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Abstract: This paper presents the first polynomial-space exact algorithm

for TSP in graphs with degree at most 6. We develop a set of branching rules

to aid the analysis of the branching algorithm, and we use the measure-and-

conquer method to effectively analyze our branching algorithm, and we obtain a

running time of O∗(2.7467n), still advantageous over other known polynomial-

space algorithms for the TSP in general graphs.
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1 Introduction

The Traveling Salesman Problem is one of the most extensively studied problems in com-

binatorial optimization. Beside being a well-known NP-hard combinatorial optimization

problem, it also has great practical importance. Present-day computers have only limited

memory and algorithms which use exponential execution space run out of memory well

before time. For this reason, we limit this exposition to algorithms which require merely

polynomially bounded execution space.

Gurevich and Shelah [3] gave the first polynomial-space exact algorithm for the TSP,

whose running time in a general n-vertex graph is bounded by O∗(4nnlogn) (the O∗ notation

suppresses polynomial factors). This time bound has only recently been improved, but only

for graphs of limited degree. From this viewpoint, let degree-i graph stand for a graph in

which vertices have maximum number of incident edges at most i. For any graph with

maximum degree at most d, the TSP can be solved in O(n(d− 1)n)-time and O(dn)-space

by generating paths from a vertex.

There are a number of studies have been done for the TSP in degree bounded graphs.

The currently fastest polynomial-space algorithms for the TSP in degree-3 and degree-

4 graphs were given by Xiao and Nagamochi [8, 9], running in time O∗(1.2312n) and

O∗(1.692n), respectively. These are the previous studies of the TSP in degree-3 and degree-4

graphs, [1, 4, 5].

To the best of our knowledge, presently the only investigation on the TSP in graphs of

degree up to 5 has been done by Md Yunos et al. [6], giving an O∗(2.4531n)-time algorithm.

1Technical Report 2015-003, June 30, 2015.
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Furthermore, there exist no reports in the literature of exact algorithms specialized to the

TSP in degree-6 graphs. Therefore, this paper presents the first algorithm for the TSP in

degree-6 graphs, and shows that the algorithm runs in O∗(2.7467n)-time.

2 Preliminaries

We consider a generalization of the TSP, named the forced Traveling Salesman Problem.

We defined an instance I = (G,F ) that consists of a simple, edge weighted, undirected

graph G, and a subset F of edges in G, called forced. A vertex is called forced if exactly one

of its incident edges is forced. Similarly, it is called unforced if no forced edge is incident

to it. A Hamiltonian cycle in G is called a tour if it passes through all the forced edges

in F . Under these circumstances, the forced TSP requests to find a minimum cost tour of

an instance (G,F ).

For a graph G, let V (G) (resp., E(G)) denote the set of vertices (resp., the set of edges)

in G. A pair of vertices v and t are called neighbors if v and t are adjacent by an edge vt

in E(G). We denote the set of neighbors of a vertex v by N(v), and denote by d(v) the

cardinality |N(v)| of N(v), also called the degree of v. For a subset of vertices W ⊆ V (G),

let N(v;W ) = N(v) ∩ W . For a subset of edges E′ ⊆ E(G), let NE′(v) = N(v) ∩ {u |
uv ∈ E′}, and let dE′(v) = |NE′(v)|. Analogously, let NE′(v;W ) = NE′(v) ∩ W , and

dE′(v,W ) = |NE′(v,W )|. Also, for a subset E′ of E(G), we denote by G − E′ the graph

(V,E \ E′) obtained from G by removing the edges in E′.

In this paper, we assume that the maximum degree of a vertex in G is at most 6. We

refer to a forced (resp., unforced) vertex of degree i by fi (resp., ui). In this paper, we

assume that the maximum degree of a vertex in G is at most 6. Vertices of degree 1 and

2 are treated as a special cases, and this implies eight types of vertices in an instance of

(G,F ), namely u6, f6, u5, f5, u4, f4, u3 and f3-vertices. For i = 3, 4, 5, 6, let Vfi (resp., Vui)

denote the set of fi-vertices (resp., ui-vertices) in (G,F ).

2.1 Branching Algorithms and Measure-and-Conquer Method

In this paper, we use the same branching algorithm and analysis method as in TSP in

degree-5 graphs [6]. We use a branching algorithm for generating a solution space from

an initial instance and we derive an upper bound on the number of instances generated by

branching operations.

To illustrate the execution of the branching rules, we can represent the solution space

in our branching algorithm as a search tree. The search tree is obtained by assigning the

input instance of a problem as a root node, and recursively assigning a child to a node for

each smaller instance obtained by applying the branching rules. For a single node of the

search tree, the algorithm takes time polynomial in the size of the node instance, which in

turn, is smaller than or equal to the original instance size. Thus, we can conclude that the

running time of the branching algorithm is equal to the number of nodes of the search tree

times a polynomial of the original input instance size.

To aid the time analysis of the branching algorithm, let I be a given instance with size

µ, and let I ′ and I ′′ be instances obtained from I by a branching operation. We use T (µ)

to denote the maximum number of nodes in the search tree of an input of size µ when we
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execute our branching algorithm. Let a and b be the amounts of decrease in size of instances

I ′ and I ′′, respectively; these values directly determine the performance of the algorithm.

Then, we call (a, b) the branching vector of the branching rules, and this implies the linear

recurrence:

T (µ) ≤ T (µ− a) + T (µ− b). (1)

To evaluate the performance of this branching vector, we can use any standard method

for linear recurrence relations. In fact, it is known that T (µ) is of the form O (τµ), where

τ is the unique positive real root of the function f(x) = 1 −
(
x−a + x−b

)
[2]. The value τ

is called the branching factor (of a given branching vector), and the running time of the

algorithm decreases with the value of this branching factor.

To effectively analyze our branching algorithm, we use the measure-and-conquer method.

The basic idea behind this method is to assign a measure to an instance, as opposed to

using simply its size when analyzing the branching vectors of the branching operations. The

reader might refer to the book of Fomin and Kratsch [2] for a solid description of branching

algorithms and the measure-and-conquer method.

For a given problem instance I of size µ, letW (I) be the measure of I. When considering

a branch-and-reduce algorithm for the concerned problem, intuitively we seek for a measure

which satisfies the following properties

(i) W (I) = 0 if and only if I can be solved in polynomial time;

(ii) If I ′ is a sub-instance of I obtained through a reduction or a branching operation,

then W (I ′) ≤ W (I).

We call a measure W satisfying conditions (i) and (ii) above a proper measure.

3 A Polynomial-Space Branching Algorithm

Our algorithm consists of two major steps which are repeated iteratively. In the first step,

the algorithm applies reduction rules until no further reduction is possible. In the second

step, the algorithm applies branching rules in a reduced instance to search for a solution.

3.1 Reduction Rules

Reduction is a process of transforming an instance to a smaller instance. It takes polynomial-

time to construct a solution of an original instance from a solution to a smaller instance

obtained through reduction.

If an instance has no tour, we called it infeasible. Lemma 1 gives two sufficient conditions

for an instance to be infeasible. These two sufficient conditions will be checked when

executing the reduction rules.

Lemma 1 ([6]) If one of the following conditions holds, then the instance (G,F ) is infea-

sible.

(i) d(v) ≤ 1 for some vertex v ∈ V (G).

(ii) dF(v) ≥ 3 for some vertex v ∈ V (G).
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In this paper, we apply two reduction rules as stated in Md Yunos et al. [6, Lemma 2].

The reduction rules as stated in Lemma 2 preserve the minimum cost tour of an instance

and it is applied in each of the branching operation.

Lemma 2 ([6]) Each of the following reductions preserves the feasibility and a minimum

cost tour of an instance (G,F ).

(i) If d(v) = 2 for a vertex v, then add to F any unforced edge incident to vertex v; and

(ii) If d(v) > 2 and dF(v) = 2 for a vertex v, then remove from G any unforced edge

incident to vertex v.

Our reduction algorithm is described in Figure 1. An instance (G,F ) is called reduced

if it does not satisfy any of the conditions in Lemma 1 and Lemma 2.

Input: An instance (G,F ) such that the maximum degree of G is at most 6.

