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Abstract: In this paper, we study the (group) strategy-proofness of determin-

istic mechanisms in the obnoxious facility game. In this game, given a set of

strategic agents in a metric, we design a mechanism that outputs the location

of a facility in the metric based on the locations of the agents reported by them-

selves. The benefit of an agent is the distance between her location and the

facility and the social benefit is the total benefits of all agents. An agent may

try to manipulate outputs by the mechanism by misreporting strategically her

location. We wish to design a mechanism that is strategy-proof (i.e., no agent

can gain her benefit by misreporting) or group strategy-proof (i.e., there is no

coalition of agents such that each member in the coalition can simultaneously

gain benefit by misreporting), while the social benefit will be maximized. In this

paper, we first prove that, in the line metric, there is no strategy-proof mecha-

nism such that the number of candidates (locations output by the mechanism

for some reported locations) is more than two. We next completely characterize

(group) strategy-proof mechanisms with exactly two candidates in the general

metric and show that there exists a 4-approximation group strategy-proof mech-

anism in any metric.

1 Introduction

In the facility game, given a set of “strategic” agents in a metric, we design a procedure,

called a mechanism, that outputs the location of a facility in the metric based on reported

locations of the agents so that the social cost (or benefit), which is defined to be the

sum of individual costs (or benefits) such as the distance from the facility, is minimized

(or maximized). We assume that the mechanism is known to all the agents before they

report their locations and that an agent may try to manipulate outputs by the mechanism

by misreporting strategically her location so that an output location of the facility will

be beneficial to her (we also assume that there is no way of testing whether a reported

location is a misreported one or not). A mechanism is called strategy-proof if no single

agent can gain her benefit by misreporting her location. Moreover, a mechanism is called

group strategy-proof if no coalition of agents can gain benefit of each member in the coalition

simultaneously by misreporting the locations of the coalition. Then a (group) strategy-proof
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mechanism may deliver a location of the facility which is not an optimal solution in terms of

the social cost (or benefit). Our game-theoretical goal is to design a (group) strategy-proof

mechanism with a good approximation ratio between locations output by the mechanism

and optimal locations.

In mechanism design, we can consider mechanisms that are allowed to make payments.

However, in many settings, money is not used as a medium of compensation due to ethical or

legal considerations [12]. For example, in the social choice literature, mechanisms without

payments are commonly studied. Since the facility game is rather deeply concerned in the

social choice, we also design mechanisms without payments in the facility game.

Moulin [9] and Border and Jordan [3] studied a problem of the social choice in economics

wherein each agent’s preference is a function with a single peak at the most preferred point

in a given space but no objective function to be optimized is given. Based on the median

voter theorem [2], they characterized the strategy-proof mechanisms in the line and a space

of a multidimensional version of the line, respectively. The traditional facility game is a

problem of social choice together with a social cost that is to be minimized as an objective

function. Schummer and Vohra [11] extended the mechanism [3] to the facility game on

tree networks, and characterized the strategy-proof mechanisms to metrics on arbitrary

networks containing at least one cycle. Recently strategy-proof approximation mechanisms

for optimization problem have been studied extensively [1, 7, 8, 10]. Alon et al. [1] gave a

complete analysis on the approximation ratio of strategy-proof mechanisms for the facility

game in metrics on arbitrary networks. Currently group strategy-proof mechanisms that

attain the optimal social cost are known up to tree networks.

In this paper, we study the (group) strategy-proofness of deterministic mechanisms in

the obnoxious facility game. In contrast with the traditional game, we regard the distance

from each agent to the facility as the benefit of the agent in this game, and the sum of the

benefits of all agents will be maximized as the social benefit. Thus each agent’s preference is

no longer represented as a single-peaked function. This problem setting can be interpreted

as a social scenario such that the mayor of a town plans to build a garbage dump in the town

according to a set of reported home addresses of the local residents, wishing to maximize

the sum of the distances of all residents. Cheng et al. [4] first studied group strategy-

proof mechanisms for the obnoxious facility game in the line metric. They demonstrated

that a mechanism that simply outputs a socially optimal location is not strategy-proof.

They designed a group strategy-proof mechanism which chooses one of two predetermined

locations as an output according to the distribution of reported locations, and showed that

the mechanism is a 3-approximation. They suggested that the mechanism can be extended

to a 3-approximation group strategy-proof mechanism in tree networks. In this paper,

we first prove that there is no strategy-proof mechanism in the line metric such that the

number of candidates (locations output by the mechanism for some reported locations) is

more than two. This suggests that we need to know the specific structure of a given metric

if we wish to design a strategy-proof mechanism with more than two candidates. We next

derive a complete characterization of (group) strategy-proof mechanisms with exactly two

candidates in the general metric.

