An Improved Algorithm
for Parameterized Edge Dominating Set Problem

Ken lwaide and Hiroshi Nagamochi

Department of Applied Mathematics and Physics,
Graduate School of Informatics,
Kyoto University, Japan,
{iwaide,nag }@amp.i.kyoto-u.ac.jp

Abstract. Anedge dominating set of agragh= (V, E) is a subsel C E of edges such that each

edge inE'\ M is incident to at least one edgeld. In this paper, we consider the parameterized edge
dominating set problem which asks us to test whether a given graph has an edge dominating set with
size bounded from above by an integear not, and we design ab* (2.2351%)-time and polynomial-

space algorithm. This is an improvement over the previous best time boaht23147%). We also

show that a related problem: the parameterized weighted edge dominating set problem can be solved
in 0*(2.2351%) time and polynomial space.

1 Introduction

An edge dominating seif a graphG = (V, E) is a subsef\/ C FE of edges in the graph such that each
edge inE'\ M is incident with at least one edged. Theedge dominating set problefEDS) is to find a
minimum edge dominating set of a given graph. The problem is one of the basic problems highlighted by
Garey and Johnson [4] in their work on NP-completeness. Yanakakis and Gauvril [13] showed that EDS
is NP-hard even in planar or bipartite graphs of maximum degree 3. Randerath and Schiermeyer [6] de-
signed ar0*(1.4423™)-time and polynomial-space algorithm for EDS, where= | E| andO* notation
suppresses all polynomially bounded factors. The result was improwed(to4423™) by Ramaret al.
[5], wheren = |V|. Considering the treewidth of the graph, Foreirel. [3] obtained arO*(1.4082™)-
time and exponential-space algorithm. With the measure and conquer method, Rooij and Bodlaender [7]
designed a®*(1.3226™)-time and polynomial-space algorithm and an impro@&d1.3160™)-time and
polynomial-space algorithm was presented by Xiao and Nagamochi [11]. For EDS in graphs of maxi-
mum degree 3, the best algorithm is@h(1.2721™)-time and polynomial-space algorithm due to Xiao
and Nagamochi [12].

The parameterized edge dominating set probl@?&DS) is, given a grapty = (V, E) with an in-
tegerk, to decide whether there is an edge dominating set of size épltds known that there is an
FPT algorithm for PEDS; we can design an algorithm with the running #ifigpoly(n) to solve the
problem, wheref (k) is a function ofk andpoly(n) is a polynomial of the number of vertices .
For PEDS, ar0*(2.6181%)-time and polynomial-space algorithm was given by Fernau [2]. Fanhai
[3] obtained arD*(2.4181%)-time and exponential-space algorithm based on dynamic programming on
treewidth-bounded graphs. With the measure and conquer method, Binkele-Raible and Fernau [1] de-
signed ar0*(2.3819%)-time and polynomial-space algorithm. Xiaoal.[9] give anO*(2.3147%)-time
and polynomial-space branching algorithm. For PEDS in graphs of maximum degree 3, the best param-
eterized algorithm is a®*(2.1479%)-time and polynomial-space algorithm due to Xiao and Nagamochi
[10].
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EDS and PEDS are related to thertex cover problemA vertex coveof a graph is a set of vertices
such that each edge of the graph is incident to at least one vertex in the set. The set of endpoints of
all edges in any edge dominating set is a vertex cover. To find an edge dominating set of a graph, we
may enumerate vertex covers of the graph and construct edge dominating sets from the vertex covers.
Many previous algorithms are based on enumeration of vertex covers. We enumerate candidates of such
edge dominating sets by branching on a vertex: fixing it as a vertex incident on at least one edge in an
edge dominating set with a bounded size or not. In(@i¢2.3147%)-time algorithm to PEDS, Xiaet
al. [9] observed that branching on vertices in a local structure called “2-path component” is the most
inefficient among branchings on other local structures, and that reducing the number of branchings on
2-path components leads to an improvement over the time complexity. For this, they retained branching
on 2-path components until no other structure remains, and effectively skipped subinstances that will not
deliver edge dominating sets with a bounded size by systematically treating the set of 2-path components.
In this paper, identifying new local structures, called “bi-claw,” “leg-triangle” and “tri-claw components”
and establishing a refined lower bound on the size of edge dominating sets, we deSigi2 2851%)-
time and polynomial-space algorithm.

Section 2 gives some terminologies and notations and introduces our branching operations of our
algorithm. After Section 3 describes our algorithm that consists of three major stages, Section 4 analyzes
the time complexity by deriving an upper bound on the number of all subinstances. Section 5 discusses
a weighted variant of PEDS. Section 6 makes some concluding remarks. For space limitation, the proofs
of lemmata are moved into Appendix A.

2 Preliminaries

2.1 Terminology and notation

.. . . _ m k) m oL
For non-negative integets, ko, . . ., k,,, @ multinomial coefﬂmen% is denoted b)(%lzlk’” )

Lemma l. Letkq, ko, ..., ky,, be non-negative integers, whete > 1. Then for any positive reals;,
Y2, .-+, Ym Such thaty """ | 1/+; < 1, it holds that

Zn’ilkt m X
= < S
(kl,lcg,...,km —7,1;[1%

The set of vertices and edges in a grdplis denoted by (H) and E(H ), respectively. For a vertex
vinagraph, letV(v) denote a set of neighbors ofand letN[v] denote a set of and its neighbors (i.e.,
N[v] = {v} UN(v)). A vertex of degred is called adegreed vertex. The degree of a vertexn a graph
H is denoted byi(v; H). For a setF’ of edges, we us& (F') to denote a set of vertices incident on at
least one edge ", and we say thaf’ coversa vertex setS C V if V(F) D S. For a subsef C V
of vertices,GG[S] denote the subgraph &f induced byS. A cycle of length? is called ar/-cycle and is
denoted by the sequeneevs . . . v, Of vertices in it, where the cycle contains edges,, ..., v, ovs_1
andwvyv;. A connected component containing only one vertex is caliedl. We define five types of
connected components as follows:
aclique component connected component that is a complete subgraph;

- a 2-path componenta connected component consisting of a degree-2 verteand its two degree-1
neighborsug, us € N(uq), denoted byuguqus, as illustrated in Fig. 1(a);

- a bi-claw componenta connected component consisting of two adjacent degree-3 verticasd v,
and their four degree-1 neighbais, us € N(u1) andvg,ve € N(vy), denoted by(uguius)(vovivs),
as illustrated in Fig. 1(b);

- alegged triangle componeigor leg-triangle componeita connected component consisting of two
adjacent degree-3 verticas andv,, their two degree-1 neighbotg € N(u1) andvy € N(v1) and one
common degree-2 neighbar € N(u;) N N(vy), denoted byug(uiwvy)vg, as illustrated in Fig. 1(c);
and

- atri-claw componenta connected component consisting of three degree-3 vettices andw,, their
six degree-1 neighbots), us € N(u1), vo,v2 € N(v1) andwg, ws € N(w;) and their common degree-
3 neighbort € N(u1) N N(v1) N N(wy), denoted byt(uouiusz)(vovive)(wowiwe), as illustrated in
Fig. 1(d).



The last four types of components, 2-path, bi-claw, leg-triangle and tri-claw components arebadlled
componentsollectively.

(a) A 2-path componentou; uz

w
u, v,
uo UO
(d) A tri-claw component
(c) A leg-triangle componento (u1wv1)vo t(uouruz) (vov1v2) (wWowiws)

Fig. 1. The four types of bad components

2.2 Instances with covered and discarded vertices

Throughout our algorithm, we do not modify a given graphk= (V, E') or a parametek, but fix vertices
to coveredvertices ordiscardedvertices so that a pair of the setsand D of covered and discarded
vertices gives an instan¢€’, D) that asks to find an edge dominating 4&bf G such thatC' C V(M) C
V'\ D. We call such an edge dominating sét& D)-edsfor short. An instancéC, D) is calledfeasible
if it admits a(C, D)-eds, and is called-feasibleif it admits a(C, D)-edsM of size|M| < k. We call
vertices inV" \ (C'U D) undecidedand denote by/ the set of undecided vertices.

We use two kinds of fundamental branching operations. One is to branch on an undecided vertex
v € U in (C, D): fix v as a new covered vertex in the first branch or as a new discarded vertex in the
second branch. This is based on the fact that theréds &)-edsM with v € V(M) or there is no such
(C, D)-eds. Then we also fix all the verticesW(v) as covered vertices in the second branch, since any
edgee = vw incident tov needs to be incident to an edge dominating set at the vertéke other is to
branch on a 4-cyclegv,vov3 over undecided vertices: fix vertices andv, as new covered vertices or
fix verticesv; andvz as new covered vertices. This is based on the fact that for any edge dominating set
M, the sefi (M) is a vertex cover and one @fy, v2} and{vy, v} is contained in any vertex cover [8].
Rooij and Bodlaender [7] found the following solvable case.

Lemma 2. [7] A minimum(C, D)-eds of an instancéC, D) such thatG[U] contains only clique com-
ponents can be found in polynomial time.

We denote by; the set of vertices of all cligue componentsGfiU], and letU; = U \ U;. An
instance(C, D) is called deaf instancdf U, = (). By Lemma 2, we only need to select vertices from
to apply branching operations until all instances become leaf instances.

The next lower bound on the size @, D)-edses is immediate since for each clique compoent
G[U], itholds thafV(Q) NV (M)| > |V(Q)| — 1.

Lemma 3. For any(C, D)-edsM in a graphdG, it holds that

\V(M)| > |C| + Z{\V(Q)\ — 1| clique component§) in G[U]}.



Based on this, we define tineeasure. of an instancéC, D) to be
w(C, D) =2k — |C| — Z{|V )] — 1| clique component§ in G[U]}.

We do not need to generate any instan@@sD) with .(C, D) < 0 since they are not-feasible. In this
paper, we introduce the following new lower bound.

Lemma 4. Let M be a(C, D)-eds in a graphG. Then for any subset C C it holds that
|M| > {[|V(H)|/2] | componentsT in G[S]} > [|S]/2].