Output: A message for the infeasibility of (G,F ); or a reduced instance (G′, F ′) of (G,F ).

Initialize (G′, F ′) := (G,F );

while (G′, F ′) is not a reduced instance do

If there is a vertex v in (G′, F ′) such that d(v) ≤ 1 or dF ′(v) ≥ 3 then

Return message “Infeasible”

Elseif there is a vertex v in (G′, F ′) such that 2 = d(v) > dF ′(v) then

Let E† be the set of unforced edges incident to all such vertices;

Set F ′ := F ′ ∪ E†

Elseif there is a vertex v in (G′, F ′) such that d(v) > dF ′(v) = 2 then

Let E† be the set of unforced edges incident to all such vertices;

Set G′ := G′ − E†

End while;

Return (G′, F ′).

Figure 1: Algorithm Red(G,F )

3.2 Branching Rules

Our branching algorithm is based on a set of branching rules. The choice of an edge to

branch on plays key role in the analysis of our branching algorithm. To this effect, in

an instance (G,F ), we assign the following priority in choosing an edge e = vt to branch

on. Without loss of generality, let v be a vertex of degree 6 and t its neighbor. For the

choice of a vertex of degree 6, an f6 vertex takes precedence over a u6 vertex. Otherwise,

vertices of smaller degree take precedence over vertices of higher degree, forced vertices over

unforced, and a pair of neighbors vt with a common neighborhood of lower cardinality (or

zero) precede those with more neighbors in common. If such an edge e = vt of highest

priority exists, it is called optimal. Otherwise, there exist no more vertices of degree 6 in

the given instance, and we can make use of an algorithm specialized to TSP instances of

maximum degree up to 5, e.g., the algorithm of Md Yunos et al. [6]. We refer to this priority
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in choosing an edge e = vt to branch on as the branching rules. A list giving the above

priorities is given in Figure 2, where the condition (c-i) with minimum index i is optimal,

over all unforced edge vt in (G,F ).

The collective set of branching rules for conditions c-1 to c-12 is illustrated in Figure 3

and the collective set of branching rules for conditions c-13 to c-19 is illustrated in Figure 4.

When the reduced instance has no more vertex v of degree 6, this means that the

maximum degree of the reduced instance at this point is at most 5. Then, we can call a

polynomial space exact algorithm for the TSP that is specialized for degree-5 graphs. Here,

we call the algorithm specialized for degree-5 graphs by Md Yunos et al. [6]. Details of our

branching algorithm is described in Figure 5.

(c-1) v ∈ Vf6 and t ∈ NU (v;Vf3) such that NU (v) ∩NU (t) = ∅;
(c-2) v ∈ Vf6 and t ∈ NU (v;Vf3) such that NU (v) ∩NU (t) ̸= ∅;
(c-3) v ∈ Vf6 and t ∈ NU (v;Vu3);

(c-4) v ∈ Vf6 and t ∈ NU (v;Vf4) such that NU (v) ∩NU (t) = ∅;
(c-5) v ∈ Vf6 and t ∈ NU (v;Vf4) such that NU (v) ∩NU (t) ̸= ∅;

(I) |NU (v) ∩NU (t)| = 1; and

(II) |NU (v) ∩NU (t)| = 2;

(c-6) v ∈ Vf6 and t ∈ NU (v;Vu4);

(c-7) v ∈ Vf6 and t ∈ NU (v;Vf5) such that NU (v) ∩NU (t) = ∅;
(c-8) v ∈ Vf6 and t ∈ NU (v;Vf5) such that NU (v) ∩NU (t) ̸= ∅;

(I) |NU (v) ∩NU (t)| = 1;

(II) |NU (v) ∩NU (t)| = 2; and

(III) |NU (v) ∩NU (t)| = 3;

(c-9) v ∈ Vf6 and t ∈ NU (v;Vu5);

(c-10) v ∈ Vf6 and t ∈ NU (v;Vf6) such that NU (v) ∩NU (t) = ∅;
(c-11) v ∈ Vf6 and t ∈ NU (v;Vf6) such that NU (v) ∩NU (t) ̸= ∅;

(I) |NU (v) ∩NU (t)| = 1;

(II) |NU (v) ∩NU (t)| = 2;

(III) |NU (v) ∩NU (t)| = 3; and

(IV) |NU (v) ∩NU (t)| = 4;

(c-12) v ∈ Vf6 and t ∈ NU (v;Vu6);

(c-13) v ∈ Vu6 and t ∈ NU (v;Vf3);

(c-14) v ∈ Vu6 and t ∈ NU (v;Vu3);

(c-15) v ∈ Vu6 and t ∈ NU (v;Vf4);

(c-16) v ∈ Vu6 and t ∈ NU (v;Vu4);

(c-17) v ∈ Vu6 and t ∈ NU (v;Vf5);

(c-18) v ∈ Vu6 and t ∈ NU (v;Vu5); and

(c-19) v ∈ Vu6 and t ∈ NU (v;Vu6).

Figure 2: Preferences Conditions
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: unforced edges : forced edges
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Figure 3: Illustration of the Branching Rules Around f6-vertices
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: unforced edges : forced edges
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Figure 4: Illustration of the Branching Rules around u6-vertices

Input: An instance (G,F ) such that the maximum degree of G is at most 6.

Output: The minimum cost of a tour of (G,F ); or a message for the infeasibility of (G,F ).

Run Red(G,F );

If Red(G′, F ′) returns message “Infeasible” then

Return message “Infeasible”

Else

Let (G′, F ′) := Red(G,F );

If Vu6 ∪ Vf6 ̸= ∅ then

Choose an optimal unforced edge e

Return min{tsp6(G′, F ′ ∪ {e}), tsp6(G′ − {e}, F ′)}

Else /* there is no vertex of degree 6 in (G′, F ′) */

Return tsp5(G′, F ′).

Note: The input and output of algorithm tsp5(G,F ) are as follows

Input: An instance (G,F ) such that the maximum degree of G is at most 5.

Output: The minimum cost of a tour of (G,F ); or a message for the infeasibility of (G,F ).

Figure 5: Algorithm tsp6(G,F )
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4 Analysis

4.1 Main Result

Let the vertex weight function ω(v) be chosen as follows:

ω(v) =



w6 = 1 for a u6-vertex v

w6′ = 0.532091 for an f6-vertex v

w5 = 0.458479 for a u5-vertex v

w5′ = 0.220838 for an f5-vertex v

w4 = 0.333150 for a u4-vertex v

w4′ = 0.147225 for an f4-vertex v

w3 = 0.155400 for a u3-vertex v

w3′ = 0.073612 for an f3-vertex v

0 otherwise

(2)

Lemma 3 If the vertex weight function ω(v) is set as in Eq. (2), then each branching

operation in Figure 5 has a branching factor not greater than 2.746706.

A proof of Lemma 3 will be derived analytically in the several subsections which follow.

Form the Lemma, we get our main result as stated in Theorem 1

Theorem 1 The TSP in a degree-6 graph can be solved in O∗(2.7467n)-time and polyno-

mial space.

4.2 Weight Constraints

For i = {3, 4, 5}, we denote wi to be the weight of a ui-vertex, and wi′ to be the weight of

an fi-vertex. The conditions for a proper measure require that the measure of an instance

obtained through a branching or a reduction operation will not be greater than the measure

of the original instance. Thus, the vertex weight for vertices of degree less than 3 is set to

be 0, and other vertex weights should satisfy the following relations:

w6 ≤ 1, (3)

w6′ ≤ w6, (4)

w5′ ≤ w5, (5)

w4′ ≤ w4, (6)

w3′ ≤ w3, (7)

w3 ≤ w4 ≤ w5 ≤ w6, and (8)

w3′ ≤ w4′ ≤ w5′ ≤ w6′ . (9)

As a result of the reduction and branching operations, the degree of some vertices will

decrease, while the degree of other vertices will remain unchanged. A forced edge will never

disappear, neither by the reduction nor branching operations. The other way round goes

to an unforced edge where it may be erased or become forced by either of the reduction
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or branching operation. Thus, the measure of an instance obtained through a reduction

or branching operation will not be greater than the measure of the original instance. By

setting vertex weights which satisfy the conditions of Eqs. (4) to (9) is sufficient to obtain

a proper measure, and Lemma 4 has been proved in [6, Lemma 4].