The paper is organized as follows. Section 2 formulates the obnoxious facility game and

reviews the definition of (group) strategy-proofness. Section 3 proves that the line metric

admits no strategy-proof mechanism with more than two candidates. Section 4 proposes

a valid threshold mechanism and proves that a mechanism with exactly two candidates in
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the general metric is (group) strategy-proof if and only if it is a valid threshold mechanism.

Section 5 then shows that there always exists a 4-approximation valid threshold mechanism

in any metric. Finally Section 6 makes some concluding remarks.

2 Preliminaries

Let N and R+ be the sets of nonnegative integers and nonnegative real numbers, respectively.

Let (Ω, d) be a metric such that Ω is a set of points (possibly an infinite set) and d : Ω×Ω →
R+ is a symmetric distance function, i.e., d(x, y) = d(y, x) for every two points x, y ∈ Ω

and d(x, y) + d(y, z) ≥ d(x, z) for every three points x, y, z ∈ Ω.

For a set N = {1, 2, . . . , n} of agents, xi ∈ Ω denotes the location reported by agent

i ∈ N and the multiset X = {x1, x2, . . . , xn} of the locations is called a profile of N . For a

location y ∈ Ω of an obnoxious facility, the benefit of agent i is defined to be the distance

between her location and the facility, i.e.,

β(y, xi) = d(y, xi).

The social benefit of a location y ∈ Ω of an obnoxious facility over a profile X is defined to

be the total benefit of n agents

SB(y,X) =
n∑

i=1

β(y, xi).

For a profile X, let OPT(X) denote the optimal obnoxious social benefit, i.e., OPT(X) =

maxy∈Ω SB(y,X).

In the obnoxious facility game, a deterministic mechanism outputs a facility location

based on a given profile X, where we do not distinguish two profiles X = {x1, x2, . . . , xn}
and X ′ = {x′1, x′2, . . . , x′n} of N if there is a bijection σ : N → N such that xi = x′σ(i) for

all i ∈ N . We write X = X ′ if there is such a bijection σ. A mechanism is defined to be a

function f : Ωn → Ω such that f(X) = f(X ′) for two profiles X and X ′ of N with X = X ′.

We say that a mechanism f has an approximation ratio γ if

OPT(X) ≤ γSB(f(X), X) for all profiles X ∈ Ωn of N .

In the following we define the strategy-proofness and the group strategy-proofness of

mechanisms. For a profile X = {x1, x2, . . . , xn} of N and an agent set S ⊆ N , let XS

denote the profile of S obtained from X by eliminating locations xi such that i ∈ N − S.

We denote XN−S simply by X−S . In particular, for S = {i}, X−S is denoted by X−i =

{x1, . . . , xi−1, xi+1, . . . , xn}. Location profile X may be written by ⟨xi, X−i⟩ or ⟨XS , X−S⟩.
For simplicity, we write f(xi, X−i) = f(⟨xi, X−i⟩) and f(XS , X−S) = f(⟨XS , X−S⟩).

Definition 1 A mechanism f is strategy-proof (SP for short) if no agent can benefit from

misreporting her location. Formally, given an agent i, a profile X = ⟨xi, X−i⟩ ∈ Ωn and a

misreported location x′i ∈ Ω, it holds that

β(f(xi, X−i), xi) ≥ β(f(x′i, X−i), xi).

Definition 2 A mechanism f is group strategy-proof (GSP for short) if for any group of

agents, at least one of them cannot benefit from misreporting their locations simultaneously.
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Formally, given a non-empty set S ⊆ N , a profile X = ⟨XS , X−S⟩ ∈ Ωn and a misreported

profile X ′
S ∈ Ω|S| of S, there exists i ∈ S satisfying

β(f(XS , X−S), xi) ≥ β(f(X ′
S , X−S), xi).

We remark that a stronger notation of group strategy-proofness requires that any set of

misreporting agents with a strict gain contains at least one agent who strictly loses [6]. Our

GSP results in this paper do not hold under the stronger definition. However, the above

weaker definition of group strategy-proofness is rather common in the social choice, since

in the settings without payments an agent has no incentive to misreport unless it strictly

benefits.

For a mechanism f : Ωn → Ω, a point y ∈ Ω is called a candidate if there is a profile

X ∈ Ωn such that f(X) = y, and the set of all candidates of f is denoted by Cf . A

mechanism with |Cf | = p is called by a p-candidate mechanism. Any 1-candidate mechanism

is group strategy-proof, but its approximation ratio γ can be infinitely large.

3 Mechanisms in the line metric

This section proves that there is a metric that admits no p-candidate SP mechanism for any

p ≥ 3. Let (I, d) be the line metric, where I denotes the 1-dimensional Euclidean space.

