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Abstract: Thomassen characterized some 1-plane embedding as the forbidden

configuration such that a given 1-plane embedding of a graph is drawable in

straight lines if and only if it does not contain the configuration [C. Thomassen,

Rectilinear drawings of graphs, J. Graph Theory, 10(3), 335-341, 1988]. In

this paper, we characterize some 1-plane embedding as the forbidden config-

uration such that a given 1-plane embedding of a graph can be re-embedded

into a straight-line drawable 1-plane embedding of the same graph if and only

if it does not contain the configuration. Re-embedding of a 1-plane embedding

preserves the same set of pairs of crossing edges. We give a linear-time algo-

rithm for finding a straight-line drawable 1-plane re-embedding or the forbidden

configuration.

1 Introduction

Since the 1930s, a number of researchers have investigated planar graphs. In particular,

a beautiful and classical result, known as Fáry’s Theorem, asserts that every plane graph

admits a straight-line drawing [9]. Indeed, a straight-line drawing is the most popular

drawing convention in Graph Drawing.

More recently, researchers have investigated 1-planar graphs (i.e., graphs that can be

embedded in the plane with at most one crossing per edge), introduced by Ringel [16].

Subsequently, the structure of 1-planar graphs has been investigated [4, 5, 6, 15, 17]. In

particular, Pach and Toth [15] proved that a 1-planar graph with n vertices has at most

4n − 8 edges, which is a tight upper bound. Unfortunately, testing the 1-planarity of a

graph is NP-complete [10, 14], but fixed parameter tractable [3]. Linear-time algorithms

are available for special subclasses of 1-planar graphs [2, 8, 11].

Thomassen [18] proved that every 1-plane graph (i.e., a 1-planar graph embedded with

a given 1-plane embedding) admits a straight-line drawing if and only if it does not contain

any of two special 1-plane graphs, called the B-configuration or W-configuration, see Fig. 1.

Recently, Hong et al. [12] gave an alternative constructive proof, with a linear-time testing

algorithm and a drawing algorithm. They also showed that some 1-planar graphs need an
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Figure 1: (a) B-configuration with three edges u1u2, u2u3 and u3u4 and one crossing c made

by an edge pair {u1u2, u3u4}, where edge u2u3 may have a crossing when the configuration

is part of a 1-plane embedding; (b) W-configuration with four edges u1u2, u2u3, v1v2 and

v2v3 and two crossings c and s made by edge pairs {u1u2, v2v3} and {u2u3, v1v2}, where
possibly u1 = v1 and u3 = v3; (a) Augmenting a crossing c ∈ χ made by edges u1u3 and

u2u4 with a new cycle Qc = (u1, w
c
1, u2, w

c
2, u3, w

c
3, u4, w

c
4) depicted by gray lines.

exponential area with straight-line drawing. Grid drawings of triconnected 1-planar graphs

was also studied [1].

We call a 1-plane embedding straight-line drawable (SLD for short) if it admits a straight-

line drawing, i.e., it does not contain a B- or W-configuration by Thomassen [18]. In this

paper, we investigate a problem of “re-embedding” a given non-SLD 1-plane embedding γ

into an SLD 1-plane embedding γ′. For a given 1-plane embedding γ of a graph G, we call

another 1-plane embedding γ′ of G a cross-preserving embedding of γ if exactly the same

set of edge pairs make the same crossings in γ′.

More specifically, we first characterize the forbidden configuration of 1-plane embeddings

that cannot admit an SLD cross-preserving 1-plane embedding. Based on the characteriza-

tion, we present a linear-time algorithm either detects the forbidden configuration in γ or

computes an SLD cross-preserving 1-plane embedding γ′.

Formally, the main problem considered in this paper is defined as follows.

Re-embedding a 1-Plane Graph into a Straight-line Drawing

Input: A 1-planar graph G and a 1-plane embedding γ of G.

Output: Test whether γ admits an SLD cross-preserving 1-plane embedding γ′, and con-

struct such an embedding γ′ if one exists, or report the forbidden configuration.

To design a linear-time implementation of our algorithm in this paper, we introduce a

rooted-forest representation of non-intersecting cycles and an efficient procedure of flipping

subgraphs in a plane graph. Since these data structure and procedure can be easily imple-

mented, it has advantage over the complicated decomposition of biconnected graphs into

triconnected components [13] or the SPQR tree [7].

The paper is organized as follows. Section 2 makes a technical preparation to attain

the linear time complexity of our algorithm by introducing a forest representation of non-

intersecting cycles and an efficient implementation of a flip operation in a plane graph.

Section 3 investigates the structure of cycles that can induce a B- or W-configuration and

defines a forbidden configuration to our problem. Section 4 and Section 5 treat the case

2



where the planarization of a 1-plane embedding γ is biconnected and connected, respec-

tively, where a linear-time algorithm is designed to detect the forbidden configuration in γ

or to construct an SLD cross-preserving 1-plane embedding of γ. Finally Section 6 makes

some concluding remarks.

2 Plane Embeddings and Inclusion Forests

Let U be a set of n elements, and let S be a family of subsets S ⊆ U . We say that two

subsets S, S′ ⊆ U are intersecting if none of S ∩ S′, S − S′ and S′ − S is empty. We call S
a laminar if no two subsets in S are intersecting. For a laminar S, the inclusion-forest of S
is defined to be a forest I = (S, E) of a disjoint union of rooted trees such that (i) the sets

in S are regarded as the vertices of I, and (ii) a set S is an ancestor of a set S′ in I if and

only if S′ ⊆ S.

Lemma 1 For a cyclic sequence (u1, u2, . . . , uδ) of δ ≥ 2 elements, define an interval (i, j)

to be the set of elements uk with i ≤ k ≤ j if i ≤ j and (i, j) = (i, δ) ∪ (1, j) if i > j. Let

S be a set of intervals. A pair of two intersecting intervals in S (when S is not a laminar)

or the inclusion-forest of S (when S is a laminar) can be obtained in O(δ + |S|) time.

Proof. The inclusion-forest of a laminarR is denoted by I(R). Let S = {Si = (ai, bi) | i =
1, 2, . . . , q}, and let ∆j denote the number of elements that appear from uaj+1 to ubj , where

∆j = bj − aj if bj > aj and ∆j = bj − aj + δ if bj < aj . To make the presentation simpler,

we assume without loss of generality that ∆1 = maxj ∆j and u1 = a1, and introduce a

fictitious interval S0 with a0 = 1, b0 = δ + 1 and ∆0 = δ + 1, where S0 will be the single

root of the inclusion-forest I(S ∪ {S0}) if S is a laminar.

We sort all intervals Sj ∈ S ∪ {S0} in an increasing order of aj and a decreasing

order of ∆j , i.e., according to the lexicographic order of (aj ,−∆j), and assume with-

out loss of generality that the intervals S0, S1, S2, . . . , Sq are indexed so that (a0,−∆0),

(a1,−∆1), (a2,−∆2), . . . , (aq,−∆q) is the resulting sorted list. For each i = 0, 1, . . . , q, we

let Si = {S0, S1, . . . , Si}, and give a procedure for constructing an inclusion-forest I(Si) or

finding a pair of two intersecting intervals in Si.

We see that I(S0) = ({S0}, ∅) is a rooted tree with a single node S0. Fix an index

i = 0, 1, . . . , q − 1, assuming that Si is a laminar and I(Si) has been obtained. We test

whether Si+1 is intersecting with some interval Sj with j < i, and construct the inclusion-

forest I(Si+1) if Si+1 is a laminar. Note that “ai = ai+1 and ∆i > ∆i+1” or “ai < ai+1”

by the lexicographic ordering.

