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Abstract: In the obnoxious facility game with a set of agents in a space, we

wish to design a mechanism, a decision-making procedure that determines a

location of an undesirable facility based on locations reported by the agents,

where we do not know whether the location reported by an agent is where

exactly the agent exists in the space. For a location of the facility, the benefit

of each agent is defined to be the distance from the location of the facility to

where the agent exists. Given a mechanism, all agents are informed of how the

mechanism utilizes locations reported by the agents to determine a location of

the facility before they report their locations. Some agent may try to manipulate

the decision of the facility location by strategically misreporting her location.

As a fair decision-making, mechanisms should be designed so that no particular

group of agents can get a larger benefit by misreporting their locations. A

mechanism is called group strategy-proof if no subset of agents can form a group

such that every member of the group can increase her benefit by misreporting

her location jointly with the rest of the group. For a given mechanism, a point

in the space is called a candidate if it can be output as the location of the facility

by the mechanism for some set of locations reported by agents.

In this paper, we consider the case where a given space is a tree metric, and

characterize the group strategy-proof mechanisms in terms of distribution of

all candidates in the tree metric. We prove that there exists a group strategy-

proof mechanism in the tree metric if and only if every two candidates have the

distance.
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1 Introduction

1.1 Social choice theory

In social choice theory, a mechanisms is a procedure that determines a social decision based

on a vote. More formally, for a set Ω of voting alternatives and a set N = {1, 2, . . . , n} of

selfish voters with various utilities, a mechanism is a function f : Ωn → Ω as a collective
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decision making system. Voters know the exact detail of the operation of the mechanisms

before they actually vote, and each voter can find out her expected benefit of her utility in

the case when every voter votes truthfully. Each voter may try to manipulate the decision of

a mechanism by changing her voting to increase benefit from her personal utility. A voting

which aims to manipulate the decision of a mechanism is called a strategic-voting. To the

effect of making a fair decision, we are interested in mechanisms in which no voter can get

a larger benefit by a single-handed strategic-voting. Such a mechanism is called a strategy-

proof mechanism. Moreover, a mechanism is called a group strategy-proof mechanism, if

there is no coalition of voters such that each member in the coalition can simultaneously

get a larger benefit by their cooperative strategic-voting.

Moulin [8] studied social choice theory under the condition that the set of alternatives

is the one-dimensional Euclidean space and each utility function is a single-peaked concave

function. Moulin [8] characterized a necessary and sufficient condition of strategy-proofness

on single-peaked preferences in the one-dimensional Euclidean space. After that, Border

and Jordan [2] extended the result to characterize strategy-proof mechanisms in the multi-

dimensional Euclidean space. Schummer and Vohra [10] applied the result of Border and

Jordan [2] to obtain characterization of strategy-proof mechanisms when Ω is the set of all

points in a tree metric or the set of all points in a graph metric which has at least one cycle.

1.2 Facility game

The facility game is a problem in social choice theory where a location of the facility in a

metric space will be decided based on locations of agents (votes by voters) and each agent

tries to maximize benefit from her utility function defined based on the distance from her

location to the location of the facility.

In previous studies of facility games [1, 2, 3, 4, 6, 7, 9, 10], mechanisms are allowed to

distinguish agents. In other words, the input of mechanisms is not only location information

(i.e., where is reported) but also agents’ information (i.e., who reports the location). On

the other hand, there is a category of mechanisms which are called anonymous, that is,

which do not use agents’ information.

Another important aspect of mechanisms of facility games is how we can maximize the

sum of the utilities over all agents, called the social utility, over all strategy-proof (or group

strategy-proof) mechanisms. In general, the maximum value of the social utility attained

by a strategy-proof (or group strategy-proof) mechanism is smaller than that attained just

by choosing the best location of the facility. A possible measurement of the performance

for a mechanism is a benefit-ratio, the ratio of the social utility attained by the mechanism

and such a best possible value to the social utility.

1.2.1 Typical facility game

In a typical facility game setting, it is assumed that the facility is desirable, such as a library.

Several studies have been extensively made on the typical facility game, such as designing

mechanisms [1, 2, 6, 7, 9, 10]. Procaccia and Tennecholtz [9] proposed a group strategy-

proof mechanism which returns the location of the median agent as the facility location

when all agents are located on a path. Moreover, they designed a randomized mechanism,

that is, a mechanism does not output a single facility location but outputs a probability
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distribution of the facility location over a metric space. In randomized mechanisms, the

utility of agents is defined to be the expected value by the probability distribution. On the

contrary, a mechanism which outputs a facility location is called deterministic.

Alon et al. [1] gave a complete analysis on benefit-ratios of group strategy-proof mech-

anisms for the typical facility game in general graph metrics.

1.2.2 Obnoxious facility game

The obnoxious facility game is a facility game such that the facility is undesirable, such as

a garbage dump. We call mechanism a p-candidate mechanism if the number of distinct

outputs is p. In the obnoxious facility game, previous studies [3, 4, 5] focused on mecha-

nisms which output the location of the facility from restricted locations in a metric space.