Theorem 3 There is no p-candidate SP mechanism for any p ≥ 3 in the line metric.

We prove Theorem 3 via the next lemma.

Lemma 4 Let f be a p-candidate SP mechanism. Let X = {x1, x2, . . . , xn} be a profile of

N , and X ′
S be a misreported profile of a coalition S ⊆ N . Then:

(i) If there is a candidate c ∈ Cf such that f(X) < c and max{xi | i ∈ S} < f(X)+c
2 , then

it holds f(X ′
S , X−S) < c; and

(ii) If there is a candidate c ∈ Cf such that f(X) > c and min{xi | i ∈ S} > f(X)+c
2 , then

it holds f(X ′
S , X−S) > c.

Proof. We prove (i) ((ii) can be treated symmetrically). To derive a contradiction, we

assume that there is a candidate c ∈ Cf such that f(X) < c ≤ f(X ′
S , X−S) and max{xi |

i ∈ S} < f(X)+c
2 . We assume that S is minimal subject to the condition c ≤ f(X ′

S , X−S),

from which any proper subset T ⊂ S satisfies f(X ′
T , X−T ) < c.

Without loss of generality assume that xk ≤ · · · ≤ x2 ≤ x1 and denoteX ′
S = {x′1, x′2, . . . , x′k}.

We define profiles Xi, i = 0, 1, . . . , k as follows.

X0 = X and Xi = ⟨x′i, (Xi−1)−i⟩, i = 1, 2, . . . , k.

Thus Xi is obtained from X by replacing x1, x2, . . . , xi with x′1, x
′
2, . . . , x

′
i. By the assump-

tion on X = X0 and the minimality of S, we observe

f(Xi) < c ≤ f(Xk) for i = 0, 1, . . . , k − 1. (1)

Since f is SP, we see from Definition 1 that for each agent i ∈ S and profile Xi−1, it

holds β(f(xi, (X
i−1)−i), xi) ≥ β(f(x′i, (X

i−1)−i), xi); i.e.,

|f(Xi−1)− xi| ≥ |f(Xi)− xi| for i = 1, 2, . . . , k. (2)
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Since x1 < f(X0)+cℓ
2 and f(X0) < cℓ ≤ f(Xk) by inequality (1) with i = 0, we obtain

x1 < f(Xk). Then xk ≤ x1 < f(Xk) and inequality (2) with i = k imply that

|f(Xk−1)− xk| ≥ f(Xk)− xk. (3)

If xk ≤ f(Xk−1) then f(Xk−1) ≥ f(Xk) would hold by inequality (3), contradicting that

inequality (1) with i = k − 1, f(Xk−1) < f(Xk). Hence it must hold

f(Xk−1) < xk. (4)

From this and inequality (3), we have f(Xk−1)+f(Xk)
2 ≤ xk. By recalling that xk < f(X0)+c

2 ≤
f(X0)+f(Xk)

2 , we obtain f(Xk−1) < f(X0), where we see that k ≥ 2 must hold.

Let j be the minimum index with 1 ≤ j ≤ k − 1 such that f(Xj) ≤ f(Xk−1). Then

it holds f(Xj) ≤ f(Xk−1) < f(Xj−1) because f(Xk−1) < f(X0). This and inequality (1)

mean that

f(Xj) ≤ f(Xk−1) < f(Xj−1) < f(Xk). (5)

Now by f(Xj) ≤ f(Xk−1), inequality (4) and xk ≤ xj , we obtain f(Xj) < xj . By

f(Xj) < xj , inequality (2) with i = j is written as

|f(Xj−1)− xj | ≥ xj − f(Xj). (6)

If f(Xj−1) ≤ xj then f(Xj−1) ≤ f(Xj) would hold by inequality (6), contradicting

that f(Xj) < f(Xj−1). Hence xj < f(Xj−1) holds, and inequality (6) implies xj ≤
f(Xj−1)+f(Xj)

2 .

Since f(Xk−1)+f(Xk)
2 ≤ xk, xj ≤ f(Xj−1)+f(Xj)

2 and xk ≤ xj hold, we have f(Xk−1) +

f(Xk) ≤ f(Xj−1) + f(Xj). This, however, is a contradiction to inequality (5). 2

We assume that f is a p-candidate SP mechanism with Cf = {c1, c2, . . . , cp} ⊂ I in

(I, d), where c1 < c2 < · · · < cp. Fix a candidate ct ∈ Cf − {c1, cp}, and let It = {x ∈
I | c1+ct

2 < x <
ct+cp

2 } (where
c1+cp

2 ∈ It), It,1 = {x ∈ I | c1+ct
2 < x <

c1+cp
2 } and

It,p = {x ∈ I | c1+cp
2 < x <

ct+cp
2 }. For a profile X of N , let Sa(X) = {i ∈ N | xi ≤ c1+ct

2 }
and Sb(X) = {i ∈ N | ct+cp

2 ≤ xi}. We prove Theorem 3 by deriving a contradiction.