Branching on a bad compone#t in G[Uz] means to keep branching on verticedinn V (H) until
all vertices inV (H) are contained il U D U U; . We treat a series of such branchings as an operation of
branching onH that generates new instances defined as follows. For each type of a bad compéhent
we define the numberandCU) (H) (resp.,DY)(H)), j = 1,2,...,r to be a set of vertices df fixed
as covered (resp., discarded) vertices ingtitle branch:

For a 2-path componett{; = uguius, by branching on:;, we can branch o/, into » = 2 branches:
1. C(H,) = {u;} andDM (H,) = §); and

2. C(Z)(Hl) = {Uo,UQ} andD(2)(H1) = {ul}

For a bi-claw componerfls = (uouius2)(vov1v2), Where at least one of adjacent vertiecgsandv, must
be inV (M) of any(C, D)-edsM, we can branch on this component imte= 3 branches:

C(l)(HQ) = {U1 1}1} andD(l)(Hg) = @,

2. C 2)(H2) = {Uo,Ug,Ul} andD(2 (HQ) = {ul}, and
3. C 3)(H2) = {Ul,vo,vg} andD (HQ) = {’Ul}.
For a leg-triangle componefifs = uo(u1wv1)vg, Where at least one of adjacent vertiecgsandv; must
be inV (M) of any (C, D)-edsM, we can branch on this component imte= 3 branches:
1. CW(H3) = {u1,v,} andDW (Hz3) = 0);
2. C®)(Hs3) = {up,v1,w} andD? (H3) = {u, }; and
3. C(d)(Hg) = {Ul,’Uo,w} andD(d)(Hg) = {’Ul}.
For a tri-claw componently = t(uguius2)(vov1v2)(wowrws), We can branch on,,v; andw; sequen-
tially to generate the following = 8 branches:
. C(l)(H4> = {ul, vl,wl} andD(l)(H4) (Z)
(H4) = {t uo,uQ,vl,wl} andD(2 (H4) = {ul}
(H4) = {t ul,vo,vg,wl} andD 3)(H4) = {1}1}
(H4) = {t uhvl,wo,wg} andD(4 (H4) = {'U}l},
(H4) = {t U()7U2,’U()7’027U}1}andD (H4) = {Ul,’Ul};
(6) (H4> {t U1, Vg, V2, Wo, ’wg} andD(G) (H4) = {Ul, wl}
0(7)(H ) = {t uO,UQ,’Ul,’UJQ,wQ} andD(7)(H4) = {ul,wl} and
.C®) (H4) = {t ugp, U2, Vg, V2, Wo, ’LUQ} andD®) (H4) = {ul, U1, wl}
For each of the above branch, we define two kinds of valuaad 5 which will be summed up to give
lower bounds on the size of(&”, D")-eds of a leaf instancg””’, D’). For each(s, j), let

°°.\‘.°’9":'>.°°!\’"‘

i = |CY(H;)| andB; ; = S{[|V(T)|/2] | componentd” in G[CY) (H;)]}.

Observe that3; ; is a lower bound on the size of @) (H;),)-eds by Lemma 4. Foti,j) €
{(1,1),(1,2),(2,2),(2,3), (3,2), (4,8)}, the graphG[CV)(H;)] contains only isolated vertices, and
Bi; = |CY(H;)| = oy ;. For other(i, j), the graphG[C'Y) (H,)] consists of exactly one nontrivial com-
ponent of size € {2,3} and|CY) (H,)| — p isolated vertices, and; ; = [p/2] + (|CY) (H;)| — p) =
|C(‘7)(Hz)| —1= Q5 — 1.

In this paragraph, we introduce criteria in choosing 4-cycle/vertices to branch on used in our algo-
rithm. For a subse$' C U, of vertices, we letys andbs denote the sum g/ (Q)| — 1 over all cliqgue
components) and the number of bad components newly generated by remévirgm G[Us], respec-
tively. A 4-cyclevovivavs in G[Us] is calledadmissiblef by, 1,1 + bio, vy < 1. A vertexv in G[Us]
such thatb, = = andby,) = y is called an(z,y)-vertex A vertexv in G[U,] is calledoptimalif it
satisfies a condition (& below with the minimumt over all vertices inG[Us]:

(c-1) v is a degree-30, 0)-vertex;
(c-2) v is a degree-2z, y)-vertex withz + y < 1 andg, > 1;



(c-3) (i) visin an admissible 4-cycle;
(ii) v is a degreet (z,y)-vertex such thad < d < 3,z +y < 1 andq, + qnj, > 4 —d,
(iii) v is a degreet (x, y)-vertex such that < d < 3, x4y < 1, qn},) = 3 —d and removing each
of v and N [v] produces no new 2-path component; or
(iv) v is a degree-30, 1)-vertex such tha€z[U, \ {v}] contains at least one degre€B0)-vertex
and removingV[v] produces exactly one new 2-path component;

(c-4) v is a degree-2 vertex witly, = 1;

(c-5) v is a degree-3 vertex; and

(c-6) v is a degree-2 vertex.

3 The Algorithm

Given a graphG and an integek, our algorithm return§RUE if it admits an edge dominationg set of
size< k or FALSE otherwise. The algorithm is designed to be a procedure that reflRUE if a given
instance(C, D) is k-feasible orfFALSE otherwise, by branching on a vertex/4-cycle/bad component in
(C, D) to generate new smaller instan¢ég’), D), ... (C™), D), to each of which the procedure
is recursively applied. The procedure is initially given an instaffcd), and always returnALSE
wheneven(C, D) < 0 holds.

Our algorithm takes three stages. The first stage keeps branching on vertices of detyreamd
retains the seB of all the produced bad components without branching on them. The second stage
keeps branching on optimal vertices of degfe8, immediately branching on any newly produced bad
component before it chooses the next optimal vertex to branch on. The third stage generates leaf instances
by fixing all undecided vertices in the bad component8,mwhere we try to decrease the number of leaf
instances to be generated based on some lower bound on the size of solutions of leaf instances. To derive
the lower bounds in the third stage, wed&tstore all vertices fixed to covered vertices during branching
operations in thé-th stage. Formally BSSTAGEL is described as follows.

Algorithm EDSSTAGEL(C, D)

Input: A graphG = (V, E) with an integerk, and subset§’ and D of V (initially, C = D = 0).
Output: TRUE if (C, D) is k-feasible ofFALSE otherwise.
1. if u(C,D) < 0then
return FALSE
else ifthere is a vertex of degree> 4 in G[U:] then
return EDSSTAGEL(C U {v}, D) V EDSSTAGEL(C U N(v), D U {v})
. else
CL:=C;Cy:=10;
Let 3 store all bad components @[U-];
return EDSSTAGE2(C:, Ca, B, D)
end if

CcoNOR®WN

For a given instancéG, k) of PEDS, letZ; denote the set of all instances constructed immediately
after the first stage. Lét'(53) denote the set of vertices in the bad components.iGiven an instance
(C1,Cs, B, D) € 1, the second stagedSSTAGE? fixes all vertices iU, \ V(B) to covered/discarded
vertices by repeatedly branching on optimal vertices or any newly produced bad compoGgbi in
V(B)] if it exists. During the second stage, the s€fsand B obtained in the first stage never change.
When no vertex is left ii), \ V(B), we switch to the third stage. FormallypESTAGE?2 is described as
follows.

Algorithm EDSSTAGE2(C}, Cs, B, D)

Input: A graphG = (V, E) with an integetk, disjoint subset€’;, C2, D C V and a set of bad componerifsn
G[U2].
Output: TRUE if (C1 U C2, D) is k-feasible ofFALSE otherwise.
1. if u(C1UC2, D) < 0then
2. return FALSE
3: else ifthere is a 2-path componeht; in G[U: \ V(B)] then
4 return \/,_, , EDSSTAGE2(Cy,Co UCY)(Hy), B, DU DY) (Hy))




5: else ifthere is a bi-claw componeiif, in G[U: \ V(B)] then
6: retun \/,_, 5 EDSSTAGE2(Cy,Co UCY)(Hs), B, DU DY (Hs>))
7: else ifthere is a leg-triangle componeHs in G[U: \ V(B)] then
8: retun \/,_, 5 EDSSTAGE2(Cy,C> UCY)(Hs), B, DU DY) (Hsy))
9: else ifthere is a tri-claw componetif, in G[U: \ V(B)] then
10:  return \/,_,_ EDSSTAGE2(Cy,C2 U CY)(Hy), B, DU DY) (Hy))
11: else ifUs \ V(B) # (0 then
12:  Choose an optimal vertexin G[U: \ V(B)];
13:  if visin an admissible 4-cycleyviv2vs of condition (c-4)then

14: return EDSSTAGE2(C U {vo, v2}, D, B,C1) V EDSSTAGE2(C1, C2 U {v1,v3}, B, D)
15:  else

16: return EDSSTAGE2(C4,C U{v}, B, D)V EDSSTAGE2(C1,C2 U N (v), B, D U{v})
17:  endif

18: else/* Now Uz = V (B) */
19: return EDSSTAGE3(C1,C5, B, D)
20: end if

Let Z, denote the set of all instances constructed immediately after the second stage. Consider an
instancel = (Cy,Csy, B, D) € I,, where the grapliz[Us] consists of the bad componentsirretained
at the first stage. LeB; (resp.,32, B3 andB,) be the sets of 2-path (resp., bi-claw, leg-triangle and tri-
claw) components i3, andy; = |B;|,i = 1,2,3,4in I € Z,. To obtain a leaf instance from the instance
I, we need to fix all vertices ifv (B). The number of all leaf instances that can be constructed from the
instancel € 7, is Hle r¥i = 2v1.3¥2 . 3Vs . 8¥4 wherer; is the number of subinstances generated by
branching on a bad componefitc 5.

