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Abstract

In the obnoxious facility game, a location for an undesirable facility is to be deter-

mined based on the voting of selfish agents. Design of group strategy proof mechanisms

has been extensively studied, but it is known that there is a gap between the social

benefit (i.e., the sum of individual benefits) by a facility location determined by any

group strategy proof mechanism and the maximum social benefit over all choices of fa-

cility locations; their ratio, called the benefit ratio can be 3 in the line metric space. In

this paper, we investigate a trade-off between the benefit ratio and a possible relaxation

of group strategy proofness, taking 2-candidate mechanisms for the obnoxious facility

game in the line metric as an example. Given a real λ ≥ 1 as a parameter, we introduce

a new strategy proofness, called “λ-group strategy-proofness,” so that each coalition

of agents has no incentive to lie unless every agent in the group can increase her ben-

efit by strictly more than λ times by doing so, where the 1-group strategy-proofness

is the previously known group strategy-proofness. We next introduce “masking zone

mechanisms,” a new notion on structure of mechanisms, and prove that every λ-group

strategy-proof (λ-GSP) mechanism is a masking zone mechanism. We then show that,

for any λ ≥ 1, there exists a λ-GSP mechanism whose benefit ratio is at most 1 + 2
λ ,

which converges to 1 as λ becomes infinitely large. Finally we prove that the bound is

nearly tight: given n ≥ 1 selfish agents, the benefit ratio of λ-GSP mechanisms cannot

be better than 1 + 2
λ when n is even, and 1 + 2n−2

λn+1 when n is odd.

Keywords: mechanism design, facility game, strategy-proof, anonymous, optimization

1 Introduction

1.1 Social choice theory

In social choice theory, we design mechanisms that determine a social decision based on a

vote. That is, for a set Ω of voting alternatives and a set N of selfish voters with various

utilities, we design a mechanism f : Ωn → Ω as a collective decision making system. Voters

know the exact detail of the operation of the mechanisms before they actually vote, and

each voter can find out her expected benefit in the case when every voter votes truthfully.

We call this benefit for each voter her primary benefit. Each voter may try to manipulate
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the decision of a mechanism by changing her voting to increase her personal utility. A

voting which aims to manipulate the decision of a mechanism is called a strategic-voting.

To the effect of making a fair decision, we are interested in mechanisms in which no voter

can benefit by a single-handed strategic-voting. Such a mechanism is called a strategy-proof

mechanism. Moreover, a mechanism is called a group strategy-proof mechanism, if there is

no coalition of voters such that each member in the coalition can simultaneously benefit

by their cooperative strategic-voting. Moulin [9] studied social choice theory under the

condition that the set of alternatives is the one-dimensional Euclidean space and each utility

function is a single peaked concave function, and gave necessary and sufficient conditions of

strategy-proofness under such conditions. After that, Border and Jordan [2] extended the

characterization into the multi-dimensional Euclidean space, and characterized strategy-

proof mechanisms in those metrics. Schummer and Vohra [11] applied the result of Border

and Jordan [2] to the case when Ω is the set of all points in a tree metric and characterized

strategy-proof mechanisms in those metrics. Moreover, they characterized strategy-proof

mechanisms in the case when Ω is the set of all points in a graph metric which has at least

one cycle.

1.2 Facility game

The facility game can be regarded as a problem in social choice theory where a location of

the facility in a metric space will be decided based on locations of agents (votes by voters)

and each agent tries to maximize the benefit from her utility function defined based on the

distance from her location to the location of the facility.

In a facility game with a set N of agents in a space Ω, each agent reports a point in the

space, and a location of a facility will be determined by a procedure called a mechanism,

where how the set of points reported by the agents is used by the procedure to decide a

location of the facility is known to all the agents in advance. Each agent is selfish in the

sense that she may misreport her point so that the output by the mechanism becomes more

beneficial to her. The facility can be classified as either one of two types, one is desirable

to agents (or each agent wants the facility to be located near the point reported by the

agent), and the other is obnoxious to agents (or each agent wants the facility to be located

far from the point reported by the agent).

Several studies have been extensively made on the desirable facility game, such as de-

signing mechanisms [1, 2, 7, 8, 10, 11]. Procaccia and Tennenholtz [10] proposed a group

strategy-proof mechanism which returns the location of the median agent as the facility

location when all agents are located on a path. Moreover, they designed a randomized

mechanism, that is, a mechanism that does not output a single facility location but out-

puts a probability distribution of the facility location over a metric space. In randomized

mechanisms, the utility of agents is defined to be the expected value by the probability

distribution. On the contrary, a mechanism which outputs a facility location is called

deterministic.

Cheng et al. [4] studied the obnoxious facility game. For a given mechanism, the benefit

for each agent obtained under the assumption that all agents have reported their true

locations is called primary benefit. Mechanisms which only output one of a predetermined
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set of k candidates for a facility location are called k-candidate mechanisms.