More accurately, those studies first choose p candidates in a set of alternatives, and then

they design p-candidate mechanisms which output a location of the facility from these p

candidates.

Cheng et al. [4] first studied group strategy-proof mechanisms for the obnoxious facility

game in the line metric. They have designed a 2-candidate group strategy-proof mech-

anism and shown that for any set of locations reported by agents, a benefit-ratio of the

mechanism is at most 3. Ibara and Nagamochi [5] gave a complete characterization of

2-candidate strategy-proof mechanisms and 2-candidate group strategy-proof mechanisms

in general metrics and they proved that in arbitrary metrics, a 2-candidate group strategy-

proof mechanism with a benefit-ratio 4 can be designed. Moreover, they have shown that in

the line metric, there exists no p-candidate strategy-proof mechanism for any integer p ≥ 3.

In this paper, we consider group strategy-proof mechanisms in tree metrics. In Section 2,

we formulate a model of the obnoxious facility game, and describe out main theorem that

characterizes strategy-proof mechanisms in tree metrics in such a way that there exists a

p-candidate group strategy-proof mechanism if and only if every two in a set of p candidates

have the distance. Section 3 gives a proof to the necessary condition in the theorem, and

Section 4 provides a proof to the sufficient condition in the theorem. In Section 5, we make

a concluding remarks.

2 Preliminaries

2.1 Mechanisms

Let R+ be the set of nonnegative real numbers. Let Ω be a set of points, possibly infinite. A

symmetric distance function d : Ω×Ω → R+ holds the following conditions, for every point

x ∈ Ω, it holds that d(x, x) = 0; for every two points x, y ∈ Ω, it holds that d(x, y) = d(y, x);

and for every three points x, y, z ∈ Ω, it holds that d(x, y) + d(y, z) ≥ d(x, z). Throughout

this paper, we use the notation d as a symmetric distance function. Let (Ω, d) denote a

metric.

Let N = {1, 2, . . . , n} be a set of agents, and assume that exactly one location of an

undesirable facility needs to be decided. Let Ωagents ⊆ Ω denote a set of points to which

any location that can be reported by an agent in N belong, and let Ωfacility ⊆ Ω denote a

set of points such that the facility can be located. A set of locations reported by agents

in N is denoted by a location function χ : N → Ωagents, where χ(i) denotes the location

3



reported by an agent i ∈ N .

Let χ be a location function. For a set Ω′ ⊆ Ω of points, let N(χ,Ω′) denote the set

of all agents i ∈ N with χ(i) ∈ Ω′. For a location y ∈ Ωfacility of the facility, the benefit

β(y, χ(i)) of an agent i ∈ N is defined to be the distance from her location to the facility,

i.e.,

β(y, χ(i)) = d(y, χ(i)).

For simplicity, for a set S ⊆ N of agents, we write by χ(S) the multiset {χ(i) | i ∈ S} of

locations reported by agents in S, and we denote by S the set N \ S. The multiset χ(N)

is called a profile of N . Given a profile χ(N), a mechanism f outputs a facility location

based on the profile χ(N), that is, f : Ωn
agents → Ωfacility.

In the literature on the study of facility games, the following mechanism model ap-

pears [1, 2, 3, 4, 6, 7, 9, 10]. The input to mechanisms is a location function χ and

mechanisms distinguish each agent’s report. For instance, for location functions χ and χ′

of a set N = {1, 2} of agents and locations x, y ∈ Ωagents such that χ(1) = x, χ(2) = y,

χ′(1) = y and χ′(2) = x, a mechanism f can output different facility locations, that is,

f(χ(N)) ̸= f(χ′(N)). Anonymity is an important property of mechanisms. A mechanism f

is called anonymous if it holds that f(χ(N)) = f(χ′(N)) for any two location functions χ

and χ′ of a set N of agents that admits a bijection σ on N such that χ(i) = χ′(σ(i)), for

every agent i ∈ N (i.e., χ(N) = χ′(N) holds as multisets). In our model, every mechanism

is anonymous, that is, the input is a multiset as a set of locations which all agent report.

In this paper, we consider that an intersection of multisets retains the highest multi-

plicity of elements in the sets. For example, for points a, b ∈ Ω and a multiset A = {a, b, b},
it holds that A ∩ Ω = {a, b, b}.

Next we review the definition of strategy-proofness and group strategy-proofness of

mechanisms [1, 4, 5].

Definition 1 A mechanism f is strategy-proof (SP for short) if and only if no agent can

benefit from misreporting her location. Formally, given a set N of agents and a location

function χ, for any agent i ∈ N and any location function χ′ such that χ({i}) = χ′({i}), it
holds that

β(f(χ(N)), χ(i)) ≥ β(f(χ′(N)), χ(i)).