Case 1. ai+1 < ai + ∆i: If ∆i < ∆i+1, then ai < ai+1 holds and Si+1 is intersecting with

Si, and halt. Otherwise, i.e., when ∆i+1 ≤ ∆i, interval Si+1 is contained in Si and is not

intersecting with any interval S ∈ Si, since Si ⊆ S or Si ∩ S = ∅, and we add Si+1 to I(Si)

as a child of Si to obtain I(Si+1).

Case 2. ai+∆i ≤ ai+1: In the rooted tree I(Si), find the ancestors Sx and Sy of Si such that

Sy is the current last child of Sx and ay +∆y ≤ ai+1 < ax+∆x, where such ancestors exist

since the root S0 satisfies a0 = 1 and ∆0 = δ + 1. If ∆x < ∆i+1, then Si+1 is intersecting

with Sx, and halt. Otherwise, i.e., when ∆i+1 ≤ ∆x, interval Si+1 is not intersecting with

any interval in Si, since Si+1 is contained in Sx and disjoint with any children of Sx, and

we add Si+1 to I(Si) as a child of Sx to obtain I(Si+1).
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We repeat the above step until I(Sp) is successfully constructed or two intersecting

intervals are detected. In the former case, S is a laminar and we can obtain the inclusion-

forest I(S) from I(Sq) by removing the fictitious root S0.

During an execution of the procedure, once a path from Si+1 to Sx is backtracked in

the current rooted tree I(Si) in Case 2, it will never be backtracked again later. Hence the

above procedure can be implemented in O(δ + |S|) time. 2

Throughout the paper, a graph G = (V,E) stands for a simple undirected graph. The

set of vertices and the set of edges of a graph G are denoted by V (G) and E(G), respectively.

For a vertex v, let E(v) be the set of edges incident to v, N(v) be the set of neighbors of

v, and deg(v) denote the degree |N(v)| of v. A simple path with end vertices u and v is

called a u, v-path. For a subset X ⊆ V , let G − X denote the graph obtained from G by

removing the vertices in X together with the edges in ∪v∈XE(v).

A drawing D of a graph G is a geometric representation of the graph in the plane, such

that each vertex of G is mapped to a point in the plane, and each edge of G is drawn as

a curve. A drawing D of a graph G = (V,E) is called planar if there is no edge crossing.

A planar drawing D of a graph G divides the plane into several connected regions, called

faces, where a face enclosed by a closed walk of the graph is called an inner face and the

face not enclosed by any closed walk is called the outer face.

A planar drawing D induces a plane embedding γ of G, which is defined to be a pair

(ρ, φ) of the rotation system (i.e., the circular ordering of edges for each vertex) ρ, and the

facial cycle φ along the outer boundary of D. Let γ = (ρ, φ) be a plane embedding of a

graph G = (V,E). We denote by F (γ) the set of faces in γ, and by Cf the facial cycle

determined by a face f ∈ F , where we call a subpath of Cf a boundary path of f . For a

simple cycle C of G, the plane is divided by C in two regions, one containing only inner

faces and the other containing the outer area, where we say that the former is enclosed

by C or the interior of C, while the latter is called the exterior of C. We denote by

Fin(C) the set of inner faces in the interior of C, by Ein(C) the set of edges in E(Cf ) with

f ∈ Fin(C), and by Vin(C) the set of end-vertices of edges in Ein(C). Analogously define

Fex(C), Eex(C) and Vex(C) in the exterior of C. Note that E(C) = Ein(C) ∩ Eex(C) and

V (C) = Vin(C) ∩ Vex(C).

For a subgraph H of G, we define the embedding γ|H of γ induced by H to be a sub-

embedding of γ obtained by removing the vertices/edges not in H keeping the same rotation

system around each of the remaining vertices/crossings and the same outer face.

2.1 Inclusion Forests of Inclusive Set of Cycles

In this and next subsections, let (G, γ) stand for a plane embedding of γ = (ρ, φ) of a

biconnected simple graph G = (V,E) with n = |V | ≥ 3.

Let C be a simple cycle in G. We define the direction of C to be an ordered pair (u, v)

with uv ∈ E(C) such that the inner faces in Fin(C) appear on the right hand side when we

traverse C in the order that we start u and next visit v. For simplicity, we say that two

simple cycles C and C ′ are intersecting if Fin(C) and Fin(C
′) are intersecting.

Let C be a set of simple cycles in G. We call C inclusive if no two cycles in C are

intersecting, i.e., {Fin(C) | C ∈ C} is a laminar. When C is inclusive, the inclusion-forest

of C is defined to be a forest I = (C, E) of a disjoint union of rooted trees such that (i) the

cycles in C are regarded as the vertices of I, and (ii) a cycle C is an ancestor of a cycle C ′

4



in I if and only if Fin(C
′) ⊆ Fin(C). Let I(C) denote the inclusion-forest of C. For a vertex

subset X ⊆ V , let C(X) denote the set of cycles C ∈ C such that x ∈ V (C) for some vertex

x ∈ X, where we denote C({v}) by C(v) for short.

Lemma 2 For (G, γ), let C(v), v ∈ V denote the set of cycles C ∈ C such that v ∈
V (C). For a set C of simple cycles of G, any of the following tasks can be executed in

O(n+
∑

C∈C |E(C)|) time.

(i) Decision of the directions of all cycles in C;

(ii) Detection of a pair of two intersecting cycles in C when C is not inclusive, and con-

struction of the inclusion-forests I(C(v)) for all vertices v ∈ V when C is inclusive;

and

(iii) Construction of the inclusion-forest I(C) when C is inclusive.

Proof. (i) Choose an edge ss′ ∈ E(Cφ), where s appears immediately after s′ in the

clockwise order along Cφ, and construct a spanning tree T of G, which we regard as a tree

rooted at vertex s, and denote by p(v) the parent of a non-root vertex v, where we let

p(s) = s′. Let the vertices in V be indexed as v1 (= s), v2, . . . , vn so that i < j holds if

vi is an ancestor of vj in T , and let V0 = ∅ and Vi = {v1, v2, . . . , vi} for i = 1, 2, . . . , n. In

the order of i = 1, 2, . . . , n, we determine the direction of each cycle C ∈ C(vi) − C(Vi−1),

(i.e., cycle C with vi ∈ V (C) ⊆ V − Vi−1) as follows. Let u1 (= p(vi)), u2, . . . , uδ, where

δ = deg(vi), be the neighbors of vi in the clockwise order of ρ(vi). Denote C(vi)− C(Vi−1)

by {C1, C2, . . . , Cq}, and let aj and bj denote the indices of the end-vertices of edges in

cycle Cj incident to vi, i.e., viuaj , viubj ∈ E(Cj).

As the base case, let i = 1, where edge v1p(v1) = ss′ is in the outer facial cycle Cφ.

Assume without loss of generality that 1 < aj < bj ≤ δ. Then we see that the direction of

each cycle Cj is (v1, aj), because the outer face φ appears on the left hand side when we

traverse Cj starting from v1 and next visiting aj with j ≥ 2.

Next let i > 1, and suppose that we have determined the direction of each cycle in

C(Vi−1). For each cycle Cj ∈ C(vi) − C(Vi−1), where u1 = p(vi) ̸∈ V (Cj) holds, we see

that neither of aj and bj is 1, and assume without loss of generality that 1 < aj < bj ≤ δ.