In the third stage, we avoid constructing of sorkdrifeasible” leaf instances among all leaf instances.
For aleaf instancé’ = (C’ = C; U Cy U C3, D’) obtained from the instancee Z,, whereC; denotes
the set of undecided vertices¥\(B) that are fixed to covered verticesif) we letw; ; be the number of
bad components iB8; to which thej-th branch is applied to generate and call the vectow with these
16 entriesw;,; the occurrence vectoof I”. Note that) -, ; ; jw; ; = |C3| holds, and thad , ; 5 jw; ;
is a lower bound on the size ¢f'5, D’)-eds by Lemma 4, since no edge@hjoins two components in
B. We derive two necessary conditions for a veaioto be the occurrence vector ofkafeasible leaf
instancel’ = (C’, D’). One is thakk > 2|M| > |V(M)| > |C1| + |Ca| + |C3], i.e.,

2k > |C1| +|C2| + Zai,jwi,j« (1)
i,J
Observe that there is no edge betwé&gnand C, in I’, since any vertex irC’; is contained in some
component in[U> \ V/(B)] during an execution of BSSTAGE2. Hence}_, ; B jwi ; + [|C2[/2] is a
lower bound on the size of @5 U C5, D')-eds by Lemma 4, and another necessary condition is given by

k> |Col/24 ) Bijwi (2)
]

Note that the numbei{w) of leaf instanceg’ whose occurrence vectors are giverbys

fw) = ( Y1 ) ( Y2 )( Y3 )( Ya ) 3)
wi,1,W1,2 w21, W2,2,W2 3 w31, Ws3,2,W3,3 Wyq,1,W4,2, .-+, W48

For each instancé = (C1,C5, B, D) € I, the third stage BSSTAGE3 generates an occurrence
vectorw satisfying the conditions (1) and (2) a@j w;; = ¥, 1 <4 < 4, and constructs all leaf
instanced’ = (C; U Cy U C3, D) from I € I, with the vectorw, before it returnd RUE if one of the
leaf instances ig-feasible oiFALSE otherwise. Formally ESSTAGE3 is described as follows.

Algorithm EDSSTAGE3(C1, Cs, B, D)

Input: A graphG = (V, E) with an integelk, disjoint subset€’;, C>, D C V and a set of bad componeri#sn
G[Uz].
Output: TRUE if (C1 U Cs, D) is k-feasible oFALSE otherwise.
1: LetB; (resp. B2, Bs andB,) be a set of 2-path (resp., bi-claw, leg-triangle and tri-claw) componeitsand
yi = |Bi|, 1 =1,2,3,4;



2: for each occorrence vectar that satisfies the conditions (1) and (2) aﬁq wi; =¥, 1 <i<4 do
3:  for each combination of partitions & , B2, B3 and B4 into

BM uB? =By, BN UBP UBY =By, B UBY UBY = Bs, and

B UBP U UBY = By such thalBY)| = w; ; for all i andy; do
4 for eachj = 1,2 and each 2-path componefit € Bij) do
5: C3:=CY(H,); D:= DU DY (H;)
6: end for;
7: for eachj = 1,2, 3 and each bi-claw componeff; € Bé” do
8: C3 := CY(Hs); D := DU DY (H,)
9: end for;

10: for eachj = 1,2, 3 and each leg-triangle componetit € ng) do

11: C3 := CY(Hs); D := DU DY (Hj)

12: end for;

13: for eachj = 1,2,...,8 and each tri-claw compone#i, € Bfﬁ) do

14 C3 := CY(H,); D := DU DY (Hy)

15: end for; /*Now Uz = @ and(Cy U C2 U C3, D) is a leaf instance */

16: Test whethe(C = C; U C> U Cs, D) is k-feasible or not by computing a minimut@, D)-eds by
Lemma 2

17:  endfor

18: end for;

19: if there is ak-feasible leaf instancéC; U C2 U Cs, D) in the for loopthen
20:  return TRUE

21: else

22:  return FALSE

23: end if

4  The Analysis

For a given instanc@z, k) of PEDS, letZ;, i = 1, 2, 3 be the set of all instances constructed immediately
after thei-th stage during the execution oDESTAGEL((), ), whereZ; is the set of all leaf instances,
which correspond to the leaf nodes of the search tree of the execution. To analyze the time complexity of
our algorithm, it suffices to derive an upper bound 5y.

Lemma 5. For any non-negative integer;, the number of instances = (C1,0,8,D) € Z; with
|C1| = 21 is O(1.380278%1).

Lemma 6. For any non-negative integer, and an instancd = (C1,0,8, D) € 7, the number of
instanced’ = (C1, Co, B, D) € I, with |Cs| = x4 that can be generated frothis O(1.494541%2).

From these, we obtain the next.

Lemma 7. For any non-negative integers andx., the number of instancé€’;, Cs, B, D) € I, such
that|C1| = z1 and|Cq| = 5 1S O(1.380278%1 - 1.494541%2),

Note that the number of combinationisy,z2) for (|Cy|,|C2|) is O(n?). For a given instance
(C1,C9,B,D) € I, the number of possible occurrence vectarssatisfying the conditions (1) and
(2) andzj w;; = Yi, 1 <4 < 4isalso bounded by a polynomial af To show that our algorithm runs
in O*(2.2351%) time, it suffices to prove that the number of leaf instances generated from an instance
I =(Cy,C4,B,D) € I, with specified sizéC; | = =1 and|C3| = 25 and a specified occurrence vector
w is 0*(2.2351%). Let Z3(z1, 2, w) denote the set of all such leaf instances. By Lemma 7 and (3), we
see thatZs(zy, z2, w)| = O(1.380278%1 - 1.494541%2 - {(w)).

In what follows, we derive an upper bound 611.380278 -1.494541%2 -¢(w)) under the constraints
(1) and (2). For this, we merge some entriegdnnto ten numbers by, 1 = w1, 212 = w12, 221 =
Wo 1, 22,2 = W22 + Wa3, 231 = W31, 232 = W32 + W33, 241 = W41, 24,2 = We2 + W43 + Wy 4,

24,3 = W45 + wy6 + Wq,7 andZ474 = W48 Thené(w) is restated as

(21,1+21,2> ‘ <22,1+Z2,2> g2 (23,1 +23,2> g <Z4,1+Z4,2+Z4,3+Z4,4> . 3zaatzas
)
21,1, 21,2 221, 22,2 23,1, 23,2 24,1, 74,2, 74,3, Z4.4

7



which is bounded from above by an exponential function in Lemma 1

Z1,1_ 21,2 22,1 _ 22,2 23,1 _ 23,2 24,1 24,2 24,3 Z4,4
V1,1 V1,2 " V2,1 V2,2 V3,1 V3,2t Va1 Va2 V4,3 Va4

for any positive realsi 1, 71,2, 72,1, 72,2, 13,1, 73,2, V4,1, V4,2, V4,3 @ndhyy g such thatl /vy 1 +1/71 2 < 1,
1/’}/271 + 2/’}/2,2 <1, 1/’}/3,1 + 2/’7/372 < 1 and1/7471 + 3/’}/472 + 3/’)/473 + 1/’}/474 < 1. Then we have

|Zs(1, 2, w)| = O(1.3802787 - 1.49454172 757 15573 55" Vad Yas Vas Vad )s
which is bounded by

O(max{1.380278/°1, 1.4945411/2 111 4 12 pfea o e

1 1 1 1 1/ca, 1/cq,
’Yg{cma73§63’27’Y41/C4’1a74464’2774?{64'3774464 4}k ) (4)

)

for any constants,, ¢, and{c; ;} such that

k> ci1xy +cara 4+ c1121,1 + C1221,2 + C2,1221 + 22222

+c3,1231 +€3,223,2 +C4,124,1 + C4,2242 + C4,324,3 + C4,424,4- (5)
Conditions (1) and (2) are restated as

k> 1‘1/2 + .722/2 + (2’1,1 + 221,2)/2 + (22’271 + 32’272)/2
+ (22371 + 32372>/2 + (32’4,1 + 5242+ 6243 + 72474)/2; (6)

k>x9/24 (211 +221,2) + (221 + 322.2)
+ (23,1 +2232) + (3241 + 4242+ D243+ T244). (7)

As a linear combination of (6) and (7) withand(1 — \), we get (5) for constants = \/2, c; = 1/2,
C1,1 = 1-— )\/2, Cl2 = 2 — )\, 21 = 1, C22 = 3 - 3)\/2, C3,1 = 1, €32 = 2 — )\/2, C41 = 33— 3)\/2,
Cq2 = 4 — 3/\/2, Cq3 = 3 -2\ and04,4 =7- 7/\/2

From (4), we obtainZs(z1, z2, w)| = O (2.2351%) by settingh = 0.80142, v,1 = 1.61804, v1,2 =
2.61804, 2,1 = 2.10457, 722 = 3.81068, 31 = 2.23510, 3.2 = 3.61931, ya1 = 3.60818, 42 =
7.36647, v4,3 = 11.29854 and~y, 4 = 19.96819. This establishes the next theorem.

Theorem 1. Algorithm EDSSTAGEL, accompanied by AlgorithrEDSSTAGE2 and EDSSTAGE3, can
solve the parameterized edge dominating set proble@iif2.2351%) time and polynomial space.

5 A Related Problem: The Parameterized Weighted Edge Dominating Set
Problem

We also consider a weighted variant of PEDS. Teghted edge dominating set probl§WWEDS) is,
given a graptG = (V, E) with an edge weight functiow : E — R, to find an edge dominating set
M of minimum total weighto(M) = »___,, w(e). The parameterized weighted edge dominating set
problem(PWEDS) is, given a grapty = (V, E') with an edge weight function : £ — R>; and a
positive realk, to test whether there is an edge dominating/desuch thato(M) < k. We show that a
modification of our algorithm for PEDS can solve PWEDS in the same time and space complexities as
our algorithm does PEDS.

For PWEDS we use the same terminologies and notations as for PEDS; for example, an instance of
PWEDS is also denoted by, D). Rooij and Bodlaender [7] found the following solvable case for a
weighted variant of EDS.

Lemma 8. [7] A minimum(C, D)-eds of an instancéC, D) of WEDS such thaZ[U] contains only
cligue components of sizé 3 can be found in polynomial time.

Based on this lemma, for PWEDS we modify to be the set of vertices of clique components of
size< 3in G[U]. We call our algorithm to which this modification is applied a modified algorithm. This
modification brings the following corollary.



Corollary 1. The modified algorithm can solve the parameterized weighted edge dominating set problem
in 0*(2.2351*%) time and polynomial space.

Proof. We first show the correctness. If an edge dominating\éetf G is k-feasible, i.e.w(M) < k,
then it holds thatV ()| < 2k and|M| < k sincew(e) > 1 for any edgee € E. This ensures the
correctness of the measyréC, D) and the conditions (1) and (2) for an instari¢g D) of the weighted
variant. Therefore we can solve PWEDS by the same branching method as PEDS.

