2⌉ | componentsH in G[S]} ≥ ⌈|S|/2⌉.

Proof. For each componentH in G[S] with a subsetS ⊆ C, the minimal subsetMH ⊆ M that covers
V (H) contains at least⌈|V (H)|/2⌉ edges. Since there is no edge between two components inG[S],
minimal subsetsMH for all componentsH in G[S] are disjoint, indicating that|M | ≥

∑
{|MH | |

componentsH in G[S]} ≥
∑

{⌈|V (H)|/2⌉ | componentsH in G[S]}, which is clearly at least⌈|S|/2⌉.
⊓⊔

In what follows, we prove Lemmata 5 and 6. LetT (µ) be the maximum number of leaf instances that
can be generated from an instanceI with measureµ.

Lemma 5. For any non-negative integerx1, the number of instancesI = (C1, ∅,B, D) ∈ I1 with
|C1| = x1 is O(1.380278x1).

Proof. At the first stage, the algorithm branches on a vertexv of degree≥ 4 in G[U2]. When the algorithm
branches onv by fixing it as a covered vertex or a discarded vertex,{v} (resp.,N(v)) is added to the set
C, and the measureµ decreases by1 (resp.,|N(v)| ≥ 4). Hence we have the following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 4),

which solves toT (µ) = O(1.380278µ). This proves the lemma. ⊓⊔

We here restate Lemma 6.

Lemma 6. For any non-negative integerx2 and an instanceI = (C1, ∅,B, D) ∈ I1, the number of
instancesI ′ = (C1, C2,B, D′) ∈ I2 with |C2| = x2 that can be generated fromI isO(1.494541x2).

We useU ′
2 to denoteU2 \ V (B). To prove Lemma 6, we derive recurrences for branchings executed

by Algorithm EDSSTAGE2. We first show recurrences for branching on bad components only.
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Lemma 9. Assume that AlgorithmEDSSTAGE2 branches on a bad componentH in G[U ′
2]. If H is a

2-path component, then the algorithm branches onH with the following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 2),

which solves toT (µ) = O(1.6181µ). If H is a bi-claw or leg-triangle component, then the algorithm
branches onH with the following recurrence:

T (µ) ≤ T (µ− 2) + 2T (µ− 3),

which solves toT (µ) = O(1.5214µ). If H is a tri-claw component, then the algorithm branches onH
with the following recurrence:

T (µ) ≤ T (µ− 3) + 3T (µ− 5) + 3T (µ− 6) + T (µ− 7),

which solves toT (µ) = O(1.5042µ).

Proof. In thei-th branch of each bad componentH, all vertices inC(i)(H) are fixed as covered vertices
and thereby the measure decreases by|C(i)(H)|. Therefore we have the above recurrences. ⊓⊔

Observe that Algorithm EDSSTAGE2 branches on a bad component with the recurrence shown in
Lemma 9, which is not good enough to establish Lemma 6. In our analysis, we combine a branching on
a bad component together with the branching on the optimal vertexv (or the admissible 4-cycle on it)
that produces the bad component, which yields a recurrence better than those in Lemma 9. In the case
where the branching onv and the all bad components produced by any of the branchings tov yields a
recurrence even not good enough to establish Lemma 6, we further combine it with a possible branching
on a vertex of condition (c-1), (c-2) or (c-3)(iv) produced by the branching tov. In what follows, for each
i = 1, 2, . . . , 6 in this order, we analyze the branching of an optimal vertexv satisfying condition (c-i) to
derive such a recurrence.

Lemma 10. AlgorithmEDSSTAGE2 branches on a vertexv satisfying condition(c-1) in G[U ′
2] together

with possible branchings on the resulting new bad components with the following recurrence:

T (µ) ≤ 2T (µ− 3) + 2T (µ− 4), (8)

which solves toT (µ) = O(1.494541µ).

Proof. Sincev is a vertex satisfying condition (c-1),v is a degree-3(0, 0)-vertex inG[U ′
2]. Neither of the

first and second branches produces a new bad component. Therefore the algorithm branches onv with
the following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 3),

which solves toT (µ) = O(1.4656µ) and is better than the recurrence (8). ⊓⊔

Lemma 11. Algorithm EDSSTAGE2 branches on an optimal vertex satisfying condition(c-2) in G[U ′
2]

together with possible branchings on the resulting new bad components with a recurrence not worse than
(8).

Proof. Sincev is an optimal vertex satisfying condition (c-2),v is a degree-2(x, y)-vertex withx+y ≤ 1
andqv ≥ 1 in G[U ′

2]. We distinguish two cases: Case 1.x+ y = 0; and Case 2.x+ y = 1.
Case 1.x = y = 0: In any of the first and second branches, no bad component is newly produced.

Therefore the algorithm branches onv with the following recurrence:

T (µ) ≤ T (µ− 2) + T (µ− 2),

which solves toT (µ) = O(1.4143µ).
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Case 2.x + y = 1: In one of the first and second branches, exactly one bad componentH is newly
produced, and then the algorithm branches on it; and in the other branch, no bad component is newly
produced. In the following, we derive recurrences for branching onv together with branching onH.
WhenH is a 2-path component, we have the following recurrence:

T (µ) ≤ T (µ− 2) + T (µ− 2− 1) + T (µ− 2− 2)

= T (µ− 2) + T (µ− 3) + T (µ− 4), (9)

which solves toT (µ) = O(1.4656µ). WhenH is a bi-claw or leg-triangle component, we have the
following recurrence:

T (µ) ≤ T (µ− 2) + T (µ− 2− 2) + 2T (µ− 2− 3)

= T (µ− 2) + T (µ− 4) + 2T (µ− 5), (10)

which solves toT (µ) = O(1.4560µ). WhenH is a tri-claw component, we have the following recurrence:

T (µ) ≤ T (µ− 2)+T (µ− 2− 3)+3T (µ− 2− 5)+3T (µ− 2− 6)+T (µ− 2− 7)

= T (µ− 2) + T (µ− 5) + 3T (µ− 7) + 3T (µ− 8) + T (µ− 9), (11)

which solves toT (µ) = O(1.4634µ).
Since all the recurrences obtained in Cases 1 and 2 are better than the recurrence (8), the lemma

holds. ⊓⊔

Lemma 12. Algorithm EDSSTAGE2 branches on an optimal vertex satisfying condition(c-3) in G[U ′
2]

together with possible branchings on the resulting new bad components with a recurrence not worse than
(8).

Proof. Sincev is an optimal vertex satisfying condition (c-3),v is in one of the following four cases:
(i) v is in an admissible 4-cycle; (ii)v is a degree-d (x, y)-vertex such that2 ≤ d ≤ 3, x + y ≤ 1 and
qv + qN [v] ≥ 4− d; (iii) v is a degree-d (x, y)-vertex such that2 ≤ d ≤ 3, x+ y ≤ 1, qN [v] = 3− d and
removing each ofv andN [v] produces no new 2-path component; and (iv)v is a degree-3(0, 1)-vertex
such that removingN [v] produces exactly one new 2-path component, andG[U2 \ {v}] contains at least
one degree-3(0, 0)-vertex. We distinguish three cases: Case (i) or (ii); Case (iii); and Case (iv).

