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Abstract. In this paper, we study the parameterized complexity of the problems of par-
titioning the vertex set of a graph into two parts VA and VB such that VA induces a graph
with degree at most a (resp., an a-regular graph) and VB induces a graph with degree at
most b (resp., a b-regular graph). These two problems are called Upper-Degree-Bounded
Bipartition and Regular Bipartition respectively. First, we prove that the two prob-
lems are NP-complete with any nonnegative integers a and b except a = b = 0. Second, we
show the fixed-parameter tractability of constrained versions of these two problems with
parameter k = |VA| being the size of one part of the bipartition by deriving some problem
kernels for them.

1 Introduction

In graph algorithms and graph theory, there is a series of important problems that require us
to partition the vertex set of a graph into several parts such that each part induces a subgraph
satisfying some degree constraints. For example, the k-coloring problem is to partition the graph
into k parts each of which induces an independent set (a 0-regular graph). Most of these kinds
of problems are NP-hard, even if the problem is to partition a given graph into only two parts,
which is called a bipartition.

For bipartitions with a degree constraint on each part, we can find many references related
to this topic. Here is a definition of the problem:

Degree-Constrained Bipartition
Instance: A graph G = (V,E) and four integers a, a′, b and b′.
Question: Is there a partition (VA, VB) of V such that

a′ ≤ degVA
(v) ≤ a ∀v ∈ VA and b′ ≤ degVB

(v) ≤ b ∀v ∈ VB ,

where degX(v) denotes the degree of a vertex v in the induced subgraph G[X]?

There are three special cases of Degree-Constrained Bipartition. If there are no con-
straints on the upper bounds (resp., lower bounds) of the degree in Degree-Constrained Bi-
partition, i.e., a = b = ∞ (resp., a′ = b′ = 0), we call the problem Lower-Degree-Bounded
Bipartition (resp.,Upper-Degree-Bounded Bipartition). We callDegree-Constrained
Bipartition with a special case of a = a′ and b = b′ Regular Bipartition.

Lower-Degree-Bounded Bipartition has been extensively studied in the literature. The
problem with 4-regular graphs is NP-complete for a′ = b′ = 3 [6] and linear-time solvable for
a′ = b′ = 2 [4]. More polynomial-time solvable cases with restrictions on the structure of given
graphs and constraints on a′ and b′ have been studied [2, 3, 7, 13, 17].
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For Regular Bipartition, when a = b = 0, the problem becomes a polynomial-solvable
problem of checking whether a given graph is bipartite or not; when a = 0 and b = 1, the problem
becomes Dominating Induced Matching, a well studied NP-hard problem also known as
Efficient Edge Domination [11, 14]. However, not many results are known about Upper-
Degree-Bounded Bipartition and Regular Bipartition with other values of a and b.

In this paper, we first show that Upper-Degree-Bounded Bipartition and Regular
Bipartition are NP-complete with any nonnegative integers a and b except a = b = 0, and
then consider the parameterized versions of these two problems with a parameter k on the upper
bound of |VA|. The major contribution of this paper is to derive kernels for the parameterized
versions of Upper-Degree-Bounded Bipartition and Regular Bipartition that imply
that these two problems are fixed-parameter tractable (FPT) with parameter k = |VA| when
a ≥ b and fixed-parameter tractable with parameters k = |VA| and b when a < b. We also discuss
the fixed-parameter intractability of our problems with parameter only k = |VA| when a < b.

A special case of the parameterized version of Upper-Degree-Bounded Bipartition has
been studied. Bounded-Degree Deletion asks us to delete at most k vertices from a graph to
make the remaining graph having maximum vertex degree at most b, where the problem with b =
0 is Vertex Cover parameterized by the size of vertex covers. We see that Bounded-Degree
Deletion is a special case of Upper-Degree-Bounded Bipartition where a ≥ |V | − 1 in
a graph G = (V,E). Fellow et al. [10] showed that Bounded-Degree Deletion is FPT with
parameters k and b and W[2]-hard with only parameter k. Betzler et. al. [5] also proved that
Bounded-Degree Deletion is FPT with parameters k and the treewidth of tw of an input
graph, and it is W[2]-hard with only parameter tw.

We also note some related problems, in which the degree constraint on one part of the bipar-
tition changes to a constraint on the size of the part. Maximum Regular Induced Subgraph
asks us to delete at most k vertices from a graph to make the remaining graph a b-regular graph.
The problem is FPT with parameters k and b and W[1]-hard with only parameter k [15, 16]. The
parameterized complexity of some other related problems, such as Minimum Regular Induced
Subgraph are studied in [1].

The remaining parts of the paper are organized as follows: Section 2 introduces our notation
system. Section 3 proves the NP-hardness of our problems. Section 4 gives the problem kernels,
and Section 5 shows the fixed-parameter intractability. Finally, some concluding remarks are
given in the last section.

2 Preliminaries

In this paper, a graph stands for a simple undirected graph. We may simply use v to denote the
set {v} of a single vertex v. Let G = (V,E) be a graph, and X ⊆ V be a subset of vertices. The
subgraph induced by X is denoted by G[X], and G[V \X] is also written as G \X. Let E(X)
denote the set of edges between X and V \ X. Let N(X) denote the neighbors of X, i.e., the
vertices y ∈ V \X adjacent to a vertex x ∈ X, and denote N(X)∪X by N [X]. The degree deg(v)
of a vertex v is defined to be |N(v)|. A vertex in X is called an X-vertex, and a neighbor u ∈ X of
a vertex v is called an X-neighbor of v. The number of X-neighbors of v is denoted by degX(v);
i.e., degX(v) = |N(v) ∩ X|. The vertex set and edge set of a graph H are denoted by V (H)
and E(H), respectively. When X is equal to V (H) of some subgraph H of G, we may denote
V (H)-vertices by H-vertices, V (H)-neighbors by H-neighbors, and degV (H)(v) by degH(v) for
simplicity. For a subset E′ ⊆ E, let G − E′ denote the subgraph obtained from G by deleting
edges in E′. For an integer p ≥ 1, a star with p+ 1 vertices is called a p-star. The unique vertex
of degree > 1 in a p-star with p > 1 is called the center of the star, and any vertex in a 1-star is
a center of the star.