In previous studies of facility games [1, 2, 3, 4, 7, 8, 10, 11], mechanisms are allowed to

distinguish agents. In other words, the input of mechanisms is not only location information

(i.e., where is reported) but also agents’ information (i.e., who reports the location). On

the other hand, there is a category of mechanisms which are called anonymous, that is,

which do not use agents’ information. Anonymous mechanisms would be a fair decision-

making in the sense that no indication of a particular agent can reflect to outputs by such

mechanisms.

Another important aspect of mechanisms of facility games is a measure of the quality

of mechanisms. In general, a location of a facility that maximizes some social benefit, such

as the sum of all individual benefits, is different from a location output by a strategy-proof

(or group strategy-proof) mechanism. In other words, the maximum value of the social

utility attained by a strategy-proof (or group strategy-proof) mechanism is smaller than

that attained just by choosing the best location of the facility. This raises a problem of

designing a strategy-proof (or group strategy-proof) mechanism that outputs a location of

a facility that maximizes a social benefit among all strategy-proof (or group strategy-proof)

mechanisms. A possible measurement of the performance for a mechanism is a benefit-ratio,

the ratio of the social utility attained by the mechanism to that attained by a theoretically

maximum possible social benefit. For example, Alon et al. [1] gave a complete analysis on

benefit-ratios of group strategy-proof mechanisms for the desirable facility game in general

graph metrics.

We review some recent results on the obnoxious facility game. Ibara and Nagamochi [5,

6] presented a complete characterization of 2-candidate (group) strategy-proof mechanisms

in any metric space, giving necessary and sufficient conditions for the existence of such a

mechanism in a given metric, and proved that in any metric, a 2-candidate mechanism with

a benefit ratio of 4 can always be designed.

For the obnoxious facility game in the line metric, Ibara and Nagamochi [5, 6] showed

that there exists no k-candidate group strategy-proof mechanism for any k ≥ 3. Cheng

et al. [4] gave a 2-candidate group strategy-proof mechanism in the line metric with a

benefit ratio of 3, and showed that this is the best possible over all 2-candidate group

strategy-proof mechanisms in the line metric.

1.3 Our Contribution

Since it has been shown that the best benefit ratio is 3 over all 2-candidate group strategy-

proof mechanisms for the obnoxious facility game in the line metric, we propound the

following questions on the game:

1. Is there any way of relaxing the definition of group strategy-proofness so that the

benefit ratio 3 is improved over such relaxed group strategy-proof mechanisms?

2. With an adequate parameter λ ≥ 1, is there any trade-off between a λ-group strategy-

proofness (a group strategy-proofness relaxed with λ) and the benefit ratio ρ for λ

such that ρ approaches 1 as λ becomes infinitely large; and
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3. For each fixed λ ≥ 1, what is the benefit ratio ρ of a λ-group strategy-proof (or can

upper and lower bounds on ρ which are tight be derived)?

This paper answers all of these questions affirmatively. First we introduce a relaxed

version of (group) strategy-proofness via a parameter λ ≥ 1 by assuming that an agent has

no incentive to misreport her own location unless she can increase her benefit by strictly

more than λ times her primary benefit. Respectively, in every group of agents, at least

one agent cannot get an increase of strictly more than λ times from her primary benefit by

strategically changing her report in coalition with the rest of the group. This parameteri-

zation serves as a relaxation of the notion of group strategy-proofness. Mechanisms which

guarantee the above property are termed “λ-strategy-proof (λ-SP) mechanisms” and “λ-

group strategy-proof (λ-GSP) mechanisms,” where 1-group strategy-proofness is equivalent

to the previously known group strategy-proofness.

Second, we design a λ-GSP 2-candidate mechanism whose benefit ratio ρ is at most

1 + 2/λ, which approaches 1 as the parameter λ tends to ∞. This answers the first and

second question.

Finally, we show that there is no λ-SP 2-candidate mechanism whose benefit ratio ρ is

smaller than 1+2/λ for an even n and 1+(2n− 2)/(λn+1) for an odd n, where n (≥ 1) is

the number of agents. This is an answer to the third and second question, since our upper

and lower bounds on the benefit ratio are almost tight.

The above results are obtained by introducing a new concept of mechanism design

that follows naturally from the introduction of the parameter λ, called “masking zone

mechanisms,” which in their own right might lend interesting directions for future research.