Proof of Theorem 3. Let X be a profile such that f(X) = ct ∈ Cf − {c1, cp}.
Let Xa be a profile obtained from X by replacing xi for each i ∈ Sa(X) with a new

location x′i ∈ It,1. Since f(X) = ct < ct+1 and every i ∈ S = Sa(X) satisfies xi ≤ c1+ct
2 <

f(X)+ct+1

2 , we see that f(Xa) < ct+1 holds by Lemma 4(i) with c = ct+1.

LetXab = {x′1, . . . , x′n} be a profile obtained fromXa by replacing xj for each j ∈ Sb(X)

with a new location x′j ∈ It,p. Assume that f(Xab) ̸= c1 (the case of f(Xab) ̸= cp can be

treated symmetrically).

Note that Xa can be obtained from Xab by changing the locations of agents in Sb(X).

For S′ = Sb(X), every i ∈ S′ satisfies c1+f(Xab)
2 ≤ c1+cp

2 < x′i and it holds f(Xab) > c1.

Hence by Lemma 4(ii) with c = c1, we obtain f(Xa) > c1.

Let Xa = {x̃1, . . . , x̃n} and Y be a profile such that f(Y ) = c1 ∈ Cf . Note that Y can

be obtained from Xa by by changing the locations of agents in N . Since Sa(Xa) = ∅ and

f(Xa) ≤ ct, every i ∈ N satisfies c1+f(Xa)
2 ≤ c1+ct

2 < x̃i. From this and f(Xa) > c1, we see

from Lemma 4(ii) with c = c1 that it holds f(Y ) > c1. This, however, is a contradiction to

f(Y ) = c1. 2

5



4 2-candidate SP/GSP mechanisms in the general metric

This section gives a complete characterization of 2-candidate SP/GSP mechanisms in the

general metric (not necessarily on the basis of particular graphs). In the following part, we

propose valid threshold mechanisms.

For fixed two points a, b ∈ Ω, we partition Ω into three subspaces Ωa = {x ∈ Ω |
d(a, x) < d(b, x)}, Ωm = {x ∈ Ω | d(a, x) = d(b, x)} and Ωb = {x ∈ Ω | d(a, x) > d(b, x)}.
For a profile X of N , the set of agents and the number of agents in Ωa are denoted by

Sa and na, respectively, i.e., Sa = {i | xi ∈ Ωa} and na = |Sa|. Analogously, we denote

Sm = {i | xi ∈ Ωm}, nm = |Sm|, Sb = {i | xi ∈ Ωb} and nb = |Sb|.
For each integer ℓ = 0, 1, . . . , n, let θℓ be a function that maps a profile M ∈ Ωℓ

m of

ℓ agents with locations in Ωm to an integer. A mechanism f on N is called a threshold

mechanism if there are two points a, b ∈ Ω and a set {θ0, . . . , θn} of functions such that f

returns a for all profiles X with na < θnm(XSm) and returns b for the other profiles X, i.e.,

f is given by

f(X) =

{
a if na < θnm(XSm)

b if θnm(XSm) ≤ na.

A threshold mechanism f is symmetric in terms of a and b in the sense that f(X) = b if

nb < θnm(XSm) and f(X) = a otherwise for the set of complement functions θℓ on Ωℓ
m,

ℓ = 0, 1, . . . , n such that

θℓ(M) = n+ 1− ℓ− θℓ(M) for M ∈ Ωℓ and ℓ = 0, 1, . . . , n.

Furthermore a threshold mechanism f is called valid if the set {θ0, . . . , θn} of functions

satisfies the two conditions: (i) θ0(∅) ̸∈ {0, n+ 1} and 0 ≤ θℓ(M) ≤ n+ 1− ℓ for 0 ≤ ℓ ≤ n

and M ∈ Ωℓ
m; and (ii) θℓ(M)− 1 ≤ θℓ+1(⟨x,M⟩) ≤ θℓ(M) for 0 ≤ ℓ ≤ n− 1, M ∈ Ωℓ

m and

x ∈ Ωm. Note that the set of complement functions also satisfies the above two conditions.

We show that a 2-candidate mechanism is SP (or GSP) if and only if it is a valid

threshold mechanism via the next two theorems.

Theorem 5 Every valid threshold mechanism is a 2-candidate GSP mechanism.

Theorem 6 Every 2-candidate SP mechanism is a valid threshold mechanism.