Lemma 4 If the weights of vertices are chosen as in Eqs. (4) to (9), then the measure

W (I) never increases as a result of the reduction or the branching operations of Figure 1

and Figure 5.

To simplify some arguments, we introduce the following notation:

∆3 = w3 − w3′ , (10)

∆4 = w4 − w4′ , (11)

∆5 = w5 − w5′ , (12)

∆6 = w6 − w6′ , (13)

∆4−3 = w4 − w3, (14)

∆5−4 = w5 − w4, (15)

∆5−3 = w5 − w3, (16)

∆6−5 = w6 − w5, (17)

∆6−4 = w6 − w4, (18)

∆′
4−3 = w4′ − w3′ , (19)

∆′
5−4 = w5′ − w4′ , (20)

∆′
5−3 = w5′ − w3′ , (21)

∆′
6−5 = w6′ − w5′ , and (22)

∆′
6−4 = w6′ − w4′ . (23)

The differences between each of Eq. (10) to Eq. (23) cannot be less than 0.

To simplify the list of our branching vectors, we use the following notation:

m1 = min
{
w3′ , w3, ∆

′
4−3, ∆4−3, ∆

′
5−4, ∆5−4, ∆

′
6−5, ∆6−5

}
, (24)

m2 = min{w3, ∆
′
4−3, ∆4−3, ∆

′
5−4, ∆5−4, ∆

′
6−5, ∆6−5}, (25)

m3 = min{w3′ , ∆3, w4′ , ∆4, w5′ , ∆5, w6′ , ∆6}, (26)

m4 = min{∆′
4−3, ∆4−3, ∆

′
5−4, ∆5−4, ∆

′
6−5, ∆6−5}, (27)

m5 = min{w4′ , w4, ∆
′
5−3, ∆5−3, ∆

′
6−4, ∆6−4}, (28)

m6 = min{∆4−3,∆
′
5−4,∆5−4,∆

′
6−5,∆6−5}, (29)

m7 = min{∆′
5−4, ∆5−4, ∆

′
6−5, ∆6−5}, (30)

m8 = min{∆′
5−3, ∆5−3, ∆

′
6−4, ∆6−4}, (31)

m9 = min{∆5−4, ∆
′
6−5, ∆6−5}, (32)

m10 = min{∆′
6−5, ∆6−5}, (33)

m11 = min{∆′
6−4, ∆6−4}, (34)

m12 = min{w3′ , ∆3, w4′ , ∆4, w5′ , ∆5, ∆6}, and (35)

m13 = min{w3′ , w3, ∆
′
4−3, ∆4−3, ∆

′
5−4, ∆5−4, ∆6−5}. (36)
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In the remainder of the analysis, for an optimal edge e = vt1, we refer to NU (v) by

{t1, t2, . . . , ta}, a = dU (v), and to NU (t1)\{v} by {ta+1, ta+1, . . . , ta+b}, b = dU (t1)−1. We

assume without loss of generality that t1+i = ta+i for i = 1, 2, . . . , c, where c = |NU (v) ∩
NU (t1)|, the number of good neighbors that v and t1 have in common.

If there exists an f3-vertex ta+i \ {t1} in NU (t1), let x = NU (ta+i). We see that the

choice of vertex x is unique, because ta+i is of type f3. This vertex x will be included in the

analysis since it is also involved in the branching operation and reduction rules as shown

in Figure 6.

: forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

(a) force(e)

x

ta+i

e

t1

(b) delete(e)

x

e

ta+i

t1

Figure 6: Illustration of forced and deleted edge by branching operation and reduction rules

for f3 vertex.

4.3 Branching on Edges Around f6-vertices

We will show how we derive the branching vectors for branchings on an optimal edge e = vt,

incident to a vertex of degree 6. The way we analyze the branching vectors is the same as

the method used in TSP in degree-5 graphs by Md Yunos et al. [6]. For this section, there

are 12 cases for branching on edges around f6-vertices (c-1 to c-12) in deriving branching

vectors for branchings on an optimal edge e = vt, incident to an f6-vertex v.

Case c-1. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vf3) such that NU (v) ∩NU (t1) = ∅
(see Figure 7): We branch on edge vt1. Note that NU (t1) \ {v} = {t6}.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching opera-

tion, and edges vt2, vt3, vt4, vt5 and t1t6 will be deleted from G′ by the reduction rules.

Both v and t1 will become vertices of degree 2. From Eq. (2), the weight of vertices of

degree 2 is 0. Hence, the weight of vertex v decreases by w5′ and the weight of ver-

tex t1 decreases by w3′ . Each of the vertices t2, t3, t4 and t5 can be either a type

f3, u3, f4, u4, f5, or u5-vertex, and each of their weights would decrease by at least

m1 = min
{
w3′ , w3,∆

′
4−3,∆4−3,∆

′
5−4,∆5−4,∆

′
6−5,∆6−5

}
.

There are two sub-cases for the vertex type of vertex t6. First, if vertex t6 is an f3-vertex
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(a) force(vt1) in c-1

v

t1

t2 t3
t4

e

t5

t6

(b) delete(vt1) in c-1

v

t1

t2 t3
t4

e

t5

t6

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 7: Illustration of branching rule c-1, where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf3) such

that NU (v) ∩NU (t1) = ∅.

(see Figure 6), then the weight of vertex t6 decreases by w3′ . If vertex x is an f3-vertex

(resp., u3, f4, u4, f5, u5, f6 or a u6-vertex), then the weight decrease β2 of vertex x would

be w3′ (resp., ∆3, w4′ , ∆4, w5′ , ∆5, w6′ , and ∆6). Thus the total weight decrease for the

first sub-case in the branch of force(vt1) is at least (w6′ + w3′ + 4m1 + w3′ + β2).

Second, if vertex t6 is a u3-vertex (resp., f4, u4, f5, u5, f6 or a u6-vertex), then the

weight decrease α1 of vertex t6 would be w3 (resp., ∆′
4−3, ∆4−3, ∆

′
5−4, ∆5−4, ∆

′
6−5, and

∆6−5). Thus, the total weight decrease for the second sub-case in the branch of force(vt1)

is at least (w6′ + w3′ + 4m1 + α1).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching oper-

ation, and edge t1t6 will be added to F ′ by the reduction rules. The weight of vertex v

decreases by ∆′
6−5 and the weight of vertex t1 decreases by w3′ .

First, if vertex t6 is an f3-vertex, then the weight of vertex t6 decreases by w3′ . If vertex x

is an f3-vertex (resp., u3, f4, u4, f5, u5, f6 or a u6-vertex), then the weight decrease α2

of vertex x would be w3′ (resp., w3, ∆
′
4−3, ∆4−3, ∆

′
5−4, ∆5−4, ∆

′
6−5, and ∆6−5). Thus,

the total weight decrease for the first sub-case in the branch of delete(vt1) is at least

(w6′ − w5′ + w3′ + w3′ + α2).

Second, if vertex t6 is a u3-vertex (resp., f4, u4, f5, u5, f6 or a u6-vertex), then the

weight decrease β1 of vertex t6 would be ∆3 (resp., w4′ , ∆4, w5′ , ∆5, w6′ , and ∆6). Thus,

the total weight decrease for the second sub-case in the branch of delete(vt1) is at least

(w6′ − w5′ + w3′ + β1).

As a result, we get the following eight branching vectors in the first sub-case, and seven

branching vectors in the second sub-case, respectively:

(w6′ + w3′ + 4m1 + w3′ + β2, w6′ − w5′ + w3′ + w3′ + α2) (37)

(w6′ + w3′ + 4m1 + α1, w6′ − w5′ + w3′ + β1) (38)

for (α1, β1) ∈ {(w3,∆3), (∆′
4−3, w4′), (∆4−3,∆4), (∆′

5−4, w5′), (∆5−4,∆5), (∆′
6−5, w6′),

(∆6−5,∆6)}, and (β2, α2) ∈ {(w3′ , w3′), (∆3, w3), (w4′ ,∆
′
4−3), (∆4,∆4−3), (w5′ ,∆

′
5−4),
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(∆5,∆5−4), (w6′ ,∆
′
6−5), (∆6,∆6−5)}.