The paper is organized as follows. In Section 2, we give necessary preliminaries and

introduce as a general ideas such concepts as (parameterized) strategy-proofness in Sec-

tion 2.2, masking zone mechanisms in Section 2.3, social benefit in Section 2.4 and the

obnoxious facility game, Section 2.5. Section 3 expands on the topic of masking zone mech-

anisms, and shows that being a masking zone mechanism is a necessary condition for a

mechanism to be λ-SP. Following, Section 4 gives an upper bound on the benefit ratio of

λ-GSP mechanisms, by constructing a mechanism f with a benefit ratio of at most 1 + 2
λ ,

which also extends known results in the line metric [4]. Immediately, in Section 5, it is

shown that this bound is the best obtainable, by giving lower bounds on the benefit ratio

of masking zone mechanisms. Finally, the paper is concluded in Section 6.

2 Preliminaries

2.1 Notation

Let R and R+ be the sets of real and nonnegative real numbers, respectively.

Let Ω be a universal set of points. For a positive integer n ≥ 1, let N be a set of n

agents. For a set S ⊆ N of agents (resp., an agent i ∈ N), let S = N \S (resp., i = N \{i}).
Each agent i ∈ N chooses a point p ∈ Ω as a reported value χi = p. Let Ωagents ⊆ Ω denote

a set of points that can be chosen by an agent. A vector χ ∈ Ωn
agents with reported values

χi, i ∈ N is called a profile of N .
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A mechanism f is a function that given a profile χ of N outputs a point t ∈ Ω. Let

Ωfacility ⊆ Ω denote a set of points that can be output by a mechanism, where a mechanism

f is a mapping f(χ) : Ωn
agents → Ωfacility. It is common in the literature, e.g., [3, 4], to

represent the locations reported by agents as an n-dimensional vector x⃗, where x⃗i is the

point reported by an agent i ∈ N . Under these circumstances, the notion of anonymity

plays an important role. A mechanism f is anonymous if f(x⃗) = f(x⃗′) holds for any two

vectors x⃗ and x⃗′ that admit a bijection σ on N such that x⃗′i = x⃗σ(i) for all i ∈ N .

In what follows, we treat a profile χ of N as a multiset {χi | i ∈ N} of n elements.

For convenience, given a profile χ and a set S ⊆ N of agents, let χS denote the multiset

{χi | i ∈ S} of |S| elements. For a subspace Ω′ ⊆ Ω, the restriction χ|Ω′ of a profile χ on

Ω′ is defined to be the multiset

χ|Ω′ = {χi | i ∈ N,χi ∈ Ω′},

where |χ|Ω′ | means the number of elements in χ|Ω′ , i.e., the number of agents in χ|Ω′ .

The benefit of an agent i ∈ N with respect to a point p ∈ Ωagents and a point t ∈ Ωfacility

is specified by a function βi : Ωfacility ×Ωagents → R. We assume that a larger value in βi is

preferable to the agent i ∈ N . For a mechanism f : Ωn
agents → Ωfacility, a point t ∈ Ωfacility

is called a candidate if there is a profile χ ∈ Ωn
agents such that f(χ) = t, and the set of all

candidates of f is denoted by C(f) ⊆ Ωfacility. A mechanism with |C(f)| = k is called a

k-candidate mechanism.

2.2 Strategy Proofness

In this paper, we assume that a larger value of βi is preferable to the agent i ∈ N .

First we review the definitions of strategy-proofness and group strategy-proofness of

mechanisms [1, 4, 5, 6]. Following, we introduce a new notion of “λ-strategy-proofness,” an

extension of strategy-proofness. Henceforth, let χ be a profile of a set N of n ≥ 1 agents.

A mechanism f is called strategy-proof (SP for short) if no agent can strictly benefit

from changing her report. Formally, for any agent i ∈ N who changes her report from χi

to χ′
i ∈ Ωagents, for the profile χ′ = χi ∪ χ′

i it holds that

βi(f(χ), χi) ≥ βi(f(χ
′), χi)

A mechanism f is called group strategy-proof (GSP for short) if for every group of agents,

at least one agent in the group cannot benefit from changing her report in coalition with the

rest of the group. Formally, for any non-empty set S ⊆ N of agents and for any profile χ′

such that χ′
S
= χS , there exists an agent i ∈ S for whom

βi(f(χ), χi) ≥ βi(f(χ
′), χi).

Now we extend the (group) strategy-proofness by introducing a parameter λ ≥ 1.

A mechanism f is called λ-strategy-proof (λ-SP for short) if no agent can gain strictly

more than λ times her primary benefit by changing her report. Formally, for any agent

i ∈ N and any profile χ′ such that χ′
i
= χi, it holds that

λβi(f(χ), χi) ≥ βi(f(χ
′), χi). (1)
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A mechanism f is called λ-group strategy-proof (λ-GSP for short) if for every group of

agents, at least one agent in the group cannot gain strictly more than λ times her primary

benefit by changing her report in coalition with the rest of the group. Formally, for any

non-empty set S ⊆ N of agents and for any profile χ′ such that χ′
S
= χS , there exists an

agent i ∈ S for whom

λβi(f(χ), χi) ≥ βi(f(χ
′), χi). (2)

By definition, any λ-GSP mechanism is λ-SP, and the 1-strategy-proofness (resp., 1-group

strategy-proofness) is equivalent to the strategy-proofness (resp., group strategy-proofness).