For another profile X ′ = {x′1, . . . , x′n} of N , we use the following notation. The set

of agents and the number of agents in Ωa are denoted by S′
a and n′

a, respectively, i.e.,

S′
a = {i | x′i ∈ Ωa} and n′

a = |S′
a|. Analogously, we denote S′

m = {i | x′i ∈ Ωm}, n′
m = |S′

m|,
S′
b = {i | x′i ∈ Ωb} and n′

b = |S′
b|. We first prove Theorem 5.

Proof of Theorem 5. Let f be a valid threshold mechanism. First we show that Cf = {a, b}.
Clearly Cf ⊆ {a, b}. For a profile X of N with na = 0 and nm = 0, it holds that f(X) = a

since na < θ0(∅) ∈ {1, 2, . . . , n}. Similarly, for a profile X with na = n and nm = 0, we

have f(X) = b since na ≥ θ0(∅) ∈ {1, 2, . . . , n}. Hence Cf = {a, b} holds and it means that

f is a 2-candidate mechanism.

Let us show the group strategy-proofness of f , i.e., not all agents in any coalition S can

gain simultaneously by misreporting their locations. Fix a profile X = {x1, . . . , xn} of N

and a coalition S ⊆ N wherein x′i denotes the misreported location of each agent i ∈ S. A

misreported profile of S is denoted by X ′
S = {x′i | i ∈ S} and we denote X ′ = ⟨X ′

S , X−S⟩.
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We prove that there is an agent i ∈ S such that β(f(X), xi) ≥ β(f(X ′), xi). We consider

the case of f(X) = a, i.e., na < θnm(XSm) (the other case can be treated symmetrically by

considering the complement functions θℓ).

If f(X ′) = a, then β(f(X), xi) = β(f(X ′), xi) for any i ∈ S and we are done. Assume

that f(X ′) = b. If there is an agent i ∈ S − Sa, then for such an agent i it holds d(a, xi) ≥
d(b, xi), i.e., β(f(X), xi) ≥ β(f(X ′), xi), and we are done. Hence it suffices to prove that

S ⊆ Sa implies f(X ′) = a. From S ⊆ Sa, we have n′
a ≤ na and n′

m ≥ nm. Let k =

n′
m−nm (≤ na−n′

a) and we denote S′
m−Sm = {1, 2, . . . , k} andM ′

i = {x′1, . . . , x′i} ∈ Ωi
m. By

repeatedly applying the second property of functions θ0, . . . , θn, we obtain θnm(XSm)−k ≤
θnm+1(⟨M ′

1, XSm⟩)− (k−1) ≤ · · · ≤ θnm+k(⟨M ′
k, XSm⟩) = θn′

m
(X ′

S′
m
). Then by k ≤ na−n′

a,

it holds that θnm(XSm)−na ≤ θn′
m
(X ′

S′
m
)−n′

a, which implies n′
a < θn′

m
(X ′

S′
m
) and f(X ′) = a

since na < θnm(XSm) now holds by f(X) = a and the assumption on f . 2

We next prove Theorem 6 via the next lemma.

Lemma 7 Let f be a 2-candidate SP mechanism with Cf = {a, b}, and X and X ′ be two

profiles of N with XSm = X ′
S′
m
. Then f(X) = f(X ′) if f(X) = a and na ≥ n′

a; or f(X) = b

and nb ≥ n′
b.

Proof. For a profile X with f(X) = a, if f(x′i, X−i) = b hold for a misreported location

x′i of some agent i ∈ Sa, then we would have β(f(xi, X−i), xi) = d(a, xi) < d(b, xi) =

β(f(x′i, X−i), xi), contradicting that β(f(xi, X−i), xi) ≥ β(f(x′i, X−i), xi) holds for any pro-

file X and agent i ∈ N in an SP f . This means that if f(X) = a then f(X ′
S , X−S) = a

holds no matter how a subset S ⊆ Sa misreports X ′
S ∈ Ω|S|. Symmetrically if f(X) = b

then f(X ′
S , X−S) = b for any X ′

S ∈ Ω|S| with a subset S ⊆ Sb.

To prove the lemma, we consider the case where f(X) = a and na ≥ n′
a (the other case

can be treated symmetrically). We construct a new profile X ′′ of N with X ′′
Sm

= XSm by

changing the locations of agents i with xi ∈ Ωa as follows. We choose a set Ta ⊆ Sa of n′
a

agents, and let x′′i = x′i for each i ∈ Ta, x
′′
i be any location in Ωb for each i ∈ Sa − Ta, and

x′′i = xi for each i ∈ N − Sa. Since f(X) = a and X ′′ is obtained from X by changing

the locations of agents only in Sa, it holds f(X ′′) = a. Since X ′′ is obtained from X ′ by

changing the locations of agents only in S′
b, it holds that if f(X

′) = b then f(X ′′) = b, i.e.,

if f(X ′′) = a then f(X ′) = a. Therefore we have f(X ′) = a. 2 2

Now we give a proof of Theorem 6.