Case c-2. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vf3) such that NU (v) ∩NU (t1) ̸= ∅
(see Figure 8): We branch on edge vt1.

(a) force(vt1) in c-2

v

t1

t2 t3
t4

e

t5

(b) delete(vt1) in c-2

v

t1

t2 t3
t4

e

t5

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 8: Illustration of branching rule c-2, where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf3) such

that NU (v) ∩NU (t1) ̸= ∅.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5 and t1t2 will be deleted from G′ by the reduction rules. Hence,

the weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases by w3′ . Each of

the vertices t3, t4 and t5 can be either a type f3, u3, f4, u4, f5, or u5-vertex, and each of their

weights would decrease by at leastm1 = min
{
w3′ , w3,∆

′
4−3,∆4−3,∆

′
5−4,∆5−4,∆

′
6−5,∆6−5

}
.

There are two possible cases for the vertex type of vertex t2. First, let t2 be an f3 or

u3-vertex. After performing the branching operation, t2 would become a vertex of degree 1.

By Lemma case (i), this is infeasible, and the algorithm will return a message of infeasibility.

Second, let t2 be an f4, u4, f5, or u5-vertex. If t2 is an f4-vertex (resp., u4, f5, u5, f6, or

a u6-vertex), then the weight decrease α of vertex t2 would be w4′ (resp., w4, ∆
′
5−3, ∆5−3,

∆′
6−4, and ∆6−4). Thus, the total weight decrease in the branch of force(vt1) is at least

(w6′ + w3′ + 3m1 + α).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-

eration, and edge t1t2 will be added to F ′ by the reduction rules. Hence, the weights of

vertices v and t1 decrease by ∆′
6−5 and w3′ , respectively. If vertex t2 is an f4-vertex (resp.,

u4, f5, u5, f6, or a u6-vertex), then the weight decrease β of vertex t2 would be w4′ (resp.,

∆4, w5′ , ∆5, w6′ , and ∆6). Thus, the total weight decrease in the branch of delete(vt1) is

at least (w6′ − w5′ + w3′ + β).

As a result, we get the following six branching vectors:

(w6′ + w3′ + 3m1 + α, w6′ − w5′ + w3′ + β) (39)
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for (α, β) ∈ {(w4′ , w4′), (w4,∆4), (∆
′
5−3, w5′), (∆5−3,∆5), (∆

′
6−4, w6′), (∆6−4,∆6)}.

Case c-3. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vu3) (see Figure 9): We branch on

edge vt1. Note that NU (t1) \ {v} = {t6, t7}.

(a) force(vt1) in c-3

v

t1

t6 t7

t2 t3
t4

e

t5

(b) delete(vt1) in c-3

v

t1

t6 t7

t2 t3
t4

e

t5

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 9: Illustration of branching rule c-3, where vertex v ∈ Vf6 and t1 ∈ NU (v;Vu3).

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4 and vt5 will be deleted from G′ by the reduction rules. Hence, the

weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases by ∆3. Each of

vertices t2, t3, t4 and t5 can be a type u3, f4, u4, f5, u5, f6, or u6-vertex, and each of their

weights decrease by at least m2 = min{w3,∆
′
4−3,∆4−3,∆

′
5−4,∆5−4,∆

′
6−5,∆6−5}. Thus,

the total weight decrease in the branch of force(vt1) is at least (w6′ + w3 − w3′ + 4m2).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching opera-

tion. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1 decreases

by w3. Each of vertices t6 and t7 can be a type f3, u3, f4, u4, f5, u5, f6, or u6-vertex, and each

of their weights decrease by at least m3 = min{w3′ ,∆3, w4′ ,∆4, w5′ ,∆5, w6′ ,∆6}. Thus, the
total weight decrease in the branch of delete(vt1) is at least (w6′ = w5′ + w3 + 2m3).

Then, we get the following branching vector:

(w6′ + w3 − w3′ + 4m2, w6′ = w5′ + w3 + 2m3) . (40)

Case c-4. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vf4) such that NU (v) ∩NU (t1) = ∅
(see Figure 10): We branch on edge vt1. Note that NU (t1) \ {v} = {t6, t7}.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation, and

edges vt2, vt3, vt4 and vt5 will be deleted from G′ by the reduction rules. Hence, the weight

of vertex v decreases by w6′ , and the weight of vertex t1 decreases by w4′ . Each of vertices

t2, t3, t4 and t5 can be a type f4, u4, f5, u5, f6, or u6-vertex, and each of their weights

decrease by at least m4 = min{∆′
4−3,∆4−3,∆

′
5−4,∆5−4,∆

′
6−5,∆6−5}. Each of vertices t6
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(a) force(vt1) in c-4

v

t1

t6 t7

t2 t3
t4

e

t5

(b) delete(vt1) in c-4

v

t1

t6 t7

t2 t3
t4

e

t5

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 10: Illustration of branching rule c-4, where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf4) such

that NU (v) ∩NU (t1) = ∅.

and t7 can be either a type f3, u3, f4, u4, f5, u5, f6, or u6-vertex, and each of their weights

would decrease by at least m1 = min{w3′ , w3,∆
′
4−3,∆4−3,∆

′
5−4,∆5−4,∆

′
6−5,∆6−5}. Thus,

the total weight decrease in the branch of force(vt1) is at least (w6′ + w4′ + 4m4 + 2m1).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-

eration. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1

decreases by ∆′
4−3. Thus, the total weight decrease in the branch of delete(vt1) is at least

(w6′ − w5′ + w4′ − w3′).

Then, we get the following branching vector:

(w6′ + w4′ + 4m4 + 2m1, w6′ − w5′ + w4′ − w3′) . (41)

Case c-5. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vf4) such that NU (v) ∩NU (t1) ̸= ∅.
We distinguish two sub-cases, according to the cardinality of the intersection NU (v) ∩
NU (t1), (c-5(I)), |NU (v) ∩NU (t1)| = 1, and (c-5(II)), |NU (v) ∩NU (t1)| = 2.

c-5(I). Without loss of generality, assume that NU (v)∩NU (t1) = {t2} (see Figure 11):

We branch on edge vt1. Note that NU (t1) \ {v} = {t6}.

In the branch force(vt1), edge vt1 will be added to F ′ by the branching operation, and

edges vt2, vt3, vt4, vt5, t1t2, t1t6 and t1t7 will be deleted from G′ by the reduction rules.

Hence, the weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases by w4′ .

Vertex t2 and t3 can be either a type f4, u4, f5, u5, f6, or u6-vertex, and its weight would

decreases by at least m5 = min{w4′ , w4,∆
′5− 3,∆5−3,∆

′
6−4,∆6−4}. Each of vertices t3,

t4 and t5 can be either a type f4, u4, f5, u5, f6, or u6-vertex, and each of their weights

would decrease by at least m4 = min{∆′
4−3,∆4−3,∆

′5− 4,∆5−4,∆
′
6−5,∆6−5}. Vertex t6

can be either a type f3, u3, f4, u4, f5, u5, f6, or u6-vertex, and its weight would decreases by

at least m1 = min{w3′ , w3,∆
′
4−3,∆4−3,∆

′
5−4,∆5−4,∆

′
6−5,∆6−5}. Thus, the total weight

decrease in the branch of force(vt1) is at least (w6′ + w4′ +m5 + 3m4 +m1).
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(a) force(vt1) in c-5(I)

v

t1

t6

t2 t3
t4

e

t5

(b) delete(vt1) in c-5(I)

v

t1

t6

t2 t3
t4

e

t5

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 11: Illustration of branching rule c-5(I), where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf4)

such that NU (v) ∩NU (t1) = {t2}.

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-

eration. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1

decreases by ∆′
4−3. Thus, the total weight decrease in the branch of delete(vt1) is at least

(w6′ − w5′ + w4′ − w3′).

Then, we get the following branching vector:

(w6′ + w4′ +m5 + 3m4 +m1, w6′ − w5′ + w4′ − w3′) (42)

c-5(II). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3} (see Fig-

ure 12): We branch on edge vt1.