Second we show the time complexity is the same as PEDS. Only difference between our algorithm for
PEDS and one for PWEDS is treatment of clique components ofsizeln what follows, we describe
the treatment by the modified algorithm and it guarantees that the time complesityd2351%). For
a cligue componenf] of size > 5 of an instancgC, D), the degree of a vertex df in G[U;] is
|V(H)| — 1 > 4, on which therefore the modified algorithm branches in the first stage. For a clique
componentH of size4 of an instancé€C, D), a vertex ofH satisfies condition (c-2), on which therefore
the algorithm branches in the second stage. ad

6 Conclusion

In this paper, we have presented @h(2.2351%)-time and polynomial-space algorithm to PEDS. The
algorithm retains bad components produced at the first stage for branching on vertices ofdé¢gaee
branching on the remaining undecided vertices not in clique components by choosing 4-cycles/vertices
to branch on carefully. Based on our new lower bound on the siz€'aD)-edses, we derived an upper
bound on the number of leaf instances generated in the third stage. We have also shown that a modification
of our algorithm can solve PWEDS in the same time and space complexities as PEDS.

For a possible achievement of further improved algorithms, it is still left to modify the first stage
of our algorithm to branch on vertices of degree4 in the second stage and to identify several new
components as bad components.
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Appendix A

Lemma l. Letky, ko, ..., k,, be non-negative integers, where> 1. Then for any positive reatg, -,
.o Ym such thaty""" | 1/+; < 1, it holds that

Sk ) mo
= < A
(kl,kg,...,km —E%

Proof. We proceed by an induction on" , k; to prove the lemma.

l. The lemma holds whel"!" | k; = 0, since the both sides of the inequality in the lemma become 1.
Il. Assume that the lemma holds for any instaf{ég, k5, . .., k,,} such thaty"" | k; < K for some
integerK > 0. We show that the lemma holds for any instafige, ko, . . ., km } With >0 k; = K+ 1.

If k; = 0 for somej, wherem > 2by >, k; = K +1 > 0, then it suffices to show that the lemma

holds for the instancék:, ka, ..., kn} \ {k;}, sincewf” = 1 for any choice ofy1,72, . ..,vm }- Hence
we assume without loss of generality that> 1 forall ¢ = 1,2,...,m. Letv{,72,...,7,, Satisfy
>t 1/~ < 1. Using Pascal’s rule and the inductive hypothesis, we obtain the following inequality:

K+1
k17k27~-~>km

= K + K ot K
T\ k1 = 1,k b kiko — 1, km I |

S r}/fl_lfyé)z . .f)/f;;" + 7{61752_1 . .f)/f)‘:;" + e + fyflryg2 .. .ryfnmil
1 1 1
kl k‘z k kl k2 k
:fy fy .,.»ym +++><’Y fy ...fym.
1 2 m ('71 ¥ Y 1 2 m
This proves that the lemma also holds for any instafigeks, . .., kn, } with > k; = K + 1. a

Lemma 4. Let M be a(C, D)-eds in a graphG. Then for any subset C C it holds that
|M| > {[|V(H)|/2] | componentsT in G[S]} > [|S]/2].

Proof. For each componerff in G[S] with a subsetS C C, the minimal subsedy; C M that covers
V(H) contains at leasf|V (H)|/2] edges. Since there is no edge between two componerti$dh
minimal subsets\/y for all componentsd in G|[S] are disjoint, indicating thatM| > > {|My| |
componentd? in G[S]} > > {[|V(H)|/2] | componentd] in G[S]}, which is clearly at leasf|.S|/2].
O

In what follows, we prove Lemmata 5 and 6. L) be the maximum number of leaf instances that
can be generated from an instardceith measure..

Lemma 5. For any non-negative integer;, the number of instances = (C1,0,5,D) € Z; with
|Cy| = x1 is O(1.380278%1).

Proof. Atthe first stage, the algorithm branches on a vertekdegree> 4 in G[U:]. When the algorithm
branches om by fixing it as a covered vertex or a discarded ver{ex, (resp.,N (v)) is added to the set
C, and the measune decreases by (resp.,| N (v)| > 4). Hence we have the following recurrence:

T(p) <T(p—=1)+T(p—4),
which solves tdl'(p) = O(1.380278"). This proves the lemma. O

We here restate Lemma 6.

Lemma 6. For any non-negative integer, and an instancd = (C1,0,8, D) € I, the number of
instanced’ = (C1, Cq, B, D) € I, with |Cs| = x5 that can be generated frothis O(1.494541%2).

We useU} to denotells \ V(B). To prove Lemma 6, we derive recurrences for branchings executed
by Algorithm EDSSTAGEZ2. We first show recurrences for branching on bad components only.
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Lemma 9. Assume that AlgorithrEDSSTAGE2 branches on a bad componeRtin G[US]. If H is a
2-path component, then the algorithm branchedbwith the following recurrence:

T(p) <T(p—1)+T(p-2),

which solves td'(¢) = O(1.6181*). If H is a bi-claw or leg-triangle component, then the algorithm
branches o with the following recurrence:

T(p) < T(p—2)+2T(u - 3),

which solves t&'() = O(1.5214*). If H is a tri-claw component, then the algorithm branchesmin
with the following recurrence:

T(p) <T(w—3)+3T(u—5)+3T(n—6) +T(n—T7),
which solves t@(1) = O(1.5042#).

Proof. In thei-th branch of each bad componéift all vertices inC*) (H) are fixed as covered vertices
and thereby the measure decreasek1Y (H)|. Therefore we have the above recurrences. O

Observe that Algorithm BSSTAGE2 branches on a bad component with the recurrence shown in
Lemma 9, which is not good enough to establish Lemma 6. In our analysis, we combine a branching on
a bad component together with the branching on the optimal ver{ex the admissible 4-cycle on it)
that produces the bad component, which yields a recurrence better than those in Lemma 9. In the case
where the branching on and the all bad components produced by any of the branchingyidds a
recurrence even not good enough to establish Lemma 6, we further combine it with a possible branching
on a vertex of condition (c-1), (c-2) or (c-3)(iv) produced by the branching to what follows, for each
i=1,2,...,6inthis order, we analyze the branching of an optimal vertsatisfying condition (@) to
derive such a recurrence.

Lemma 10. Algorithm EDSSTAGEZ2 branches on a vertex satisfying conditior{c-1) in G[U}] together
with possible branchings on the resulting new bad components with the following recurrence:

T(p) <2T(p—3) +2T(n — 4), (8)
which solves td"(p) = O(1.494541#).

Proof. Sincew is a vertex satisfying condition (c-1),is a degree-30, 0)-vertex inG[U}]. Neither of the
first and second branches produces a new bad component. Therefore the algorithm brancivék on
the following recurrence:

T(p) <T(p—1)+T(p-3),

which solves tdl'(n) = O(1.4656#) and is better than the recurrence (8). O

Lemma 11. Algorithm EDSSTAGEZ2 branches on an optimal vertex satisfying condit{or2) in G[U}]
together with possible branchings on the resulting new bad components with a recurrence not worse than

(8).

Proof. Sincew is an optimal vertex satisfying condition (c-2)is a degree-2z, y)-vertex withx +y < 1
andg, > 1in G[US]. We distinguish two cases: Caserl+ y = 0; and Case 2¢ + y = 1.

Case 1.x = y = 0: In any of the first and second branches, no bad component is newly produced.
Therefore the algorithm branches omith the following recurrence:

T(p) <T(p—2)+T(p—2),

which solves tdl'(u) = O(1.4143*).
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Case 2.x + y = 1: In one of the first and second branches, exactly one bad compahisntewly
produced, and then the algorithm branches on it; and in the other branch, no bad component is newly
produced. In the following, we derive recurrences for branching eogether with branching oif.
WhenH is a 2-path component, we have the following recurrence:

T(p) <T(p-2)+T(p-2-1)+T(p—2-2)
=T(p—=2)+T(u—-3)+T(n—4), ©)

which solves tol'(u) = O(1.4656#*). When H is a bi-claw or leg-triangle component, we have the
following recurrence:

T(p) <T(p-2)+T(p—2-2)+2T(p—2-3)
=T(n—=2)+T(p—4)+2T(n-5), (10)

which solves td’(1) = O(1.4560). WhenH is a tri-claw component, we have the following recurrence:

T(p) <T(p—2)+T(p—2-3)+3T(p—2—-5)+3T(u—2—6)+T(u—2—17)
=Tp—-2)+T(p—5+3T(p—"7)+3T(t—8)+T(1r—9), (11)

which solves tdl'(p) = O(1.4634%).
Since all the recurrences obtained in Cases 1 and 2 are better than the recurrence (8), the lemma
holds. ad

Lemma 12. Algorithm EDSSTAGEZ2 branches on an optimal vertex satisfying condit{or8) in G[U}]
together with possible branchings on the resulting new bad components with a recurrence not worse than

(8).

Proof. Sincew is an optimal vertex satisfying condition (c-3),is in one of the following four cases:
(i) v is in an admissible 4-cycle; (ii) is a degreet (z,y)-vertex suchtha2 < d < 3,z +y < 1 and
Qv +qnJ) = 4 — d; (ii)) v is a degreet (z,y)-vertex suchthe < d < 3,z +y < 1, gnp,) = 3 — d and
removing each o and N [v] produces no new 2-path component; and (\g a degree-30, 1)-vertex
such that removingV [v] produces exactly one new 2-path component,@fid; \ {v}] contains at least
one degree-80, 0)-vertex. We distinguish three cases: Case (i) or (ii); Case (iii); and Case (iv).

Case (i) or (ii): When the algorithm branches or{or the admissible 4-cycle on it) IB[US], we have
one of the following two recurrences:

T(p) <T(p—2)+T(p—2), 12)
which solves tdl'(u) = O(1.4143*); and
T(p) <T(p—1)+T(p—4), (13)

which solves td' (1) = O(1.3803"), and at most one bad componéfits newly produced in one of the
first and second branches. We consider three subcases (a)-(c).