For a graph G and two nonnegative integers a and b, a partition of V (G) into VA and VB is
called (a, b)-bounded if degVA

(v) ≤ a for all vertices in v ∈ VA and degVB
(v) ≤ b for all vertices

in v ∈ VB . An (a, b)-bounded partition (VA, VB) is called (a, b)-regular if degVA
(v) = a for all

vertices in v ∈ VA and degVB
(v) = b for all vertices in v ∈ VB . An instance I = (G, a, b) of

Upper-Degree-Bounded Bipartition (resp., Regular Bipartition) consists of a graph G
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and two nonnegative integers a and b, and asks us to test whether an instance (G, a, b) admits
an (a, b)-bounded partition (resp., (a, b)-regular partition) or not.

3 NP-hardness

Theorem 1. Upper-Degree-Bounded Bipartition is NP-complete for any nonnegative in-
tegers a and b except a = b = 0.

Before proving Theorem 1, we first provide some properties on complete graphs in Upper-
Degree-Bounded Bipartition. Without loss of generality we assume that a ≤ b and b ≥ 1 in
this section.

An (a+1, b+1, a+1)-complete graph W is defined to be the graph consisting of two complete
graphs of size a+ b+2 that share exactly b+1 vertices, where |V (W )| = 2(a+ b+2)− (b+1) =
2a + b + 3 holds and the set of b + 1 vertices shared by the two complete graphs is denoted by
S(W ).

Lemma 1. Let (G, a, b) admit an (a, b)-bounded partition (VA, VB).

(i) If G contains a clique K of size a+ b+2, then |V (K)∩VA| = a+1 and |V (K)∩VB | = b+1;
and

(ii) Assume that G contains an (a+1, b+1, a+1)-complete graph W . Then {V (W )∩VA, V (W )∩
VB} = {S(W ), V (W ) \ S(W )} (or V (W ) ∩ VA = V (W ) \ S(W ) and V (W ) ∩ VB = S(W )
when a ̸= b), N(VA ∩ V (W )) \ V (W ) ⊆ VB and N(VB ∩ V (W )) \ V (W ) ⊆ VB.

Proof. (i) Since K is a clique, it holds for any vertex v ∈ VA ∩ V (K) that a ≥ degVA
(v) ≥

|V (K) ∩ VA| − 1. Similarly we have b + 1 ≥ |V (K) ∩ VA|. These and |V (K)| = a + b + 2 imply
that |V (K) ∩ VA| = a+ 1 and |V (K) ∩ VB | = b+ 1.

(ii) Now an (a+ 1, b+ 1, a+ 1)-complete graph W is a union of two cliques K1 and K2 with
size a + b + 2 sharing the b + 1 vertices in S(W ). Let Ai = V (Ki) ∩ VA and Bi = V (Ki) ∩ VB,
i = 1, 2. By (i), we have that |A1| = |A2| = a + 1 and |B1| = |B2| = b + 1, respectively.
To derive a contradiction, assume that B1 \ S(W ) ̸= ∅ and B1 ∩ S(W ) ̸= ∅. This implies
that |B2 \ S(W )| = |B1 \ S(W )| > 0 since |B1| = |B2| and B1 ∩ S(W ) = B2 ∩ S(W ). For
any vertex u ∈ B1 ∩S(W ), we have that degVB∩V (K1)(u) = b and degVB\V (K1)(u) ≥ 1, implying
degVB∩V (W )(u) ≥ b+1, a contradiction. Hence B1 = B2 ⊆ S(W ) or B1∩B2 = ∅. Analogously we
have A1 = A2 ⊆ S(W ) or A1∩A2 = ∅. Hence {V (W )∩VA, V (W )∩VB} = {S(W ), V (W )\S(W )}.
Note that when a ̸= b, we can have only V (W ) ∩ VA = V (W ) \ S(W ) and V (W ) ∩ VB = S(W ),
since V (W ) ∩ VA = S(W ) would imply degV (W )∩VA

(u) = |S(W )| − 1 = b ̸= a.
Since for any vertex u ∈ V (W ) ∩ VA (resp., u ∈ V (W ) ∩ VB), it holds degV (W )∩VA

(u) = a
(resp., degV (W )∩VB

(u) = b), any V (G)\V (W )-neighbor of a VA∩V (W )-vertex (resp., VB∩V (W )-
vertex) can only belong to VB (resp., VA). ⊓⊔

We here construct a special graph that consists of an (a + 1, b + 1, a + 1)-complete graph,
several complete graphs with size a + b + 2 and some edges joining them. Given two positive
integers n and m, we first construct an (a + 1, b + 1, a + 1)-complete graph W and (n + m)
complete graphs X1, X2, . . . , Xn and C1, C2, . . . , Cm with size a+ b+2. Next we choose a vertex
vA ∈ V (W ) \ S(W ) and a vertex vB ∈ S(W ) arbitrarily, and add edges between {vA, vB} and
{X1, . . . , Xi, . . . , Xn} ∪ {C1, . . . , Cj , . . . , Cm} as follows:

1. For each Xi, join vB to arbitrary a vertices u1, . . . , ua ∈ V (Xi) via new edges, and join vA
to arbitrary b vertices u′

1, . . . , u
′
b ∈ V (Xi) \ {u1, . . . , ua} via new edges;

2. For each Cj , join vB to arbitrary a vertices u1, . . . , ua ∈ V (Cj) via new edges, and join vA to
arbitrary (b− 1) vertices u′

1, . . . , u
′
b−1 ∈ V (Cj) \ {u1, . . . , ua} via new edges, where b− 1 ≥ 0

since b ≥ 1 is assumed; and
3. Let Gn,m denote the resulting graph.

