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Abstract

This paper gives a correction to the time bounds on algorithms for TSP in degree-

5 and degree-6 graphs. A polynomial-space algorithm has been designed by N. Md

Yunos, A. Shurbevski and H. Nagamochi for edge-weighted undirected graphs with max-

imum degree 5 and degree 6, respectively in “A Polynomial-Space Exact Algorithm for

TSP in Degree-5 Graphs,” Technical Reports 2015 [2015-002], Department of Applied

Mathematics and Physics, Kyoto University, 2015 and “A Polynomial-Space Exact Al-

gorithm for TSP in Degree-6 Graphs,” Technical Reports 2015 [2015-002], Department

of Applied Mathematics and Physics, Kyoto University, 2015. These algorithms are

branch-and-reduce algorithms that, given a degree-bounded graph with a set of forced

edges, correctly deliver a minimum cost tour passing through all forced edges, and a

correct set of branching vectors are derived to determine a best set of values to vertex

weights in an analysis by the measure-and-conquer method, where one constraint on ver-

tex weights was mistakenly unsatisfied with the weights claimed in these reports. After

properly including the constraint, we have chosen the weight w(fi) of a degree-i forced

vertex (a vertex to which a forced edge is incident) and the weight w(ui) of a degree-i

unforced vertex as: w(u5) = 1, w(f5) = 0.491764, w(u4) = 0.700651, w(f4) = 0.347458,

w(u3) = 0.322196 and w(f3) = 0.183471 for degree-5 graphs, which lead to a correct

bound O∗(2.4723n) on the running time of the algorithm for an n-vertexed degree-

5 graph, and w(u6) = 1, w(f6) = 0.502801, w(u5) = 0.815641, w(f5) = 0.421871,

w(u4) = 0.580698, w(f4) = 0.311647, w(u3) = 0.262796, and w(f3) = 0.149646 for

degree-6 graphs, which lead to a correct bound O∗(3.0335n) on the running time of the

algorithm for an n-vertexed degree-6 graph.

Keywords: Traveling Salesman Problem, Exact Exponential Algorithm, Branch-and-reduce,

Measure-and-conquer.

1 Introduction

Md Yunos et al. [4] recently presented a polynomial-space exact algorithm for TSP in degree-

5 graphs, claiming an O∗(2.4531n) running time. Following this, Md Yunos et al. [5] also
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presented a polynomial-space exact algorithm for TSP in degree-6 graphs, with a claimed

running time of O∗(2.7467n). Both of these time bounds are inaccurate due to a technical

error at numerical calculations in a final stage of the analysis of their time complexities.

The aim of this note is to present correct time bounds on TSP in degree-5 graphs and TSP

in degree-6 graphs, while the correctness and the theoretical analysis of these algorithms

remain the same as in the technical report of TPS in degree-5 graphs [4] and the technical

report of TSP in degree-6 graphs [5].

The algorithms presented in both technical reports of TSP in degree-5 and degree-6

graphs [4, 5] are branch-and-reduce algorithms. The behavior of the algorithms is defined

by respective sets of branching rules. It is common to illustrate the behavior of a branching

algorithm as a search tree. The search tree is obtained by assigning the input instance of a

problem as a root node, and recursively assigning children to a node for each smaller instance

obtained by applying the branching rules. For a single node of the search tree, the algorithm

takes time polynomial in the size of the node instance, which in turn, is smaller than or equal

to the original instance size. Thus we can conclude that the running time of the branching

algorithm is proportional up to a polynomial factor to the number of nodes of the search

tree.

Let I be a given instance with size µ, and let I ′ and I ′′ be instances obtained from I

by a branching operation. We use T (µ) to denote the maximum number of nodes in the

search tree of an input of size µ when we execute the branching algorithm. Let a and b

be the amounts of decrease in size of instances I ′ and I ′′, respectively; these values directly

determine the performance of the algorithm [3]. Then we call (a, b) the branching vector of

the branching rule, and this implies the linear recurrence:

T (µ) ≤ T (µ− a) + T (µ− b). (1)

To evaluate the performance of this branching vector, a standard method for linear recurrence

relations can be used. In fact, it is known that T (µ) is of the form O(τµ), where τ is the

unique positive real root of the function f(x) = 1 − (x−a + x−b) [3]. The value τ is called

the branching factor (of a given branching vector), and the running time of the algorithm

decreases with the value of this branching factor.

Md Yunos et al. [4, 5], following the approach of Eppstein [2], and Xiao and Nagamochi [6],

in fact solve a slightly more general problem, named the forced TSP. An instance of the forced

TSP is defined as the ordered pair (G,F ) of a graph G and a subset F of edges of G, and it

asks for a shortest Hamiltonian cycle which includes all edges in F . Edges in F are themselves

called forced edges. With such a request in mind, it is obvious that vertices already incident

to two forced edges can be excluded from further consideration [6, 4, 5]. Therefore, vertices

with exactly one forced edge incident upon them are called forced vertices, and vertices with

no incident forced edges are called unforced. With this regard, vertices can be distinguished

and categorized by whether they are forced or unforced, and the total number of edges

incident upon them. Henceforth, let fi (resp., ui) denote a forced (resp., unforced) vertex of

degree i.