Since Cj ∈ C(vi) − C(Vi−1) has no vertex in Vi−1, we see that if we traverse Cj starting

from v1 and next visiting bj then Vi−1 would appear on the right hand side. Hence the

direction of each cycle Cj is (v1, aj). Deciding the directions of cycles in C(vi) − C(Vi−1)

can be done in the time of tracing all edges in these cycles and the edges incident to vi, i.e.,

O(deg(vi) +
∑

{|E(C)| | C ∈ C(vi)− C(Vi−1)}) time. Hence the total time for deciding the

directions of all cycles in C is O(n+
∑

C∈C |E(C)|).
(ii) By the result in (i), we first compute the directions of all cycles in C in O(n +∑

C∈C |E(C)|) time. We then traverse each cycle C ∈ C in its direction to decide for each

uv ∈ V (C) whether (u, v) or (v, u) is the direction of C.

We easily see that C is inclusive if and only if the set S(v) = {N(v)∩Vin(C) | C ∈ C(v)}
of intervals over the circular sequence ρ(v) is a laminar for all vertices v ∈ V .

For fixed vertex v ∈ V , denote S(v) = {Si = (ai, bi) = N(v) ∩ Vin(Ci) | i = 1, 2, . . . , q},
where ai and bi with (ai, bi) = N(v) ∩ Vin(Ci) can be found in O(1) time for each i since

we know the direction of Ci. By Lemma 1, a pair of two intersecting intervals in S(v)
(when S(v) is not inclusive) or the inclusion-forest of S(v) (when S(v) is inclusive) can
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be obtained in O(deg(v) + |C(v)|) time. We run the procedure for all vertices in V in

O(
∑

v∈V [deg(v) + |C(v)|]) = O(n+
∑

C∈C |E(C)|) time to conclude that C is inclusive only

when S(v) is a laminar for all vertices or to detect a pair of intersecting cycles in C.
(iii) For notational convenience, we set C := C∪{Cf | f ∈ F (γ)}, where n+

∑
C∈C |E(C)| =

O(n +
∑

C∈C′ |E(C)|) still holds since
∑

f∈F (γ) |E(Cf )| = O(n). Note that the inclusion-

forest of the original C can be obtained from the inclusion-forest of the updated C by

removing the leaves corresponding to newly added cycles Cf ∈ {Cf | f ∈ F (γ)} or the root

Cφ when Cφ is not in the original C. By the result in (ii), we first construct I(C(v)) for all
vertices v ∈ V in O(n+

∑
C∈C |E(C)|) time. We show how to construct the inclusion-forest

I(C) from {I(C(v)) | v ∈ V }. Define Ch(C) to be the set of children of a cycle C in the

inclusion-forest I(C). Our goal is now to construct Ch(C) for all cycles C ∈ C, where clearly
Ch(C) = ∅ if C = Cf for some inner face f ∈ F (γ).

For each cycle C ∈ C − {Cf | f ∈ F (γ)}, let N(C) be the set of cycles C ′ ∈ C such that

C is the parent of C ′ in I(C(v)) for some vertex v ∈ V , where clearly N(C) ⊆ Ch(C). The

difference Ch(C)−N(C) can be obtained as follows.

For each vertex v ∈ V − V (Cφ), let R(v) denote the set of cycles that are the roots of

the inclusion-forest I(C(v)). Since the facial cycles of all inner faces are included in C, it
holds |R(v)| ≥ 2 for each vertex v ∈ V − V (Cφ). We introduce an equivalence relation ∼
over C such that for two cycles C,C ′ ∈ C, it holds C ∼ C ′ if (a) C = C ′ or C,C ′ ∈ R(v)

for some vertex v ∈ V − V (Cφ); or (b) C ∼ C ′′ and C ′′ ∼ C ′ for some cycle C ′′ ∈ C. We

observe the next property.

Claim For each cycle C ∈ C − {Cf | f ∈ F (γ)}, a cycle C ′ ̸∈ C −N(C)− {C} belongs to

Ch(C) if and only if C ′ ∼ C ′′ for some cycle C ′′ ∈ N(C).

Proof. For two simple cycles C and C ′ in G, we let C ⊑ C ′ mean Fin(C) ⊆ Fin(C
′).

If part: Let C ′ = C1, C2, . . . , Ck = C ′′ be a shortest sequence such that Ci, Ci+1 ∈
R(vi), i = 1, 2, . . . , k − 1 for some vertex vi ∈ V − V (Cφ), where it holds {C1, C2, . . . ,

Ck} ∩N(C) = {C ′′} by the minimality of the sequence. We first show that C ′ ⊑ C. Since

Ck = C ′′ ∈ N(C), it holds Ck ⊑ C. If C ′ ̸⊑ C, then there is an index j such that Cj ⊑ C

and Fin(Cj−1) ∩ Fin(C) = ∅, which, however, contradicts that Cj and Cj−1 are roots of

I(C(vj−1)). Hence C ′ ⊑ C. There is no other cycle C† such that C ′ ⊑ C† ⊑ C, since

otherwise C ′′ ⊑ C† would hold by a similar augment, contradicting that C ′′ ∈ N(C) ⊆
Ch(C). Therefore C ′ ∈ Ch(C).

Only if part: Let a cycle C ′ ̸∈ C − N(C) − {C} belong to Ch(C). If C ′ ∈ N(C) then

C ′ ∼ C ′′ for C ′′ = C ′ and we are done. Assume that C ′ ̸∈ N(C), where V (C ′)∩ V (C) = ∅.
Let CC be the set of cycles C̃ ∈ C − {C} such that C̃ ⊑ C, and there is no other cycle

C† ∈ C − {C} with C̃ ⊑ C† ⊑ C. Since C contains all the facial cycles, there is a sequence

C̃1 = C ′, C̃2, . . . , C̃k of cycles in CC such that, for each i = 1, 2, . . . , k−1, C̃i and C̃i+1 share a

vertex vi ∈ V −V (C) and C̃k ∈ N(C). By definition of CC , for each i = 1, 2, . . . , k−1, there

is no other cycle C† ∈ C(vi) such that C̃i ⊑ C† or C̃i+1 ⊑ C†; i.e., it holds C̃i, C̃i+1 ∈ R(vi).

This implies that C ′ = C̃1 ∼ C̃k ∈ N(C), as required. 2

Let B = (V ∪ C, ER) be a bipartite graph between two vertex sets V and C such that

B has an edge uC between a vertex v ∈ V and a cycle C ∈ C if and only if C ∈ R(v)

for some vertex v ∈ V − V (Cφ). Note that the size of B is bounded by that of the union

of I(C(v)) over all vertices v ∈ V . By the above claim, the set Ch(C) − N(C) of each
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cycle C ∈ C − {Cf | f ∈ F (γ)} is given by the set of cycles in the components of B which

contain some cycle C ′′ ∈ N(C). Hence Ch(C) for all cycles C ∈ C and hence I(C) can be

constructed in time linear to the size of B, i.e., O(n+
∑

C∈C′ |E(C)|) time. 2

2.2 Flipping Spindles

A simple cycle C of G is called a spindle (or a u, v-spindle) of γ if there are two vertices

u, v ∈ V (C) such that no vertex in V (C)− {u, v} is adjacent to any vertex in the exterior

of C, where we call vertices u and v the junctions of C. Note that each of the two subpaths

of C between u and v is a boundary path of some face in F (γ).

Given (G, γ), we denote the rotation system around a vertex v ∈ V by ργ(v). For a

spindle C in γ, let J(C) denote the set of the two junctions of C. Flipping a u, v-spindle

C means to modify the rotation system of vertices in Vin(C) as follows:

(i) For each vertex w ∈ Vin(C)− J(C), reverse the cyclic order of ργ(w); and

(ii) For each vertex u ∈ J(C), reverse the order of subsequence of ργ(u) that consists of

vertices N(u) ∩ Vin(C).