Definition 2 A mechanism f is group strategy-proof (GSP for short) if and only if for

any group of agents, at least one agent in the group cannot benefit from misreporting her

location simultaneously with the rest of the group. Formally, given a set N of agents and a

location function χ, for any non-empty set S ⊆ N of agents and for any location function χ′

such that χ(S) = χ′(S), there exists an agent i ∈ S satisfying

β(f(χ(N)), χ(i)) ≥ β(f(χ′(N)), χ(i)).

For a mechanism f : Ωn
agents → Ωfacility, a location y ∈ Ωfacility is called a candidate

if there is a profile χ(N) ∈ Ωn
agents such that f(χ(N)) = y and the set of all candidates

of f is denoted by C(f) ⊆ Ωfacility. A mechanism with |C(f)| = p is called a p-candidate

mechanism.
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2.2 Tree Metric

In this paper, we define a tree metric based on the graph model due to Schummer and

Vohra [10]. We define a graph G to be a closed, connected subset of Euclidean space. The

graph is composed of a finite number of closed curves of finite length, which are called edges.

The extremities and branch points of the curves are called vertices. A path is a minimal

connected subset of G that contains two points x and y as its endpoints. A cycle in G is

defined to be the union of two paths whose intersection is equal to the set of both their

endpoints.

A tree T is defined to be a graph without cycles. A path with two endpoints in a tree

is uniquely determined. For two points x and y in a tree, let P (x, y) denote the path with

two endpoints x and y, and the distance d(x, y) between x and y is defined to be the length

of path P (x, y), and there is a unique point z such that d(x, z) = d(z, y). We call such a

point the middle point of x and y, and denote it by m(x, y). Note that d(x, y) = 0 if and

only if x = y. In this paper, we consider the tree metric (T, d). Let Tagents = T be a set

of points where agents can exist and Tfacility ⊆ T be a set of points where the facility can

be located. Given a mechanism f and a profile χ, the benefit β(f(χ(N)), χ(i)) of an agent

i ∈ N is defined to be the distance d(f(χ(N)), χ(i)) from χ(i) to f(χ(N)).

A rooted tree is a tree such that one vertex of the tree is designated as a root. Let T

be a rooted tree with rooted at a point µ. The parent y of a vertex x is the vertex one

step closer to root r and lying on the same edge and x is called a child of the vertex y.

For a vertex u and a child v of u, let (u, v) denote the edge joining u and v. A vertex x

is called a descendant of a vertex v if v is in path P (µ, x) between the root µ and x. We

define subtrees T [u] and T (e) specified by a vertex u and an edge e as follows. For each

vertex u in T , let T [u] be the set of points z in the subtrees induced from T by v and the

descendants of v, i.e., z is a point on P (v, x) for some descendant x of v in T . For each

edge e = (u, v) in T , let T (e) ⊆ T be the set of points in e and T [v].

We here observe a property on GSP mechanisms in the next lemma.

Lemma 1 Let f be a mechanism in T . Let χ be a location function and c ∈ C(f) be a

candidate such that c = f(χ(N)). If there is a candidate c′ ∈ C(f) such that

d(c, χ(i)) < d(c′, χ(i)) for every agent i ∈ N,

then f is not GSP.

Proof. There is a location function χ′ such that f(χ′(N)) = c′. For the set S = N , any

agent i ∈ S satisfies

β(f(χ(N)), χ(i)) = d(c, χ(i)) < d(c′, χ(i)) = β(f(χ′(N)), χ(i)).

Therefore when the agents in S misreport their locations, all agents in S can benefit, that

is, the mechanism f is not GSP by Definition 2. 2

Definition 3 We call a set C of locations in a tree T a perimetric distribution if |C| = 1

or there is a point µ ∈ T such that d(µ, c) = d(µ, c′) for every two c, c′ ∈ C.

The main result in this paper is the following theorem.
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Theorem 1 Let C ⊆ Tfacility be a set of p ≥ 1 points in a tree T . There is a p-candidate

GSP mechanism such that C(f) = C if and only if C is a perimetric distribution.

In the following two sections, we prove the necessity and sufficiency of Theorem 1,

respectively.

3 Necessity of Theorem 1

This section proves the necessity of Theorem 1. Thus we prove the next.

Lemma 2 Let f be a p-candidate mechanism in a tree metric (T, d) such that C(f) is not

a perimetric distribution. Then f is not GSP.

Let f be a p-candidate mechanism such that C(f) is not a perimetric distribution. Hence

p = |C(f)| ≥ 3 since C(f) with p = |C(f)| ≤ 2 is always a perimetric distribution. Let ca
and cb be a pair of two most distant candidates in C(f). We define point µ = m(ca, cb) and

regard T as a rooted tree by designating µ as the root. We denote r = d(ca, µ) = d(cb, µ).