Vertices in Xi (i = 1, 2, . . . , n) or Cj (j = 1, 2, . . . ,m) not adjacent to vA or vB are called free.
Each Xi contains exactly two free vertices, denoted by vi and v′i, and each Cj contains exactly
three free vertices, denoted by v1j , v

2
j and v3j .
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Fig. 1. Constructing graph Gn,m + E0

Let E0 be an arbitrary set of new edges between free vertices in ∪1≤i≤nXi and free vertices
in ∪1≤j≤mCj in Gn,m. Let Gn,m +E0 be the graph obtained from Gn,m by adding the edges in
E0. See Figure 1 for an illustration of constructing a graph Gn,m. We have

Lemma 2. Let (VA, VB) be a partition of V (Gn,m+E0), where if a = b then we assume without
loss of generality that vA ∈ VA. Then (VA, VB) is an (a, b)-bounded partition of Gn,m+E0 if and
only if the following hold:

(i) Every subgraph H ∈ {W,X1, . . . , Xn, C1, . . . , Cm} satisfies that degV (H)∩VA
(v) = a for all

vertices v ∈ V (H) ∩ VA and degV (H)∩VB
(v) = b for all vertices v ∈ V (H) ∩ VB;

(ii) S(W ) ⊆ VB, V (W ) \ S(W ) ⊆ VA, N(vB) \ V (W ) ⊆ VA, and N(vA) \ V (W ) ⊆ VB;
(iii) For each Xi, exactly one of the two free vertices in Xi is contained in VA and the other is in

VB; and
(iv) For each Cj, exactly one of the three free vertices in Cj is contained in VA and the other two

are in VB; and
(v) For each uv ∈ E0, |{u, v} ∩ VA| = |{u, v} ∩ VB | = 1.

Proof. Necessity: Assume that (VA, VB) is an (a, b)-bounded partition ofGn,m+E0. By Lemma 1,
every subgraphH ∈ {W,X1, . . . , Xn, C1, . . . , Cm} satisfies that degV (H)∩VA

(v) = a for all vertices
v ∈ V (H) ∩ VA and degV (H)∩VB

(v) = b for all vertices v ∈ V (H) ∩ VB , proving (i). Hence every
edge uv between two subgraphs H,H ′ ∈ {W,X1, . . . , Xn, C1, . . . , Cm} joins VA and VB, i.e.,
|{u, v} ∩ VA| = |{u, v} ∩ VB | = 1, proving (v). When a < b, we see that vA ∈ VA and vB ∈ VB

by Lemma 1(ii). When a = b, we have that vB ∈ VB by the assumption of vA ∈ VA. Hence
each non-free vertex v, which is adjacent to either vA or vB , is contained in VB (resp., VA) if
v ∈ N(vA) (resp., v ∈ N(vB)), which proves (ii). Each Xi contains a non-free vertices adjacent
to vB, which are in VA, and b non-free vertices adjacent to vA, which are in VB , implying that
exactly one of the two free vertices in Xi is contained in VA and the other is in VB , proving
(iii). Each Cj contains a non-free vertices adjacent to vB , which are in VA, and (b− 1) non-free
vertices adjacent to vA, which are in VB , implying that exactly one of the three free vertices in
Cj is contained in VA and the other two are in VB, proving (iv).

Sufficiency: Assume that (VA, VB) satisfies conditions (i)-(v). By (i), we see that VA (resp., VB)
induces an a-regular (resp., b-regular) subgraph over each subgraphH ∈ {W,X1, . . . , Xn, C1, . . . , Cm}.
By (ii) and (v), we see that each edge uv between two subgraphsH,H ′ ∈ {W,X1, . . . , Xn, C1, . . . , Cm}
joins VA and VB . This means that every vertex v ∈ VA (resp., v ∈ VB) in each subgraph H ∈
{W,X1, . . . , Xn, C1, . . . , Cm} satisfies a = degV (H)∩VA

(v) = degVA
(v) (resp., b = degV (H)∩VB

(v) =
degVB

(v)). This proves that (VA, VB) is an (a, b)-bounded partition of Gn,m + E0. ⊓⊔
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Now we are ready to prove Theorem 1. Clearly Upper-Degree-Bounded Bipartition is
in NP. In what follows, we construct a polynomial reduction from the NP-complete problem
One-In-Three 3SAT [12].

One-In-Three 3SAT
Instance: A set C of m clauses c1, c2, . . . , cm on a set X of n variables x1, x2, . . . , xn such that
each clause cj consists of exactly three literals ℓ1j , ℓ

2
j and ℓ3j .

Question: Is there a truth assignment X → {true, false}n such that each clause cj has exactly
one true literal?

Given an instance F = (C,X ) of One-In-Three 3SAT and nonnegative integers a ≤ b (≥ 1),
we will construct an instance IF = (GF , a, b) of Upper-Degree-Bounded Bipartition such
that IF has an (a, b)-bounded partition if and only if F is feasible. Such an instance IF is
constructed on the graph Gn,m by setting GF = Gn,m + E0, where a set E0 of edges between
{X1, . . . , Xi, . . . , Xn} and {C1, . . . , Cj , . . . , Cm} according to the relationship between X and C
in F as follows:

For each clause cj = (ℓ1j , ℓ
2
j , ℓ

3
j ) ∈ C and the k-th literal ℓkj , k = 1, 2, 3, if ℓkj is a positive (resp.,

negative) literal of a variable xi, then join free vertex vkj ∈ V (Cj) to free vertex vi ∈ V (Xi)
(resp., v′i ∈ V (Xi)) via a new edge.

Let GF = Gn,m + E0 be the resulting graph. We remark that Xi serves as a gadget for
variable xi ∈ X and Cj serves as a gadget for clause cj ∈ C.

This completes the construction of instance IF = (GF , a, b). We interpret conditions (iii) and
(iv) on free vertices in Lemma 2 as follows:

vi ∈ VB (resp., vi ∈ VA) ⇔ true (resp., false) is assigned to xi, and

vkj ∈ VA (resp., vkj ∈ VB) ⇔ ℓkj = true (resp., ℓkj = false).