Every two distinct spindles C and C ′ in γ are non-intersecting, and they always satisfy

one of Ein(C) ∩ Ein(C
′) = ∅, Ein(C) ⊆ Ein(C

′), and Ein(C
′) ⊆ Ein(C). Let C be a set of

spindles in γ, which is always inclusive, and let I(C) denote the inclusion-forest of C.
When we modify the current embedding γ by flipping each spindle in C, the resulting

embedding γC is the same, independent from the ordering of the flipping operation to

the spindles, since for two spindles C and C ′ which share a common junction vertex u ∈
J(C) ∩ J(C ′), the sets N(u) ∩ Vin(C) and N(u) ∩ Vin(C

′) do not intersect, i.e., they are

disjoint or one is contained in the other.

Define the depth of a vertex v ∈ V in I to be the number of spindles C ∈ C such that

v ∈ Vin(C)− J(C), and denote by p(v) the parity of depth of vertex v, i.e., p(v) = 1 if the

depth is odd and p(v) = −1 otherwise.

For a vertex v ∈ V , let C[v] denote the set of spindles C ∈ C such that v ∈ J(C),

and let γC[v] be the embedding obtained from γ by flipping all spindles in C[v]. Let rev⟨σ⟩
mean the reverse of a sequence σ. Then we see that ργC(v) = ργC[v](v) if p(v) = 1; and

ργC (v) = rev⟨ργC[v](v)⟩ otherwise. To obtain the embedding γC from the current embedding

γ by flipping each spindle in C, it suffices to show how to compute each of p(v) and ργC[v](v)

for all vertices v ∈ V .

Lemma 3 Given (G, γ), let C be a set of spindles of γ. Then any of the following tasks

can be executed in O(n+
∑

C∈C |E(C)|) time.

(i) Decision of parity p(v) of all vertices v ∈ V ; and

(ii) Computation of ργC[v](v) for all vertices v ∈ V .

Proof. (i) Let C′ = C ∪ {Cf | f ∈ F (γ)}, and I be the inclusion-forest of C′, where the

cycle Cφ for the outer face φ is the root with depth 0 in I. Since C′ is inclusive, the tree I
can be constructed in O(n +

∑
C∈C |E(C)|) time by Lemma 2. We index all the cycles in

C′ so that for any two cycles Ci, Cj ∈ C′, it holds i < j when Ci is an ancestor of Cj in I.
For each inner face f ∈ F (γ), let πf denote the index i of the cycle Ci ∈ C ∪ {Cφ} that

is the parent of Cf in I. For each vertex v ∈ V , we denote by i(v) the minimum of πf over

all inner faces f ∈ F (γ) with v ∈ V (Cf ). Then we see that Ci(v) is the cycle C ∈ C ∪ {Cφ}
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with minimum |Fin(C)| that contains v in the interior of C, where v /∈ V (C), and p(v) is

given by the parity of the depth of the cycle Ci(v). The above step after constructing I can

be executed by traversing all inner faces, taking O(n) time.

(ii) Let C(v), v ∈ V denote the set of cycles C ∈ C such that v ∈ V (C), where always

C[v] ⊆ C(v). We first construct I(C(v)) for all vertices v ∈ V , from which we obtain the

inclusion-forest I(C[v]) for all vertices v ∈ V . By Lemma 2, this takes O(n+
∑

C∈C |E(C)|)
time.

Fix a vertex v ∈ V . We show that sequence ργC[v](v) can be computed recursively. Let

the neighbors of v be indexed as 1, 2, . . . , deg(v) in the order of ργ(v). Without loss of

generality that, for each spindle C ∈ C[v], the set of vertices in N(v)∩Vin(C) is denoted by

{i, i+ 1, . . . , j} with 1 ≤ i < j ≤ deg(v), which we denote by list LC = [i, j].

Let [x, y]∗ denote the list obtained from list LC = [x, y] of a spindle C ∈ C[v] by flipping

C and all descendants C ′ of C in I(C[v]). Let Ci, i = 1, 2, . . . , k denote the children of C

in I(C[v]) and let LC′ = [ai, bi], where x ≤ a1 < b1 < a2 < b2 < · · · < ak < bk ≤ y. Then

we see that the following recursion holds:

[x, y]∗ = [x, x+ 1, . . . , a1 − 1, rev⟨[a1, b1]∗⟩, b1 + 1, . . . ,

a2 − 1, rev⟨[a2, b2]∗⟩, b2 + 1, . . . ,

. . .

ak − 1, rev⟨[ak, bk]∗⟩, bk + 1, . . . , y − 1, y].

Based on this, we obtain a recursive procedure for computing [x, y]∗ as follows.

Recursive Procedure List(x, y, τ)

Input: The list LC = [x, y] of a spindle C ∈ C[v] and τ ∈ {−1, 1}.
Output: [x, y]∗ if τ = 1; and the reverse of [x, y]∗ if τ = −1.

Let Ci, i = 1, 2, . . . , k denote the children of C in I(C[v]) and let LC′ = [ai, bi], where

x ≤ a1 < b1 < a2 < b2 < · · · < ak < bk ≤ y;

if τ = 1 then

Return [x, x+ 1, . . . , a1 − 1, List(a1, b1,−1), b1 + 1, . . . ,

a2 − 1, List(a2, b2,−1), b2 + 1, . . . ,

· · ·
ak − 1, List(ak, bk,−1), bk + 1, . . . , y − 1, y]

else /* τ = −1 */

Return [y, y − 1, . . . , ak + 1, List(ak, bk, 1), bk − 1, . . . ,

· · ·
a2 + 1, List(a2, b2, 1), b2 − 1, . . . ,

a1 + 1, List(a1, b1, 1), b1 − 1, . . . , x+ 1, x]

end if.

Hence ργC[v](v) can be obtained by executing List(1, deg(v), 1), taking O(deg(v)+|C[v]|)
time. Since |C| = O(n) holds for any inclusive set C, the total time for computing ργC[v](v)

for all vertices v ∈ V is O(
∑

v∈V [deg(v) + |C[v]|]) = O(n+
∑

C∈C |E(C)|) time. 2
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3 Re-embedding 1-plane Graph and Forbidden Configura-

tion

A drawing D of a graph G = (V,E) is called a 1-planar drawing if each edge has at most

one crossing. A 1-planar drawing D of graph G induces a 1-plane embedding γ of G, which

is defined to be a tuple (χ, ρ, φ) of the crossing system χ of E, the rotation system ρ of V ,

and the outer face φ of D. The planarization G(G, γ) of a 1-plane embedding γ of graph

G is the plane embedding obtained from γ by regarding crossings also as graph vertices,

called crossing-vertex. The set of vertices in G(G, γ) is given by V ∪ χ. For a notational

convenience, we may say a subgraph/face of G(G, γ) as a subgraph/face in γ. We denote

by F (γ) the set of faces in the plane graph G(G, γ).

Let γ = (χ, ρ, φ) be a 1-plane embedding of graphG. We call another 1-plane embedding

γ′ = (χ′, ρ′, φ′) of graph G a cross-preserving 1-plane embedding of γ when the same set

of edge pairs makes crossings, i.e., χ = χ′. In other words, the planarization G(G, γ′) is

another plane embedding of G(G, γ) such that the alternating order of edges incident to

each crossing-vertex c ∈ χ is preserved.