Case (i) or (ii): When the algorithm branches onv (or the admissible 4-cycle on it) inG[U ′
2], we have

one of the following two recurrences:

T (µ) ≤ T (µ− 2) + T (µ− 2), (12)

which solves toT (µ) = O(1.4143µ); and

T (µ) ≤ T (µ− 1) + T (µ− 4), (13)

which solves toT (µ) = O(1.3803µ), and at most one bad componentH is newly produced in one of the
first and second branches. We consider three subcases (a)-(c).

Case (a). The algorithm branches onv (or the admissible 4-cycle on it) inG[U ′
2] with the recurrence

(12) and exactly one bad componentH is produced in one of the first and second branches: WhenH is a
2-path component, we have the recurrence (9). WhenH is a bi-claw or leg-triangle component, we have
the recurrence (10). WhenH is a tri-claw component, we have the recurrence (11).

Case (b). The algorithm branches onv in G[U ′
2] with the recurrence (13) and exactly one bad compo-

nentH is produced in the first branch: WhenH is a 2-path component, we have the following recurrence:

T (µ) ≤ T (µ− 1− 1) + T (µ− 1− 2) + T (µ− 4)

= T (µ− 2) + T (µ− 3) + T (µ− 4),

which solves toT (µ) = O(1.4656µ). WhenH is a bi-claw or leg-triangle component, we have the
following recurrence:

T (µ) ≤ T (µ− 1− 2) + 2T (µ− 1− 3) + T (µ− 4)

= T (µ− 3) + 3T (µ− 4),
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which solves toT (µ) = O(1.4527µ). WhenH is a tri-claw component, we have the following recurrence:

T (µ) ≤ T (µ− 1− 3)+3T (µ− 1− 5)+3T (µ− 1− 6)+T (µ− 1− 7)+T (µ− 4)

= 2T (µ− 4) + 3T (µ− 6) + 3T (µ− 7) + T (µ− 8),

which solves toT (µ) = O(1.4629µ).
Case (c). The algorithm branches onv in G[U ′

2] with the recurrence (13) and exactly one bad com-
ponentH is produced in the second branch: WhenH is a 2-path component, we have the following
recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 4− 1) + T (µ− 4− 2)

= T (µ− 1) + T (µ− 5) + T (µ− 6),

which solves toT (µ) = O(1.4197µ). WhenH is a bi-claw or leg-triangle component, we have the
following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 4− 2) + 2T (µ− 4− 3)

= T (µ− 1) + T (µ− 6) + 2T (µ− 7),

which solves toT (µ) = O(1.4190µ). WhenH is a tri-claw component, we have the following recurrence:

T (µ) ≤ T (µ− 1)+T (µ− 4− 3)+3T (µ− 4− 5)+3T (µ− 4− 6)+T (µ− 4− 7)

= T (µ− 1) + T (µ− 7) + 3T (µ− 9) + 3T (µ− 10) + T (µ− 11),

which solves toT (µ) = O(1.4320µ).
Case (iii): Whenx = y = 0; i.e., neither of the first and second branches produces a new bad

component, the algorithm branches onv with the following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 3),

which solves toT (µ) = O(1.4656µ).
Consider the case wherex + y = 1; i.e., one of the first and second branches produces exactly one

new bad componentH other than a 2-path component whereas the other branch produces no new bad
component. The algorithm branches onv together with branching onH with one of the following four
recurrences. Whenx = 1, y = 0 andH is a bi-claw or leg-triangle component, we have

T (µ) ≤ T (µ− 1− 2) + 2T (µ− 1− 3) + T (µ− 3)

= 2T (µ− 3) + 2T (µ− 4),

which solves toT (µ) = O(1.494541µ). Whenx = 1, y = 0 andH is a tri-claw component, we have

T (µ) ≤ T (µ− 1− 3)+3T (µ− 1− 5)+3T (µ− 1− 6)+T (µ− 1− 7)+T (µ− 3)

= T (µ− 3) + T (µ− 4) + 3T (µ− 6) + 3T (µ− 7) + T (µ− 8),

which solves toT (µ) = O(1.4914µ). Whenx = 0, y = 1 andH is a bi-claw or leg-triangle component,
we have

T (µ) ≤ T (µ− 1) + T (µ− 3− 2) + 2T (µ− 3− 3)

= T (µ− 1) + T (µ− 5) + 2T (µ− 6),

which solves toT (µ) = O(1.4841µ). Whenx = 0, y = 1 andH is a tri-claw component, we have

T (µ) ≤ T (µ− 1)+T (µ− 3− 3)+3T (µ− 3− 5)+3T (µ− 3− 6)+T (µ− 3− 7)

= T (µ− 1) + T (µ− 6) + 3T (µ− 8) + 3T (µ− 9) + T (µ− 10),

which solves toT (µ) = O(1.4842µ).
Case (iv): In the first branch, no bad component and a degree-3(0, 0)-vertexu are newly produced,

and then the algorithm branches onu, sinceu satisfies condition (c-1) after fixingv as a covered vertex.
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In the second branch, exactly one 2-path component is newly produced. Therefore the algorithm branches
onv together with branching onu and the 2-path component with the following recurrence:

T (µ) ≤ T (µ− 1− 1) + T (µ− 1− 3) + T (µ− 3− 1) + T (µ− 3− 2)

= T (µ− 2) + 2T (µ− 4) + T (µ− 5), (14)

which solves toT (µ) = O(1.4865µ).
Since all the recurrences obtained in Cases (i)-(iv) are not worse than the recurrence (8), the lemma

holds. ⊓⊔

We say that an instance(C,D) is reduced up to(c-i) if G[U ′
2] in (C,D) has no vertices of degree

≥ 4, no vertices satisfying any of conditions (c-1) to (c-i) and no bad components.

Lemma 13. Let (C,D) be an instance reduced up to(c-3).

(i) After removing any vertexv ∈ U ′
2 in (C,D), the set of newly produced bad components inG[U ′

2\{v}]
is a set of three 2-path components or an empty set.

(ii) Every degree-2 vertexu in G[U ′
2] with qu = 1 in (C,D) has a degree-3 neighborv ∈ U ′

2 removal of
which produces exactly three 2-path components inG[U ′

2 \ {u}]. Conversely, every degree-3 vertex
v in G[U ′

2] of (C,D) removal of which produces exactly three 2-path components inG[U ′
2 \ {v}] has

a degree-2 neighboru in G[U ′
2] with qu = 1.