In the branch force(vt1), edge vt1 will be added to F ′ by the branching operation, and

edges vt2, vt3, vt4, vt5, t1t2 and t1t3 will be deleted from G′ by the reduction rules. Hence,

the weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases by w4′ . Each

of vertices t2 and t3 can be either a type f4, u4, f5, u5, f6, or u6-vertex, and each of their

weights would decrease by at least m5 = min{w4′ , w4,∆
′5− 3,∆5−3,∆

′
6−4,∆6−4}. Each of

vertices t4 and t5 can be either a type f4, u4, f5, u5, f6, or u6-vertex, and each of their weights

would decrease by at least m4 = min{∆′
4−3,∆4−3,∆

′5− 4,∆5−4,∆
′
6−5,∆6−5}. Thus, the

total weight decrease in the branch of force(vt1) is at least (w6′ + w4′ + 2m5 + 2m4).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-

eration. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1

decreases by ∆′
4−3. Thus, the total weight decrease in the branch of delete(vt1) is at least

(w6′ − w5′ + w4′ − w3′).

Then, we get the following branching vector:

(w6′ + w4′ + 2m5 + 2m4, w6′ − w5′ + w4′ − w3′) (43)
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(a) force(vt1) in c-5(II)

v

t1

t2 t3
t4

e

t5

(b) delete(vt1) in c-5(II)

v

t1

t2 t3
t4

e

t5

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 12: Illustration of branching rule c-5(II), where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf4)

such that NU (v) ∩NU (t1) = {t2, t3}.

Case c-6. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vu4) (see Figure 13: We branch on

edge vt1. Note that NU (t1) \ {v} = {t6, t7, t8}.

(a) force(vt1) in c-6

t8

v

t1

t6 t7

t2 t3
t4

e

t5

(b) delete(vt1) in c-6

t8

v

t1

t6 t7

t2 t3
t4

e

t5

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 13: Illustration of branching rule c-6, where vertex v ∈ Vf6 and t1 ∈ NU (v;Vu4).

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4 and vt5 will be deleted from G′ by the reduction rules. Hence, the

weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases by ∆4. Each of

vertices t2, t3, t4 and t5 can be a type u4, f5, u5, f6, or u6-vertex, and each of their weights
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decrease by m6 = min{∆4−3,∆
′
5−4,∆5−4,∆

′
6−5,∆6−5}. Thus, the total weight decrease in

the branch of force(vt1) is at least (w6′ + w4 − w4′ + 4m6).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-

eration. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1

decreases by ∆4−3. Thus, the total weight decrease in the branch of delete(vt1) is at least

(w6′ − w5′ + w4 − w3).

Then, we get the following branching vector:

(w6′ + w4 − w4′ + 4m6, w6′ − w5′ + w4 − w3) . (44)

Case c-7. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vf5) such that NU (v) ∩NU (t1) = ∅
(see Figure 14): We branch on edge vt1. Note that NU (t1) \ {v} = {t6, t7, t8}.

(a) force(vt1) in c-7

v

t1

t2 t3
t4

e

t5

t8t6 t7

(b) delete(vt1) in c-7

v

t1

t2 t3
t4

e

t5

t8t6 t7

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 14: Illustration of branching rule c-7, where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf5) such

that NU (v) ∩NU (t1) = ∅.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, t1t6, t1t7 and t1t8 will be deleted from G′ by the reduction

rules. Hence, the weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases

by w5′ . Each of vertices t2, t3, t4 and t5 can be a type f5, u5, f6, or u6-vertex, and each of

their weight decrease by m7 = min{∆′
5−4,∆5−4,∆

′
6−5,∆6−5}. Each of vertices t6, t7 and

t8 can be either a type f3, u3, f4, u4, f5, u5, f6, or u6-vertex, and each of their weights

would decrease by at least m1 = min{w3′ , w3,∆
′
4−3,∆4−3,∆

′
5−4,∆5−4,∆

′
6−5,∆6−5}. Thus,

the total weight decrease in the branch of force(vt1) is at least (w6′ + w5′ + 4m7 + 3m1).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching opera-

tion. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1 decreases

by ∆′
5−4. Thus, the total weight decrease in the branch of delete(vt1) is at least (w6′−w4′).

Then, we get the following branching vector:

(w6′ + w5′ + 4m7 + 3m1, w6′ − w4′) . (45)
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Case c-8. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vf5) such that NU (v) ∩NU (t1) ̸= ∅.
We distinguish three sub-cases, according to the cardinality of the intersection NU (v) ∩
NU (t1), (c-8(I)), |NU (v) ∩NU (t1)| = 1, (c-8(II)), |NU (v) ∩NU (t1)| = 2, and (c-8(III)),

|NU (v) ∩NU (t1)| = 3.

c-8(I). Without loss of generality, assume that NU (v)∩NU (t1) = {t2} (see Figure 15):

We branch on edge vt1. Note that NU (t1) \ {v} = {t6, t7}.

(a) force(vt1) in c-8(I)

v

t1

t6 t7

t2 t3
t4

e

t5

(b) delete(vt1) in c-8(I)

v

t1

t6 t7

t2 t3
t4

e

t5

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 15: Illustration of branching rule c-8(I), where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf5)

such that NU (v) ∩NU (t1) = {t2}.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, t1t2, t1t6 and t1t7 will be deleted from G′ by the reduction rules.

Hence, the weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases by

w5′ . Vertex t2 can be either a type f5, u5, f6, or u6-vertex, and its weight would decreases

by at least m8 = min{∆′
5−3,∆5−3,∆

′
6−4,∆6−4}. Each of vertices t3, t4 and t5 can be

either a type f5, u5, f6, or u6-vertex, and each of their weights would decrease by at least

m7 = min{∆′
5−4,∆5−4,∆

′
6−5,∆6−5}. Each of vertices t6 and t7 can be either a type f3,

u3, f4, u4, f5, u5, f6, or u6-vertex, and each of their weights would decrease by at least

m1 = min{w3′ , w3,∆
′
4−3,∆4−3,∆

′
5−4,∆5−4,∆

′
6−5,∆6−5}. Thus, the total weight decrease

in the branch of force(vt1) is at least (w6′ + w5′ + 2m8 + 2m7 +m1).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching opera-

tion. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1 decreases

by ∆′
5−4. Thus, the total weight decrease in the branch of delete(vt1) is at least (w6′−w4′).

Then, we get the following branching vector:

(w6′ + w5′ +m8 + 3m7 + 2m1, w6′ − w4′) . (46)

c-8(II). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3} (see Fig-

ure 16): We branch on edge vt1. Note that NU (t1) \ {v} = {t6}.
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(a) force(vt1) in c-8(II)

v

t1

t6

t2 t3
t4

e

t5

(b) delete(vt1) in c-8(II)

v

t1

t6

t2 t3
t4

e

t5

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 16: Illustration of branching rule c-8(II), where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf5)

such that NU (v) ∩NU (t1) = {t2, t3}.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, t1t2, t1t3 and t1t6 will be deleted from G′ by the reduction

rules. Hence, the weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases

by w5′ . Each of vertices t2 and t3 can be either a type f5, u5, f6, or u6-vertex, and each

of their weights would decrease by at least m8 = min{∆′
5−3,∆5−3,∆

′
6−4,∆6−4}. Each of

vertices t4 and t5 can be either a type f5, u5, f6, or u6-vertex, and each of their weights

would decrease by at least m7 = min{∆′
5−4,∆5−4,∆

′
6−5,∆6−5}. Vertex t6 can be either

a type f3, u3, f4, u4, f5, u5, f6, or u6-vertex, and its weight would decreases by at least

m1 = min{w3′ , w3,∆
′
4−3,∆4−3,∆

′
5−4,∆5−4,∆

′
6−5,∆6−5}. Thus, the total weight decrease

in the branch of force(vt1) is at least (w6′ + w5′ + 2m8 + 2m7 +m1).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching opera-

tion. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1 decreases

by ∆′
5−4. Thus, the total weight decrease in the branch of delete(vt1) is at least (w6′−w4′).