Define Cr(f) to be the set of candidates which are at distance r from the root µ, i.e.,

Cr(f) = {c ∈ C(f) | d(c, µ) = r},

where |Cr(f)| ≥ |{ca, cb}| = 2. Since C(f) is not a perimetric distribution, it holds C(f) \
Cr(f) ̸= ∅. Let c1 be a candidate such that c1 ∈ C(f) \ Cr(f), where it holds d(µ, c1) <

d(c, µ) for any c ∈ Cr(f). Fig. 1 illustrates how root µ, points in Cr(f) and c1 appear on a

tree T .

For each vertex u in T , let Ch(u) be the set of edges e = (u, v) such that T (e) contains at

least one candidate c ∈ Cr(f), where |Ch(µ)| ≥ 2 by |Cr(f)| ≥ 2. For each edge e ∈ Ch(µ)

at root µ, we introduce a partition T (e) into A(e) and B(e) = T (e) \A(e) such that

A(e) = {u ∈ T (e) | d(u, c1) < d(u, c) for all c ∈ Cr(f) ∩ T (e)},

where B(e) = {u ∈ T (e) | d(u, c1) ≥ d(u, c) for some c ∈ Cr(f) ∩ T (e)}. See Fig. 1 for an

illustration of subsets A(e) and B(e) of T (e) for an edge e ∈ Ch(µ). Note that µ ∈ A(e)

and A(e) \ {µ} ̸= ∅ for each edge e ∈ Ch(µ), since d(µ, c1) < d(µ, c) and m(c1, c) ∈ T (e)

hold for all candidates c ∈ Cr(f) ∩ T (e) with e ∈ Ch(µ).

We here observe a property on the structure of set B(e) of an edge e ∈ Ch(µ).

Lemma 3 Let f be a p-candidate mechanism in a tree metric (T, d) such that p ≥ 3 and

C(f) is not a perimetric distribution, and let µ ∈ T , c1 ∈ C(f) and Cr(f) be defined in

the above. Let χ1 be a location function such that f(χ1(N)) = c1 ∈ C(f) \ Cr(f). If

N(χ1, B(e)) = ∅ for some edge e ∈ Ch(µ), then f is not GSP.

Proof. Assume that there is an edge e ∈ Ch(µ) such that N(χ1, B(e)) = ∅. By definition

of T (e), there is a candidate c in Cr(f) ∩ T (e). To prove that f is not GSP by Lemma 1,

it suffices to show that

d(c1, χ1(i)) < d(c, χ1(i)) for all agents i ∈ N .
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Figure 1: An illustration of root µ, candidate c1 and sets Cr(f), T (e), B(e) and A(e) for

an edge e ∈ Ch(µ) in a tree T .

For each agent i ∈ N(χ1, T (e)), where N(χ1, T (e)) = N(χ1, A(e)) by N(χ1, B(e)) = ∅, we
have

d(c1, χ1(i)) < d(c, χ1(i)).

On the other hand, for each agent i ∈ N \N(χ1, T (e)), it holds that

d(c1, χ1(i)) ≤ d(c1, µ) + d(µ, χ1(i)) (by triangle inequality)

< d(c, µ) + d(µ, χ1(i)) (by c1 ∈ C(f) \ Cr(f))

= d(c, χ1(i)),

as required. 2

Now we are ready to prove Lemma 2.

Proof of Lemma 2. Let χ1 be a location function such that f(χ1(N)) = c1. See Fig. 2(a)

for an illustration of profile χ1(N) and point c1 in tree T rooted at µ. We can assume that

N(χ1, B(e)) ̸= ∅ for each edge e ∈ Ch(µ),

since otherwise f is not GSP by Lemma 3, and we are done. For each edge e ∈ Ch(µ), we

select an arbitrary point te ∈ A(e) \ {µ}. To prove Lemma 2, we introduce two location

functions χk(N), k = 2, 3 by modifying χ1(N).

Let χ2(N) be the profile obtained from χ1(N) by changing the locations of all agents

i ∈ N(χ1, B(e)) to te for each edge e ∈ Ch(µ); i.e.,

For each edge e ∈ Ch(µ) and all agents i ∈ N(χ1, B(e)), let χ2(i) = te ∈ A(e) \ {µ};
and

For all agents i ∈ N \
∪
{N(χ1, B(e)) | e ∈ Ch(µ)}, let χ2(i) = χ1(i).

See Fig. 2(b) for an illustration of the new profile χ2(N). Note that χ2(N) ̸= χ1(N),

because Ch(µ) ̸= ∅ and N(χ1, B(e)) ̸= ∅ for each edge e ∈ Ch(µ) by assumption.

Let c2 = f(χ2(N)), and let e′ = (µ, v) be the edge incident to root µ such that c2 ∈ T (e′).

If e′ ∈ Ch(µ) (i.e., T (e′) ∩ Cr(f) ̸= ∅) and c2 ̸= µ, then we define e2 to be e′. Otherwise

(e′ /∈ Ch(µ) or c2 = µ), we choose an arbitrary edge in Ch(µ) as e2.
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Let χ3(N) be the profile obtained from χ1(N) by changing the locations of all agents

i ∈ N(χ1, B(e)) to te for each edge e ∈ Ch(µ) except e = e2; i.e.,

For each edge e ∈ Ch(µ) \ {e2} and all agents i ∈ N(χ1, B(e)), let χ3(i) = χ2(i) =

te ∈ A(e) \ {µ}; and

For all agents i ∈ N \
∪
{N(χ1, B(e)) | e ∈ Ch(µ) \ {e2}}, let χ3(i) = χ1(i).