Proof. (i) Now the degree of every vertex inU ′
2 is at most 3 inG[U ′

2] by the assumption on(C,D). We
first prove the next claim.

Claim No vertexv ∈ U ′
2 in (C,D) produces any bad components other than 2-path components in

G[U ′
2 \ {v}].

PROOF. Assuming that there is a bi-claw, leg-triangle or tri-claw componentH in G[U ′
2 \ {v}], we show

that v or a vertex inH satisfies one of conditions (c-1) to (c-3) inG[U ′
2] to prove the claim. Letk =

|N(v) ∩ V (H)| in G[U ′
2], where1 ≤ k ≤ 3. We distinguish three casesk = 1, 2, 3.

(a) (b) (c) (d)

Fig. 2. Components containingv in G[U ′
2] such that a bi-claw, leg-triangle or tri-claw componentH is produced by

removingv andk = |N(v) ∩ V (H)| = 1 in G[U ′
2]

Case 1. k = 1: Without loss of generality there are four cases: (a)H is a bi-claw component
(u0u1u2)(v0v1v2) andu0 is adjacent tov; (b) H is a leg-triangle componentu0(u1wv1)v0 andu0 is
adjacent tov; (c) H is a leg-triangle componentu0(u1wv1)v0 andw is adjacent tov; and (d)H is a
tri-claw componentt(u0u1u2)(v0v1v2)(w0w1w2) andu0 is adjacent tov, where these four cases are il-
lustrated in Fig. 2. Ifv is a degree-2 vertex and has a degree-1 neighbor in Case (a), (b) or (d), thenu0 is
a vertex withqu0

= 1 in G[U ′
2], which satisfies (c-2). Assume thatv is not such a vertex. We show that

the degree-3 vertexv1 ∈ V (H) furthest fromv satisfies (c-1) or (c-3).
Cases (a), (b) and (c): The degree-3 vertexv1 satisfies both of the following two conditions: removing

v1 from G[U ′
2] produces no bad component; and removingN [v1] from G[U ′

2] produces at most one bad
component other than a 2-path component. Thereforev1 satisfies (c-1) or (c-3)(iii).
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(a) (b) (c) (d)

(e) (f)

Fig. 3. Components containingv such that a bi-claw, leg-triangle or tri-claw componentH is produced by removing
v andk = |N(v) ∩ V (H)| = 2 in G[U ′

2]

Case (d): The degree-3 vertexv1 satisfies both of the following two conditions: removingv1 from
G[U ′

2] produces a degree-3(0, 0)-vertexw1; and removingN [v1] from G[U ′
2] produces exactly one 2-

path component. Thusv1 satisfies (c-3)(iv).
Case 2. k = 2: Without loss of generality there are six cases: (a)H is a bi-claw component

(u0u1u2)(v0v1v2) andu0, v0 ∈ N(v); (b) H is a bi-claw component(u0u1u2)(v0v1v2) andu0, u2 ∈
N(v); (c)H is a leg-triangle componentu0(u1wv1)v0 andu0, v0 ∈ N(v); (d)H is a leg-triangle compo-
nentu0(u1wv1)v0 andu0, w ∈ N(v); (e)H is a tri-claw componentt(u0u1u2)(v0v1v2)(w0w1w2) and
u0, u2 ∈ N(v); and (f)H is a tri-claw componentt(u0u1u2)(v0v1v2)(w0w1w2) andu0, w0 ∈ N(v),
where these six cases are illustrated in Fig. 3. Ifv has a degree-1 neighbor inG[U ′

2], thenv is a degree-3
(1, 0)-vertex such that removingv from G[U ′

2] produces exactly one bad component, i.e.,H, which is
not a 2-path component. Hencev satisfies (c-3)(iii). Assume thatv is not such a vertex. We show that the
degree-3 vertexv1 ∈ V (H) furthest fromv satisfies (c-1) or (c-3).

Cases (a), (b), (c) and (d): The degree-3 vertexv1 satisfies both of the following two conditions:
removingv1 fromG[U ′

2] produces no bad component; and removingN [v1] fromG[U ′
2] produces at most

one bad component other than a 2-path component. Thereforev1 satisfies (c-1) or (c-3)(iii).
Cases (e):v1 satisfies both of the following two conditions: removingv1 from G[U ′

2] produces a
degree-3(0, 0)-vertexw1; and removingN [v1] from G[U ′

2] produces exactly one 2-path component.
Thusv1 satisfies (c-3)(iv).

Case (f):v1 is a degree-3(0, 0)-vertex inG[U ′
2]. Hencev1 satisfies (c-1).

Case 3. k = 3: Now N(v) ⊆ V (H), and there is only one bad component other than a 2-path
component inG[U ′

2 \ {v}]. In the case whereH is a leg-triangle or tri-claw component, removingN [v]
produces no bad component, andv is a degree-3(1, 0)-vertex, which satisfies (c-3)(iii). In the other case
whereH is a bi-claw component(u0u1u2)(v0v1v2) and without loss of generality{u0, u2, v0} = N(v),
we see thatu1 is a degree-3(0, 0)-vertex, which satisfies (c-1).

This prove the claim. ⊓⊔

Next we prove that the set of new bad components inG[U ′
2 \{v}] is a set of three 2-path components.

LetP1, P2, . . . , Pbv be the new bad components produced inG[U ′
2 \{v}], all of which are 2-path compo-

nents. To prove the property (i) of the lemma, we assume thatbv ∈ {1, 2}, and prove that some neighbor
of v satisfies one of conditions (c-1) to (c-3) inG[U ′

2]. Without loss of generality for the 2-path component
P1 = v0v1v2, there are the following five cases: (a)N(v) ∩ V (P1) = {v0}; (b) N(v) ∩ V (P1) = {v1};
(c) N(v) ∩ V (P1) = {v0, v1}; (d) N(v) ∩ V (P1) = {v0, v2}; and (e)N(v) ⊆ V (P1), as illustrated in
Fig. 4.
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(a) (b) (c)

(d) (e)

Fig. 4.Components containingv such that a 2-path componentv0v1v2 is produced by removingv

For Case (d) or (e), there is an admissible 4-cyclevv0v1v2 in G[U ′
2], implying thatv satisfies condition

(c-3)(i). Assume that neither of Case (d) and (e) holds forP2 if any.
Next consider Case (a). We see thatG[U ′

2 \ N [v0]] containsbv − 1 (≤ 1) new 2-path components,
wherebv = 1 if bv0 ≥ 1; i.e., removingv0 produces new 2-path components. Hencev0 is a degree-2
(x, y)-vertex withx+ y ≤ 1 andqv0 ≥ 1 in G[U ′

2], satisfying condition (c-2). Assume that Case (a) does
not hold forP2 if any.