Case (a). The algorithm brancheswofor the admissible 4-cycle on it) i&[U] with the recurrence
(12) and exactly one bad componéntis produced in one of the first and second branches: Whéna
2-path component, we have the recurrence (9). Wtigs a bi-claw or leg-triangle component, we have
the recurrence (10). Whef is a tri-claw component, we have the recurrence (11).

Case (b). The algorithm branchesom G[U}] with the recurrence (13) and exactly one bad compo-
nentH is produced in the first branch: Whéhis a 2-path component, we have the following recurrence:

T(u) < T(u—1-1)+T(u—1-2) +T(u—4)
=T(n—2)+T(p—-3)+T(p—4),
which solves toT'(1) = O(1.4656/). When H is a bi-claw or leg-triangle component, we have the

following recurrence:

T(p) <T(p-1-2)+2T(p—1-3)+T(n—4)

o
(n—3)+3T(n—4),

T
T
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which solves t@’() = O(1.4527+). WhenH is a tri-claw component, we have the following recurrence:

T(p) <T(p—1-3)+3T(p—1-5)+3T(n—1—-6)+T(n—1—-7)+T(pn—4)
=2T(u—4)+3T(p—6)+3T(—7)+T(n—8),
which solves tdl'(p) = O(1.4629*).
Case (c). The algorithm branches oin G[U}] with the recurrence (13) and exactly one bad com-

ponentH is produced in the second branch: WhEnis a 2-path component, we have the following
recurrence:

T(p) <T(p-1)+T(p-4-1)+T(p—-4-2)
=T(p—1)+T(p—-5)+T(n—6),

which solves toT'(¢) = O(1.4197*). When H is a bi-claw or leg-triangle component, we have the
following recurrence:

Tp) <T(p-1)+T(p-4-2)+2T(n—4-3)
=T(p—1)+T(u—6)+2T(n—7),

which solves td’(1) = O(1.4190). WhenH is a tri-claw component, we have the following recurrence:

) =
T(p) <T(p—1)+T(n—4-3)+3T(n—4—5)+3T(n—4—6)+T(u—4—7)
T(p—=1)+T(p—T7)+3T(n—9)+3T(n—10) + T(p — 11),

which solves tdl'(p) = O(1.4320%).
Case (iii)) Whenx = y = 0; i.e., neither of the first and second branches produces a new bad
component, the algorithm brancheswowith the following recurrence:

T(p) <T(p—1)+T(p-3),

which solves tdl'(p) = O(1.4656%).

Consider the case whefe+ y = 1; i.e., one of the first and second branches produces exactly one
new bad componentl other than a 2-path component whereas the other branch produces no new bad
component. The algorithm branches otogether with branching o/ with one of the following four
recurrences. When = 1,y = 0 and H is a bi-claw or leg-triangle component, we have

T(p) <T(p-1-2)+2T(p—1-3)+T(n—3)
=2T(p—3)+2T(n—4),

which solves tdl'(u) = 0(1.494541#). Whenz = 1,y = 0 and H is a tri-claw component, we have

) =
T(p) <T(pw—-1-3)+3T(u—1—-5)+3T(pn—1—-6)+T(u—1—7)+T(p—3)
T(p—3)+T(p—4)+3T(n—6)+3T(n—T7)+T(n—8),

which solves tdl'() = O(1.4914*). Whenz = 0,y = 1 and H is a bi-claw or leg-triangle component,
we have

T(p) <T(p—-1)+T(np—-3-2)+2T(p—3-3)
=T(p—-1)+T(p—5)+2T(n—6),
which solves tdl'(; 0(1.4841#*). Whenz = 0,y = 1 andH is a tri-claw component, we have

1) = O(
() T(p—1)+T(p—3—-3)+3T(n—3-5)+3T(n—3—-6)+T(n—3-17)
Tpu—1)+T(p—6)+3T(t—8)+3T(u—9)+T(u— 10),

) =

which solves tdl'(p) = O(1.4842#).
Case (iv) In the first branch, no bad component and a degré&-3)-vertexu are newly produced,
and then the algorithm branches @psinceu satisfies condition (c-1) after fixingas a covered vertex.
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In the second branch, exactly one 2-path component is newly produced. Therefore the algorithm branches
onw together with branching om and the 2-path component with the following recurrence:

T(pw)<T(p-1-1)+T(p-1-3)+T(u—-3-1)+T(u—3—-2)
— T(p— 2) + 2T (0 — 4) + T~ 5), 14)

which solves tdl'(p) = O(1.4865%).
Since all the recurrences obtained in Cases (i)-(iv) are not worse than the recurrence (8), the lemma
holds. O

We say that an instand€”, D) is reduced up tdc-) if G[U}] in (C, D) has no vertices of degree
> 4, no vertices satisfying any of conditions (c-1) toijand no bad components.

Lemma 13. Let (C, D) be an instance reduced up o-3).

(i) After removing any vertexe Uy in (C, D), the set of newly produced bad componenG|iti;\ {v}]
is a set of three 2-path components or an empty set.

(i) Every degree-2 vertexin G[Uj] with ¢, = 1in (C, D) has a degree-3 neighbaere U, removal of
which produces exactly three 2-path component§[i&i; \ {u}]. Conversely, every degree-3 vertex
v in G[US] of (C, D) removal of which produces exactly three 2-path componer@§iH \ {v}] has
a degree-2 neighbot in G[U}] with ¢, = 1.

Proof. (i) Now the degree of every vertex I, is at most 3 inG[Uj] by the assumption ofC, D). We
first prove the next claim.

Claim No vertexv € Uj in (C, D) produces any bad components other than 2-path components in
GU3 \ {v}].

PROOF Assuming that there is a bi-claw, leg-triangle or tri-claw compodém G[U; \ {v}], we show
thatv or a vertex inH satisfies one of conditions (c-1) to (c-3) (WUJ] to prove the claim. Lek =

|N(v) N V(H)|in G[UL], wherel < k < 3. We distinguish three casés= 1, 2, 3.

(b) (© (d)

Fig. 2. Components containingin G[U3] such that a bi-claw, leg-triangle or tri-claw componéhis produced by
removingv andk = |N(v) NV (H)| = 1in G[U3]

Case 1 k = 1: Without loss of generality there are four cases: fA)is a bi-claw component
(upuius)(vovive) @andug is adjacent tav; (b) H is a leg-triangle componentiy(u;wwv; )vy andug is
adjacent tov; (c) H is a leg-triangle component, (u;wwv1)vg andw is adjacent tow; and (d)H is a
tri-claw component(uouquz)(vov1v2) (wowiwe) anduyg is adjacent ta, where these four cases are il-
lustrated in Fig. 2. Iy is a degree-2 vertex and has a degree-1 neighbor in Case (a), (b) or (d), tisen
a vertex withg,,, = 1 in G[U}], which satisfies (c-2). Assume thais not such a vertex. We show that
the degree-3 vertex; € V(H) furthest fromw satisfies (c-1) or (c-3).

Cases (a), (b) and (c): The degree-3 veitegatisfies both of the following two conditions: removing
v1 from G[U}] produces no bad component; and removiig; | from G[Uj] produces at most one bad
component other than a 2-path component. Therefpeatisfies (c-1) or (c-3)(iii).
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Fig. 3. Components containing such that a bi-claw, leg-triangle or tri-claw componéhis produced by removing
vandk = |[N(v) NV (H)| = 2 in G[U3]

Case (d): The degree-3 vertex satisfies both of the following two conditions: removing from
G|U}] produces a degree<d, 0)-vertexw;; and removingV [v;] from G[Uj] produces exactly one 2-
path component. Thus satisfies (c-3)(iv).

Case 2 k = 2: Without loss of generality there are six cases: fh)is a bi-claw component
(upuius)(vovive) andug,vg € N(v); (b) H is a bi-claw componenfuguus)(vov1ve) andug, ug €
N (v); (c) H is a leg-triangle component (u; ww )vg andug, vy € N(v); (d) H is a leg-triangle compo-
nentug (uywuy )vg andug, w € N(v); (€) H is a tri-claw componenmt(ugu; uz)(vovyv2) (wowrwsz) and
ug,us € N(v); and (f) H is a tri-claw component(uouqus)(vovivs) (wowiwe) andug, wy € N(v),
where these six cases are illustrated in Fig. 3.lfs a degree-1 neighbor@{U3], thenv is a degree-3
(1,0)-vertex such that removing from G[Uj] produces exactly one bad component, if¢, which is
not a 2-path component. Hencaatisfies (c-3)(iii). Assume thatis not such a vertex. We show that the
degree-3 vertex; € V(H) furthest fromw satisfies (c-1) or (c-3).

Cases (a), (b), (c) and (d): The degree-3 vertexsatisfies both of the following two conditions:
removingv; from G[U}] produces no bad component; and removNi@, | from G[U}] produces at most
one bad component other than a 2-path component. Therefeatisfies (c-1) or (c-3)(iii).

Cases (e)v; satisfies both of the following two conditions: removing from G[U}] produces a
degree-3(0, 0)-vertex wy; and removingN[v;] from G[U5] produces exactly one 2-path component.
Thuswv, satisfies (c-3)(iv).

Case (f)w; is a degree-30, 0)-vertex inG[US]. Henceu, satisfies (c-1).

Case 3k = 3: Now N(v) C V(H), and there is only one bad component other than a 2-path
component inG[Us \ {v}]. In the case wheré& is a leg-triangle or tri-claw component, removingv]
produces no bad component, anis a degree-31, 0)-vertex, which satisfies (c-3)(iii). In the other case
whereH is a bi-claw componen(ugu; us)(voviv2) and without loss of generalitfug, uq, vo} = N(v),
we see thati; is a degree-30, 0)-vertex, which satisfies (c-1).

This prove the claim. ad

Next we prove that the set of new bad components|iti; \ {v}] is a set of three 2-path components.
Let Py, Ps, ..., Py, be the new bad components produced{t/; \ {v}], all of which are 2-path compo-
nents. To prove the property (i) of the lemma, we assumebthat{1, 2}, and prove that some neighbor
of v satisfies one of conditions (c-1) to (c-3)a{U3]. Without loss of generality for the 2-path component
P, = vyv1vg, there are the following five cases: @) v) NV (Py) = {vo}; (0) N(v) NV (Py) = {v1 };

() N(v) NV (Py) = {vo,v1}; (d) N(v) N V(Py) = {vo,v2}; and (e)N(v) C V(P), as illustrated in
Fig. 4.
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v

(d) (e)

Fig. 4. Components containingsuch that a 2-path componeniw; v» is produced by removing

For Case (d) or (), there is an admissible 4-cyel@, ve in G[US5], implying thatv satisfies condition
(c-3)(i). Assume that neither of Case (d) and (e) holdsHpif any.