2.3 Masking Zone Mechanisms

In this paper, we introduce “masking zone mechanisms,” another new concept on the struc-

ture of mechanisms.

Definition 1 Let S be a family of nonempty disjoint subsets of Ω, and S = Ω \
∪

S∈S . A

mechanism f is a masking zone mechanism with set of masking zones S if it delivers the

same output f(χ) = f(χ′) for any two profiles χ and χ′ such that

χ|S = χ′|S and |χ|S | = |χ′|S | for all S ∈ S.

In other words, f(χ) of a profile χ never changes as long as a point χi ∈ S ∈ S changes

to a point in the same subset S.

2.4 Social Benefit

We introduce an objective function sb(t, χ) that evaluates the quality of a point t determined

based on a given profile χ. For a point t ∈ Ωfacility and a profile χ, we define the social

benefit sb(t, χ) to be the sum of individual benefits over all agents, i.e.,

sb(t, χ) =
∑
i∈N

βi(t, χi).

Given a profile χ, let opt(χ) denote the maximum social benefit over all choices of points

t ∈ Ωfacility; i.e.,

opt(χ) = max
t∈Ωfacility

{sb(t, χ)}.

The benefit ratio ρf ≥ 1 of a mechanism f is defined to be

ρf = sup
χ∈Ωn

agents

opt(χ)

sb(f(χ), χ)
.

When λ becomes infinitely large, the constraints of Eqs. (1) and (2) are no longer

effective. If there is no such constraint as in Eq. (1) or (2), then a λ-SP or λ-GSP mechanism

can deliver a point t ∈ Ωfacility that maximizes sb(t, χ) and ρf = 1 always holds in this case.
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2.5 Obnoxious Facility Game in the Line Metric

In this paper, we consider the obnoxious facility game in the line metric [4]. Let (Ω, d) be

a metric with a space Ω ⊆ R in the line and the distance function d : Ω2 → R+ such that

d(x, y) = |x− y| =

{
x− y if x ≥ y,

y − x otherwise.

We assume that, for any agent i ∈ N , the benefit βi is given by

βi(t, p) = d(t, p) t ∈ Ωfacility, p ∈ Ωagents.

In interest of space and clarity, given a profile χ and a candidate location t ∈ Ωfacility,

henceforth we omit referring to the benefit βi(t, χi) of agent i, and directly write d(t, χi).

Also we let d(t, P ) denote
∑

p∈P d(t, p) for a point t ∈ R and a multiset P of points in R,
where sb(c, χ) = d(c, χ) for a profile χ of N and a location c ∈ R.

Recall that there is no k-candidate SP mechanism in the line metric, for any k ≥ 3 [5, 6]

and that ρf = 3 for a GSP mechanism f and no GSP mechanism f attains ρf < 3 [4].

In this paper, we examine the benefit ratio of a 2-candidate λ-GSP mechanism f , and

assume without loss of generality that C(f) = {0, 1} = Ωfacility ⊆ Ω ⊆ R.
Given a real λ ≥ 1, we define subsets I0 and I1 of R as follows:

I0 =

(
−1

λ− 1
,

1

λ+ 1

)
, I1 =

(
λ

λ+ 1
,

λ

λ− 1

)
for λ > 1,

and I0 = {p ∈ R | p < 1
2} and I1 = {p ∈ R | p > 1

2} for λ = 1. Let I = I0∪ I1 and I = R\ I.
Then we observe the next property.

Proposition 1 Given a real λ ≥ 1, a point p ∈ R satisfies λd(0, p) < d(1, p) (resp.,

λd(1, p) < d(0, p)) if and only if p ∈ I0 (resp., p ∈ I1).

Proof. We have that {p ∈ R | λd(0, p) − d(1, p) < 0} = {p ∈ R | λ2p2 − (p − 1)2 =

(λp + (p − 1))(λp − (p − 1)) < 0} = ( −1
λ−1 ,

1
λ+1) = I0. Analogously we see that {p ∈

R | λd(1, p) − d(0, p) < 0} = ( λ
λ+1 ,

λ
λ−1) = I1. In the case of λ = 1, we have that

d(0, p)− d(1, p) < 0 ⇔ p < 1
2 , and d(0, p)− d(1, p) > 0 ⇔ p > 1

2 , as required. □

In this paper, we first show that all 2-candidate λ-SP mechanisms are masking zone

mechanisms.

Theorem 1 Let λ ≥ 1. Every 2-candidate λ-SP mechanism f with candidate set C(f) =

{0, 1} in the line metric is a masking zone mechanism with set of masking zones {I0, I1}.