Finally consider Case (b) or (c). LetH denote the component containingu in G[U ′
2]. Removingv1

fromG[U ′
2] produces no 2-path component, sinceH is not a bi-claw or leg-triangle component. Removing

N [v1] fromG[U ′
2] producesbv − 1 (≤ 1) new 2-path components. Hence ifbv = 1, thenv1 is a degree-3

(0, 0)-vertex, satisfying condition (c-1). Assume thatbv = 2, and denoteP2 by w0w1w2, wherew1 ∈
N(u) andP2 satisfies configuration (b) or (c). We show thatv1 satisfies condition (c-3)(iv) inG[U ′

2].
RemovingN [v1] fromG[U ′

2] produces only one 2-path componentP2 = w0w1w2, and removingv1 from
G[U ′

2] produces no 2-path component. We see thatw1 is a degree-3 vertex such thatbw0 = bN [w0] = 0 in
G[U ′

2 \ {u}]. Hencev1 is a vertex satisfying condition (c-3)(iv), as required.
(ii) Let u be a degree-2 vertex withqu = 1 in G[U ′

2]. By qu = 1, G[U ′
2 \ {u}] contains a cliqueQ

of size 2. The degree-2 vertexu ∈ U ′
2 has one neighbor inQ and the other neighborv ∈ U ′

2 \ V (Q).
Removingv from G[U ′

2] produces a 2-path componentH with V (H) = {u} ∪ V (Q), we see that
removingv from G[U ′

2] produces a set of three 2-path components by (i), which also indicates thatv is
of degree 3 inG[U ′

2].
Conversely letv be a degree-3 vertex removal of which produces exactly three 2-path components

in G[U ′
2]. Since there is no tri-claw component inG[U ′

2], removingv from G[U ′
2] produces at least one

2-path componentu0u1u2 such thatu0 ∈ N(v) in G[U ′
2]. Thenu0 is a degree-2 vertex withqu0 = 1 in

G[U ′
2] since removingu0 produces the clique component consisting of{u1, u2}. ⊓⊔

Lemma 14. AlgorithmEDSSTAGE2 branches on an optimal vertexv satisfying condition(c-4) in G[U ′
2]

together with possible branchings on the resulting new bad components with a recurrence not worse than
(8).

Proof. Sincev is an optimal vertex satisfying condition (c-4),v is a degree-2 vertex withqv = 1 in
G[U ′

2] in an instance(C,D) reduced up to (c-3). Thus removingv from G[U ′
2] produces exactly two

components: the componentH ′ containingu and the clique componentQ of size 2. Now Lemma 13 holds
for (C,D), andv has a degree-3 neighboru removal of which produces exactly three 2-path components
P1, P2 andP3. We see that the componentH containingv is a graph consisting ofP1, P2 andP3 and
the degree-3 vertexu adjacent to all these 2-path components, one of which sayP3 is given byvv′v′′

for {v′, v′′} = V (Q). Let wi, i = 1, 2, be the neighbor ofu in Pi. In what follows, we show that the
algorithm continues to branch on one ofw1 andw2, sayw after fixingv as a covered vertex, and branches
on the other of them after fixingw as a covered vertex, and then derive recurrences for branching onv
together with branchings onw, w′ and all newly produced bad components. Without loss of generality,
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we distinguish three cases: (a)d(w1;H) = d(w2;H) = 3; (b) d(w1;H) = 2 andd(w2;H) = 3; and (c)
d(w1;H) = d(w2;H) = 2, where these three components are illustrated in Fig. 5.

(a) (b) (c)

Fig. 5.Components containing a degree-2 vertexv with qv = 1 under the assumption in Lemma 13, which contain a
degree-3 vertexu adjacent tov such that exactly three new 2-path components are produced by removingu

Case (a). d(w1;H) = d(w2;H) = 3: From the structure ofH, we see thatw1 is a degree-3(0, 1)-
vertex inG[U ′

2 \ {v}] such that removingw1 from G[U ′
2 \ {v}] changesw2 to a degree-3(0, 0)-vertex

satisfying condition (c-1); and removingN [w1] fromG[U ′
2\{v}] produces exactly one 2-path component.

Hencew1 satisfies condition (c-3)(iv) inG[U ′
2 \ {v}]. Since no vertex inH ′ satisfies any of conditions

(c-1), (c-2) and (c-3)(i)-(iii) inG[U ′
2 \ {v}], each ofw1 andw2 is an optimal vertex inG[U ′

2 \ {v}]. After
v is fixed as a covered vertex, the algorithm branches on one of them, sayw and continues to branch
on the other of them after fixingw as a covered vertex with the recurrence (14). Therefore we have the
following recurrence:

T (µ) ≤ T (µ− 2− 2) + 2T (µ− 2− 4) + T (µ− 2− 5)

+ T (µ− 2− 1− 1) + 2T (µ− 2− 1− 2) + T (µ− 2− 2− 2)

= 2T (µ− 4) + 2T (µ− 5) + 3T (µ− 6) + T (µ− 7),

which solves toT (µ) = O(1.4941µ).

Case (b). d(w1;H) = 2 andd(w2;H) = 3: From the structure ofH, we see thatw1 is a degree-2
(0, 1)-vertex withqw1 = 1 in G[U ′

2 \ {v}] such that removingw1 from G[U ′
2 \ {v}] changesw2 to a

degree-3(0, 0)-vertex; and removingN [w1] from G[U ′
2 \ {v}] produces exactly one 2-path component,

wherew satisfies condition (c-2) inG[U ′
2 \ {v}]. Since no vertex inH ′ other thanw1 satisfies any of

conditions (c-1) and (c-2) inG[U ′
2 \ {v}], w1 is the unique optimal vertex inG[U ′

2 \ {v}]. After fixing w1

as a covered vertex, the algorithm branches onw2, sincew2 satisfies condition (c-1) inG[U ′
2 \ {v, w}].

Therefore we have the following recurrence:

T (µ) ≤ T (µ− 2− 2− 1) + T (µ− 2− 2− 3)

+ T (µ− 2− 2− 1) + T (µ− 2− 2− 2)

+ T (µ− 2− 1− 1) + 2T (µ− 2− 1− 2) + T (µ− 2− 2− 2)

= T (µ− 4) + 4T (µ− 5) + 2T (µ− 6) + T (µ− 7),

which solves toT (µ) = O(1.4876µ).