See Fig. 2(c) for an illustration of the new profile χ3(N). Observe that profile χ2(N)

is obtained from χ3(N) by changing the locations of all agents i ∈ N(χ1, B(e2)) from

χ3(i) = χ1(i) ∈ B(e2) to χ2(i) = te2 ∈ A(e2) \ {µ}. Note that χ3(N) ̸= χ1(N), because

|Ch(µ)| ≥ 2, Ch(µ) \ {e2} ̸= ∅ and N(χ1, B(e)) ̸= ∅ for each edge e ∈ Ch(µ) \ {e2} ̸= ∅
by assumption. Also χ2(N) ̸= χ3(N), since N(χ1, B(e2)) ̸= ∅ by e2 ∈ Ch(µ), as we have

assumed that N(χ1, B(e)) ̸= ∅ for all edges e ∈ Ch(µ). Let c3 = f(χ3(N)).

To know how location function χk changes into χ3, k = 1, 2, we define the set Nk,3 of

agents whose locations change, i.e., Nk,3 = {i ∈ N | χk(i) ̸= χ3(i)}, and choose a special

agent in Nk,3 as follows.

For k = 1, we see that

N1,3 = {i ∈ N | χ1(i) ̸= χ3(i)} = {N(χ1, B(e)) | e ∈ Ch(µ) \ {e2}} ̸= ∅.

We can assume that there is at least one agent i1,3 ∈ N1,3 such that

d(c3, χ1(i1,3)) ≤ d(c1, χ1(i1,3)), (1)

since otherwise f is not GSP with respect to a group S = N1,3 by Definition 2 and we

are done. Let e1,3 ∈ Ch(µ) be the edge such that χ1(i1,3) ∈ T (e1,3) for agent i1,3 ∈ N1,3.

We show that e1,3 ̸= e2. Since N1,3 =
∪
{N(χ1, B(e)) | e ∈ Ch(µ) \ {e2}}, we obtain

N1,3 ∩N(χ1, T (e2)) = ∅ and in particular agent i1,3 ∈ N1,3 satisfies χ1(i1,3) /∈ T (e2). From

this and χ1(i1,3) ∈ T (e1,3), we have e1,3 ̸= e2.

Let c1,3 be a candidate in T (e1,3) ∩ Cr(f) and m1,3 be the middle point of c1,3 and c1,

i.e., m1,3 = m(c1,3, c1), where m1,3 ∈ T (e1,3) since d(µ, c1) < d(µ, c1,3). See Figs. 2(c) and

3 for illustrations of c1,3, m1,3 and B(e1,3). In profile χ3(N), it holds N(χ3, B(e1,3)) = ∅
by construction of χ3(N) and e1,3 ̸= e2, and we see that point m1,3 is always on path

P (c1,3, χ3(i)) for any agent i ∈ N . Hence

d(c1,3, χ3(i)) = d(c1,3,m1,3) + d(m1,3, χ3(i)) for all i ∈ N . (2)

For k = 2, we see that

N2,3 = {i ∈ N | χ2(i) ̸= χ3(i)} = N(χ1, B(e2)) ̸= ∅.

We can assume that there is at least one agent i2,3 ∈ N2,3 such that

d(c3, χ2(i2,3)) ≤ d(c2, χ2(i2,3)), (3)

since otherwise f is not GSP with respect to a group S = N2,3 by Definition 2 and we are

done.

To prove Lemma 2, we derive the next inequality

d(c1,3, χ3(i)) > d(c3, χ3(i)) for all agents i ∈ N, (4)
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Figure 2: An illustration of profiles: (a) the original profile χ1(N) such that f(χ1(N)) =

c1 /∈ Cr(f), (b) profile χ2(N) obtained from χ1(N) by changing the locations of all agents

i ∈ N(χ1, B(e)) to te for each edge e ∈ Ch(µ), and (c) profile χ3(N) obtained from χ1(N)

by changing the locations of all agents i ∈ N(χ1, B(e)) to te for each edge e ∈ Ch(µ)\{e2}.
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Figure 3: An illustration of points c1,3, m1,3 and the range that c3 exists. The candidate c3
can exist in the gray thick lines.

which implies that f is not GSP by Lemma 1.

To derive Eq. (4), we distinguish two cases: Case a. c3 /∈ B(e1,3); and Case b. c3 ∈
B(e1,3).

Case a. c3 /∈ B(e1,3): See Fig. 3 for an illustration of location χ1(i1,3) in B(e1,3) ⊆ T (e1,3).