Based on this, we next design a masking zone λ-GSP mechanism whose benefit ratio is

at most 1 + 2/λ.

Theorem 2 Let λ ≥ 1. In the line metric, there is a 2-candidate λ-GSP mechanism f

such that ρf ≤ 1 + 2
λ .
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Finally we examine the converse, showing that no masking zone λ-SP mechanism f

attains a benefit ratio smaller than 1 + 2/λ for an even n = |N | or 1 + (2n − 2)/(λn + 1)

for an odd n = |N |.

Theorem 3 Let λ ≥ 1 and n = |N | ≥ 1. In the line metric, there is no 2-candidate λ-SP

mechanism f such that

ρf <

{
1 + 2

λ if n is even,

1 + 2n−2
λn+1 otherwise.

3 Masking Zone Mechanisms

This section shows that any λ-SP mechanism is a masking zone mechanism. By the following

lemma, we derive a necessary condition for a mechanism in the line metric to be λ-SP.

Lemma 1 Given a real λ ≥ 1, let f be a λ-SP mechanism with candidate set C(f) = {0, 1}.
Let χ be a profile of N such that f(χ) = c ∈ {0, 1}. If there is an agent i with χi ∈ Ic, then

the profile χ̂ obtained from χ by changing χi to a point in Ic still satisfies f(χ̂) = c, where

χ̂i = χi and χ̂i ∈ Ic.

Proof. To derive a contradiction, we assume that f(χ̂) = 1 − c. Since χi ∈ Ic, we know

λd(c, χi) < d(1 − c, χi) by Proposition 1, i.e., λd(f(χ), χi) = λd(c, χi) < d(1 − c, χi) =

d(f(χ̂), χi). Since χ̂i = χi, this contradicts that f is λ-SP. □

We are now ready to prove Theorem 1.

Proof of Theorem 1 Let f be a λ-SP mechanism with candidate set C(f) = {0, 1}. We

say that two profiles χ and χ′ of N are zone-equivalent if χ|I = χ′|I and |χ|Ic | = |χ′|Ic |
for each c ∈ C(f) = {0, 1}. It suffices to show that, for any zone-equivalent profiles χ

and χ′, it holds that f(χ) = f(χ′). To derive a contradiction, assume that there are zone-

equivalent profiles χ and χ′ with f(χ) ̸= f(χ′), and let χ and χ′ minimize the number

|χ|I \ χ′|I |+ |χ′|I \ χ|I | of different locations between them among all such pairs.

Since χ and χ′ are zone-equivalent, there are two distinct locations χi ∈ Ic and χ′
j ∈ Ic

for some agents i, j ∈ N and some c ∈ {0, 1}. Without loss of generality f(χ) = c and

f(χ′) = 1− c (if necessary we exchange the role of χ and χ′). Let χ̂ be the profile obtained

from χ by changing the location χi ∈ Ic of agent i to the point χ′
j ∈ Ic. By Lemma 1 and

f(χ) = c, we see that f(χ̂) = c.

Notice that χ̂ and χ′ remain zone-equivalent, and now they have fewer different locations

than χ and χ′ have. Then by the choice of χ and χ′, it must hold f(χ̂) = f(χ′) = 1 − c,

which contradicts that f(χ̂) = c, proving Theorem 1. □

4 Upper Bounds on the Benefit Ratio

In this section, given a real λ ≥ 1, we prove Theorem 2 by constructing a 2-candidate

λ-GSP mechanism f whose benefit ratio ρf is at most 1 + 2/λ.
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Having in mind that for a given profile χ, the condition for λ-group strategy-proofness

of Eq. (2) concerns exactly the agents i ∈ N with χi ∈ I, we define a distorted distance

between a point c ∈ {0, 1} and a point p ∈ Ω of to be

µ(c, p) =


d(c, p) if p ∈ I,

0 if p ∈ Ic,

1 if p ∈ I1−c,

where clearly −1 ≤ µ(c, p) − µ(1 − c, p) ≤ 1 always holds. Also we let µ(c, P ) denote∑
p∈P µ(c, p) for a point c ∈ {0, 1} and a multiset P of points in R. Then for a profile χ of

N and a location c ∈ {0, 1}, we have

µ(c, χ) =
∑
i∈N

µ(c, χi) = d(c, χ|I) + |χ|I1−c |.

Based on this, we propose the following masking zone mechanism f with candidate set

C(f) = {0, 1}.

Mechanism f(χ): given a multiset χ, return a candidate c ∈ C(f) = {0, 1}

f(χ) =

{
0 if µ(0, χ) > µ(1, χ),

1 if µ(0, χ) ≤ µ(1, χ).
(3)

We claim that the mechanism f is λ-GSP.

Lemma 2 The mechanism f of Eq. (3) is λ-GSP.