Then, we get the following branching vector:

(w6′ + w5′ + 2m8 + 2m7 +m1, w6′ − w4′) . (47)

c-8(III). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3, t4} (see

Figure 17): We branch on edge vt1.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, t1t2, t1t3 and t1t4 will be deleted from G′ by the reduction

rules. Hence, the weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases

by w5′ . Each of vertices t2, t3 and t4 can be either a type f5, u5, f6, or u6-vertex, and each

of their weights would decrease by at least m8 = min{∆′
5−3,∆5−3,∆

′
6−4,∆6−4}. Vertex t5
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(a) force(vt1) in c-8(III)

v

t1

t2 t3
t4

e

t5

(b) delete(vt1) in c-8(III)

v

t1

t2 t3
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e
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: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 17: Illustration of branching rule c-8(III), where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf5)

such that NU (v) ∩NU (t1) = {t2, t3, t4}.

can be either a type f5, u5, f6, or u6-vertex, and its weight would decreases by at least

m7 = min{∆′
5−4,∆5−4,∆

′
6−5,∆6−5}. Thus, the total weight decrease in the branch of

force(vt1) is at least (w6′ + w5′ + 3m8 +m7).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching opera-

tion. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1 decreases

by ∆′
5−4. Thus, the total weight decrease in the branch of delete(vt1) is at least (w6′−w4′).

Then, we get the following branching vector:

(w6′ + w5′ + 3m8 +m7, w6′ − w4′) . (48)

Case c-9. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vu5) (see Figure 18): We branch on

edge vt1. Note that NU (t1) \ {v} = {t6, t7, t8, t9}.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4 and vt5 will be deleted from G′ by the reduction rules. Hence, the

weight of vertex v decreases by w6′ , and the weight of vertex t1 decreases by ∆5. Each

of vertices t2, t3, t4 and t5 can be a type u5, f6, or u6-vertex, and each of their weights

decrease by m9 = min{∆5−4,∆
′
6−5,∆6−5}. Thus, the total weight decrease in the branch

of force(vt1) is at least (w6′ + w5 − w5′ + 4m9).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-

eration. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1

decreases by ∆5−4. Thus, the total weight decrease in the branch of delete(vt1) is at least

(w6′ − w5′ + w5 − w4).

Then, we get the following branching vector:

(w6′ + w3 − w5′ + 4m9, w6′ − w5′ + w5 − w4) . (49)
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(a) force(vt1) in c-9

t8

v

t1

t6 t7
t9

t2 t3
t4

e

t5

(b) delete(vt1) in c-9
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e
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: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 18: Illustration of branching rule c-9, where vertex v ∈ Vf6 and t1 ∈ NU (v;Vu5).

Case c-10. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vf6) such that NU (v)∩NU (t1) = ∅
(see Figure 19): We branch on edge vt1. Note that NU (t1) \ {v} = {t6, t7, t8, t9}.

(a) force(vt1) in c-10

t8

v

t1

t6 t7
t9

t2 t3
t4

e

t5

(b) delete(vt1) in c-10

t8

v

t1

t6 t7
t9

t2 t3
t4

e

t5

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 19: Illustration of branching rule c-10, where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf6)

such that NU (v) ∩NU (t1) = ∅.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, t1t6, t1t7, t1t8 and t1t9 will be deleted from G′ by the reduction

rules. Hence, both weight of vertex v and vertex t1 decreases by w6′ , each. Each of vertices

t2, t3, t4, t5, t6, t7, t8 and t9 can be either a type f6, or u6-vertex, and each of their weights

would decrease by at least m10 = min{∆′
6−5,∆6−5}. Thus, the total weight decrease in the
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branch of force(vt1) is at least (w6′ + 8m10).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching oper-

ation. Hence, both weight of vertex v and vertex t1 decreases by ∆′
6−5. Thus, the total

weight decrease in the branch of delete(vt1) is at least (2w6′ − 2w5′).

Then, we get the following branching vector:

(w6′ + 8m10, 2w6′ − 2w5′) . (50)

Case c-11. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vf6) such that NU (v)∩NU (t1) ̸= ∅.
We distinguish four sub-cases, according to the cardinality of the intersection NU (v) ∩
NU (t1), (c-11(I)), |NU (v) ∩NU (t1)| = 1, (c-11(II)), |NU (v) ∩NU (t1)| = 2, (c-11(III)),

|NU (v) ∩NU (t1)| = 3, and (c-11(IV)), |NU (v) ∩NU (t1)| = 4.

c-11(I). Without loss of generality, assume that NU (v)∩NU (t1) = {t2} (see Figure 20):

We branch on edge vt1. Note that NU (t1) \ {v} = {t6, t7, t8}.

(a) force(vt1) in c-11(I)

v

t1

t2 t3
t4

e

t5

t8t6 t7

(b) delete(vt1) in c-11(I)

v

t1

t2 t3
t4

e

t5

t8t6 t7

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 20: Illustration of branching rule c-11(I), where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf6)

such that NU (v) ∩NU (t1) = {t2}.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation, and

edges vt2, vt3, vt4, vt5, t1t2, t1t6, t1t7 and t1t8 will be deleted from G′ by the reduction rules.

Hence, both weight of vertex v and vertex t1 decreases by w6′ , each. Vertex t2 can be either

a type f6, or u6-vertex, and its weight would decreases by at least m11 = min{∆′
6−4,∆6−4}.

Each of vertices t3, t4, t5, t6, t7 and t8 can be either a type f6, or u6-vertex, and each of

their weights would decrease by at least m10 = min{∆′
6−5,∆6−5}. Thus, the total weight

decrease in the branch of force(vt1) is at least (w6′ +m11 + 6m10).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching oper-

ation. Hence, both weight of vertex v and vertex t1 decreases by ∆′
6−5. Thus, the total

weight decrease in the branch of delete(vt1) is at least (2w6′ − 2w5′).
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Then, we get the following branching vector:

(w6′ +m11 + 6m10, 2w6′ − 2w5′) . (51)

c-11(II). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3} (see Fig-

ure 21): We branch on edge vt1. Note that NU (t1) \ {v} = {t6, t7}.

v

t1

t2 t3
t4

e

t5

t6 t7

(a) force(vt1) in c-11(II)

v

t1

t2 t3
t4

e

t5

t6 t7

(b) delete(vt1) in c-11(II)

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 21: Illustration of branching rule c-11(II), where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf6)

such that NU (v) ∩NU (t1) = {t2, t3}.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, t1t2, t1t3, t1t6 and t1t7 will be deleted from G′ by the reduction

rules. Hence, both weight of vertex v and vertex t1 decreases by w6′ , each. Each of vertices

t2 and t3 can be either a type f6, or u6-vertex, and each of their weights would decrease by

at least m11 = min{∆′
6−4,∆6−4}. Each of vertices t4, t5, t6 and t7 can be either a type f6,

or u6-vertex, and each of their weights would decrease by at least m10 = min{∆′
6−5,∆6−5}.

Thus, the total weight decrease in the branch of force(vt1) is at least (2w6′ +2m11+4m10).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching oper-

ation. Hence, both weight of vertex v and vertex t1 decreases by ∆′
6−5. Thus, the total

weight decrease in the branch of delete(vt1) is at least (2w6′ − 2w5′).

Then, we get the following branching vector:

(2w6′ + 2m11 + 4m10, 2w6′ − 2w5′) . (52)

c-11(III). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3, t4} (see

Figure 22): We branch on edge vt1. Note that NU (t1) \ {v} = {t6}.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, t1t2, t1t3, t1t4 and t1t6 will be deleted from G′ by the reduction

rules. Hence, both weights of vertex v and vertex t1 decreases by w6′ , each. Each of vertices
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(a) force(vt1) in c-11(III)
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(b) delete(vt1) in c-11(III)
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: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 22: Illustration of branching rule c-11(III), where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf6)

such that NU (v) ∩NU (t1) = {t2, t3, t4}.

t2, t3 and t4 can be either a type f6, or u6-vertex, and each of their weights would decrease

by at least m11 = min{∆′
6−4,∆6−4}. Each of vertices t5 and t6 can be either a type f6, or

u6-vertex, and each of their weights would decrease by at least m10 = min{∆′
6−5,∆6−5}.