Next consider Case (a). We see tligt;, \ N[vg]] containsb, — 1 (< 1) new 2-path components,
whereb, = 1if b,, > 1;i.e., removinguy produces new 2-path components. Hengés a degree-2
(z,y)-vertex withz +y < 1 andg,, > 1in G[Uj], satisfying condition (c-2). Assume that Case (a) does
not hold for P, if any.

Finally consider Case (b) or (c). Léf denote the component containingn G[US]. Removingu,
from G[U}] produces no 2-path component, sit€és not a bi-claw or leg-triangle component. Removing
N{vq] from G[U3] producesd, — 1 (< 1) new 2-path components. Henceéjf= 1, thenv, is a degree-3
(0,0)-vertex, satisfying condition (c-1). Assume thigt= 2, and denote? by wow; w2, Wherew, €
N(u) and P, satisfies configuration (b) or (c). We show thatsatisfies condition (c-3)(iv) irz[U4].
RemovingN [v;] from G[U}] produces only one 2-path componéht= wyw; w2, and removing, from
G[U;] produces no 2-path component. We see thaits a degree-3 vertex such that, = by, = 01in
G[U4 \ {u}]. Hencev, is a vertex satisfying condition (c-3)(iv), as required.

(i) Let u be a degree-2 vertex with, = 1 in G[U}]. By ¢, = 1, G[Uj \ {u}] contains a cliqu&)
of size 2. The degree-2 vertex< UJ) has one neighbor i) and the other neighbar € U} \ V(Q).
Removingv from G[Uj] produces a 2-path componeft with V(H) = {u} U V(Q), we see that
removingv from G[U}] produces a set of three 2-path components by (i), which also indicates ithat
of degree 3 iIrG[U}].

Conversely lety be a degree-3 vertex removal of which produces exactly three 2-path components
in G[U3]. Since there is no tri-claw component@{U}], removingv from G[Uj] produces at least one
2-path componentqu;us such thatuy € N(v) in G[US]. Thenug is a degree-2 vertex withy,, = 1 in
G[U3] since removing., produces the clique component consistingof, us }. O

Lemma 14. Algorithm EDSSTAGEZ2 branches on an optimal vertexsatisfying conditiorfc-4) in G[U}]
together with possible branchings on the resulting new bad components with a recurrence not worse than

(8).

Proof. Sincew is an optimal vertex satisfying condition (c-4),is a degree-2 vertex with, = 1 in
G[U3] in an instanc€C, D) reduced up to (c-3). Thus removingfrom G[Uj] produces exactly two
components: the componeht containingu and the clique componet of size 2. Now Lemma 13 holds
for (C, D), andv has a degree-3 neighberemoval of which produces exactly three 2-path components
Py, P, and P;. We see that the componeht containingv is a graph consisting af;, P, and P; and

the degree-3 verten adjacent to all these 2-path components, one of whichf&ag given byvv'v”

for {v/,0v"} = V(Q). Letw;, i = 1,2, be the neighbor of. in P;. In what follows, we show that the
algorithm continues to branch on onewf andws,, sayw after fixingv as a covered vertex, and branches
on the other of them after fixing as a covered vertex, and then derive recurrences for branching on
together with branchings om, w’ and all newly produced bad components. Without loss of generality,
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we distinguish three cases: @w1; H) = d(wq; H) = 3; (b) d(wy; H) = 2 andd(ws; H) = 3; and (c)
d(wy; H) = d(we; H) = 2, where these three components are illustrated in Fig. 5.

(b)

Fig. 5. Components containing a degree-2 ventexith ¢, = 1 under the assumption in Lemma 13, which contain a
degree-3 vertex adjacent ta such that exactly three new 2-path components are produced by removing

Case (a) d(wy; H) = d(wq; H) = 3: From the structure off, we see thatv, is a degree-30, 1)-
vertex inG[U} \ {v}] such that removingy; from G[U} \ {v}] changesu, to a degree-30, 0)-vertex
satisfying condition (c-1); and removing|w, ] from G[U;\ {v}] produces exactly one 2-path component.
Hencew, satisfies condition (c-3)(iv) ild7[U} \ {v}]. Since no vertex irf{’ satisfies any of conditions
(c-1), (c-2) and (c-3)(i)-(iii) ING[U3 \ {v}], each ofw; andws is an optimal vertex irz[U3 \ {v}]. After
v is fixed as a covered vertex, the algorithm branches on one of themy sayl continues to branch
on the other of them after fixing as a covered vertex with the recurrence (14). Therefore we have the
following recurrence:

T() < T(p—2—2) + 2T (u— 2 — 4) + T — 2 — 5)
ST —2-1-1) 42T —2—1—2)+T(u—2—2—2)
=2T(p—4)+2T(p—5)+3T(u—6)+T(n—7),

which solves tdl'(p) = O(1.4941%).

Case (b) d(wy; H) = 2 andd(we; H) = 3: From the structure off, we see thatv, is a degree-2
(0, 1)-vertex withg,, = 1in G[U} \ {v}] such that removingu; from G[U} \ {v}] changesw, to a
degree-30, 0)-vertex; and removingV[w; ] from G[Uj \ {v}] produces exactly one 2-path component,
wherew satisfies condition (c-2) i&7[U} \ {v}]. Since no vertex i’ other thanw, satisfies any of
conditions (c-1) and (c-2) i&[U3 \ {v}], wy is the unique optimal vertex iI@[U} \ {v}]. After fixing w,
as a covered vertex, the algorithm branchesvensincew, satisfies condition (c-1) iG/[US \ {v, w}].
Therefore we have the following recurrence:

T(p) <T(p—2-2—-1)+T(n—2—2—3)
+T(p—-2-2-1)+T(p—-2—2-2)
FT(p—2-1-1)+2T(n—2-1-2)+T(p—2-2-2)

=T(p—4)+4T(n—5) +2T(n = 6) + T(n —7),

which solves tdl'(p) = O(1.4876%).

Case (c) d(w1; H) = d(we; H) = 2: From the structure off, we see thatv; is a degree-Z0, 1)-
vertex withg,,, = 1in G[U4 \ {v}] such that removingy; from G[U} \ {v}] changesu, to a degree-2
(0,0)-vertex withgq,,, = 1; and removingV[w] from G[U} \ {v}] produces exactly one 2-path com-
ponent. Hencev, (resp.,w-) satisfies condition (c-2) i&[U} \ {v}] (resp.,G[U; \ {v, w1 }]). Since no
vertex of H' other tharw, andw,, satisfies any of conditions (c-1) and (c-2)ajU; \ {v}], each ofw,
andws is an optimal vertex itz [U} \ {v}]. After v is fixed as a covered vertex, the algorithm branches on
one of them, saw and continues to branch on the other of themwsagfter fixingw as a covered vertex,
since there is no vertex satisfying condition (c-1)GfiJ;, \ {v, w}]. Therefore we have the following
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recurrence:

Tpw) <T(p—-2-2-2)+T(p—-2-2-2)
+T(p—2-2-1)+T(p—2-2-2)
FT(p—2-1-1)+2T(p—2-1-2)+T(p—2-2—-2)

=T(p—4)+3T(u—5) +4T(u - 6),

which solves tdl'(u) = O(1.4833%).
Since all the recurrences obtained in Cases (a)-(c) are not worse than (8), the lemma holds1

Lemma 15. Let (C, D) be an instance reduced up fo-4).

(i) For any vertexv in G[Uj] of (C, D), removingv from G[U}] produces no bad component, and re-
movingN [v] from G[U}] produces no bad component other than 2-path components.
(i) Every degree-3 vertexin G[U}] of (C, D) is a(0, 1)-vertex or a(0, 2)-vertex.
(iii) Forany degree-30, 1)-vertexv in G[U}] of (C, D), the componenll containingv in G[Uj] contains
a 6-cycle such that either
(a) vupuiuguzuy consisting ofy and five degree-2 vertices, i = 0, 1,2, 3, 4; or
(b) vv'uguiugug consisting ofv, another degree-30, 1)-vertexv’, and four degree-2 vertices;,
i=0,1,2,3.
(iv) For any degree-30, 2)-vertexv in G[U}] of (C, D), the componenlf containingv in G[Uj] consists
of either
(c) two 6-cyclesvv’uguiusus and vv'vguivevs that share an edgev’ betweenv and another
degree-30, 2)-vertexv’ and pass through degree-2 verticgsandv;, i = 0,1, 2, 3; or
(d) a 4-cyclevvyvive of v and three other degree-@), 2)-verticesv;, i = 0, 1,2 and two paths
vuguiugvy andvgwowiwavy joining two vertices in the 4-cycle and passing through degree-2
verticesu; andw;, : = 0, 1, 2.

The four typega)-(d) of components containingare illustrated in Fig 6.

Fig. 6. Components containing a degree-3 vertexnder the assumption in Lemma 15

Proof. Now the degree of every vertex If¥, is at most 3 inG[U}] by the assumption ofC, D).
(i) Lemma 13 holds due to the assumption, and there is no degree-2 ventiéx ¢, = 1 in G[U}].
Therefore for any vertex in G[US], removingv from G[U}] produces no bad component.
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To show that removingV[v] produces no bad component other than 2-path components, we prove a
slightly more general property as follows, where we car(sgt) = (v, N(v)) to prove (i).

Claim Letz € UjandS C Uj \ {z} be a subset of vertices such thatnd each vertex € S are
connected by a path iG[U; \ (S \ {z,s})] of (C, D). Then removingS from G[U;] produces no bad
component other than 2-path components or the compdiignbntainingz.