Hence we see by Lemma 2 that IF = (GF = Gn,m +E0, a, b) admits an (a, b)-bounded partition
if and only if F is feasible. This completes a proof of Theorem 1.

By Lemma 2, F is feasible if and only if IF = (GF = Gn,m+E0, a, b) admits an (a, b)-regular
partition. Hence the problem of testing whether an instance (G, a, b) admits an (a, b)-regular
partition is also NP-complete for any nonnegative integers a and b except a = b = 0.

Corollary 1. Regular Bipartition is NP-complete for any nonnegative integers a and b
except a = b = 0.

4 Kernelization

This section studies the parameterized complexity and kernels of our problems. For this, we
introduce the following constrained versions of the problems.

Constrained Upper-Degree-Bounded Bipartition
Instance: A graph G, two subsets A,B ⊆ V (G), and nonnegative integers a, b and k.
Question: Is there an (a, b)-bounded partition (VA, VB) of V (G) such that A ⊆ VA, B ⊆ VB,
and |VA| ≤ k?

In the same way, we can define Constrained Regular Bipartition by replacing “(a, b)-
bounded partition” with “(a, b)-regular partition” in the above definition. Note that we do not
assume a ≤ b in this section. In Constrained Upper-Degree-Bounded Bipartition and
Constrained Regular Bipartition, we will always assume that

a ≤ k − 1. (1)

The reason for this follows from the following observations. Note that the degree degVA
(v) of any

vertex v in the induced graph G[VA] is at most |VA|−1, which is at most k−1 if |VA| ≤ k. So we
see that if a > k − 1 in an instance of Constrained Upper-Degree-Bounded Bipartition,
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then we can simply reset a to be k − 1 without changing the feasibility, and that no instance
of Constrained Regular Bipartition with a > k − 1 admits a solution. We call a partition
(VA, VB) satisfying the condition in the definitions of Constrained Upper-Degree-Bounded
Bipartition and Constrained Regular Bipartition a solution to the problem instance. An
instance (G,A,B, a, b, k) is called feasible if it admits a solution. A vertex in V (G) \ (A ∪ B) is
called undecided, and we always denote V (G)\(A∪B) by U . Clearly each of the two problems can
be solved in 2|U ||V |O(1) time. We say that an instance (G,A,B, a, b, k) is reduced to an instance
(G,A′, B′, a, b, k) such that (G,A,B, a, b, k) is feasible if and only if so is (G,A′, B′, a, b, k). Note
that when it turns out that (G,A,B, a, b, k) is infeasible we can say that it is reduced to an
infeasible instance (G,A′, B′, a, b, k) such as one with A′ ∩B′ ̸= ∅.

In this paper, we say that a problem admits a kernel of size O(f(k)) if any instance of
the problem can be reduced in polynomial time in n into an instance (G,A,B, a, b, k) with
|V (G)| = O(f(k)) for a function f(k) of k. The main results in this section are the following.

Theorem 2. Constrained Upper-Degree-Bounded Bipartition admits a kernel of size
O((b+ 1)2(b+ k)k).

Theorem 3. Constrained Regular Bipartition admits a kernel of size O((b+1)(b+k)k2)

for a ≤ b or of size O(k2k
2

) for a > b.

The above two theorems also imply

Theorem 4. Both of Constrained Upper-Degree-Bounded Bipartition and Constrained
Regular Bipartition are fixed-parameter tractable with parameter k when a ≥ b and fixed-
parameter tractable with parameters k and b when a < b.

4.1 Kernels for Constrained Upper-Degree-Bounded Bipartition

In this subsection, an instance always means the one ofConstrained Upper-Degree-Bounded
Bipartition. We have only five simple reduction rules to get a kernel to this problem.

Rule 1 Conclude that an instance is infeasible if one of the following holds: A∩B ̸= ∅; |A| > k;
degA(v) > a for some vertex v ∈ A; and degB(u) > b for some vertex u ∈ B.

Rule 2 Move to B any U -vertex v with degA(v) > a, and move to A any U -vertex u with
degB(u) > b.

If we include to B a U -vertex v with deg(v) > b+k, then the instance cannot have a solution,
because at least k + 1 neighbors of v need to be included to A, implying that |VA| cannot be
bounded by k.

Rule 3 Move to A any U -vertex v with deg(v) > b+ k.

Lemma 3. Let v be a U ∪B-vertex in an instance I = (G,A,B, a, b, k) such that deg(u) ≤ b for
all vertices u ∈ N [v]. Let I ′ = (G−{v}, A,B′, a, b, k) be the instance obtained from I by deleting
the vertex v, where B′ = B if v ∈ U and B′ = B − {v} if v ∈ B. The instance I is feasible if
and only if so is I ′.

Proof. It is clear that if I has a solution then I ′ also has a solution, because deleting a vertex
never increases the degree of any of the remaining vertices. Assume that I ′ admits a solution
(VA, VB). We show that (VA, VB ∪{v}) is a solution to I. Note that adding v to VB may increase
the degree of a vertex only in N [v]. However, by the choice of the vertex v, for any vertex u ∈ N [v]
it holds b ≥ deg(u) ≥ degVB∪{v}(u). Hence (VA, VB ∪ {v}) is a solution to I. ⊓⊔

Rule 4 Remove from the graph of an instance any U ∪ B-vertex v such that deg(u) ≤ b for all
vertices u ∈ N [v].

Lemma 4. An instance I = (G,A,B, a, b, k) is infeasible if G contains more than k vertex-
disjoint (b+ 1)-stars.
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Proof. For a solution (VA, VB) to I, if there is a (b+1)-star disjoint with VA, then a center v of
the star would satisfy degVB

(v) ≥ b+ 1. Hence VA must contain at least one from each of more
than k vertex-disjoint (b+ 1)-stars. This, however, contradicts |VA| ≤ k. ⊓⊔

Rule 5 Compute a maximal set S of vertex-disjoint (b + 1)-stars in G of an instance I =
(G,A,B, a, b, k) (not only in G[U ]). Conclude that the instance is infeasible if |S| > k.