Proof. To derive a contradiction, we assume that f is not λ-GSP; i.e., by definition, there

is a non-empty subset S ⊆ N which influences two profiles χ and χ′ with

χ′
S
= χS and f(χ) ̸= f(χ′)

such that every agent i ∈ S satisfies

λd(f(χ), χi) < d(f(χ′), χi) or χi ∈ Ic for c = f(χ),

by Proposition 1, where f(χ) ̸= f(χ′) must hold by λ ≥ 1. Let S be minimal subject to

the above condition, and j be an arbitrary agent in S.

We prove that the profile χ′′ obtained from χ′ just by changing χ′
j to χj satisfies f(χ

′) =

f(χ′′), or equivalently

µ(0, χ′)− µ(1, χ′) ≤ 0 if and only if µ(0, χ′′)− µ(1, χ′′) ≤ 0 (4)

by the definition of f of Eq. (3). Observe that χ′′
j
= χ′

j
, χ′′

j = χj , and

µ(c, χ′′) = µ(c, χ′)− µ(c, χ′
j) + µ(c, χj) for each c ∈ {0, 1}

by the definition of µ. From this, we have

µ(0, χ′′)− µ(1, χ′′) = µ(0, χ′)− µ(1, χ′) + [µ(1, χ′
j)− µ(0, χ′

j)] + [µ(0, χj)− µ(1, χj)], (5)
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where we know −1 ≤ µ(1, χ′
j)−µ(0, χ′

j) ≤ 1 by the definition of µ. By χj ∈ Ic for f(χ) = c

(i.e., f(χ′) = 1− c), we also know

µ(0, χj)− µ(1, χj) =

{
−1 if f(χ′) = 1 (i.e., µ(0, χ′)− µ(1, χ′) ≤ 0 by Eq. (3)),

1 if f(χ′) = 0 (i.e., µ(0, χ′)− µ(1, χ′) > 0).

Therefore, if µ(0, χ′)− µ(1, χ′) is nonnegative (resp., positive), then the right hand side of

Eq. (5) is also nonnegative (resp., positive), implying Eq. (4).

Finally we observe that f(χ′′) = f(χ′) contradicts the minimality of S.

(i) S = {j}: Since χ′
S
= χS , we see that χ

′′ = χ and f(χ′′) = f(χ) ̸= f(χ′), a contradiction.

(ii) S−{j} ̸= ∅: If f(χ′′) = f(χ′) then the subset T = S−{j} would satisfy χ′′
S
= χ′

S
= χS ,

χ′′
j = χj and λd(f(χ), χj) < d(f(χ′), χj) = d(f(χ′′), χj) for all i ∈ T , contradicting the

minimality of S. □

Now we derive an upper bound on the benefit ratio of the mechanism f .

Lemma 3 The benefit ratio of the mechanism f of Eq. (3) is at most 1 + 2/λ for any real

λ ≥ 1.

Proof. In the following, we use the fact that f(χ) = c for c ∈ {0, 1} imply µ(c, χ) ≥
µ(1− c, χ) in Eq. (3), i.e.,

d(c, χ|I) ≤ d(1− c, χ|I) +mc −m1−c, (6)

which is symmetric with c ∈ {0, 1}. For a notational simplicity, we consider the case of

f(χ) = 0, because the other case of f(χ) = 1 can be treated symmetrically.

For each c ∈ {0, 1}, define I−c = {h ∈ Ic | h < c}, I+c = {h ∈ Ic | h ≥ c}, m−
c = |χ|I−c |,

m+
c = |χ|I+c | and mc = |χ|Ic | = m−

c +m+
c . For

D = d(0, χ|I) + d(0, χ|I−0 ) + d(0, χ|I+1 ) (≥ 0),

we prove

sb(0, χ) = d(0, χ) ≥ D +m−
1

λ

λ+ 1

and

opt(χ) ≤ D +m−
1

(
1 +

1

λ+ 1

)
,

which implies the desired result
opt(χ)

sb(0, χ)
≤ 1 +

2

λ
.

By noting that χ is a disjoint union of five multisets χ|I , χ|I−0 , χ|I+0 , χ|I−1 and χ|I+1 , we get

d(0, χ) = d(0, χ|I) + d(0, χ|I−0 ) + d(0, χ|I+0 ) + d(0, χ|I−1 ) + d(0, χ|I+1 )

≥ D + d(0, χ|I−1 ) ≥ D +m−
1

λ

λ+ 1
(by I−1 = ( λ

λ+1 , 1)).
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On the other hand, for opt(χ) = sb(1, χ) = d(1, χ), we get

opt(χ) = d(1, χ|I) + d(1, χ|I0) + d(1, χ|I1)
< d(0, χ|I) +m1 −m0 + d(1, χ|I0) + d(1, χ|I1) (by Eq. (6))

= d(0, χ|I) +m1 + d(0, χ|I−0 )− d(0, χ|I+0 ) + d(0, χ|I+1 )−m+
1 + d(1, χ|I−1 )

≤ D +m1 −m+
1 + d(1, χ|I−1 )

= D +m−
1 + d(1, χ|I−1 )

≤ D +m−
1 +m−

1

1

λ+ 1
(by I−1 = ( λ

λ+1 , 1)),

as required. □

In conclusion, the results of Lemma 2 and Lemma 3, together give a proof of Theorem 2.