Case (c). d(w1;H) = d(w2;H) = 2: From the structure ofH, we see thatw1 is a degree-2(0, 1)-
vertex withqw1 = 1 in G[U ′

2 \ {v}] such that removingw1 from G[U ′
2 \ {v}] changesw2 to a degree-2

(0, 0)-vertex withqw2 = 1; and removingN [w1] from G[U ′
2 \ {v}] produces exactly one 2-path com-

ponent. Hencew1 (resp.,w2) satisfies condition (c-2) inG[U ′
2 \ {v}] (resp.,G[U ′

2 \ {v, w1}]). Since no
vertex ofH ′ other thanw1 andw2 satisfies any of conditions (c-1) and (c-2) inG[U ′

2 \ {v}], each ofw1

andw2 is an optimal vertex inG[U ′
2 \{v}]. After v is fixed as a covered vertex, the algorithm branches on

one of them, sayw and continues to branch on the other of them sayw′ after fixingw as a covered vertex,
since there is no vertex satisfying condition (c-1) inG[U ′

2 \ {v, w}]. Therefore we have the following

17



recurrence:

T (µ) ≤ T (µ− 2− 2− 2) + T (µ− 2− 2− 2)

+ T (µ− 2− 2− 1) + T (µ− 2− 2− 2)

+ T (µ− 2− 1− 1) + 2T (µ− 2− 1− 2) + T (µ− 2− 2− 2)

= T (µ− 4) + 3T (µ− 5) + 4T (µ− 6),

which solves toT (µ) = O(1.4833µ).
Since all the recurrences obtained in Cases (a)-(c) are not worse than (8), the lemma holds.⊓⊔

Lemma 15. Let (C,D) be an instance reduced up to(c-4).

(i) For any vertexv in G[U ′
2] of (C,D), removingv from G[U ′

2] produces no bad component, and re-
movingN [v] fromG[U ′

2] produces no bad component other than 2-path components.
(ii) Every degree-3 vertexv in G[U ′

2] of (C,D) is a (0, 1)-vertex or a(0, 2)-vertex.
(iii) For any degree-3(0, 1)-vertexv in G[U ′

2] of (C,D), the componentH containingv in G[U ′
2] contains

a 6-cycle such that either
(a) vu0u1u2u3u4 consisting ofv and five degree-2 verticesui, i = 0, 1, 2, 3, 4; or
(b) vv′u0u1u2u3 consisting ofv, another degree-3(0, 1)-vertexv′, and four degree-2 verticesui,

i = 0, 1, 2, 3.
(iv) For any degree-3(0, 2)-vertexv in G[U ′

2] of (C,D), the componentH containingv in G[U ′
2] consists

of either
(c) two 6-cyclesvv′u0u1u2u3 and vv′v0v1v2v3 that share an edgevv′ betweenv and another

degree-3(0, 2)-vertexv′ and pass through degree-2 verticesui andvi, i = 0, 1, 2, 3; or
(d) a 4-cyclevv0v1v2 of v and three other degree-3(0, 2)-verticesvi, i = 0, 1, 2 and two paths

vu0u1u2v1 andv0w0w1w2v2 joining two vertices in the 4-cycle and passing through degree-2
verticesui andwi, i = 0, 1, 2.

The four types(a)-(d) of components containingv are illustrated in Fig 6.

(a) (b)

(c) (d)

Fig. 6.Components containing a degree-3 vertexv under the assumption in Lemma 15

Proof. Now the degree of every vertex inU ′
2 is at most 3 inG[U ′

2] by the assumption on(C,D).
(i) Lemma 13 holds due to the assumption, and there is no degree-2 vertexu with qu = 1 in G[U ′

2].
Therefore for any vertexv in G[U ′

2], removingv fromG[U ′
2] produces no bad component.
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To show that removingN [v] produces no bad component other than 2-path components, we prove a
slightly more general property as follows, where we can set(z, S) = (v,N(v)) to prove (i).

Claim Let z ∈ U ′
2 andS ⊆ U ′

2 \ {z} be a subset of vertices such thatz and each vertexs ∈ S are
connected by a path inG[U ′

2 \ (S \ {z, s})] of (C,D). Then removingS from G[U ′
2] produces no bad

component other than 2-path components or the componentHz containingz.
PROOF. Assuming that there exists a bi-claw, leg-triangle or tri-claw componentH ( ̸= Hz) in G[U ′

2 \S],
we show that some vertex inH satisfies one of conditions (c-1) and (c-3) inG[U ′

2] to prove the claim.
Since removingz from G[U ′

2] produces no bad component, at least two vertices inS, saya andb are
adjacent toV (H) in G[U ′

2]. Also every bad componentH other than 2-path components contains a cut-
vertexv∗ removal of which leaves a 2-path componentP , which we call a2-path subgraphof H. Hence
some vertex inS must be adjacent to each2-path subgraph ofH, since otherwise removing the cut-vertex
v∗ would produce a bad component. Therefore we only need to consider the following four cases:
(1) H is a bi-claw component(u0u1u2)(v0v1v2) such thatu0 ∈ N(a) andv0 ∈ N(b) in G[U ′

2];
(2) H is a leg-triangle componentu0(u1wv1)v0 such thatu0 ∈ N(a) andv0 ∈ N(b) in G[U ′

2];
(3) H is a leg-triangle componentu0(u1wv1)v0 such thatw ∈ N(a) andv0 ∈ N(b) in G[U ′

2]; and
(4) H is a tri-claw componentt(u0u1u2)(v0v1v2)(w0w1w2) such thatu0, v0 andw0 are adjacent toS

in G[U ′
2].

We show that vertexu1 in cases (1)-(3) and vertext in case (4) satisfy condition (c-1) or (c-3)(iii). Note
that each path that connects two vertices inS and passes throughz contains no vertex inH, sinceH does
not containz in G[U ′

2 \ S]. In cases (1)-(3), removingN [u1] from G[U ′
2] produces only one nontrivial

componentH ′, which cannot be a 2-path component, sinceH ′ has a path of length≥ 3 containingz, a, b
andv0. Thereforeu1 in cases (1)-(4) is a degree-3(0, y)-vertex withy ≤ 1 such that removingN [u1]
produces no new 2-path component; that is,u1 satisfies condition (c-1) or (c-3)(iii). In case (4), removing
N [t] fromG[U ′

2] produces only one nontrivial componentH ′′ containing{u0, v0, w0}∪S, which cannot
be a 2-path component, and we see thatt satisfies condition (c-1) or (c-3)(iii). This proves the claim.