Now we analyze the size |V (G)| of an instance I = (G,A,B, a, b, k) where none of the above
five rules can be applied anymore. After Rule 5 is applied to a maximal set of vertex-disjoint
(b + 1)-stars S in G, it holds |S| ≤ k. Let S0 be the set of all vertices in S, S1 = N(S0) and
S2 = N(S1∪S0) = N(S1)\S0. We first show that V (G) = A∪S0∪S1∪S2. By the maximality of S,
we know that there is no vertex of degree ≥ b+1 in the graph after deleting S0. Then all vertices
u with deg(u) ≥ b+1 are in S0 ∪S1, and |S2| ≤ b|S1| holds. Since Rule 4 is no longer applicable,
each U∪B-vertex v with deg(v) ≤ b is adjacent to a vertex u with deg(u) ≥ b+1 that is in S0∪S1.
Then all U ∪ B-vertices u with deg(u) ≤ b are in S1 ∪ S2. Hence V (G) = A ∪ S0 ∪ S1 ∪ S2. We
have that |A| ≤ k, |S0| ≤ (b+2)|S| ≤ (b+2)k, |S1| ≤ (b+ k)|S0| ≤ (b+ k)(b+2)k by Rule 3 and
|S2| ≤ b|S1| ≤ b(b+ k)(b+2)k. Therefore |V (G)| ≤ |A|+ |S0|+ |S1|+ |S2| = O((b+1)2(b+ k)k).
This proves Theorem 2.

4.2 Kernels for Constrained Regular Bipartition

In this subsection, an instance always stands for the one in Constrained Regular Biparti-
tion. When we introduce a reduction rule, we assume that all previous reduction rules cannot
be applied anymore.

We see that an instance I = (G,A,B, a, b) is infeasible if one of the following conditions holds:

(i) A ∩B ̸= ∅ or |A| > k;
(ii) There is a vertex v ∈ V (G) with deg(v) < min{a, b};
(iii) There is a vertex v ∈ A with degV (G)\B(v) < a or degA(v) > a; and
(iv) There is a vertex v ∈ B with degV (G)\A(v) < b or degB(v) > b.

Rule 6 Conclude that an instance is infeasible if one of the above four conditions holds.

Rule 7 Move to B any U -vertex v with degV (G)\B(v) < a or degA(v) > a or adjacent to a
B-vertex u with degB(u) + degU (u) = b. Move to A any U -vertex v with degV (G)\A(v) < b or
degB(v) > b or adjacent to an A-vertex u with degA(u) + degU (u) = a.

Let H be a b-regular component of the induced graph G[U ∪ B]. If the instance is feasible,
then there is a solution (VA, VB) such that V (H) ⊆ VB . This means that the feasibility remains
unchanged even if we remove H from the graph. Also removing any edges between A and B does
not affect the feasibility of an instance.

Rule 8 Remove from the graph of an instance any edges between A and B and delete the set
V (H) of vertices in any b-regular component H in the induced graph G[U ∪B].

If we include a U -vertex v with deg(v) > b+k to B, then the instance cannot have a solution,
because at least k + 1 neighbors of v need to be included to A, implying that |VA| cannot be
bounded by k.

Rule 9 Move to A any U -vertex v with deg(v) > b+ k.

We say that a vertex v is tightly-connected from a U -vertex u if there is a path P from u to
v such that each vertex w ∈ V (P ) \ {u} is a U -vertex with degV (G)\A(w) = b. For each U -vertex
u, let T (u) denote the set U -vertices tightly-connected from u, which has the following property:
when we include a U -vertex u to A, all the vertices T (u) need to be included to A, because
the degree of each vertex v ∈ T (u) \ {u} in G[U ∪ B] will be less than b. Hence if we include
a U -vertex u with |T (u)| > k, then |A| will increase by |T (u)| > k and the resulting instance
cannot have a solution.
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Rule 10 Move to B any U -vertex u with |T (u)| > k.

Lemma 5. Let I = (G,A,B, a, b) be an instance such that none of Rule 6 - Rule 10 is applicable.
If the vertex set B contains more than bk U -neighbors or the edge set E(B) contains more than
b(b+ 1)k edges, then the instance is infeasible.

Proof. Assume that I admits a solution (VA, VB) to prove that |B ∩N(U)| ≤ bk and |E(B)| ≤
b(b + 1)k. For each edge uv ∈ E(B) with u ∈ N(B) and v ∈ B, we see that degB(u) ≤ b and
degU (v) > b− degB(v) by Rule 7. The former means that (i) each vertex u ∈ U is adjacent to at
most b vertices in B. The latter means that for each vertex v ∈ B,
(ii) at least one U -neighbor u of v must be in VA; and
(iii) at least degU (v)− (b− degB(v)) (≥ 1) edges of the degU (v) edges incident to v will not be
included to G[VB ].

From |VA| ≤ k, (i) and (ii), we have |B ∩N(U)|/b ≤ |VA| ≤ k.
Since (degU (v)−(b−degB(v)))/degU (v) ≤ 1/(b+1), we see from (iii) that at least |E(B)|/(b+

1) edges will be excluded from the induced graphG[VB]. From (i), we see that at least |E(B)|/(b(b+
1)) vertices in N(B) will be excluded from VB and included to VA. Hence |E(B)|/(b(b + 1)) ≤
|VA| ≤ k, as required. ⊓⊔

Rule 11 Conclude that an instance is infeasible if |B ∩N(U)| > bk or |E(B)| > b(b+ 1)k.

In what follows, we assume that b(b + 1)k > |E(B)| ≥ |N(B)|. After Rule 10, it holds
that |T (u)| ≤ k for each vertex u ∈ N(B). Let T ∗ = N(B) ∪ (∪u∈N(B)T (u)). Then |T ∗| ≤
|N(B)|(k + 1) ≤ b(b+ 1)k(k + 1). We have

Lemma 6. When none of Rule 6-Rule 11 is applicable, it holds that |T ∗| = O(b2k2).