Since χ1(i1,3) ∈ B(e1,3), we see from c3 /∈ B(e1,3) that pointm1,3 lies on path P (χ1(i1,3), c3).

Hence

d(c3, χ1(i1,3)) = d(c3,m1,3) + d(m1,3, χ1(i1,3)).

For edge e1,3 ∈ Ch(µ), B(e1,3) = {u ∈ T (e1,3) | d(u, c1) ≥ d(u, c) for some c ∈ Cr(f) ∩
T (e1,3)} by definition. Since no c ∈ Cr(f) satisfies 0 = d(c1, c1) ≥ d(c1, c), we know

c1 /∈ B(e1,3). Then χ1(i1,3) ∈ B(e1,3) and c1 /∈ B(e1,3) imply that point m1,3 lies on path

P (χ1(i1,3), c1). Hence we have

d(c1, χ1(i1,3)) = d(c1,m1,3) + d(m1,3, χ1(i1,3)).

By the above two equations and Eq. (1), we obtain

d(c1,m1,3) ≥ d(c3,m1,3). (5)

We claim that χ3(i) /∈ B(e1,3) for all agents i ∈ N . Every agent i ∈ N(χ1, B(e1,3))

has the location χ3(i) = te1,3 ∈ A(e1,3) \ {µ} in profile χ3(N) by the definition of χ3

and e1,3 ̸= e2. Also every agent i /∈ N(χ1, B(e1,3)) has a location χ3(i) /∈ B(e1,3) by the

definition of χ3. This proves the claim.

By noting that c3 /∈ B(c1,3) in Case a, we see that, for each agent i ∈ N , it holds

χ3(i) /∈ B(e1,3) and thereby path P (χ3(i), c3) does not pass though point m1,3 ∈ B(e1,3).

Hence we have

d(c3, χ3(i)) < d(c3,m1,3) + d(m1,3, χ3(i)). (6)
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Therefore by Eq. (2), for every agent i ∈ N , it holds that

d(c1,3, χ3(i)) = d(c1,3,m1,3) + d(m1,3, χ3(i))

= d(c1,m1,3) + d(m1,3, χ3(i)) (by definition of m1,3)

≥ d(c3,m1,3) + d(m1,3, χ3(i)) (by Eq. (5))

> d(c3, χ3(i)) (by Eq (6)).

Case b. c3 ∈ B(e1,3): To handle this case, we use the next claim, where a proof of it will

be given later.

Claim 1 c3 /∈ Cr(f) \ T (e2).

Fig. 3 illustrates the range where c3 can exist in T .

By e1,3 ̸= e2 and Claim 1, the distance between m1,3 and c1,3 is larger than that between

m1,3 and c3, i.e., it holds that

d(c1,3,m1,3) > d(c3,m1,3). (7)

By Eq (2), for every agent i ∈ N , it holds that

d(c1,3, χ3(i)) = d(c1,3,m1,3) + d(m1,3, χ3(i))

> d(c3,m1,3) + d(m1,3, χ3(i)) (by Eq. (7))

= d(c3, χ3(i)),

as required.

Finally we give a proof of Claim 1.

Proof of Claim 1. To prove the claim, it suffices to show that

d(c3, χ2(i2,3)) < d(c, χ2(i2,3)) for all c ∈ Cr(f) \ T (e2).

Since d(c3, χ2(i2,3)) ≤ d(c2, χ2(i2,3)) by Eq. (3), it futher suffices to prove that

d(c2, χ2(i2,3)) < d(c, χ2(i2,3)) for all c ∈ Cr(f) \ T (e2).

We distinguish two cases: c2 ∈ T (e2) and c2 ̸= µ; and c2 /∈ T (e2) or c2 = µ.

Case 1. c2 ∈ T (e2) and c2 ̸= µ: We first show that µ /∈ P (χ2(i2,3), c2). By the definition of

χ2, for any agent i ∈ N(χ1, B(e2)), χ2(i) = te2 . Then agent i2,3 ∈ N2,3 = N(χ1, B(e2)) has

location χ2(i2,3) = te2 ∈ A(e2) \ {µ}. By assumption of µ ̸= c2 ∈ T (e2) in Case 1, we see

that P (χ2(i2,3), c2) ⊆ T (e2) \ {µ}.
Hence d(c2, χ2(i2,3)) < d(c2, µ)+d(µ, χ2(i2,3)). From this, we see that for any candidate

c ∈ Cr(f) \ T (e2), it holds that

d(c2, χ2(i2,3)) < d(c2, µ) + d(µ, χ2(i2,3))

≤ d(c, µ) + d(µ, χ2(i2,3)) (by c ∈ Cr(f))

= d(c, χ2(i2,3)),
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as required.

Case 2. c2 /∈ T (e2) or c2 = µ: We first show that c2 /∈ Cr(f). When c2 = µ, it holds

c2 = µ /∈ Cr(f) since |Cr(f)| ≥ 2 and |Ch(µ)| ≥ 2. Assume otherwise (i.e., c2 ̸= µ and

c2 /∈ T (e2)). In this case, by the definition of e2, e
′ /∈ Ch(µ) holds for the edge e′ = (µ, v)

with c2 ∈ T (e′). Clearly e′ /∈ Ch(µ) means that c2 /∈ Cr(f).