Thus, the total weight decrease in the branch of force(vt1) is at least (2w6′ +3m11+2m10).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching oper-

ation. Hence, both weight of vertex v and vertex t1 decreases by ∆′
6−5. Thus, the total

weight decrease in the branch of delete(vt1) is at least (2w6′ − 2w5′).

Then, we get the following branching vector:

(2w6′ + 3m11 + 2m10, 2w6′ − 2w5′) . (53)

c-11(IV). Without loss of generality, assume that NU (v)∩NU (t1) = {t2, t3, t4, t5} (see

Figure 23): We branch on edge vt1.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, t1t2, t1t3, t1t4 and t1t5 will be deleted from G′ by the reduction

rules. Hence, both weights of vertex v and vertex t1 decreases by w6′ , each. Each of

vertices t2, t3, t4 and t5 can be either a type f6, or u6-vertex, and each of their weights

would decrease by at least m11 = min{∆′
6−4,∆6−4}. Thus, the total weight decrease in the

branch of force(vt1) is at least (2w6′ + 4m11).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching oper-

ation. Hence, both weight of vertex v and vertex t1 decreases by ∆′
6−5. Thus, the total

weight decrease in the branch of delete(vt1) is at least (2w6′ − 2w5′).

Then, we get the following branching vector:

(2w6′ + 4m11, 2w6′ − 2w5′) . (54)
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Figure 23: Illustration of branching rule c-11(IV), where vertex v ∈ Vf6 and t1 ∈ NU (v;Vf6)

such that NU (v) ∩NU (t1) = {t2, t3, t4, t5}.

Case c-12. There exist vertices v ∈ Vf6 and t1 ∈ NU (v;Vu6) (see Figure 24): We branch

on edge vt1. Note that NU (t1) \ {v} = {t6, t7, t8, t9, t10}.

(a) force(vt1) in c-12
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: unforced edges : forced edges
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: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 24: Illustration of branching rule c-12, where vertex v ∈ Vf6 and t1 ∈ NU (v;Vu6).

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation, and

edges vt2, vt3, vt4 and vt5 will be deleted from G′ by the reduction rules. Hence, the weight

of vertex v decreases by w6′ , and the weight of vertex t1 decreases by ∆6. Each of vertices

t2, t3, t4 and t5 can only be a type u6-vertex, and each of their weight decrease by ∆6−5.

Thus, the total weight decrease in the branch of force(vt1) is at least (w6 + 4w6 − 4w5).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-
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eration. Hence, the weight of vertex v decreases by ∆′
6−5, and the weight of vertex t1

decreases by ∆6−5. Thus, the total weight decrease in the branch of delete(vt1) is at least

(w6 − w5 + w6′ − w5′).

Then, we get the following branching vector:

(1 + 4w6 − 4w5, 1− w5 + w6′ − w5′) . (55)

4.4 Branching on Edges Around u6-vertices

If none of the first 12 conditions can be executed, this means that the graph has no f6-

vertices. Even though the graph has no more f6-vertices, the graph might has u6-vertices,

because of two types of vertices. Therefore, this section derives branching vectors for

branchings on an optimal edge e = vt, incident to a u6-vertex v, and there are distinguishing

in seven cases (conditions c-13 to c-19).

Case c-13. There exist vertices v ∈ Vu6 and t1 ∈ NU (v;Vf3) (see Figure 25): We branch

on edge vt1. Note that NU (t1) \ {v} = {t7}.

(a) force(vt1) in c-13
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(b) delete(vt1) in c-13
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: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 25: Illustration of branching rule c-13, where vertex v ∈ Vu6 and t1 ∈ NU (v;Vf3).

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edge t1t7 will be deleted from G′ by the reduction rules. Hence, the weight of vertex v

decreases by ∆6, and the weight of vertex t1 decreases by w3′ .

There are two sub-cases for the vertex type of vertex t7. First, if vertex t7 is an f3-vertex

(see Figure 6), then the weight of vertex t7 decreases by w3′ . If vertex x is an f3-vertex

(resp., u3, f4, u4, f5, u5, or a u6-vertex), then the weight decrease β2 of vertex x would

be w3′ (resp., ∆3, w4′ , ∆4, w5′ , ∆5, and ∆6). Thus the total weight decrease for the first

sub-case in the branch of force(vt1) is at least (w6 − w6′ + w3′ + w3′ + β2).

Second, if vertex t7 is a u3-vertex (resp., f4, u4, f5, u5, or a u6-vertex), then the weight

decrease α1 of vertex t7 would be w3 (resp., ∆′
4−3, ∆4−3, ∆

′
5−4, ∆5−4, and ∆6−5). Thus,

the total weight decrease for the second sub-case in the branch of force(vt1) is at least

(w6 − w6′ + w3′ + α1).

26



In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching opera-

tion, and edge t1t7 will be added to F ′ by the reduction rules. Hence, the weight of vertex v

decreases by ∆6−5, and the weight of vertex t1 decreases by w3′ .

First, if vertex t7 is an f3-vertex, then the weight of vertex t7 decreases by w3′ . If

vertex x is an f3-vertex (resp., u3, f4, u4, f5, u5, or a u6-vertex), then the weight decrease

α2 of vertex x would be w3′ (resp., w3, ∆′
4−3, ∆4−3, ∆′

5−4, ∆5−4, and ∆6−5). Thus,

the total weight decrease for the first sub-case in the branch of delete(vt1) is at least

(w6 − w5 + w3′ + w3′ + α2).

Second, if vertex t7 is a u3-vertex (resp., f4, u4, f5, u5, or a u6-vertex), then the

weight decrease β1 of vertex t7 would be ∆3 (resp., w4′ , ∆4, w5′ , ∆5, and ∆6). Thus,

the total weight decrease for the second sub-case in the branch of delete(vt1) is at least

(w6 − w5 + w3′ + β1).

As a result, we get the following seven branching vectors in the first sub-case, and six

branching vectors in the second sub-case, respectively:

(w6 − w6′ + w3′ + w3′ + β2, w6 − w5 + w3′ + w3′ + α2) (56)

(w6 − w6′ + w3′ + α1, w6 − w5 + w3′ + β1) (57)

for (α1, β1) ∈ {(w3,∆3), (∆
′
4−3, w4′), (∆4−3,∆4), (∆

′
5−4, w5′), (∆5−4,∆5), (∆6−5,∆6)}, and

(β2, α2) ∈ {(w3′ , w3′), (∆3, w3), (w4′ ,∆
′
4−3), (∆4,∆4−3), (w5′ ,∆

′
5−4), (∆5,∆5−4), (∆6,∆6−5)}.

Case c-14. There exist vertices v ∈ Vu6 and t1 ∈ NU (v;Vu3) (see Figure 26): We branch

on edge vt1. Note that NU (t1) \ {v} = {t7, t8}.

(a) force(vt1) in c-14

t1

t7 t8

v
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(b) delete(vt1) in c-14
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t7 t8
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t2
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t5

e
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t4

: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 26: Illustration of branching rule c-14, where vertex v ∈ Vu6 and t1 ∈ NU (v;Vu3).

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation.

Hence, the weight of vertex v decreases by ∆6, and the weight of vertex t1 decreases by ∆3.

Thus, the total weight decrease in the branch of force(vt1) is at least (w6−w6′ +w3−w3′).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching opera-

tion, and edges t1t7 and t1t8 will be added to F ′ by the reduction rules. Hence, the weight

of vertex v decreases by ∆6−5, and the weight of vertex t1 decreases by w3. Each of vertices
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t7 and t8 can be either a type f3, u3, f4, u4, f5, u5, or u6-vertex, and each of their weights

would decrease by at least m12 = min{w3′ , w3 − w3′ , w4′ ,∆4, w5′ ,∆5,∆6}. Thus, the total

weight decrease in the branch of delete(vt1) is at least (w6 − w5 + w3 + 2m12).

Then, we get the following branching vector:

(1− w6′ + w3 − w3′ , 1− w5 + w3 + 2m12) . (58)

Case c-15. There exist vertices v ∈ Vu6 and t1 ∈ NU (v;Vf4) (see Figure 27): We branch

on edge vt1. Note that NU (t1) \ {v} = {t7, t8}.