In light of a previous result by Cheng et al. [4], who have demonstrated a strategy-proof

GSP mechanism with a benefit ratio at most 3 in the line metric, we see that the result

of Theorem 2 follows as a natural extension of the introduction of λ-strategy proofness,

matching the result of Cheng et al. [4] for λ = 1.

5 Lower Bounds on the Benefit Ratio

This section derives a lower bound on the benefit ratio of all 2-candidate λ-SP mechanisms

in the line metric.

By Theorem 1, we only need to handle a masking zone 2-candidate λ-SP mechanism.

We show that every such λ-SP mechanisms f admits a profile χf such that
opt(χf )

sb(f(χf ),χf )
is

not smaller than 1 + 2/λ if n is even; 1 + (2n− 2)/(λn+ 1) otherwise.

The following lemma establishes a lower bound on the benefit ratio of any 2-candidate

masking zone mechanisms in the line.

Lemma 4 Given a real λ ≥ 1 and a set N of n (≥ 1) agents, let f be a masking zone

mechanism f with candidate set C(f) = {0, 1} and set {I0, I1} of masking zones. Then for

any real δ > 0, there is a profile χ such that

opt(χ)

sb(f(χ), χ)
≥

{
1 + 2

λ(
1−δ
1+δ ), if n is even

1 + 2n−2
λn+1(

1−δ
1+δ ), otherwise.

Proof. Let f be an arbitrary masking zone mechanism with set {I0, I1} of intervals and

candidate set C(f) = {0, 1}. Given δ > 0, let ε be a real with 0 < ε < min{ 1
λ+1 ,

δ
λ+1}. We

distinguish two cases.

Case 1. n (≥ 2) is even: Let χ be an arbitrary profile such that |χ|I0 | = |χ|I1 | = n
2 and

χ|I = ∅. By symmetry, we can assume without loss of generality that f(χ) = 0 holds. We

modify χ into a new profile χ′ such that

χ′
i =

{
0 for χi ∈ I0

1− 1
λ+1 + ε for χi ∈ I1,

11



where χ′|I = χ|I , and |χ′|Ic | = |χ|Ic | for each c = 0, 1. Since f is a masking zone mechanism

with set I = {I0, I1}, it holds that f(χ′) = f(χ) = 0. By definition, we have

sb(0, χ′) = 0 · n
2
+

(
1− 1

λ+ 1
+ ε

)
n

2
=

(
1− 1

λ+ 1
+ ε

)
n

2

and

opt(χ′) = max{sb(1, χ′), sb(0, χ′)} ≥ sb(1, χ′)

= 1 · n
2
+

(
1

λ+ 1
− ε

)
n

2
=

(
1 +

1

λ+ 1
− ε

)
n

2
.

Hence

opt(χ′)

sb(0, χ′)
≥

1 + 1
λ+1 − ε

1− 1
λ+1 + ε

= 1 +
2− 2(λ+ 1)ε

λ+ (λ+ 1)ε
≥ 1 +

2

λ

(
1− (λ+ 1)ε

1 + (λ+ 1)ε

)
≥ 1 +

2

λ

(
1− δ

1 + δ

)
.

Case 2. n (≥ 1) is odd: Let χ be an arbitrary profile such that |χ|I0 | = |χ|I1 | = n−1
2 and

χ|I = {1
2}. By symmetry, we can assume without loss of generality that f(χ) = 0 holds.

We modify χ into a new profile χ′ such that

χ′
i =


0 for χi ∈ I0

1− 1
λ+1 + ε for χi ∈ I1
1
2 for χi ∈ I,

where χ′|I = χ|I , and |χ′|Ic | = |χ|Ic | for each c = 0, 1. Since f is a masking zone mechanism

with set I = {I0, I1}, it holds that f(χ′) = f(χ) = 0. By definition, we have

sb(0, χ′) = 0 · n− 1

2
+

(
1− 1

λ+ 1
+ ε

)
n− 1

2
+

1

2
=

(
1− 1

λ+ 1
+ ε

)
n− 1

2
+

1

2

and

opt(χ′) = max{sb(1, χ′), sb(0, χ′)} ≥ sb(1, χ′)

= 1 · n− 1

2
+

(
1

λ+ 1
− ε

)
n− 1

2
+

1

2
=

(
1 +

1

λ+ 1
− ε

)
n− 1

2
+

1

2
.