To eliminate the additional constraint on the rotation system on each crossing-vertex

c ∈ χ, we augment the end-vertices of each pair of crossing edges as follows. In the plane

graph, G(G, γ), for each crossing-vertex c ∈ χ and its neighbors u1, u2, u3 and u4 that

appear in the clockwise order around c, we add four new vertices wc
i , i = 1, 2, 3, 4 and eight

new edges uiw
c
i and wc

iui+1, i = 1, 2, 3, 4 to form a cycle Qc of length 8 whose interior

contains no other vertex than c, as shown in Fig. 1(c).

Let H be the resulting graph augmented from G and Γ be the resulting 1-plane em-

bedding of H augmented from γ, where |V (H)| ≤ |V (G)|+ 4|χ| holds. We easily see that

if γ admits an SLD cross-preserving embedding γ′ then Γ admits an SLD cross-preserving

embedding Γ′. This is because a straight-line drawing Dγ′ of γ′ can be changed into a

straight-line drawing DΓ′ of some cross-preserving embedding Γ′ of Γ by placing the newly

introduced vertices wc
i within the region sufficiently close to the position of c. We here

see that cycle Qc can be drawn by straight-line segments without intersecting with other

straight-line segments in Dγ′ .

We call an instance (G, γ) of 1-plane embedding circular when for each crossing c ∈ χ,

the four end-vertices of the two crossing edges that create c are contained in a cycle Qc

of eight crossing-free edges as described in the above, where c is not necessarily enclosed

and the instance (G, γ′) remains circular for any cross-preserving embedding γ′ of γ. In

the rest of paper, let (G, γ) stand for a circular instance (G = (V,E), γ = (χ, ρ, φ)) with

n ≥ 3 vertices and let G denote its planarization G(G, γ). Fig. 2 shows examples of circular

instances (G, γ), where G is oneconnected.

Just to test whether the current 1-plane embedding contains a B- or W-configuration

or not, we can check each block in G separately, namely, a given instance G can be assumed

to be biconnected. As will be discussed in Section 5, the biconnectivity cannot be assumed

without loss of generality to finding an SLD re-embedding, where we have to examine how

the blocks in G are connected via cut-vertices.
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Figure 2: Circular instances (G, γ) with a cut-vertex u of G, where the crossing edges are

depicted by slightly thicker lines: (a) hard B-cycles C = (u, c, v, s) and C ′ = (u′, c′, v′, s′),

(b) hard B-cycle C = (u, c, v, s) and a nega-cycle C ′ = (u′, c′, v′, s′) whose reversal is a hard

B-cycle, where vertices u, v, u′, v′ ∈ V and crossings c, s, c′, s′ ∈ χ.

3.1 Candidate Cycles, B/W Cycle, Posi/Nega Cycle, Hard/Soft Cycle

For a circular instance (G, γ), finding a cross-preserving embedding of γ is effectively equiva-

lent to finding another plane embedding of G so that all the current B- and W-configurations

are eliminated and no new B- or W-configurations are introduced. To detect the cycles that

can be the boundary of a B- or W-configuration in changing the plane embedding of G, we
categorize cycles containing crossing vertices in G.

(a) C   C 

p 

v

u

e c

v

u

csc’ c’

v

u

e c

v

u

cs
c’ c’

outer face ϕ
ϕϕϕ

(b) C   C 

p (c) C   C 

n (d) C   C 

n 

Figure 3: Candidate posi- and nega-cycles C = (u, c, v) and C = (u, c, v, s) in G, where
white circles represent vertices in V while black ones represent crossings in χ: (a) candidate

posi-cycle of length 3, (b) candidate posi-cycle of length 4, (c) candidate nega-cycle of length

3, and (d) candidate nega-cycle of length 4.

A candidate posi-cycle (resp., candidate nega-cycle) in G is defined to be a cycle C =

(u, c, v) or C = (u, c, v, s) in G with u, v ∈ V and c, s ∈ χ such that

the interior (resp., exterior) of C does not contain a crossing-free edge uv ∈ E and

any other crossing vertex c′ adjacent to both u and v.

Fig. 3(a)-(b) and (c)-(d) illustrate candidate posi-cycles and candidate nega-cycles, re-

spectively. Let Cp and Cn be the sets of candidate posi-cycles and candidate nega-cycles,

respectively. By definition we see that the set Cp ∪ Cn ∪ {Cf | f ∈ F (γ)} is inclusive, and

hence |Cp ∪ Cn ∪ {Cf | f ∈ F (γ)}| = O(n).
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A candidate posi-cycle C with C = (u, c, v) (resp., C = (u, c, v, s)) is called a B-cycle if

(a)-(B) the exterior of C contains no vertices in V − {u, v} adjacent to c (resp., contains

exactly one vertex in V − {u, v} adjacent to c or s).

Note that uv ∈ E when C = (u, c, v, s) is a B-cycle, as shown in Fig. 4(a). Fig. 4(b)

and (d) illustrate the other types of B-cycles.
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(g) C   C- (f) C   C- (i) C   C 

n-C-  (h) C   C 

n-C-  

Figure 4: Illustration of types of cycles C = (u, c, v) and C = (u, c, v, s) in G, where white

circles represent vertices in V while black ones represent crossings in χ: (a) B-cycle of length

3, which is always soft, (b) soft B-cycle of length 4, (c) soft W-cycle, (d) hard B-cycle of

length 4, (e) hard W-cycle, (f) nega-cycle whose reversal is a hard B-cycle, (g) nega-cycle

whose reversal is a hard W-cycle, (h) candidate nega-cycle of length 4 that is not a nega-

cycle whose reversal is a hard B-cycle, and (i) candidate nega-cycle of length 4 that is not

a nega-cycle whose reversal a hard W-cycle.

A candidate posi-cycle C = (u, c, v, s) is called a W-cycle if

(a)-(W) the exterior of C contains no vertices in V − {u, v} adjacent to c or s.

Fig. 4(c) and (e) illustrate W-cycles.

Let CW (resp., CB) be the set of W-cycles (resp., B-cycles) in γ. Clearly a W-cycle (resp.,

B-cycle) gives rise to a W-configuration (resp., B-configuration). Conversely, by choosing

a W-configuration (resp., B-configuration) so that the interior is minimal, we obtain a W-

cycle (resp., B-cycle). Hence we observe that the current embedding γ admits a straight-line

drawing if and only if CW = CB = ∅.
A W- or B-cycle C is called hard if

(b) length of C is 4, and the interior of C = (u, c, v, s) contains no inner face f whose

facial cycle Cf contains both vertices u and v, i.e., some path connects c and s without

passing through u or v.

On the other hand, a W- or B-cycle C = (u, c, v, s) of length 4 that does not satisfy

condition (b) or a B-cycle of length 3 is called soft. We also call a hard B- or W-cycle a
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posi-cycle. Fig. 4(d) and (e) illustrate a hard B-cycle and a hard W-cycles, respectively,

whereas Fig. 4(a) and (b) (resp., (c)) illustrate soft B-cycles (resp., a soft W-cycle).

A cycle C = (u, c, v, s) is called a nega-cycle if it becomes a posi-cycle when an inner face

in the interior of C is chosen as the outer face. In other words, a nega-cycle is a candidate

nega-cycle C = (u, c, v, s) of length 4 that satisfies the following conditions (a’) and (b’),

where (a’) (resp., (b’)) is obtained from the above conditions (a)-(B) and (a)-(W) (resp.,

(b)) by exchanging the roles of “interior” and “exterior”:

(a’) the interior of C contains at most one vertex in V − {u, v} adjacent to c or s; and

(b’) the exterior of C contains no face f whose facial cycle Cf contains both vertices u

and v.