We compute a maximal set S of vertex-disjoint (b+ 1)-stars in the induced graph G[U ]. We
see that an instance I = (G,A,B, a, b) is infeasible if G[U ] contains more than k vertex-disjoint
(b+ 1)-stars. This is because |VA| ≤ k means that at least one (b+ 1)-star must become disjoint
with VA and a center v of the star would satisfy degVB

(v) ≥ b+ 1.

Rule 12 Conclude that an instance is infeasible if |S| > k.

Let S0 be the set of all vertices in the (b+1)-stars in S. For each integer i > 0, we denote by
Si the set U ∩N(Si−1) \ (T ∗ ∪ (∪i−1

j=0Sj)). Let S
∗ = ∪i≥0Si. See Figure 2 for an illustration of

S0, S1, S2 and so on.

S0

S1

S2

b+1S

Fig. 2. Illustration of sets S0, S1 and S2

Lemma 7. When none of Rule 6-Rule 12 is applicable, every U -vertex u with degU (u) ≥ b+ 1
is in S0 ∪ S1. For each vertex v ∈ U \ (T ∗ ∪ S0 ∪ S1), it holds degV (G)\A(v) = degU (v) = b.
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Proof. By the maximality of S, we know that G[U \ S0] contains no more (b + 1)-star, and
thereby any U -vertex with degU (u) ≥ b+ 1 must be in S0 or adjacent to a vertex in S0.

For each vertex v ∈ U \ (T ∗ ∪S0 ∪S1), it holds that degU (v) ≤ b by v ̸∈ S0 ∪S1 by the above
property, and also degB(v) = 0 by v ̸∈ T ∗ ⊇ N(B); i.e., v satisfies degV (G)\A(v) = degU (v) = b.

⊓⊔

Lemma 8. When none of Rule 6-Rule 12 is applicable, it holds that |S∗| = O((b+1)(b+ k)k2).

Proof. After Rule 9, it holds that |S1| ≤ (b+k)|S0| ≤ (b+k)(b+1)k. For each vertex v ∈ Si with
i ≥ 2, it holds that degV (G)\A(v) = degU (v) = b by Lemma 7. This implies that each vertex v ∈ Si

with i ≥ 2 is tightly-connected from a vertex in S1. Therefore ∪i≥2Si ⊆ ∪u∈S1T (u), from which
we obtain that

∑
i≥0 |Si| ≤ |S0|+|S1|+

∑
u∈S1

|T (u)| ≤ (b+1)k+(b+k)(b+1)k+(b+k)(b+1)k2 =

O((b+ 1)(b+ k)k2). ⊓⊔

Lemma 9. When none of Rule 6-Rule 12 is applicable, any U\(T ∗∪S∗)-vertex is in a component
H of G[U ] such that V (H) ⊆ U \ (T ∗ ∪ S∗) and V (H) ∩N(A) ̸= ∅.

Proof. For any vertex U \ (T ∗∪S∗)-vertex u, it holds degV (G)\A(u) = degU (u) = b by Lemma 7.
From this, we know that u is not adjacent to any vertex in T ∗ ∪ S∗, otherwise u would be in
T ∗ ∪ S∗. Hence each component H of G[U \ (T ∗ ∪ S∗)] has no neighbor in T ∗ ∪ S∗ in the graph
G. Furthermore, each H must contain some vertex in N(A), otherwise H would be a b-regular
component of G such that V (H) ⊆ U , which must have been eliminated from the graph by
Rule 8. ⊓⊔

We call a component H of G[U ] residual if V (H) ⊆ U \ (T ∗ ∪ S∗) and V (H) ∩ N(A) ̸= ∅.
For a vertex u in a residual component H, it holds that degV (G)\A(u) = degU (u) = b for
u ∈ V (H) ∩N(A), and deg(u) = degU (u) = b for u ∈ V (H) \N(A) by Lemma 7.

Lemma 10. Let H be a residual component in G[U ] of an instance. Then any (a, b)-regular
partition (VA, VB) satisfies either V (H) ⊆ VA or V (H) ⊆ VB.

Proof. Note that degV (G)\A(u) = b for each vertex in u ∈ V (H) by Lemma 7. Hence any two
vertices in V (H) are tightly-connected from each other, and if we include any vertex u ∈ V (H)
to A, then all vertices in H need to be included in A. Hence any (a, b)-regular partition (VA, VB)
satisfies either V (H) ⊆ VA or V (H) ⊆ VB . ⊓⊔

Hence if a residual component H contains a vertex u ∈ V (H) ∩N(A) with deg(u) ̸= a or is
adjacent to an A-vertex v with degH(v) > a, then V (H) cannot be contained in a set VA of any
(a, b)-regular partition (VA, VB).

Rule 13 Move to B all vertices in a residual component H that satisfies one of the following:

(i) There is a vertex u ∈ V (H) ∩N(A) with deg(u) ̸= a; and
(ii) There is an A-vertex v with degH(v) > a.

By Lemma 9, we know that each U -vertex is either in T ∗ ∪ S∗ or a residual component.
Note that for any vertex u ∈ V (H) ∩ N(A) in a residual component H, it holds deg(u) =
degU (u) + degA(u) ≥ b+ 1, which indicates that deg(u) ≥ b+ 1 > a if a ≤ b. Hence when a ≤ b,
after Rule 13 is applied, there is no residual component. We get the following lemma by Lemma 6
and Lemma 8.

Lemma 11. If a ≤ b, then the number |U | of undecided vertices in the instance after applying
all above rules is O((b+ 1)(b+ k)k2).