PROOFR Assuming that there exists a bi-claw, leg-triangle or tri-claw compoRe@t H) in G[Uj\ S],
we show that some vertex il satisfies one of conditions (c-1) and (c-3)GHUY] to prove the claim.
Since removing: from G[Uj] produces no bad component, at least two verticeS,inaya andb are
adjacent td/(H) in G[U}]. Also every bad componetif other than 2-path components contains a cut-
vertexv* removal of which leaves a 2-path componéhtwhich we call &-path subgraptof H. Hence
some vertex irb must be adjacent to ea@kpath subgraph off, since otherwise removing the cut-vertex
v* would produce a bad component. Therefore we only need to consider the following four cases:
(1) H is a bi-claw componentugu; us)(vov1ve) such thaty € N(a) andvy € N(b) in G[US];

(2) H is aleg-triangle componemnt (u;wwi )ug such thaty € N(a) andvy € N(b) in G[US];

(3) H is aleg-triangle componemt (u; wvq )vg such thatw € N(a) andvy € N(b) in G[U}]; and

(4) H is atri-claw component(ugu;uz ) (vovyve) (wowws) such thatuy, vy andw, are adjacent t&

in G[U3].

We show that vertex; in cases (1)-(3) and vertexn case (4) satisfy condition (c-1) or (c-3)(iii). Note
that each path that connects two vertice§ iand passes throughcontains no vertex i/, sinceH does
not containz in G[U; \ S]. In cases (1)-(3), removingy [u;] from G[U}] produces only one nontrivial
componentd’, which cannot be a 2-path component, sifEehas a path of length 3 containingz, a, b
andvg. Thereforeu; in cases (1)-(4) is a degree(8, y)-vertex withy < 1 such that removingV{u4]
produces no new 2-path component; thatissatisfies condition (c-1) or (c-3)(iii). In case (4), removing
N|t] from G[Uj3] produces only one nontrivial compondit’ containing{ug, v, wo } U S, which cannot
be a 2-path component, and we see thetisfies condition (c-1) or (c-3)(iii). This proves the claim.

(i) Note thatv is a (0, y)-vertex withy > 0 by Lemma 13. Since there is no degreéd30)-vertex
in G|U3), vis a(0, y)-vertex withy > 1. Now removingN [v] from G[Uj] produces no bad components
other than 2-path components. For any 2-path compalemtoduced by removingV[v] from G[U3], at
least two neighbors af are adjacent t& (H); thus there are at least two edges betwd€n) andV (H)
in G[U}]. Therefore there are at most six edges betw®én) andU; \ N[v] in G[US]. Thus removing
N[v] can produce at most three 2-path components; and therébg (0, y)-vertex withl < y < 3.
Assuming that is a degree-30, 3)-vertex inG[Uj], we show that there is a vertex satisfying condition
(c-1) or (c-3)(iii) in G[U3]. Let a,b andc denote the three neighbors @fin G[Uj]. Let P, P, and Ps
be the three 2-path components produced by remodifig from G[UJ]. Without loss of generality,
we assume that andb are adjacent td/(P;), bothb andc are adjacent td/(P,) and bothc anda
are adjacent td/(Ps) in G[US]. ThenG[U}] has a path that contair$, ¢} and some vertex i, but
does not contaim. Therefore removingV|a] from G[U}] produces only one componeHt containing
{b, ¢} UV (P,) other than cligue components of sige2, whereH’ cannot be a 2-path component. Thus
ais a degree-30,0)- or (0, 1)-vertex inG[U3], which satisfies condition (c-1) or (c-3)(iii). Consequently,
every degree-3 vertexin G[Uj] is a(0, y)-vertex withl < y < 2. This proves (ii).

(iii) Let v be a degree-30, 1)-vertex in G[U3]. In what follows, we show that the componefit
containingv in G[Uj] satisfies condition (a) or (b) of the lemma. lteb andc denote the neighbors of
in G[U}], andP = upujus be the 2-path component produced by removifg] from G[U}]. Note that
at least two vertices itV (v) = {a,b, ¢} are adjacent td since otherwise removing the unique vertex
in N(v) adjacent toP would produce a bad component, contradicting (i). We distinguish two cases:
N(uy) N N(v) #0;andN(ug) N N(v) = 0.

Case 1u, is adjacent to a vertex itV (v): Without loss of generality, let, € N(a) andu; € N(b),
whereuy ¢ N(c) andus ¢ N (a) since otherwisegcva or usaugu; would be an admissible 4-cycle. By
(i), degree-3 vertex; is a(0, 1)- or (0, 2)-vertex such that removiny[u, ] produces at least one 2-path
component, wherevc must be one of such 2-path components, where vertiGewic are not adjacent.
This indicates that the componefitcontainingv in G[U}] consists of the seven verticesg, b, ¢, ug, u1
anduq. If vertex b is of degree 3 inH, then removing/N[b] from H produces no 2-path component
becauseiy,a ¢ N(c) andus ¢ N(a), contradicting (ii). Hence is a degree-2 vertex, where we see
thatb is a (0, 0)-vertex withgyp, > 1 in G[Us] satisfying (c-3)(iii). This contradicts the assumption on
(C, D), and Case 1 cannot occur.
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Case 2, is not adjacent to any vertex iN(v) in G[UL]: If ug is not adjacent taV(v), thenusy
has two neighbors iV (v), which must be a degree{B, y)-vertex withgq,, = 1, wherey < 1 since
vis a(0, 1)-vertex. This would imply that. satisfies condition (c-3)(ii). Hence, is adjacent taV (v).
Analogouslyus is also adjacent t&V (v). Without loss of generality, laiy € N(a) andus € N(b). We
leta’ (resp.,b’) denote the third neighbor af (resp.,b) if any.

We show that ifc € N(ug) or ¢ € N(uz) in G[Uj], then H contains a vertex satisfying condition
(c-3)(i)-(ii). Without loss of generality we assume that N (ug). Since removingV [v] from G[Uj]
produces no bad component other than 2-path compangntu,, removing{a, ¢} produces no bad
component. Sinc&[UJ] contains a path which starts frompasses through u» andu, and ends ati,
removing{v, up} from G[U5] produces no bad component other than 2-path components by Claim with
(2,8) = (b,{v,u0}). If by 4oy < 1, then 4-cyclevauoc is admissible inG[Us;], and every vertex on the
cycle satisfies (c-3)(i). Léty,, .,y > 2. Then removindv, ug } from G[U;] produces a 2-path component
P’ other than 2-path componentusb. If P’ contains only one of andc, then removingVN [v] from
G|Uj] produces a clique component of size 2 consisting 6P’) \ {a} or V(P’) \ {¢}, indicating that
v satisfies (c-3)(ii). LetP” contain both otz andc; i.e., P’ = aad’c. Sinceby, o1y = byq,p = 0, 4-cycle
vaa’cis admissible inG[U3], and every vertex on the cycle satisfies (c-3)(i). In the following we assume
thatc ¢ N(up) U N(uz), where we observe that no degree-2 vertex is adjacent to two neighbors of the
degree-30, 1)-vertexv.

Sincea € N(b) in G[U3] implies thatz is a degree-30, 0)-vertex satisfying (c-1), we have¢ N (b)
in (C, D).

If a,b € N(c), thenvacb would be an admissible 4-cycle (i[U5] and any vertex on it would satisfy
(c-3)(i). If a € N(c) andd(b; H) = 2, then we see thaty,) = 1 by byp,) = 1 and thatvauguiusb
is a 6-cycle satisfying condition (b) fad. If a € N(c), b € N(c) andd(b; H) = 3, thenb would be a
degree-30, 0)-vertex inG[U}] satisfying (c-1). Hence we assume thak ¢ N(c) in the following.

We here show that ¢ N (usz). Leta € N(uz). Thena is a degree-30, y)-vertex, wherey = 2, since
if a is a degree-30, 1)-vertex then there cannot exist a degree-2 vettgadjacent to two neighbors
of a. In this case, the grap&[U} \ N[a]] has two new 2-path component, containingb and P.
containinge, where P, is not adjacent to any vertex ifu, b, ug, uy, us} sincec ¢ N(ug) U N(uz),
contradicting thaf. will not be produced by removing. Therefore we have ¢ N(u2),b & N(ug) and
d(ug; H) = d(uy; H) = d(ug; H) = 2.

Finally we show that iti(a; H) = 3 then removingV[a] from G[Uj] produces no 2-path component
that does not contain vertéx Assume that a 2-path componeRt' not containingb is produced in
G[U4 \ Nla]]. Since removing’ from G[U}] produces no bad component, bathandv are adjacent to
V(P")in G[US], andV (P") consists of vertex and some vertices f € U} \ (N[v]U{a’,ug, u1,us}).
Sincev is a degree-30, 1)-vertex inG[Uj] from the assumption, there is no 2-path component consisting
of {d’,e, f} in G[U} \ N[v]]. Hence removingV[v] from G[U}] produces a cligue component of size
2 consisting of two of{a’, e, f}. Thenv would be a degree-8, 1)-vertex withqyp,; = 1 in G[Uy]
satisfying condition (c-3)(ii), a contradiction. This proves thal(ifi; H) = 3 (resp.,d(b; H) = 3) then
removing N [a] (resp.,N[b]) from G[Uj] produces no 2-path component that does not contain vértex
(resp.,a).

Whend(a; H) = d(b; H) = 2, there is a 6-cycle which starts from passes through five degree-2
verticesa, ug, u1, us andb in this order and ends at indicating that the the componeHt containingu
satisfies condition (a).

Letd(a; H) # d(b; H), sayd(a; H) = 3andd(b; H) = 2. Then removingV[a] from G[U}] produces
no 2-path component that does not contain vebte»e., it produces only one 2-path componémju,
and thereby: is a degree-30, 1)-vertex inG[Uj]. Since there is a 6-cycle which starts frampasses
through four degree-2 verticésus, u1, ug anda in this order and ends at the componenil containing
v in G[U3] satisfies condition (b).

Letd(a; H) = d(b; H) = 3. Analogously with the case @f{a; H) = 3 andd(b; H) = 2, we see that
each ofa andb is a degree-30, 1)-vertex inG[U}]. Recall that degree-@), 1)-vertexv has two degree-3
(0, 1)-neighbors joined by a path, passing through three degree-2 vertices. By applying this to degree-3
(0,1)-vertexa, we see thatz[U}] contains a pattP, = aa’sgs1sev passing through degree-2 vertices
si, ¢ = 0,1,2. Similarly there is a patl®, = bb'tot1t2v passing through degree-2 vertiggsi = 0, 1, 2.
Sinces,; = t, must hold, such two paths cannot exist uni€ss b’. However, whem’ = ', we see that
v is a(0, 2)-vertex, a contradiction.
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Consequently, the componeHt containingv in G[U}] satisfies one of two conditions (a) and (b) of
the lemma.