Fig. 2(a)-(b) and Fig. 5(a)-(b) show examples of a hard B-cycle C and a nega-cycle C ′.

Fig. 4(f) and (g) illustrate nega-cycles, whereas Fig. 4(h) and (i) illustrate candidate nega-

cycles that are not nega-cycles.

Let C+ (resp., C−) denote the set of posi-cycles (resp., nega-cycles) in γ. By definition,

it holds that C+ ⊆ CW ∪ CB ⊆ Cp and C− ⊆ Cn.

3.2 Forbidden Cycle Pairs

We define a forbidden configuration that characterizes 1-plane embeddings, which cannot be

re-embedded into SLD ones. A forbidden cycle pair is defined to be a pair {C,C ′} of a posi-

cycle C = (u, c, v, s) and a posi- or nega-cycle C ′ = (u′, c′, v′, s′) in G with u, v, u′, v′ ∈ V

and c, s, c′, s′ ∈ χ to which G has a u, u′-path P1 and a v, v′-path P2 such that:

(i) when C ′ ∈ C+, paths P1 and P2 are in the exterior of C and C ′, i.e., V (P1) −
{u, u′}, V (P2)−{v, v′} ⊆ Vex(C)∩Vex(C

′), where C and C ′ cannot have any common

inner face; and

(ii) when C ′ ∈ C−, paths P1 and P2 are in the exterior of C and the interior of C ′, i.e.,

V (P1)− {u, u′}, V (P2)− {v, v′} ⊆ Vex(C) ∩ Vin(C
′), where C is enclosed by C ′.

In (i) and (ii), P1 and P2 are not necessary disjoint, and possibly one of them consists of a

single vertex, i.e., u = u′ or v = v′.

The pair of cycles C and C ′ in Fig. 5(a) (resp., Fig. 5(b)) is a forbidden cycle pair,

because there is a pair of a u, u′-path P1 = (u, x, z, y, u′) and a v, v′-path P2 = (v, x′, z, y′, v′)

that satisfy the above conditions (i) (resp., (ii)). Note that the pair of cycles C and C ′ in

Fig. 2(a)-(b) is not forbidden cycle pair, because there are no such paths.

Our main result of this paper is as follows.

Theorem 4 A circular instance (G, γ) admits an SLD cross-preserving embedding if and

only if it has no forbidden cycle pair. Finding an SLD cross-preserving embedding of γ or

a forbidden cycle pair in G can be computed in linear time.

Proof of necessity: The necessity of the theorem follows from the next lemma.

For a cycle C = (u, c, v, s) ∈ C+ (resp., C−) with u, v ∈ V and c, s ∈ χ in G, we call a

vertex z ∈ V an in-factor of C if the exterior of C ∈ C+ (resp., the interior of C ∈ C−) has

a z, u-path Pz,u and a z, v-path Pz,v, i.e., V (Pz,u −{u})∪ V (Pz,v −{v}) is in Vex(C) (resp.,

Vin(C)). Paths Pz,u and Pz,v are not necessarily disjoint.
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Figure 5: Illustration of circular instances (G, γ) with a cut-vertex z of G, where the crossing
edges are depicted by slightly thicker lines: (a) forbidden cycle pair with hard B-cycles

C = (u, c, v, s) and C ′ = (u′, c′, v′, s′) (b) forbidden cycle pair with a hard B-cycle C =

(u, c, v, s) and a nega-cycle C ′ = (u′, c′, v′, s′) whose reversal is a hard B-cycle, where vertices

u, v, u′, v′ ∈ V and crossings c, s, c′, s′ ∈ χ.

Lemma 5 Given G = G(G, γ), let γ′ be a cross-preserving embedding of γ. Then:

(i) Let z ∈ V be an in-factor of a cycle C ∈ C+ ∪ C− in G. Then cycle C is a posi-cycle

(resp., a nega-cycle) in G(G, γ′) if and only if z is in the exterior (resp., interior) of

C in γ′;

(ii) For a forbidden cycle pair {C,C ′}, one of C and C ′ is a posi-cycle in G(G, γ′).

Proof. (i) Let C = (u, c, v, s) be a posi-cycle with u, v ∈ V and c, s ∈ χ in G, where the

case where C is a nega-cycle can be treated analogously. By definition, the exterior of C

together with vertices u and v contains a z, u-path Pz,u and a z, v-path Pz,v, not necessarily

disjoint. These paths contain a u, v-path P out
u,v with vertices in Vex(C) ∪ {u, v}. Since the

instance is circular, the interior of C together with vertices u and v contains a u, v-path

Pu,v consisting of crossing-free edges. Since C is a hard B- or W-cycle, the interior of C

together with crossing-vertices c and s contains a c, s-path Pc,s. We denote by x (resp., y)

the first (resp., last) vertex in V (Pc,s) ∩ V (Pu,v) that appear along Pc,s from c to s, where

possibly x = y. Let Pc,x and Py,s be the c, x-path and y, s-path of Pc,s, respectively. Let

HC,z denote the subgraph of G(G, γ) that consists of cycle C and paths P out
u,v , Pu,v, Pc,x and

Py,s. Note that HC,z is a pseudo-triconnected graph, a graph obtained from a triconnected

graph by replacing edges with paths, and its plane embedding with a specified outer face

is unique up to reversal. In particular, paths Pz,u and Pz,v are enclosed by C in a new

cross-preserving embedding γ′ if and only if so is z in γ′. Therefore C remains a posi-cycle

if z is in the exterior of C in γ′ or becomes a nega-cycle otherwise.

(ii) Let C = (u, c, v, s) be a posi-cycle and C ′ = (u′, c′, v′, s′) be a posi- or nega-cycle

with u, v, u′, v′ ∈ V and c, s, c′, s′ ∈ χ in G. First consider the case where C ′ is a posi-cycle.

To derive a contradiction, assume that both C and C ′ are nega-cycles in a new cross-

preserving embedding γ′, where C does not enclose C ′ without loss of generality. In the

original embedding γ, the interior of C ′ contains a u′, v′-path P ′ passing through a vertex

z ∈ Vin(C
′)− {u′, v′}, where z has a z, u-path and a z, v-path, since γ has a u, u′-path and
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a v, v′-path in the exterior of C and C ′ by definition. By (i), vertex z is enclosed by C.

Since C does not enclose C ′, the path P ′ connecting z and C ′ would make a new crossing

with C, a contradiction.

Next consider the case where C ′ is a nega-cycle. By definition, E(C) ̸= E(C ′), and G
has an inner face f that is in the interior of C ′ and in the exterior of C. We change the

outer face from φ to f to obtain a cross-preserving embedding γf , where {C,C ′} becomes a

forbidden cycle pair such that both C and C ′ are posi-cycles. Hence by applying the above

argument to the pair {C,C ′}, we see that both C and C ′ cannot be nega-cycles at the same

time in any cross-preserving embedding of γf or γ. 2

Proof of sufficiency: In the rest of paper, we prove the sufficiency of Theorem 4 by

designing a linear-time algorithm.