Lemma 12. Assume that there is a residual component H in G[U ]. Then a > b, V (H) ⊆ N(A),
|V (H)| ≤ k, and every vertex in u ∈ V (H) satisfies degU (u) = b and degA(u) = a− b.
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Proof. Since Rule 13 is not applicable, each vertex u ∈ V (H) ∩N(A) satisfies deg(u) = a and
degU (u) = b. Hence a > b. If there is a vertex v ∈ V (H) \N(A) then deg(v) = degU (v) = b < a
holds and such a vertex v must have been included to B by Rule 7. Hence V (H) ⊆ N(A). It
holds that |V (H)| ≤ k since Rule 10 is not applicable. This proves the lemma. ⊓⊔

Next we consider the case that a > b. Let all the vertices in A be indexed by w1, w2, . . . , w|A|,
and define the code c(H) of a residual component H in G[U ] to be a vector

(degH(w1),degH(w2), . . . ,degH(w|A|)),

where 0 ≤ degH(wi) ≤ a for each i. We say that two residual componentsH andH ′ are equivalent
if they have the same code c(H) = c(H ′), where we see that |V (H)| = |V (H ′)| since each vertex
u in a residual component has the same degrees in A and U by Lemma 12. Hence the feasibility
of the instance is independent of the current graph structure among equivalent components.
Moreover, if there are more than a equivalent components, then one of them is not contained in
VA of some (a, b)-regular partition when the instance is feasible.

Rule 14 If there are more than a equivalent residual components for some code, choose arbi-
trarily one of them and include the vertices of the component to B.

Lemma 13. The number of vertices in all residual components is O((ak)(a−b)k+1).

Proof. Now there are at most a equivalent residual components with the same code. Every
residual component H satisfies |V (H)| ≤ k and |E(H)| ≤ (a−b)|V (H)| ≤ (a−b)k by Lemma 12.

Hence the number of different kinds of codes is at most
∑

1≤h≤(a−b)k

(
a|A|
h

)
= O((ak)(a−b)k). Then

there are most O(a(ak)(a−b)k) residual components, and the number of vertices in all residual
components is O(ka(ak)(a−b)k). ⊓⊔

By Lemma 6, Lemma 8, and Lemma 13, we have the following.

Lemma 14. If a > b, the number |U | of undecided vertices in any instance after applying all
above rules is O((b+ 1)(b+ k)k2 + (ak)(a−b)k+1).

Note that in Lemma 14, (b+ 1)(b+ k)k2 + (ak)(a−b)k+1 < k2k
2

by (1).

We finally derive an upper bound on the size of B in an instance I. Let B1 = B ∩N(U) and
B2 = B \ B1, where degB(u) < b for each vertex u ∈ B1 by Rule 6, and degB(u) = b for each
vertex u ∈ B2. Note that if b ≤ 1 then B2 = ∅ by Rule 8, and that if |E(B1, B2)| is odd then
b is also odd since b|B2| − |E(B1, B2)| = 2|E(G[B2])|. Observe that the feasibility of I will not
change even if we replace the subgraph G[B2] with a smaller graph G′ of degree-b B-vertices as
long as each vertex u ∈ B1 has the same degree degV (G′)(u) = degB2

(u) as before. The next

lemma ensures that there is such a graph G′ with O(|B1|+ b2) vertices.

Lemma 15. Let b ≥ 2 be an integer, V1 = {u1, u2, . . . , un} be a set of n vertices, and δ =
(d1, d2, . . . , dn) be a sequence of nonnegative integers at most b − 1 such that b is odd if d =∑

1≤i≤n di is odd. Then there is a graph G′ = (V2, E2) with |V2| ≤ n + b2 + b + 1 and a set
E(V1, V2) of d edges between V1 and V2 such that after adding E(V1, V2) between V1 and V2, it
holds that degV2

(ui) = di for each ui ∈ V1 and degV1∪V2
(vi) = b for each vi ∈ V2. Such a pair of

graph G′ and edge set E(V1, V2) can be constructed in polynomial time in n.

Proof. We show how to construct G′ and E(V1, V2). Initialize d[ui] := di for each i = 1, 2, . . . , n
and j := 1.

Step 1: We create h vertices v1, v2, . . . , vh of degree b by repeating the next as much as
possible: select b vertices u ∈ V1 with d[u] ≥ 1, and create a new vertex vj adjacent to each of
the b vertices, updating j := j + 1 and d[u] := d[u]− 1 for the b vertices u ∈ V1.

The above set of vertices v1, v2, . . . , vh can be created until the number of vertices u ∈ V1

with d[u] ≥ 1 becomes less than b. Then now it holds that t =
∑

u∈V1
d[u] ≤ (b − 1)2, where if

t =
∑

u∈V1
d[u] is odd, then b is odd by assumption. Clearly h < n, since di ≤ b− 1 for all i.
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Step 2: For the remaining degrees t =
∑

u∈V1
d[u], we create ⌈(t+ b)/(2b)⌉ b-regular complete

bipartite graphs Kb,b of 2b vertices, where there is a matching M of at least (t + b − 1)/2
independent edges in the union of these complete bipartite graphs. We repeatedly select an edge
e ∈ M and two vertices u, u′ ∈ V1 with d[u], d[u′] ≥ 1 (or a vertex u ∈ V1 with d[u] ≥ 2), and
replace the edge e = ww′ with two edges wu and w′u′ (or wu and w′u), updating d[u] := d[u]−1
and d[u′] := d[u′]−1 (or d[u] := d[u]−2). After the maximal repetitions, if t is even then we have∑

u∈V1
d[u] = 0; if t is odd then

∑
u∈V1

d[u] = d[ui∗ ] = 1 for some ui ∈ V1, for which we choose
(b−1)/2 more edges fi, i = 1, 2, . . . , b−1 from the remaining M , and create another vertex vh+1

adjacent to ui∗ , updating d[ui∗ ] := 0 and replacing each edge fi = ziz
′
i with two edges ziui∗ and

z′iui∗ .
After Step 2, we attain

∑
u∈V1

d[u] = 0. Now we let V2 be the set of all vertices created in

the above two steps. Then |V2| ≤ h + ⌈(t + b)/(2b)⌉ · (2b) + 1 ≤ n + b2 + b + 1. Clearly after
above operations, each vertex ui ∈ V1 and each vertex v ∈ V2 satisfy the degree condition of the
lemma. ⊓⊔

Rule 15 When b ≥ 2, remove the subgraph G[B2], and add a graph G′ = (V2, E2) with edge
set E(V1 = B1, V2) according to Lemma 15, where n = |B1|, V1 = B1 = {u1, u2, . . . , un} and
δ = (degB2

(u1), degB2
(u2), . . . , degB2

(un)).