(ii) Note thatv is a (0, y)-vertex withy ≥ 0 by Lemma 13. Since there is no degree-3(0, 0)-vertex
in G[U ′

2], v is a(0, y)-vertex withy ≥ 1. Now removingN [v] from G[U ′
2] produces no bad components

other than 2-path components. For any 2-path componentH produced by removingN [v] from G[U ′
2], at

least two neighbors ofv are adjacent toV (H); thus there are at least two edges betweenN(v) andV (H)
in G[U ′

2]. Therefore there are at most six edges betweenN(v) andU ′
2 \ N [v] in G[U ′

2]. Thus removing
N [v] can produce at most three 2-path components; and therebyv is a (0, y)-vertex with1 ≤ y ≤ 3.
Assuming thatv is a degree-3(0, 3)-vertex inG[U ′

2], we show that there is a vertex satisfying condition
(c-1) or (c-3)(iii) in G[U ′

2]. Let a, b andc denote the three neighbors ofv in G[U ′
2]. Let P1, P2 andP3

be the three 2-path components produced by removingN [v] from G[U ′
2]. Without loss of generality,

we assume thata and b are adjacent toV (P1), both b and c are adjacent toV (P2) and bothc anda
are adjacent toV (P3) in G[U ′

2]. ThenG[U ′
2] has a path that contains{b, c} and some vertex inP2 but

does not containv. Therefore removingN [a] from G[U ′
2] produces only one componentH ′ containing

{b, c} ∪ V (P2) other than clique components of size≤ 2, whereH ′ cannot be a 2-path component. Thus
a is a degree-3(0, 0)- or (0, 1)-vertex inG[U ′

2], which satisfies condition (c-1) or (c-3)(iii). Consequently,
every degree-3 vertexv in G[U ′

2] is a(0, y)-vertex with1 ≤ y ≤ 2. This proves (ii).
(iii) Let v be a degree-3(0, 1)-vertex inG[U ′

2]. In what follows, we show that the componentH
containingv in G[U ′

2] satisfies condition (a) or (b) of the lemma. Leta, b andc denote the neighbors ofv
in G[U ′

2], andP = u0u1u2 be the 2-path component produced by removingN [v] from G[U ′
2]. Note that

at least two vertices inN(v) = {a, b, c} are adjacent toP since otherwise removing the unique vertex
in N(v) adjacent toP would produce a bad component, contradicting (i). We distinguish two cases:
N(u1) ∩N(v) ̸= ∅; andN(u1) ∩N(v) = ∅.

Case 1.u1 is adjacent to a vertex inN(v): Without loss of generality, letu0 ∈ N(a) andu1 ∈ N(b),
whereu0 ̸∈ N(c) andu2 ̸∈ N(a) since otherwiseu0cva or u2au0u1 would be an admissible 4-cycle. By
(ii), degree-3 vertexu1 is a(0, 1)- or (0, 2)-vertex such that removingN [u1] produces at least one 2-path
component, whereavc must be one of such 2-path components, where verticesa andc are not adjacent.
This indicates that the componentH containingv in G[U ′

2] consists of the seven vertices,v, a, b, c, u0, u1

andu2. If vertex b is of degree 3 inH, then removingN [b] from H produces no 2-path component
becauseu0, a ̸∈ N(c) andu2 ̸∈ N(a), contradicting (ii). Henceb is a degree-2 vertex, where we see
thatb is a(0, 0)-vertex withqN [b] ≥ 1 in G[U ′

2] satisfying (c-3)(iii). This contradicts the assumption on
(C,D), and Case 1 cannot occur.
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Case 2.u1 is not adjacent to any vertex inN(v) in G[U ′
2]: If u0 is not adjacent toN(v), thenu2

has two neighbors inN(v), which must be a degree-3(0, y)-vertex withqu2 = 1, wherey ≤ 1 since
v is a(0, 1)-vertex. This would imply thatu2 satisfies condition (c-3)(ii). Henceu0 is adjacent toN(v).
Analogouslyu2 is also adjacent toN(v). Without loss of generality, letu0 ∈ N(a) andu2 ∈ N(b). We
let a′ (resp.,b′) denote the third neighbor ofa (resp.,b) if any.

We show that ifc ∈ N(u0) or c ∈ N(u2) in G[U ′
2], thenH contains a vertex satisfying condition

(c-3)(i)-(ii). Without loss of generality we assume thatc ∈ N(u0). Since removingN [v] from G[U ′
2]

produces no bad component other than 2-path componentu0u1u2, removing{a, c} produces no bad
component. SinceG[U ′

2] contains a path which starts fromv, passes throughb, u2 andu1 and ends atu0,
removing{v, u0} from G[U ′

2] produces no bad component other than 2-path components by Claim with
(z, S) = (b, {v, u0}). If b{v,u0} ≤ 1, then 4-cyclevau0c is admissible inG[U ′

2], and every vertex on the
cycle satisfies (c-3)(i). Letb{v,u0} ≥ 2. Then removing{v, u0} fromG[U ′

2] produces a 2-path component
P ′ other than 2-path componentu1u2b. If P ′ contains only one ofa andc, then removingN [v] from
G[U ′

2] produces a clique component of size 2 consisting ofV (P ′) \ {a} or V (P ′) \ {c}, indicating that
v satisfies (c-3)(ii). LetP ′ contain both ofa andc; i.e.,P ′ = aa′c. Sinceb{v,a′} = b{a,c} = 0, 4-cycle
vaa′c is admissible inG[U ′

2], and every vertex on the cycle satisfies (c-3)(i). In the following we assume
thatc /∈ N(u0) ∪ N(u2), where we observe that no degree-2 vertex is adjacent to two neighbors of the
degree-3(0, 1)-vertexv.

Sincea ∈ N(b) in G[U ′
2] implies thata is a degree-3(0, 0)-vertex satisfying (c-1), we havea ̸∈ N(b)

in (C,D).
If a, b ∈ N(c), thenvacb would be an admissible 4-cycle inG[U ′

2] and any vertex on it would satisfy
(c-3)(i). If a ∈ N(c) andd(b;H) = 2, then we see thatbN [a] = 1 by bN [v] = 1 and thatvau0u1u2b
is a 6-cycle satisfying condition (b) forH. If a ∈ N(c), b ̸∈ N(c) andd(b;H) = 3, thenb would be a
degree-3(0, 0)-vertex inG[U ′

2] satisfying (c-1). Hence we assume thata, b ̸∈ N(c) in the following.
We here show thata ̸∈ N(u2). Leta ∈ N(u2). Thena is a degree-3(0, y)-vertex, wherey = 2, since

if a is a degree-3(0, 1)-vertex then there cannot exist a degree-2 vertexu1 adjacent to two neighbors
of a. In this case, the graphG[U ′

2 \ N [a]] has two new 2-path components,Pb containingb andPc

containingc, wherePc is not adjacent to any vertex in{a, b, u0, u1, u2} sincec /∈ N(u0) ∪ N(u2),
contradicting thatPc will not be produced by removingv. Therefore we havea ̸∈ N(u2), b ̸∈ N(u0) and
d(u0;H) = d(u1;H) = d(u2;H) = 2.