4 Biconnected Case

In this section, (G, γ) stands for a circular instance such that the connectivity of the plane

graph G is at least 2. In a biconnected graph G, any two posi-cycles C = (u, c, v, s),

C ′ = (u′, c′, v′, s′) ∈ C+with u, v, u′, v′ ∈ V give a forbidden cycle pair if they do not share

an inner face, because there is a pair of u, u′-path and v, v′-path in the exterior of C and

C ′. Analogously any pair of a posi-cycle C and a nega-cycle C ′ such that C ′ encloses C is

also a forbidden cycle pair in a biconnected graph G.
To detect such a forbidden pair in G in linear time, we first compute the sets Cp, Cn,

CW, CB, C+ and C− in γ in linear time by using the inclusion-forest from Lemma 2.

v

uouter face ϕ

C1C2Cq Ci

c1c2cici+1cq cq-1

Cq-1

v

u

C1Cq

c1
e=uvcq cq-1

Cq-1

(a)  (b) tk=t(e)  

outer face ϕ

Ck Ck-1
ck+1

ck-1

Figure 6: Illustration of u, v-paths of length 1 or 2 generated by an interval I =

[t1, t2, . . . , tq], where white circles represent vertices in V while black ones crossings in χ:

(a) The case where uv is not a crossing-free edge, (b) The case where uv is a crossing-free

edge, where I contains a tuple tk = t(e).

Lemma 6 Given (G, γ), the following in (i)-(iv) can be computed in O(n) time.

(i) The sets Cp, Cn and the inclusion-forest I of Cp ∪ Cn ∪ {Cf | f ∈ F (γ)};

(ii) The sets CW and CB;

(iii) The sets C+, C− and the inclusion-forest I∗ of C+ ∪ C−; and
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(iv) A set {fC | C ∈ (CW ∪ CB) − C+} such that fC is an inner face in the interior of a

soft B- or W-cycle C with V (Cf ) ⊇ V (C).

Proof. We first introduce a total order ≺ over the vertex set V .

The rotation system ρ(v) of each vertex v ∈ V represents a cyclic order N(v) →
{1, 2, . . . , deg(v)} around v, where for each neighbor u ∈ N(v), we let ρ(c; v) denote the

rank i of u such that u appears as the i-th vertex in the order.

(i) To find all cycles in Cn and Cp, we prepare a tuple t(e) of each crossing-free edge

e ∈ E and six tuples ti(c), i = 1, 2, . . . , 6 for each crossing c ∈ χ as follows.

For each crossing-free edge e = uv ∈ E with u ≺ v, let t(e) = (u, v, ρ(u; v), e);

and

For each crossing c ∈ χ and the two crossing edges ab, a′b′ ∈ E that create c,

let ti(c), i = 1, 2, . . . , 6 be six tuples (u, v, ρ(u;uc), c) for all pairs u ≺ v with

u, v ∈ {a, b, a′, b′} and the vertex uc with edge uuc ∈ {ab, a′b′}.

Note that each of the above tuples represents a u, v-path of length 1 or 2 in G. We

compute a lexicographically sorted list L of all tuples in (∪e∈Et(e)) ∪ (∪c∈χ{ti(c) | i =

1, 2, . . . , 6}), which takes O(n) time using the bucket sorting. Then tuples that have the

same pair of the first and second entries appear consecutively in L, and we call such a

maximal subsequence of L an interval.

Let I = [t1, t2, . . . , tq] be an interval of L such that q ≥ 2, where there are vertices u ≺ v

and each tuple tj in I is given as t(e) = (u, v, ρ(u, v), e) for a crossing-free edge e = uv ∈ E or

t(ci)k = (u, v, ρ(u;uci), ci) for a crossing ci ∈ χ and some k = 1, 2, . . . , 6. Then the plane is

divided into q regions, each of which is enclosed by cycle Ci = (u, ci, v, ci+1), i = 1, 2, . . . , q,

where we interpret cq+1 = c1 and regard ck in Ck and Ck+1 as nulls for the index k with

tk = t(e) and e = uv when e = uv ∈ E.

We compute the direction of cycle Ci by using Lemma 2, and assume without loss of

generality that the outer face is not in the interior of each Ci with i = 1, 2, . . . , q− 1. Since

any crossing c′ adjacent to both u and v in G appears in this interval I, we see that Cp is

a candidate nega-cycle, and Ci with i = 1, 2, . . . , q − 1 is a candidate posi-cycle. Then Cn
and Cp are given as the sets of the candidate nega-cycles and posi-cycles constructed over

all intervals. Finally the inclusion-forest I of Cp ∪ Cn ∪ {Cf | f ∈ F (γ)} can be obtained in

O(n) time by Lemma 2.

(ii) Let I be the inclusion-forest obtained in (i). By definition, a cycle C = (u, c, v) of G
such that c ∈ χ is a B-cycle if and only if the exterior of C contains no vertex in V −{u, v}
adjacent to c; and a cycle C = (u, c, v, s) of G such that c, s ∈ χ is a B-cycle (resp., W-cycle)

if and only if the exterior of C contains exactly one vertex (resp., no vertex) in V − {u, v}
adjacent to c or s. The above test can be done in O(1) time for each cycle in Cp, and we

can find the sets CB and CW in O(|Cp|) = O(n) time.

(iii) Let I be the inclusion-forest obtained in (i). By definition, a cycle C of G is a

posi-cycle if and only if C is a cycle (u, c, v, s) ∈ CB ∪ CW of length 4 such that c, s ∈ χ

and I has no facial cycle Cf with u, v ∈ V (Cf ) as a child of C in I. For each cycle

C = (u, c, v, s) ∈ CB∪CW of length 4, we traverse each of the facial cycles Cf that is a child

of C in I, and conclude that C ∈ C+ if u and v are not visited by a single facial cycle Cf ;

and C is a soft B- or W-cycle if u and v are visited by a single facial cycle of some inner

face, say fC .
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Since each facial cycle in G is traversed once over all cycles in Cp, the set C+ can be

found in O(n) time. By definition, a cycle C of G is a nega-cycle if and only if C is a

cycle (u, c, v, s) ∈ Cn such that c, s ∈ χ, {u, v} ̸⊆ V (Cφ) and I has no facial cycle Cf with

u, v ∈ V (Cf ) as a sibling of C in I. Note that no two cycles C,C ′ ∈ Cn can be siblings in

I. We traverse each of the facial cycles Cf that are siblings of a cycle C = (u, c, v, s) ∈ Cn
in I, and conclude that C ∈ C− if {u, v} ̸⊆ V (Cφ) and u and v are not visited by a single

facial cycle Cf . Again, each facial cycle in G is traversed once over all cycles in Cn, the set

C− can be found in O(n) time.

(iv) The procedure in (iii) actually detects for each soft B- or W-cycle C = (u, c, v, s)

∈ CB ∪ CW, an inner face fC whose facial cycle contains both vertices u and v. 2

Given (G, γ), a face f ∈ F (γ) is called admissible if all posi-cycles enclose f but no

nega-cycle encloses f . Let A(γ) denote the set of all admissible faces in F (γ).

Lemma 7 Given (G, γ), it holds A(γ) ̸= ∅ if and only if no forbidden cycle pair exists in

γ. A forbidden cycle pair, if one exists, and A(γ) can be obtained in O(n) time.

Proof. Let C+
min (resp., C−

max) be the set of cycles C in C+ (resp., C−) that does not enclose

any other cycle C ′ ∈ C+ (resp., that is not enclosed by any other cycle C ′ ∈ C−). From the

inclusion-forest of C+ ∪ C−, we can find C+
min and C−

max in O(n) time. If |C+
min| ≥ 2, then

any two cycles C,C ′ ∈ C+
min give a forbidden cycle pair. If |C+

min| = 1 and a cycle C ′ ∈ C−
max

encloses the cycle C ∈ C+
min, then C and C ′ give a forbidden cycle pair. Otherwise (i.e.,

“|C+
min| = 1 and no cycle C ′ ∈ C−

max encloses the cycle C ∈ C+
min” or “|C+

min| = 0”) there is

no forbidden cycle pair in γ.