Proof of Theorem 6. Let f be a 2-candidate SP mechanism with Cf = {a, b}. For an

integer 0 ≤ ℓ ≤ n and a set M ∈ Ωℓ
m of locations, let θℓ(M) be the minimum integer na such

that there is a profile X of N such that XSm = M satisfying f(X) = b, where if f(X) = a

(resp., f(X) = b) for all such X then we define θℓ(M) = n+1− ℓ (resp., θℓ(M) = 0). Then

by Lemma 7, f(X) = a holds for all profiles X such that θℓ(M) > na and XSm = M . Thus,

f is a threshold mechanism. Now it suffices to show that f is valid, i.e., the set {θ0, . . . , θn}
of the above functions satisfies θ0(∅) ̸∈ {0, n+ 1} and 0 ≤ θℓ(M) ≤ n+ 1− ℓ for 0 ≤ ℓ ≤ n

and M ∈ Ωℓ
m; and θℓ(M) − 1 ≤ θℓ+1(⟨x,M⟩) ≤ θℓ(M) for 1 ≤ ℓ ≤ n − 1, M ∈ Ωℓ

m and

x ∈ Ωm. Note that we have shown that θℓ(M) ∈ {0, . . . , n+ 1− ℓ} for 0 ≤ ℓ ≤ n.

We first show inequality θℓ+1(⟨x,M⟩) ≤ θℓ(M) (inequality θℓ(M) − 1 ≤ θℓ+1(⟨x,M⟩)
follows from the inequality θℓ+1(⟨x,M⟩) ≤ θℓ(M) on the complement functions). If θℓ(M) ≥
n− ℓ, then θℓ+1(⟨x,M⟩) ≤ θℓ(M) is immediate, since θℓ+1(⟨x,M⟩) ≤ n+1− (ℓ+1) = n− ℓ

by definition. Consider the case of θℓ(M) < n− ℓ. Then there is a profile X of N such that
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XSm = M , na = θℓ(M), f(X) = b and nb ≥ 1. We choose an agent t ∈ Sb and change its

location from xt to an arbitrary location x′t ∈ Ωm to obtain a new profile X ′ = ⟨x′t, X−t⟩ of
N . By Definition 1, it holds that β(f(X), xt) ≥ β(f(X ′), xt), i.e., d(b, xt) ≥ d(f(X ′), xt).

Since d(a, xt) > d(b, xt), f(X
′) = b holds for the profile X ′ such that n′

a = θℓ(M) and

X ′
S′
m

= ⟨x′t,M⟩ ∈ Ωℓ+1
m . Recall that θℓ+1(⟨x′t,M⟩) is the minimum integer na such that

there is a profile X of N such that XSm = ⟨x′t,M⟩ satisfying f(X) = b. Hence we have

θℓ+1(⟨x′t,M⟩) ≤ n′
a = θℓ(M).

Finally, we prove that θ0(∅) ̸= 0 (property θ0(∅) ̸= n+ 1 follows from θ0(∅) ̸= 0 on the

complement function). If θ0(∅) = 0, then inequality θℓ+1(⟨x,M⟩) ≤ θℓ(M) (0 ≤ ℓ ≤ n− 1,

M ∈ Ωℓ
m, x ∈ Ωm) inductively implies that θℓ(M) = 0 for any M ∈ Ωℓ

m and 0 ≤ ℓ ≤ n.

This, however, means that f(X) = b for all profiles X of N , contradicting that Cf = {a, b}.
2

5 Approximation ratio of 2-candidate mechanisms

This section analyzes the approximate ratio γ = maxX∈Ωn
OPT(X)

SB(f(X),X) of 2-candidate SP

mechanisms in the general metric.

Upper bound We first derive an upper bound on the approximate ratio γ. Let f be a

2-candidate SP mechanism on a set N of n agents in a metric (Ω, d), where f can be given

by choosing two points a, b ∈ Cf and functions θi, i = 0, 1, . . . , n so that f becomes a valid

threshold mechanism by Theorem 6.

Theorem 8 Let f be a 2-candidate mechanism for a set N of n agents. If Cf = {a, b} is a

pair of most distant points in Ω and f is a valid threshold mechanism by a set {θ0, . . . , θn}
of functions, then the approximate ratio γ of f is less than max{ 2n

θ0(∅) ,
2n

n+1−θ0(∅)}.