Hence for any candidate c ∈ Cr(f) \ T (e2), we have

d(c2, χ2(i2,3)) = d(c2, µ) + d(µ, χ2(i2,3))

< d(c, µ) + d(µ, χ2(i2,3)) (by c2 ∈ C(f) \ Cr(f))

= d(c, χ2(i2,3)),

as required. 2

This completes a proof of Lemma 2.

4 Sufficiency of Theorem 1

In this section, we prove the sufficiency of Theorem 1. Let C be a set of points in a tree T

such that C is a perimetric distribution. When |C| = 1, any mechanism f with C(f) = C

outputs a unique facility location for all profiles of agents, and thereby for any agent set S,

all agents in S cannot benefit by misreporting their location. Therefore the mechanism f

is GSP. We consider the case that |C| ≥ 2.

First we design a voting mechanism f with the set C of candidates. Let µ be the middle

point between the most distant two points in C. Since C is a perimetric distribution, for

any c, c′ ∈ C, we have d(µ, c) = d(µ, c′). If a point w ∈ {µ} ∪ C is on an edge (u, v) of T ,

then we regard w as a vertex of T and replace (u, v) with two edges (u,w) and (w, v). We

regard T as a rooted tree by designating µ as the root. For each vertex u, let Ch(u) be the

set of edges e = (u, v) such that there is at least one c ∈ C in T (e).

Figure 4: The voting mechanism f outputs a facility location c∗ such that path

P (µ, c∗) = (u1 = µ, u2, . . . , uq = c∗) satisfies that for each j = 1, 2, . . . , q − 1,

(|N(χ, T ((uj , uj+1)))|, id((uj , uj+1))) ≺ (|N(χ, T (e))|, id(e)) for all edges e ∈ Ch(uj) \
{(uj , uj+1)}.
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Let E denote the set of all edges in the tree T . We define a lexicographical order between

two vectors (a, b) and (a′, b′) so that

(a, b) ≺ (a′, b′)

if a < a′, or a = a′ and b < b′. Given a perimetric distribution C ⊆ T , we define a voting

mechanism f as follows. We introduce an arbitrary total order among all edges in E with

an injective function id : E → N, i.e., for two edges e, e′ ∈ E if e ̸= e′, then id(e) ̸= id(e′).

Given a profile χ(N), we let f output f(χ(N)) = c∗ ∈ C so that path

P (µ, c∗) = (u1 = µ, u2, . . . , uq = c∗)

is formed by choosing each edge ej = (uj , uj+1), j = 1, 2, . . . , q − 1 that satisfies the

lexicographic order:

(|N(χ, T (ej))|, id(ej)) ≺ (|N(χ, T (e))|, id(e)) for all edges e ∈ Ch(uj) \ {ej}.

Fig. 4 illustrates a profile χ(N) in a rooted tree T and its output by the voting mechanism f .

We show the group strategy-proofness of the voting mechanism f via the next lemma.

Lemma 4 Given a perimetric distribution C ⊆ T with |C| ≥ 2, let f be the voting mecha-

nism defined in the above. Let χ be a location function, and (u1 = µ, u2, . . . , uq = f(χ(N)))

be the sequence of vertices on path P (µ, f(χ(N))). Let S ⊆ N be a subset of agents, and χ′

be a location function such that

χ(S) = χ′(S) and

d(f(χ(N)), χ(i)) < d(f(χ′(N)), χ(i)) for all i ∈ S.

If f(χ′(N)) ∈ T [uj ] holds for some j = 1, 2, . . . , q − 1, then we have f(χ′(N)) ∈ T [uj+1].

Proof. We assume that f(χ′(N)) ∈ T [uj ] for some j = 1, 2, . . . , q−1. Since C is a perimet-

ric distribution, it holds that d(f(χ(N)), uj) = d(f(χ′(N)), uj) by uq = f(χ(N)), f(χ′(N)) ∈
T [uj ]. Hence f(χ′(N)) ∈ T ((uj , uj+1)) implies f(χ′(N)) ∈ T [uj+1]. So we assume that

f(χ′(N)) ∈ T [uj ] \ T ((uj , uj+1)) holds to prove the lemma by deriving a contradiction.

Let e = (uj , uj+1), where f(χ(N)) ∈ T (e). Let e′ ∈ Ch(uj) \ {e} be the edge such that

f(χ′(N)) ∈ T (e′).

For every agent i ∈ S, we have

d(f(χ(N)), χ(i)) < d(f(χ′(N)), χ(i)) (by the lemma assumption)

≤ d(f(χ′(N)), uj) + d(uj , χ(i)) (by triangle inequality)

= d(f(χ(N)), uj) + d(uj , χ(i)) (by d(f(χ(N)), uj) = d(f(χ′(N)), uj)).