Finally we show that ifd(a;H) = 3 then removingN [a] from G[U ′
2] produces no 2-path component

that does not contain vertexb. Assume that a 2-path componentP ′′ not containingb is produced in
G[U ′

2 \N [a]]. Since removinga′ from G[U ′
2] produces no bad component, botha′ andv are adjacent to

V (P ′′) in G[U ′
2], andV (P ′′) consists of vertexc and some verticese, f ∈ U ′

2 \ (N [v]∪{a′, u0, u1, u2}).
Sincev is a degree-3(0, 1)-vertex inG[U ′

2] from the assumption, there is no 2-path component consisting
of {a′, e, f} in G[U ′

2 \ N [v]]. Hence removingN [v] from G[U ′
2] produces a clique component of size

2 consisting of two of{a′, e, f}. Thenv would be a degree-3(0, 1)-vertex with qN [v] = 1 in G[U ′
2]

satisfying condition (c-3)(ii), a contradiction. This proves that ifd(a;H) = 3 (resp.,d(b;H) = 3) then
removingN [a] (resp.,N [b]) from G[U ′

2] produces no 2-path component that does not contain vertexb
(resp.,a).

Whend(a;H) = d(b;H) = 2, there is a 6-cycle which starts fromv, passes through five degree-2
verticesa, u0, u1, u2 andb in this order and ends atv, indicating that the the componentH containingv
satisfies condition (a).

Letd(a;H) ̸= d(b;H), sayd(a;H) = 3 andd(b;H) = 2. Then removingN [a] fromG[U ′
2] produces

no 2-path component that does not contain vertexb; i.e., it produces only one 2-path componentbu2u1,
and therebya is a degree-3(0, 1)-vertex inG[U ′

2]. Since there is a 6-cycle which starts fromv, passes
through four degree-2 verticesb, u2, u1, u0 anda in this order and ends atv, the componentH containing
v in G[U ′

2] satisfies condition (b).
Let d(a;H) = d(b;H) = 3. Analogously with the case ofd(a;H) = 3 andd(b;H) = 2, we see that

each ofa andb is a degree-3(0, 1)-vertex inG[U ′
2]. Recall that degree-3(0, 1)-vertexv has two degree-3

(0, 1)-neighbors joined by a pathPv passing through three degree-2 vertices. By applying this to degree-3
(0, 1)-vertexa, we see thatG[U ′

2] contains a pathPa = aa′s0s1s2v passing through degree-2 vertices
si, i = 0, 1, 2. Similarly there is a pathPb = bb′t0t1t2v passing through degree-2 verticesti, i = 0, 1, 2.
Sinces2 = t2 must hold, such two paths cannot exist unlessa′ = b′. However, whena′ = b′, we see that
v is a(0, 2)-vertex, a contradiction.
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Consequently, the componentH containingv in G[U ′
2] satisfies one of two conditions (a) and (b) of

the lemma.
(iv) Let v be a degree-3(0, 2)-vertex inG[U ′

2], a, b andc denote the three neighbors ofv in G[U ′
2],

andH be the component containingN [v] in G[U ′
2]. Let P1 = u0u1u2 andP2 = w0w1w2 be the two

2-path components produced by removingN [v] from G[U ′
2]. In what follows, we show that there is a

vertex satisfying condition (c-1) or (c-3) inG[U ′
2] unlessH is a graph that satisfies condition (c) or (d) of

the lemma.
For eachPi, at least two neighbors ofv are adjacent toV (Pi). Hence at least one neighbor ofv, say

b is adjacent to bothP1 andP2.
If u1 is adjacent to a vertex inN(v), then it is a degree-3(0, 0)-vertex, since removingu0, u1, u2

and exactly one vertex inN(v) produces no 2-path component; that is,u1 satisfies condition (c-1). We
assume that neither ofu1 andw1 is adjacent to any vertex inN(v). Let {u2, w2} ⊆ N(b) without loss of
generality.

If u0 is not adjacent to any vertex inN(v), then the degree-3 vertexb is a (0, y)-vertex withy ≤ 1
andqN [b] ≥ 1, which satisfies condition (c-1) or (c-3)(ii). We further assume that each ofu0, u2, w0 and
w2 is adjacent to a vertex inN(v).

If vertex a (resp.,c) is not adjacent tou0u1u2 or w0w1w2 in G[U ′
2], then another neighborc (resp.,

a) of v is a degree-3(0, 0)-vertex inG[U ′
2], which satisfies (c-1).

If b is a degree-3(0, 1)-vertex inG[U ′
2], then by (iii)H must have a 6-cycle containingb and at most

one more degree-3 vertex that is not the degree-3(0, 2)-vertexv. Since such a 6-cycle does not exists
in H, b is a degree-3(0, 2)-vertex inG[U ′

2], and hence removingN [b] from G[U ′
2] produces two 2-path

components, which must beau0u1 andcw0w1 (or cu0u1 andaw0w1).
In the following we assume thatN(u0) = {a, u1}, N(w0) = {c, w1} anda ̸∈ N(c) without loss of

generality.
Case 1. Botha andc are degree-2 vertices inG[U ′

2]: In this case,H satisfies condition (c) of the
lemma.

Case 2. One ofa and c, saya is a degree-3 vertex inG[U ′
2]: If a ̸∈ N(w2) or u2 ∈ N(c), then

removingN [a] from G[U ′
2] produces no 2-path component. Therefore we havea ∈ N(w2) andu2 ̸∈

N(c). Symmetrically ifc is a degree-3 vertex inG[U ′
2], thenc ∈ N(u2) andw2 ̸∈ N(a). This means that

exactly one ofa andc can be a degree-3 vertex inG[U ′
2], andH satisfies condition (d) of the lemma.⊓⊔

Lemma 16. AlgorithmEDSSTAGE2 branches on an optimal vertexv satisfying condition(c-5) in G[U ′
2]

together with possible branchings on the resulting new bad components with a recurrence not worse than
(8).

Proof. Sincev is an optimal vertex satisfying condition (c-5),v is a degree-3 vertex inG[U ′
2]. LetH be

the component containingv in G[U ′
2]. There are no vertices satisfying any of conditions (c-1) to (c-4) in

G[U ′
2]; therefore Lemma 15 holds, indicating thatH satisfies one of the four conditions (a) to (d) in the

lemma.
In what follows, we first show that after removingv, a vertexw satisfying condition (c-2) will become

an optimal vertex, and then derive recurrences for branching onv together with branchings on the optimal
vertexw and all newly produced bad components. Note that after removingv, there is no vertex satisfying
condition (c-1) inG[U ′

2 \ {v}], sincev does not satisfy condition (c-3)(iv) inG[U ′
2]. We distinguish two

cases: condition (a) or (b) in Lemma 15 holds; and condition (c) or (d) in Lemma 15 holds
Case (a) or (b): Now v is a degree-3(0, 1)-vertex inG[U ′

2].
We first consider case (a); i.e.,H contains a cycle of length 6 which starts fromv, passes through five

degree-2 verticesv0, v1, v2, v3 andv4 in this order and ends atv. Thenv2 will be a degree-2 vertex that
satisfies condition (c-2) inG[U ′

2 \ {v}], since removingv2 fromG[U ′
2 \ {v}] produces exactly two clique

components of size 2: one consisting of{v0, v1} and the other consisting of{v3, v4}. Hencev2 will be
an optimal vertexw in G[U ′