Proof. Let d(a, b) = 2r. For a profile X of N with f(X) = a, we derive an upper bound

on γ. We have SB(f(X), X) =
∑

i∈N d(a, xi) > nmr + nbr = (n − na)r, since d(a, xi) > r

for nb agents i ∈ Sb, and d(a, xi) = r for nm agents i ∈ Sm. Let cX ∈ Ω denote an

optimal facility location, i.e., OPT(X) = SB(cX , X). On the other hand, we see that

OPT(X) ≤ 2nr, since d(cX , xi) ≤ 2r for any location xi ∈ Ω by the choice of a and b.

Hence we have γ < 2nr
(n−na)r

= 2n
n−na

. Since f(X) = a, it holds na < θnm(XSm) ≤ θ0(∅),
where we use the property θℓ+1(⟨x,M⟩) ≤ θℓ(M) of functions to get the second inequality.

Hence γ < 2n
n+1−θ0(∅) . When f(X) = b, we apply the same argument to the complement

function to obtain γ < 2n
n+1−θ0(∅)

= 2n
θ0(∅) . This proves the theorem. 2 2

The bound max{ 2n
θ0(∅) ,

2n
n+1−θ0(∅)} in Theorem 8 is minimized and γ ≤ 4 holds when

θ0(∅) = ⌈n/2⌉. In fact, such a valid threshold mechanism f for a set of n agents can be

constructed as follows. For a pair Cf = {a, b} of most distant points in Ω, let f return

f(X) = a if na + nm < nb; f(X) = b otherwise.

Lower bound We have shown that every valid threshold mechanism f with θ0(∅) = ⌈n/2⌉
has an approximation ratio γ = 4. Now we give a tight example (Ω, d) such that for every

choice of a, b ∈ Ω, the approximation ratio γ attained by a valid threshold mechanism f

with Cf = {a, b} and θ0(∅) = ⌈n/2⌉ is at least 4. Such an example (ΩG, d) is constructed

from a graph G as follows. Let G = (V,E) be the graph with a set V of ten vertices, s

and ui, vi, ti (i = 1, 2, 3), and a set E of 12 edges, tivi, vis, viui−1, viui+1 (i = 1, 2, 3), where

we interpret u4 = u1 and u0 = u3 (see Fig. 1). We regard each edge as a line segment of
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Figure 1: An undirected graph G

length 1, and a point x on an edge e is denoted by x ∈ e. Let ΩG be the set of points in all

edges including the end points. The distance d(x, x′) for two points x, x′ ∈ ΩG is defined

to be the length of a shortest path between x and x′.

Lemma 9 For any two points c1, c2 ∈ ΩG, there are a point c∗ ∈ ΩG and a shortest path

P between c1 and c2 in (ΩG, d) such that

ρ =
max{d(c1, c∗), d(c2, c∗)}+ d(x, c∗)

d(c1, c2)/2
≥ 4

for the middle point x on P .

Proof. Given points c1 and c2, we choose P which does not pass through s if any. By

symmetry, we only need to consider the case where x is on one of edges v3t3, v3u2 and v3s.

We show that c∗ = t1 suffices the lemma. Let d(c2, c
∗) ≥ d(c1, c

∗) without loss of generality.

When d(c1, c2) ≤ 2, we easily see that ρ ≤ 4 since max{d(c1, c∗), d(c2, c∗)}+d(x, c∗) ≥ 4 and

d(c1, c2)/2 ≤ 1. In what follows, assume that d(c1, c2) > 2 and hence c1 and c2 are in two

nonadjacent edges, respectively. Note that x ∈ v3t3 implies d(c1, c2) ≤ 2. We distinguish

two cases.

Case 1. x ∈ v3u2: We do not need to consider the case where one of c1 and c2,

say ci is on edge v3t3, since we can move ci ∈ v3t3 to a point on edge v3u3 without

changing both of the position of x and d(c1, c2) or increasing max{d(c1, c∗), d(c2, c∗)}. In

this case, we can assume that c1 ∈ v3u3 and c2 is on one of edges v2u2, v2u1 and v2t2; or

c1 ∈ v1u3 and c2 ∈ v2u2. In any case, we obtain d(c2, c
∗) + d(c2, x) + d(x, c∗) = 8 + 2α

and d(c1, c2)/2 ≤ (3 + α)/2, where α = d(c2, v2) ≤ 1 when c2 ∈ v2t2 and α = 0 otherwise.

Hence we have ρ ≥ 8+2α−d(c2,x)
d(c1,c2)/2

≥ −1 + 16+4α
3+α = −1 + 4 + 4

3+α ≥ 4.