This means that uj is not on P (χ(i), f(χ(N))) for any agent i ∈ S. Hence

χ(S) ⊆ T (e) \ {uj}. (8)

Here we use the next claim, whose correctness will be given later.

Claim 2 Edges e′ and e satisfy |N(χ′, T (e′))| < |N(χ, T (e′))| or |N(χ′, T (e))| > |N(χ, T (e))|.
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When |N(χ′, T (e′))| < |N(χ, T (e′))| holds, we see that it implies that there is an agent

s ∈ S such that χ′(s) ∈ T \ T (e′) and χ(s) ∈ T (e′) since χ(S) = χ′(S). This, however,

contradicts Eq. (8). On the other hand, |N(χ′, T (e))| > |N(χ, T (e))| implies that there is

an agent s ∈ S such that χ′(s) ∈ T (e) and χ(s) ∈ T \ T (e). This again contradicts Eq. (8).

Proof of Claim 2. Let e1 = e and χ1 = χ, and let e2 = e′ and χ2 = χ′. It suffices to

show that for {k, k′} = {1, 2}, edges ek and ek′ satisfy |N(χk′ , T (ek′))| < |N(χk, T (ek′))| or
|N(χk′ , T (ek))| > |N(χk, T (ek))|. To derive a contradiction, we assume that

|N(χk, T (ek′))| ≤ |N(χk′ , T (ek′))| and
|N(χk′ , T (ek))| ≤ |N(χk, T (ek))|.

(9)

For profile χk(N), mechanism f outputs f(χk(N)) ∈ T (ek), which implies that the lexico-

graphic order

(|N(χk, T (ek))|, id(ek)) ≺ (|N(χk, T (ek′))|, id(ek′)). (10)

In particular, it holds |N(χk, T (ek))| ≤ |N(χk, T (ek′))|. Symmetrically for profile χk′(N),

mechanism f outputs f(χk′(N)) ∈ T (ek′), which implies that

(|N(χk′ , T (ek′))|, id(ek′)) ≺ (|N(χk′ , T (ek))|, id(ek)). (11)

In particular, it holds |N(χk′ , T (ek′))| ≤ |N(χk′ , T (ek))|. From these inequalities and

Eq. (9), we have |N(χk, T (ek))| ≤ |N(χk, T (ek′))| ≤ |N(χk′ , T (ek′))| ≤ |N(χk′ , T (ek))| ≤
|N(χk, T (ek))|, where the four inequalities can hold by equality only. Hence now from

Eqs. (10) and (11), it must hold that id(ek) < id(ek′) and id(ek′) < id(ek), respectively.

This, however, is a contradiction, proving Claim 2.

This completes a proof of Lemma 4. 2

Now we are ready to prove that our voting mechanism is always GSP. Let χ be a

location function and let c∗ = f(χ(N)), and (u1 = µ, u2, . . . , uq = c∗) denote the se-

quence of vertices in path P (µ, c∗), as shown in Fig. 4. Let S ⊆ N be a subset of

agents. To derive a contradiction, we assume that all agents in S benefit by misre-

porting their locations from χ(S) to χ′(S); i.e., let χ′ be a location function such that

χ(S) = χ′(S) and d(f(χ(N)), χ(i)) < d(f(χ′(N)), χ(i)) for all agents i ∈ S. In partic-

ular, it holds f(χ(N)) ̸= d(f(χ′(N)). We show that f(χ′(N)) ∈ T [uq] by an induction

on uj , j = 1, 2, . . . , q. Obviously we have f(χ′(N)) = c∗ ∈ T = T [µ] = T [u1]. Sup-

pose that f(χ′(N)) ∈ T [uj ] for some j = 1, 2, . . . , q − 1. Then by Lemma 4, we have

f(χ′(N)) ∈ T [uj+1]. This means that f(χ′(N)) ∈ T [uq] = T [c∗]. Since C is a perimetric

distribution, we have T [c∗] ∩ C = {c∗}. Hence we have f(χ′(N)) = c∗ = f(χ(N)), a con-

tradiction to f(χ(N)) ̸= d(f(χ′(N)). This completes a proof that the voting mechanism f

is GSP.

5 Concluding Remarks

In this paper, we characterized a possible distribution of candidates (locations of the facility

that can be output) by GSP mechanisms in a tree metric. That is, for a set C of p points

in a tree, there exists a p-candidate GSP mechanism whose output set C(f) is equal to

14



C if and only if C is a perimetric distribution. This explains the non-existence of p ≥ 3-

candidate GSP mechanisms in a line metric (e.g., [5]), because no set C with at least three

points can be a perimetric distribution in a line metric. However, it remains open to show

whether the set C(f) of candidates of an SP mechanism f in a tree metric also needs to

be a perimetric distribution or not. Also it is left as a future work to examine a possible

distribution of candidates of SP or GSP mechanisms in a metric on a more complex graph

or in an Euclidean space.
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