(a) force(vt1) in c-15
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Figure 27: Illustration of branching rule c-15, where vertex v ∈ Vu6 and t1 ∈ NU (v;Vf4).

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges t1t7 and t1t8 will be deleted from G by the reduction rules. Hence, the weight

of vertex v decreases by ∆6, and the weight of vertex t1 decreases by w4′ . Each of vertices

t7 and t8 can be either a type f3, u3, f4, u4, f5, u5, or u6-vertex, and each of their weights

would decrease by at least m13 = min{w3′ , w3,∆4′ ,∆4,∆5′ ,∆5,∆6}. Thus, the total weight
decrease in the branch of force(vt1) is at least (w6 − w6′ + w4′ + 2m13).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-

eration. Hence, the weight of vertex v decreases by ∆6−5, and the weight of vertex t1
decreases by ∆′

4−3. Thus, the total weight decrease in the branch of delete(vt1) is at least

(w6 − w5 + w4′ − w3′).

Then, we get the following branching vector:

(1− w6′ + w4′ + 2m13, 1− w5 + w4′ − w3′) . (59)

Case c-16. There exist vertices v ∈ Vu6 and t1 ∈ NU (v;Vu4) (see Figure 28): We branch

on edge vt1. Note that NU (t1) \ {v} = {t7, t8, t9}.

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation.

Hence, the weight of vertex v decreases by ∆6, and the weight of vertex t1 decreases by ∆4.

Thus, the total weight decrease in the branch of force(vt1) is at least (w6−w6′ +w4−w4′).
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(a) force(vt1) in c-16
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(b) delete(vt1) in c-16
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: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 28: Illustration of branching rule c-16, where vertex v ∈ Vu6 and t1 ∈ NU (v;Vu4).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-

eration. Hence, the weight of vertex v decreases by ∆6−5, and the weight of vertex t1
decreases by ∆4−3. Thus, the total weight decrease in the branch of delete(vt1) is at least

(w6 − w5 + w4 − w3).

Then, we get the following branching vector:

(1− w6′ + w4 − w4′ , 1− w5 + w4 − w3) . (60)

Case c-17. There exist vertices v ∈ Vu6 and t1 ∈ NU (v;Vf5) (see Figure 29): We branch

on edge vt1. Note that NU (t1) \ {v} = {t7, t8, t9}.

(a) force(vt1) in c-17
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(b) delete(vt1) in c-17
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: unforced edges : forced edges

: newly deleted edges by the branching operation

: newly forced edges by the branching operation

: newly forced edges by the reduction rules

: newly deleted edges by the reduction rules

Figure 29: Illustration of branching rule c-17, where vertex v ∈ Vu6 and t1 ∈ NU (v;Vf5).

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation,

and edges t1t7, t1t8 and t1t9 will be deleted from G′ by the reduction rules. Hence, the
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weight of vertex v decreases by ∆6, and the weight of vertex t1 decreases by w5′ . Each of

vertices t7, t8 and t9 can be either a type f3, u3, f4, u4, f5, u5, or u6-vertex, and each of

their weights would decrease by at least m13 = min{w3′ , w3,∆4′ ,∆4,∆5′ ,∆5,∆6}. Thus,

the total weight decrease in the branch of force(vt1) is at least (w6 − w6′ + w5′ + 3m13).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching op-

eration. Hence, the weight of vertex v decreases by ∆6−5, and the weight of vertex t1
decreases by ∆′

5−4. Thus, the total weight decrease in the branch of delete(vt1) is at least

(w6 − w5 + w5′ − w4′).

Then, we get the following branching vector:

(1− w6′ + w5′ + 3m13, 1− w5 + w5′ − w4′) . (61)

Case c-18. There exist vertices v ∈ Vu6 and t1 ∈ NU (v;Vu5) (see Figure 30): We branch

on edge vt1. Note that NU (t1) \ {v} = {t7, t8, t9, t10}.

(a) force(vt1) in c-18
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(b) delete(vt1) in c-18
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Figure 30: Illustration of branching rule c-18, where vertex v ∈ Vu6 and t1 ∈ NU (v;Vu5).

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation.

Hence, the weight of vertex v decreases by ∆6, and the weight of vertex t1 decreases by ∆5.

Thus, the total weight decrease in the branch of force(vt1) is at least (w6−w6′ +w5−w5′).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching opera-

tion. Hence, the weight of vertex v decreases by ∆6−5, and the weight of vertex t1 decreases

by ∆5−4. Thus, the total weight decrease in the branch of delete(vt1) is at least (w6−w4).

Then, we get the following branching vector:

(1− w6′ + w5 − w5′ , 1− w4) . (62)

Case c-19. There exist vertices v ∈ Vu6 and t1 ∈ NU (v;Vu6) (see Figure 31): We branch

on edge vt1. Note that NU (t1) \ {v} = {t7, t8, t9, t10, t11}.
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(a) force(vt1) in c-19
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(b) delete(vt1) in c-19
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Figure 31: Illustration of branching rule c-19, where vertex v ∈ Vu6 and t1 ∈ NU (v;Vu6).

In the branch of force(vt1), edge vt1 will be added to F ′ by the branching operation.

Hence, both weights of vertex v and vertex t1 decreases by ∆6, each. Thus, the total weight

decrease in the branch of force(vt1) is at least (2w6 − 2w6′).

In the branch of delete(vt1), edge vt1 will be deleted from G′ by the branching oper-

ation. Hence, both weights of vertex v and vertex t1 decreases by ∆6−5, each. Thus, the

total weight decrease in the branch of delete(vt1) is at least (2w6 − 2w5).

Then, we get the following branching vector:

(2− 2w6′ , 2− 2w5) . (63)

4.5 Switching to TSP5

If none of these 19 cases can be executed, this means that the graph has no more degree-6

vertices. In that case, we can switch and use a fast algorithm for TSP in degree5 graphs

(tsp5(G,F )) to solve the remaining instances. Xiao and Nagamochi [10, Lemma 3] have

shown how to leverage results obtained by a measure-and-conquer analysis, and that an

algorithm can used as a sub-procedure, given that we know the respective weight setting

mechanism. To get a combination of total running time bound of these two algorithms,

we can use the maximum branching factor for TSP in degree-4 graphs algorithm and a

measure µ is calculated based on the maximum ratio of vertex weights for TSP in degree-5

graphs and TSP in degree-6 graphs [7].

Here, we use the O∗(2.4531n)-time algorithm by Md Yunos et al. [6], where the weights
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of vertices in degree-4 graphs are set as follows:

w3′ = 0.156687

w3 = 0.276915

w4′ = 0.313373

w4 = 0.607542

w5′ = 0.470059

w5 = 1

For this step, the running time bound is

T (µ) ≤ O

(
2.453051

max

{
0.156687

w3′
, 0.276915

w3
, 0.313373

w4′
, 0.607542

w4
, 0.470059

w5′
, 1
w5

})
. (64)

4.6 Overall Analysis

As a result, the branching factor of each of the branching vectors from (37) to (64) does

not exceed 2.746706. The tight constraints in the quasiconvex program are in conditions

c-4, c-5(I), c-5(II), c-14, c-16 and c-18. This completes a proof of Theorem 1.

5 Conclusion

In this paper, we have presented an exact algorithm for TSP in degree-6 graphs. Our

algorithm is a simple branching algorithm, imitate the branch-and-reduce paradigm of the

TSP in degree-5 graphs, and it operates in space which is polynomial of the size of an input

instance. To the best of our knowledge, this is the first polynomial space exact algorithm

developed specifically for graphs of maximum degree at most 6.

We used the measure and conquer method for the analysis of the running time of the pro-

posed algorithm, and have obtained an upper bound of O∗(2.7467n), where n is the number

of vertices in a given instance. This result compares favorably with the polynomial-space

TSP algorithm for general graphs by Gurevich and Shelah [3], which runs in O∗(4nnlogn)-

time.

It remains an open question whether this time bound can be further improved by a

modified analysis technique, or by a careful re-examination of the branching rules. Indeed,

it would be most interesting to obtain a polynomial-space algorithm with a running time

of O∗(2n) or less, or simply show that this cannot be achieved.
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