Case 2. x ∈ v3s: We can assume that c2 is on v3u3, v3u2 or v3t3 and c1 is on sv1
or sv2, where c1 is not on v1t1 or v1u1 by the choice of P . In addition, we can assume

c1 ̸∈ sv2 and c2 ̸∈ v3u2, since we can move c1 ∈ sv2 (resp., c2 ∈ v3u2) to a point on

edge sv1 (resp., v3t3) without changing both of the position of x and d(c1, c2) or increas-

ing max{d(c1, c∗), d(c2, c∗)}. Then we obtain d(c2, c
∗) + d(c2, x) + d(x, c∗) = 6 + 2α and

d(c1, c2)/2 ≤ (2+α)/2, where α = d(c2, v3) ≤ 1 when c2 ∈ v3t3 and α = 0 otherwise. Hence

we have ρ ≥ 6+2α−d(c2,x)
d(c1,c2)/2

≥ −1 + 12+4α
2+α = −1 + 4 + 4

2+α > 4, as required. 2 2

By Lemma 9, we can get the following theorem.

Theorem 10 For the obnoxious facility game on the above metric (ΩG, d), let f be a valid

threshold mechanism with θ0(∅) = ⌈n/2⌉ of a set N of n agents. Then for any choice of

Cf = {a, b}, the approximation ratio of f is not smaller than 4(1− 4
n+2).
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Proof. For Cf = {a, b}, there are points c∗,m ∈ ΩG such that d(a,m) = d(b,m) and

ρ = max{d(a,c∗),d(b,c∗)}+d(m,c∗)
d(a,b)/2 ≥ 4 by Lemma 9. We consider the case of d(a, c∗) > d(b, c∗)

(the other case can be treated analogously). For a sufficiently small ϵ > 0, let mb ∈ ΩG be a

point that is closer to b than a in a neighbor of m within distance ϵ; d(a,mb) ≤ d(a,m) + ϵ

and d(mb, c
∗) ≥ d(m, c∗) − ϵ hold. Construct a profile X of N such that ⌈n/2⌉ − 1 agents

are situated on point a while the other ⌊n/2⌋ + 1 agents on point mb. Since nm = 0 and

na = ⌈n/2⌉−1 < θ0(∅), we have f(X) = a, SB(f(X), X) = (⌊n/2⌋+1)d(a,mb) ≤ (⌊n/2⌋+
1)(d(a, b)/2 + ϵ) and OPT(X) ≥ SB(c∗, X) = (⌈n/2⌉ − 1)d(a, c∗) + (⌊n/2⌋ + 1)d(mb, c

∗)

≥ (⌈n/2⌉−1)(d(a, c∗)+d(m, c∗)−ϵ). Hence it holds OPT(X)
SB(f(X),X) ≥

(⌊n/2⌋+1)(d(a,c∗)+d(m,c∗)−ϵ)
(⌈n/2⌉−1)(d(a,b)/2+ϵ) ,

which approaches to 4(1− 4
n+2) when ϵ → 0. 2 2

We remark that it is still open whether there exists an example (Ω, d) such that for

every choice of a, b ∈ Ω, the approximation ratio γ attained by a valid threshold mechanism

f with θ0(∅) ̸= ⌈n/2⌉ is at least 4.

6 Concluding remarks

In this paper, we studied SP/GSP mechanisms for the obnoxious facility game. We first

showed that there is a metric that admits no p-candidate SP mechanism for any p ≥ 3.

We then proved that a valid threshold mechanism is a complete characterization of (group)

strategy-proof mechanisms with exactly two candidates in the general metric. We also

proved that there always exists a 4-approximation valid threshold mechanism in any metric.

Note that for any integer p ≥ 3, there is a metric (Ω, d) that admits a p-candidate GSP

mechanism. For example, let (Ω, d) be a metric on a star network with a center vc and p

leaf edges vcvj j = 1, 2, . . . , p of length 1, and f be a p-candidate mechanism that returns

f(X) = vk for a profile X such that nk = min1≤j≤p nj for nj = |{i ∈ N | xi ∈ vcvj}|. Then
we can prove that this p-candidate mechanism is GSP and the approximation ratio is at

most 2 + 1
p−1 .

There are still several open problems on the obnoxious facility game. First, given a

metric (Ω, d), it is important to know the maximum number p(Ω, d) of candidates such

that there exists a p(Ω, d)-candidate SP/GSP mechanism. Also for such a maximum value

p(Ω, d), it is left open whether we can construct a p′-candidate SP/GSP mechanism in the

metric for any p′ < p(Ω, d) or not. The problem of placing an obnoxious facility when the

locations of agents are fixed is called the 1-maxian problem [5, 13]. In the 1-maxian problem,

the number of optimal locations of an obnoxious facility in a network metric is known to

be finite. It would be interesting to investigate the relationship between solutions of the

1-maxian problem and candidates of SP/GSP mechanisms of the obnoxious facility game.

Also it is another interesting issue to derive a counterpart/extension of our arguments in

randomized mechanisms in the general metric (see [4] for a randomized 2-candidate GSP

mechanism in the line metric).
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