2 \ {v}].
We next consider case (b); i.e.,H contains a cycle which starts fromv, passes through four degree-2

verticesv0, v1, v2, v3 and a degree-3 vertexv′ in this order and ends atv. Thenv2 will be a degree-2 vertex
that satisfies condition (c-2) inG[U ′

2 \ {v}], since removingv2 from G[U ′
2 \ {v}] produces exactly two

components: a clique component of size 2 consisting of{v0, v1} and the component containing{v3, v′}.
Hencev2 will be an optimal vertexw in G[U ′

2 \ {v}]. To derive a recurrence, we show that removing
each ofv2 andN [v2] from G[U ′

2 \ {v2}] produces no bad component other than a 2-path component.
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Removingv2 fromG[U ′
2 \ {v}] produces no bad component other than a 2-path component, sincev′ is a

degree-2 vertex inG[U ′
2 \{v, v2}]. Letu denote the other neighbor ofv′ in G[U ′

2 \{v}]. In the case where
u is of degree≤ 2 in G[U ′

2 \ {v}], removingN [v2] produces no a bad component other than a 2-path
component. In the case whereu is of degree 3 inG[U ′

2 \ {v}], the component containingu produced by
removingN [v2] is not a bad component, sinceu must satisfy one of conditions (a) to (d) in Lemma 15.

As a result, the optimal vertexw in G[U ′
2 \ {v}] satisfies condition (c-2); that is,w is a degree-2

(x, y)-vertex withx+ y ≤ 1 andqw ≥ 1, and removing each ofw andN [w] fromG[U ′
2 \ {v}] produces

no bad component other than a 2-path component. In the case wherex + y = 0, we have the following
recurrence:

T (µ) ≤ T (µ− 1− 2) + T (µ− 1− 2) + T (µ− 3− 1) + T (µ− 3− 2)

= 2T (µ− 3) + T (µ− 4) + T (µ− 5),

which solves toT (µ) = O(1.4656µ). In the case wherex+ y = 1, we have the following recurrence:

T (µ) ≤ T (µ− 1− 2− 1) + T (µ− 1− 2− 2) + T (µ− 1− 2)

+ T (µ− 3− 1) + T (µ− 3− 2)

= T (µ− 3) + 2T (µ− 4) + 2T (µ− 5),

which solves toT (µ) = O(1.4826µ).
Case (c) or (d): Now v is a degree-3(0, 2)-vertex inG[U ′

2].
We first consider case (c); i.e.,H consists of the following two paths betweenv and a degree-3(0, 2)-

vertexv′: a path which starts formv, passes through degree-2 verticesu0, u1, u2 andu3 in this order
and ends atv′; and a path which starts formv, passes through degree-2 verticesv0, v1, v2 and v3 in
this order and ends atv′. Recall that after removingv from G[U ′

2], no vertex inH satisfies condition
(c-1). Removingv from H leaves only a path which starts fromu0, passes through degree-2 vertices
u1, u2, u3, v

′, v3, v2 andv1 in this order and ends atv0. We see that any vertexw ∈ {u2, v2} is a degree-2
(0, 0)-vertex withqw = 1 in G[U ′

2 \ {v}], and becomes an optimal vertex satisfying condition (c-2).
We next consider case (d); i.e.,H consists of a 4-cyclevv0v1v2 of four degree-3(0, 2)-vertices and

the following two paths joining two diagonal vertices in the 4-cycle: a path which starts fromv, passes
through degree-2 verticesu0, u1 andu2 and ends atv1; and a path which starts fromv0, passes through
degree-2 verticesw0, w1 andw2 and ends atv2. After removingv fromG[U ′

2], only one vertexv1 becomes
a degree-3 vertex inG[U ′

2 \ {v}], which does not satisfy condition (c-1), as already observed. Here
removingu2 fromG[U ′

2\{v}] produces exactly two components: a clique component of size 2 consisting
of {u0, u1} and the component containingv1, which is not a bad component. RemovingN [u2] from
G[U ′

2 \ {v}] also produces exactly two components: an isolated vertexu0 and the component containing
{v0, v2}, which is not a bad component. Henceu2 is a degree-2(0, 0)-vertex withqu2 = 1 in G[U ′

2\{v}],
and is an optimal vertexw satisfying condition (c-2).

As a result, any optimal vertexw in G[U ′
2 \ {v}] is a degree-2(0, 0)-vertex satisfying condition (c-2);

that is,w is a degree-2(0, 0)-vertex withqw = 1. Thus we have the following recurrence:

T (µ) ≤ T (µ− 1− 2) + T (µ− 1− 2)

+ T (µ− 3− 1− 1) + 2T (µ− 3− 1− 2) + T (µ− 3− 2− 2)

= 2T (µ− 3) + T (µ− 5) + 2T (µ− 6) + T (µ− 7),

which solves toT (µ) = O(1.4845µ).
Since all the recurrences obtained in Cases (a) to (d) are not worse than (8), the lemma holds.⊓⊔

A component inG[U ′
2] is called acycle componentif it consists of a single cycle. The following

lemma shown in [9] is used to analyze the case where Algorithm EDSSTAGE2 branches on an optimal
vertex satisfying condition (c-6).

Lemma 17. [9] LetL be a cycle component of length≥ 4 in G[U ′
2]. AlgorithmEDSSTAGE2 branches

on vertices ofL with a recurrence not worse than(8) until U ′
2 has no vertices inL.
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Lemma 18. AlgorithmEDSSTAGE2 branches on an optimal vertexv satisfying condition(c-6) in G[U ′
2]

together with possible branchings on the resulting new bad components with a recurrence not worse than
(8).

Proof. Sincev is an optimal vertex satisfying condition (c-6),v is a degree-2 vertex inG[U ′
2]. LetH be

the component containingv in G[U ′
2]. In the following, we show thatH is a cycle component of length

≥ 4.
Since there is no vertex that satisfies condition (c-5), there are only vertices of degree≤ 2 in G[U ′

2].
Furthermore there is no vertex of degree≤ 1 in G[U ′

2], sinceG[U ′
2] has no clique component, no 2-path

component and no degree-2 vertexu with qu ≥ 1, which satisfies condition (c-2). Therefore there are only
degree-2 vertices inG[U ′

2], indicating that the component containingv in G[U ′
2] is a cycle component of

length≥ 4.
Algorithm EDSSTAGE2 branches on vertices ofH until G[U ′

2] has no more vertices ofH, with a
recurrence not worse than (8), by Lemma 17. ⊓⊔

Now we are ready to complete the proof of Lemma 6. Lemmata 10, 11, 12, 14, 16 and 18 guarantee
that Algorithm EDSSTAGE2 branches on an admissible 4-cycle or an optimal vertex inG[U ′

2] together
with possible branchings on the resulting new bad components with a recurrence not worse than (8).⊓⊔
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