(iv) Let v be a degree-80, 2)-vertex inG[U}], a,b andc denote the three neighbors oin G[U}],
and H be the component containimg[v] in G[Uj]. Let Py = ugujus and P, = wowiws be the two
2-path components produced by removiNgu] from G[U}]. In what follows, we show that there is a
vertex satisfying condition (c-1) or (c-3) iA[U4] unlessH is a graph that satisfies condition (c) or (d) of
the lemma.

For eachpP;, at least two neighbors ef are adjacent t& (P;). Hence at least one neighbor«@fsay
b is adjacent to bott, and Ps.

If u; is adjacent to a vertex itV (v), then it is a degree-80, 0)-vertex, since removingy, u, us
and exactly one vertex iV (v) produces no 2-path component; thatus,satisfies condition (c-1). We
assume that neither @f andw, is adjacent to any vertex iN (v). Let {ug, w2} C N(b) without loss of
generality.

If ug is not adjacent to any vertex iN (v), then the degree-3 vertéxs a (0, y)-vertex withy < 1
andgypy > 1, which satisfies condition (c-1) or (c-3)(ii). We further assume that eaefy ,af;, wo and
wy is adjacent to a vertex iV (v).

If vertex a (resp.,c) is not adjacent tagu;us Or wowiwe in G[US], then another neighber(resp.,

a) of v is a degree-30, 0)-vertex inG[U}], which satisfies (c-1).

If bis a degree-30, 1)-vertex inG[U3], then by (iii) H must have a 6-cycle containigand at most
one more degree-3 vertex that is not the degrée;3)-vertexv. Since such a 6-cycle does not exists
in H, b is a degree-30, 2)-vertex inG[U}], and hence removingy [b] from G[Uj3] produces two 2-path
components, which must ke u; andcwow; (Or cuguy andawgwy).

In the following we assume thai (ug) = {a,u1}, N(wp) = {c, w1} anda ¢ N (c) without loss of
generality.

Case 1. Bothu andc are degree-2 vertices if[UJ]: In this case H satisfies condition (c) of the
lemma.

Case 2. One ofi andc¢, saya is a degree-3 vertex iF[US]: If a ¢ N(wsz) or uz € N(c), then
removing N[a] from G[Uj] produces no 2-path component. Therefore we have N (ws2) anduy ¢
N(c). Symmetrically ifc is a degree-3 vertex i [Us], thenc € N (uz) andws € N(a). This means that
exactly one oty andc can be a degree-3 vertex@{Uj], and H satisfies condition (d) of the lemman

Lemma 16. Algorithm EDSSTAGEZ2 branches on an optimal vertexsatisfying conditior{c-5) in G[U}]
together with possible branchings on the resulting new bad components with a recurrence not worse than

(8).

Proof. Sincev is an optimal vertex satisfying condition (c-B)js a degree-3 vertex i&[U}]. Let H be
the component containingin G[Uj]. There are no vertices satisfying any of conditions (c-1) to (c-4) in
G[U3]; therefore Lemma 15 holds, indicating tHdtsatisfies one of the four conditions (a) to (d) in the
lemma.

In what follows, we first show that after removinga vertexw satisfying condition (c-2) will become
an optimal vertex, and then derive recurrences for branchingiogether with branchings on the optimal
vertexw and all newly produced bad components. Note that after remayvitigere is no vertex satisfying
condition (c-1) inG[US \ {v}], sincev does not satisfy condition (c-3)(iv) iI&[U3]. We distinguish two
cases: condition (a) or (b) in Lemma 15 holds; and condition (c) or (d) in Lemma 15 holds

Case (a) or (b) Now v is a degree-30, 1)-vertex inG[U3].

We first consider case (a); i.€4, contains a cycle of length 6 which starts franpasses through five
degree-2 vertices,, v1, v2, v3 anduvy in this order and ends at Thenwv, will be a degree-2 vertex that
satisfies condition (c-2) itr[US \ {v}], since removing. from G[U} \ {v}] produces exactly two clique
components of size 2: one consisting{ef, v; } and the other consisting 43, v4}. Hencev, will be
an optimal vertexw in G[U4 \ {v}].

We next consider case (b); i.€1, contains a cycle which starts from passes through four degree-2
verticesvy, v1, v2, v3 and a degree-3 vertex in this order and ends at Thenv, will be a degree-2 vertex
that satisfies condition (c-2) i@ [US \ {v}], since removing. from G[U; \ {v}] produces exactly two
components: a clique component of size 2 consistinefv; } and the component containifgs, v’}.
Hencewv, will be an optimal vertexw in G[U} \ {v}]. To derive a recurrence, we show that removing
each ofvy and N[uvs] from G[U} \ {v2}] produces no bad component other than a 2-path component.
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Removingu, from G[U3 \ {v}] produces no bad component other than a 2-path component Siisce

degree-2 vertex i[US \ {v, v2 }]. Letu denote the other neighbor ofin G[U}\ {v}]. In the case where

u is of degree< 2 in G[US \ {v}], removingN[vs] produces no a bad component other than a 2-path

component. In the case wheiés of degree 3 irG[U} \ {v}], the component containingproduced by

removingN [vs] is not a bad component, sineemust satisfy one of conditions (a) to (d) in Lemma 15.
As a result, the optimal vertex in G[U; \ {v}] satisfies condition (c-2); that isy is a degree-2

(z,y)-vertex withz +y < 1 andg,, > 1, and removing each ab and N[w] from G[U; \ {v}] produces

no bad component other than a 2-path component. In the case whege= 0, we have the following

recurrence:

Tpw) <T(p—-1-2)+T(p—1-2)+T(p—3-1)+T(p—3—2)
=2T'(p—=3)+T(p—4) +T(n—5),

which solves tdl’(11) = O(1.4656*). In the case where + y = 1, we have the following recurrence:

T(p) <T(p—-1-2—-1)4T(p—1-2-2)+T(u—1-2)
+T(u—3-1)+T(n—3-2)
=T(p—3)+2T(n—4) +2T(p—5),

which solves tdl'(u) = O(1.4826%).

Case (c) or (d) Now v is a degree-30, 2)-vertex inG[U}].

We first consider case (c); i.d, consists of the following two paths betweeand a degree-Q), 2)-
vertexv’: a path which starts form, passes through degree-2 vertiegsu,, uo andug in this order
and ends at’; and a path which starts form passes through degree-2 vertiagsv, vy andvs in
this order and ends at. Recall that after removing from G[U}], no vertex inH satisfies condition
(c-1). Removingu from H leaves only a path which starts from, passes through degree-2 vertices
uy, ug,us, v', v3,v2 @andvy in this order and ends ag. We see that any vertex € {us, v2} is a degree-2
(0,0)-vertex withg,, = 1 in G[U3 \ {v}], and becomes an optimal vertex satisfying condition (c-2).

We next consider case (d); i.€, consists of a 4-cyclevyvivy of four degree-30, 2)-vertices and
the following two paths joining two diagonal vertices in the 4-cycle: a path which startsdrgrasses
through degree-2 verticeg, u; andus and ends at;; and a path which starts fromy, passes through
degree-2 vertices, w; andw, and ends at,. After removinge from G[Uj], only one vertex;, becomes
a degree-3 vertex i6z[U} \ {v}], which does not satisfy condition (c-1), as already observed. Here
removingus from G[US\ {v}] produces exactly two components: a clique component of size 2 consisting
of {ug,u,} and the component containing, which is not a bad component. Removidgus| from
G[U4 \ {v}] also produces exactly two components: an isolated veigend the component containing
{vo, v2}, which is not a bad component. Henggis a degree-20, 0)-vertex withg,,, = 1in G[U}\ {v}],
and is an optimal vertex satisfying condition (c-2).

As a result, any optimal vertex in G[U; \ {v}] is a degree-20, 0)-vertex satisfying condition (c-2);
that is,w is a degree-20, 0)-vertex withg,, = 1. Thus we have the following recurrence:

T(p) <T(p-1-2)+T(p—1-2)
+T(—3-1-1)+2T(n—3—-1-2)+T(p—3-2-2)
=2T(p=3)+T(n—5)+2T(n—6) + T(n—7),

which solves tdl'(p) = O(1.4845%).
Since all the recurrences obtained in Cases (a) to (d) are not worse than (8), the lemma holds.

A component inG[U}] is called acycle componenif it consists of a single cycle. The following
lemma shown in [9] is used to analyze the case where AlgoritlmeSEAGE2 branches on an optimal
vertex satisfying condition (c-6).

Lemma 17. [9] Let L be a cycle component of length 4 in G[Uj]. Algorithm EDSSTAGE2 branches
on vertices of with a recurrence not worse thgB) until U, has no vertices iri.
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Lemma 18. Algorithm EDSSTAGEZ2 branches on an optimal vertexsatisfying conditior{c-6) in G[U}]
together with possible branchings on the resulting new bad components with a recurrence not worse than

(8).

Proof. Sincev is an optimal vertex satisfying condition (c-@)js a degree-2 vertex i&[U3]. Let H be
the component containingin G[UJ]. In the following, we show thal! is a cycle component of length
> 4.

Since there is no vertex that satisfies condition (c-5), there are only vertices of degraeG[U)).
Furthermore there is no vertex of degreel in G[US], sinceG[U3] has no cliqgue component, no 2-path
component and no degree-2 vertewith ¢, > 1, which satisfies condition (c-2). Therefore there are only
degree-2 vertices i&r[U5], indicating that the component containingn G[UJ] is a cycle component of

length> 4.
Algorithm EDSSTAGE2 branches on vertices df until G[Uj] has no more vertices dff, with a
recurrence not worse than (8), by Lemma 17. ad

Now we are ready to complete the proof of Lemma 6. Lemmata 10, 11, 12, 14, 16 and 18 guarantee
that Algorithm EDSSTAGE2 branches on an admissible 4-cycle or an optimal verteX[iii}] together
with possible branchings on the resulting new bad components with a recurrence not worse than (8).
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