Lemma 16. After applying all above rules, the number of vertices in A is at most k and the
number of vertices in B is O(bk + b2).

Proof. After Rule 6, the number of vertices in A is at most k. After Rule 15, all new vertices
added in Rule 15 will form the new vertex set B2. Then |B| = |B1| + |B2| = |B1| + |V2| ≤
2|B1|+ b2 + b+ 1 = 2bk + b2 + b+ 1. ⊓⊔

Lemma 11, Lemma 14, Lemma 16 and a ≤ k − 1 in (1) establish Theorem 3.

5 Fixed-Parameter Intractability

This section discusses the fixed-parameter intractability of our problems. We have mentioned in
the introduction that Bounded-Degree Deletion is W[2]-hard with parameter k and it is
also a special case of Upper-Degree-Bounded Bipartition where a ≥ k − 1. Then Upper-
Degree-Bounded Bipartition is W[2]-hard with parameter k = |VA|. Here we prove a slightly
stronger result containing a case where a < k − 1.

Theorem 5. Upper-Degree-Bounded Bipartition is W[2]-hard with parameter k = |VA|
even if a = 0.

We give a reduction from Independent Dominating Set, a well-known W[2]-hard prob-
lem also known as Minimal Maximum Independent Set [9], to Upper-Degree-Bounded
Bipartition with a = 0. Independent Dominating Set asks us to test whether a graph G
admits a set D ⊆ V (G) of at most k vertices such that there is no edge between any two vertices
in D and each vertex in V (G) \ D is adjacent to at least one vertex in D. Given an instance
I = (G, k) of Independent Dominating Set with a graph G of maximum degree d ≥ 2, we
augment G to G′ = (V (G)∪ V1, E(G)∪E1) so that each vertex v ∈ V (G) will be of degree d by
adding d−deg(v) new vertices of degree 1 which are adjacent to only v, where V1 and E1 are the
sets of newly added vertices of degree 1 and edges, respectively. Let I ′ = (G′, a = 0, b = d− 1, k)
be an instance of Upper-Degree-Bounded Bipartition defined on this graph G′. We prove
that I is an yes-instance if and only if so is I ′.

Assume that G has a solution D of size at most k. Then (VA = D,VB = V (G′) \ D) is a
solution to I ′, because VA = D satisfies |VA| = |D| ≤ k and the upper bound with a = 0,
whereas VB satisfies the upper bound with b = d−1, where all vertices v ∈ V1 ⊆ V (G′)\D are of
degree 1 (≤ d− 1) in G′ and all the other vertices v ∈ VB ∩ V (G) are of degree degV (G′)\D(v) ≤
d− |N(v) ∩D| ≤ d− 1.
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Assume that I ′ admits a solution (VA, VB), where we choose (VA, VB) so that |VA|+ |VA∩V1|
is minimized. We first show that |VA∩V1| = 0 holds and then prove that D = VA is a solution to
I. Assume that there is a vertex v ∈ VA ∩V1, whose unique neighbor u is in V (G)∩VB , since VA

is an independent set in G′. If u has a neighbor v′ in VA in G′, then (VA\{v}, VB∪{v}) is another
solution to I ′ with a smaller size |VA|+ |VA ∩ V1|, contradicting the choice of solution. Then v is
the unique neighbor of u in VA in G′, and ((VA \ {v})∪{u}, (VB \ {u})∪{v}) is another solution
to I ′ with a smaller size |VA| + |VA ∩ V1|, again contradicting the choice of solution. Therefore
VA ⊆ V (G) holds. Let D = VA, where D = VA is an independent set with |D| = |VA| ≤ k. Each
vertex v ∈ V (G) \VA of degree d has at least one neighbor in VA in G′ by the upper bound with
d−1. This implies that D is an independent and dominating set of size at most k, i.e., a solution
to I.

For Regular Bipartition, we will show that a special case of this problem is equivalent
to Perfect Code in d-regular graphs. Perfect Code asks us to test whether G admits a set
S ⊆ V (G) of at most k vertices such that for each vertex v ∈ V (G) there is precisely one vertex
in N [v]∩S. It is W[1]-hard when k is taken as the parameter [8]. It is easy to see that an instance
(G, k) of Perfect Code in a d-regular graph G is yes if and only if the instance (G, 0, d− 1, k)
of Regular Bipartition is feasible. It is quite possible that Perfect Code with parameter
k remains W[1]-hard even if input graphs are restricted to regular graphs.

6 Concluding Remarks

In this paper, we established the NP-hardness of Upper-Degree-Bounded Bipartition and
Regular Bipartition for any nonnegative integers a and b except a = b = 0. We also studied
kernelization and parameterized complexity of these two problems by considering the size k of
one part of the bipartition as the parameter. For further studies, we can consider the problem of
partitioning a graph into more than two parts with degree constraints on each part.

References

1. Amini, O., Saub, I., and Saurabh, S., Parameterized complexity of finding small degree-constrained
subgraphs, Journal of Discrete Algorithms 10 (2012) 70–83.

2. Bazgan, C., Tuza, Z., and Vanderpooten, D., Efficient algorithms for decomposing graphs under
degree constraints, Discrete Applied Mathematics 155 (2007) 979–988.

3. Bazgan, C., Tuza, Z., and Vanderpooten, D., Degree-constrained decompositions of graphs: bounded
treewidth and planarity, Theoretical Computer Science 355(3) (2006) 389–395.

4. Bazgan, C., Tuza, Z., and Vanderpooten, D., On the existence and determination of satisfactory
partitions in a graph, In: ISAAC 2003, LNCS 2906, 44–453, 2003.

5. Betzler, N., Bredereck, R., Niedermeier, R., and Uhlmann, J., On bounded-degree vertex deletion
parameterized by treewidth, Discrete Applied Mathematics 160(1-2) (2012) 53–60.
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