To effectively analyze the running time of the algorithms, Md Yunos et al. [4, 5] used the

measure-and-conquer method [3]. The measure-and-conquer method allows for the running
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time of an algorithm to be evaluated via a more general instance measure, as opposed to the

straightforward instance size. Thereby, each type of vertex is assigned a different weight,

and the measure of an instance becomes the sum of all vertex weights in that instance.

Eppstein [1] showed how to analyze the running time of recursive branching algorithms by

solving a quasiconvex optimization problem. Then all generated branching vectors will be

the constraints in a suitable quasiconvex program, which can be easily solved to best values

to vertex weights by a numerical calculation.

The branching rules of the algorithm due to Md Yunos et al. [4, 5] for TSP in degree-

5 and degree-6 graphs are structured in such a way that the algorithms branch on edges

incident to degree-k vertices according to a priority given by the branching rules. Following

this technique, an input degree-k graph will eventually be reduced to an instance of a degree-

(k − 1) graph. Then an existing algorithm for TSP in degree-(k − 1) graphs can be used as

a black-box procedure to complete the algorithm for degree-k graphs. In the case of TSP in

degree-5 graphs, Md Yunos et al. [4] used an algorithm for TSP in degree-4 graphs by Xiao

and Nagamochi [6], whereas the algorithm for TSP in degree-6 graphs [5] uses the already

established algorithm for TSP in degree 5 graphs [4]. Xiao and Nagamochi [7] have shown

how to leverage the results obtained by a measure-and-conquer analysis and this call to an

algorithm for TSP in degree-(k − 1) graphs. The only information necessary concerning the

algorithm for TSP in degree-(k − 1) graphs is the vertex weights chosen for different types

of vertices. Let wt be the weight of vertex of type t, chosen in the analysis of the algorithm

TSP in degree-k graphs, and let ŵt be the weight of vertex of type t, chosen in the analysis

of the algorithm TSP in degree-(k − 1) graphs. Let

κ = max{ ŵt

wt
| t is a vertex type ui or fi, i = 3, 4, . . . , k − 1}.

According to Xiao and Nagamochi [7, Lemma 3], if a call is made to the algorithm of running

time O∗(τnk−1) for an instance of size n, then it holds

T (µ) ≤ O∗(τκk−1). (2)

Finally, Eq. (2) will generate another constraint in the quasiconvex program used to deter-

mine the running time of an algorithm.

2 Problem Discussion

The algorithms reported in the technical report for TSP in degree-5 graphs and degree-

6 graphs by Md Yunos et al. [4, 5] correctly deliver optimal tours, and a correct set of

constraints for determining vertex weights to derive time bounds has been obtained. However
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Md Yunos et al. [4] chose a vertex weight function for TSP in degree-5 graphs as follows:

ω(v) =



1 for a u5-vertex v

0.470059 for an f5-vertex v

0.607542 for a u4-vertex v

0.313373 for an f4-vertex v

0.276915 for a u3-vertex v

0.156687 for an f3-vertex v

0 otherwise.

(3)

While for TSP in degree-6 graphs, Md Yunos et al. [5] chose a vertex weight function as

follows:

ω(v) =



1 for a u6-vertex v

0.532091 for an f6-vertex v

0.458479 for a u5-vertex v

0.220838 for an f5-vertex v

0.333150 for a u4-vertex v

0.147225 for an f4-vertex v

0.155400 for a u3-vertex v

0.073612 for an f3-vertex v

0 otherwise.

(4)

These vertex weight functions did not satisfy one of the constraint set, the switching con-

dition. We then recompute a correct set of vertex weights for both degree-5 and degree-6

graphs as in the next section.

3 Result

Based on the new vertex weights, the following theorems from the technical report [4, 5] are

now restated with the following correct time bounds.

Theorem 1 The TSP in an n-vertex graph G with maximum degree 5 can be solved in

O∗(2.4723n) time and polynomial space, by setting weights of each vertex as follows

ω(v) =



1 for a u5-vertex v

0.491764 for an f5-vertex v

0.700651 for a u4-vertex v

0.347458 for an f4-vertex v

0.322196 for a u3-vertex v

0.183471 for an f3-vertex v

0 otherwise.

(5)
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Theorem 2 The TSP in an n-vertex graph G with maximum degree 6 can be solved in

O∗(3.0335n) time and polynomial space, by setting weights of each vertex as follows

ω(v) =



1 for a u6-vertex v

0.502801 for an f6-vertexv

0.815641 for a u5-vertex v

0.421871 for an f5-vertex v

0.580698 for a u4-vertex v

0.311647 for an f4-vertex v

0.262796 for a u3-vertex v

0.149646 for an f3-vertex v

0 otherwise.

(6)

Analytical analysis of the behavior of the branch-and-reduce algorithms to complete

the proofs of Theorem 1 and Theorem 2 can be found in the concerned previous technical

reports [4, 5].
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