Hence

opt(χ′)

sb(0, χ′)
≥

1 + 1
λ+1 − ε+ 1

n−1

1− 1
λ+1 + ε+ 1

n−1

= 1 +
2(n− 1)− 2(n− 1)(λ+ 1)ε

λ(n− 1) + (λ+ 1)(n− 1)ε+ (λ+ 1)

= 1 +
2(n− 1)

λn+ 1

(
1− (λ+ 1)ε

1 + (λ+1)(n−1)
λn+1 ε

)
≥ 1 +

2(n− 1)

λn+ 1

(
1− (λ+ 1)ε

1 + (λ+ 1)ε

)
≥ 1 +

2(n− 1)

λn+ 1

(
1− δ

1 + δ

)
.

□

By Theorem 1 and Lemma 4, we obtain Theorem 3.
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6 Concluding remarks

This paper studied a trade-off between the benefit ratio and a relaxation of group strategy

proofs, taking 2-candidate mechanisms for the obnoxious facility game in the line metric as

an example. As a result we introduce λ-group strategy-proofness, a parameterized strategy

proofness, and demonstrated a mechanism that has a desired property of a benefit ratio of

at most 1 + 2
λ , which tends to 1, as the parameter λ tends to ∞. This result was obtained

via a novel view on mechanism properties, and the introduction of the concept of masking

zone mechanisms, which is a necessary condition for λ-GSP mechanisms. On the other

hand, we also derived lower bounds on the benefit ratio of for masking zone mechanisms:

1+ 2
λ when n = |N | is even and 1+ 2n−2

λn+1 when n = |N | is odd. The above bounds are tight
when |N | is even, meaning that the upper bound on the benefit ratio is the best we can

hope for, but it remains an open question to the slight gap between the upper and lower

bounds for the case when |N | is odd.
For future work, it remains to investigate the trade-off between the benefit ratio and

the λ-GSP mechanisms in other metrics such as trees, circles and Euclidean space.

References

[1] N. Alon, M. Feldman, A. D. Procaccia and M. Tennenholtz, “Strategyproof approxi-

mation mechanisms for location on networks,” arXiv preprint arXiv:0907.2049, 2009.

[2] K. C. Border and J. S. Jordan, “Straightforward elections, unanimity and phantom

voters,” The Review of Economic Studies, vol. 50, no. 1, pp. 153–170, 1983.

[3] Y. Cheng, Q. Han, W. Yu and G. Zhang, “Obnoxious facility game with a bounded ser-

vice range,” Proc. 10th Annual International Conference on Theory and Applications of

Models of Computation (TAMC 2013), LNCS, vol. 7876, pp. 272–281, Springer-Verlag,

Berlin, Heidelberg, 2013.

[4] Y. Cheng, W. Yu and G. Zhang, “Mechanisms for obnoxious facility game on a path,”

Proc. 5th Annual International Conference on Combinatorial Optimization and Ap-

plications (COCOA 2011), LNCS, vol. 6831, pp. 262–271, Springer-Verlag, Berlin,

Heidelberg, 2011.

[5] K. Ibara and H. Nagamochi, “Characterizing mechanisms in obnoxious facility game,”

Proc. 6th Annual International Conference on Combinatorial Optimization and Ap-

plications (COCOA 2012), LNCS, vol. 7402, pp. 301–311, Springer-Verlag, Berlin,

Heidelberg, 2012.

[6] K. Ibara and H. Nagamochi, “Characterizing mechanisms in obnoxious facility game,”

Tech. Rep. 2015-003, Department of Applied Mathematics and Physics, Kyoto

University, available at: http://www.amp.i.kyoto-u.ac.jp/tecrep/ps_file/2015/

2015-005.pdf, 2015

13



[7] P. Lu, X. Sun, Y. Wang and Z. A. Zhu, “Asymptotically optimal strategy-proof mech-

anisms for two-facility games,” Proc. 11th ACM Conference on Electronic Commerce

(ACM-EC 2010), pp. 315–324, 2010.

[8] P. Lu, Y. Wang and Y. Zhou, “Tighter bounds for facility games,” Proc. 5th Workshop

on Internet and Network Economics (WINE 2009), LNCS, vol. 5929, pp. 137–148,

Springer-Verlag, Berlin, Heidelberg, 2009.

[9] H. Moulin, “On strategy proofness and single peakedness,” Public Choice, vol. 35,

no. 4, pp. 437–455, 1980.

[10] A. D. Procaccia and M. Tennenholtz, “Approximate mechanism design without

money,” Proc. 10th ACM Conference on Electronic Commerce (ACM-EC 2009),

pp. 177–186, 2009.

[11] J. Schummer and R. V. Vohra, “Strategy-proof location on a network,” Journal of

Economic Theory, vol. 104, no. 2, pp. 405–428, 2002.

14