Let F+ be the set of all inner faces that are contained in all posi-cycles, where F+ = ∅
if |C+

min| ≥ 2; F+ = F (γ) if C+
min = ∅; and F+ is the set of inner faces enclosed by the cycle

C ∈ C+
min otherwise. Let F− be the set of all inner faces that are not contained in any

nega-cycle, where F− = F (γ)− {f ∈ F (γ) | f is enclosed by some cycle C ∈ C−
max}. Then

it holds A(γ) = F+ ∩ F−, and γ has no forbidden cycle pair if and only if A(γ) ̸= ∅. From
C+
min and C−

max, we can compute A(γ) and a forbidden cycle pair if one exists in O(n) time.

2

By the lemma, if (G, γ) has no forbidden cycle pair, i.e., A(γ) ̸= ∅, then any new

embedding obtained from γ by changing the outer face with a face in A(γ) is a cross-

preserving embedding of γ which has no hard B- or W-cycle.

4.1 Eliminating Soft B- and W-cycles

Suppose that we are given a circular instance (G, γ) such that G is biconnected and C+ = ∅.
We now show how to eliminate all soft B- and W-cycles in G in linear time using the

inclusion-forest from Lemma 2 and the spindles from Lemma 3.

Lemma 8 Given (G, γ) with C+ = ∅, there exists an SLD cross-preserving embedding

γ′ = (χ, ρ′, φ′) of γ such that V (Cφ′) ⊇ V (Cφ), which can be constructed in O(n) time.

Proof. We show how to specify necessary subgraphs of G so that flipping the spindles

induced by the subgraphs eliminates all soft B- and W-cycles. This results in an SLD

cross-preserving embedding, because flipping spindles will not change the outer face of any

embedding induced by a pseudo-triconnected subgraph and thereby it will not introduce

any new posi-cycle by Lemma 5.
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Fix a cut-pair {u, v} such that γ has a soft B- or W-cycle C ∈ CW∪CB with u, v ∈ V (C).

We consider the case where uv is a crossing-free edge in γ (the other case can be treated

analogously by regarding k = q in the following argument). Let ci, 1 ≤ i ≤ q, and i ̸= k be

the crossings such that u, v-path (u, ci, v) is a subpath of a soft B- or W-cycle, and regard

(u, ck, v) as the crossing-free edge uv for a notational convenience, as shown in Fig. 6(b).

Assume without loss of generality that c1, c2, . . . , cp is the clockwise order around u,

and each cycle (u, ci, v, ci+1) with 1 ≤ i ≤ q − 1 denoted by Ci does not enclose the outer

face φ. Let Isoft be the index i such that Ci is a soft B- or W-cycle. For each soft B- or

W-cycle Ci with i ∈ Isoft, let f
i be an inner face in the interior of Ci whose facial cycle Cf i

contains u and v, and let Cf i consist of two u, v-paths P i
r and P i

l where P i
r appears before

P i
l around u. We call P i

r and P i
l the supporting paths of the soft B- or W-cycle Ci.

Define a spindle Si for each i ∈ Isoft as follows: For i < k (resp., i > k), let Si be

the cycle that consists of (u, ci, v) and P i
r (resp., P i

l and (u, ci+1, v)). Let Su,v be the set

of spindles Si, i ∈ Isoft for this vertex pair {u, v}. We easily see that no soft B- or W-

cycle appears between u and v any more after flipping all the spindles in Su,v. Note that

no spindle in Su,v contains any vertex in V (Cφ) − {u, v} since S1 contains the u, v-path

(u, c1, v) and Sq−1 contains the u, v-path (u, cq, v).

Let S be the union of Su,v over all vertex pairs {u, v} in a soft B- or W-cycle in γ. Note

that no vertex along each spindle in S except for its junctions is in V (Cφ). Also for two

distinct soft B- or W-cycle C and C ′ in γ, their supporting paths are edge-disjoint, because

otherwise some part of the supporting path of C or C ′, say C would be enclosed by C ′.

Hence we see that no two spindles in S have an edge in their supporting path sides, which

implies that the total number of edges in all soft B- or W-cycles and their supporting paths

is O(n). Therefore finding the inner faces in all soft B- or W-cycles can be done in O(n)

time by Lemma 2(iii), and flipping all spindles in S to obtain a new embedding γ′ can be

executed in O(n) time by Lemma 3. The resulting embedding γ′ still keeps all the vertices

in φ along the new outer boundary, since no non-junction vertex along each spindle in S is

in V (Cφ). 2

Given an instance (G, γ) with a biconnected graph G, we can test whether it has either

a forbidden cycle pair or an admissible face by Lemmas 6 and 7. In the former, it cannot

have an SLD cross-preserving embedding by Lemma 5. In the latter, we can eliminate all

hard B- and W-cycles by choosing an admissible face as a new outer face, and then eliminate

all soft B- and W-cycles by a flipping procedure based on Lemma 8. All the above can be

done in linear time.

To treat the case where G is oneconnected in the next section, we now characterize 1-

plane embeddings that can have an SLD cross-preserving embedding such that a specified

vertex appears along the outer boundary. For a vertex z ∈ V in a graph G, we call a 1-plane

embedding γ of G z-exposed if vertex z appears along the outer boundary of γ. We call

(G, γ) z-feasible if it admits a z-exposed SLD cross-preserving embedding γ′ of γ.

Lemma 9 Given (G, γ) such that A(γ) ̸= ∅, let z be a vertex in V . Then:

(i) The following conditions are equivalent:

(a) γ admits no z-exposed SLD cross-preserving embedding;

(b) A(γ) contains no face f with z ∈ V (Cf ); and

(c) G has a posi- or nega-cycle C to which z is an in-factor;
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(ii) A z-exposed SLD cross-preserving embedding or a posi- or nega-cycle C to which z is

an in-factor can be computed in O(n) time.

Proof. (i) Let z be a vertex in V , and Fz be the set of faces f ∈ F (γ) with z ∈ V (Cf ).

(a)⇒(b): Assume that A(γ) ∩ Fz ̸= ∅. Then choose a face f ∈ A(γ) ∩ Fv, change the

outer face from φ to face f to obtain a cross-preserving embedding γ′ = (χ, ρ′, φ′) of γ

that has no posi-cycle in G(G, γ′), and then eliminate all soft B- or W-cycles to obtain

an embedding γ′′ = (χ, ρ′′, φ′′). By Lemma 8, embedding γ′′ is an SLD cross-preserving

embedding of γ and can be obtained from γ in O(n) time. We observe that γ′′ is z-exposed

since V (Cγ′′) ⊇ V (Cγ′) by Lemma 8.

(b)⇒(c): On the other hand, assume that A(γ) ∩ Fz = ∅. We distinguish two cases.

(α) there is a face f ∈ Fz not enclosed by a posi-cycle C: Then |C+
min| = 1 since A(γ) ̸= ∅.

If z is on the posi-cycle C ∈ C+
min, say C = (z, c, v, s) with z, v ∈ V and c, s ∈ χ, then there

is a face f ′ ∈ Fz which is enclosed by C in γ, and A(γ) ∩ Fz = ∅ means that this face f ′

must be enclosed by some nega-cycle C ′, contradicting that {C,C ′} is not a forbidden cycle

pair. Hence z is not on the posi-cycle C ∈ C+
min, i.e., z is properly in the interior of C, as

required.

(β) each face f ∈ Fv is enclosed by a nega-cycle: If there is no nega-cycle which encloses

vertex z properly, then each face f ∈ Fz is contained in a nega-cycle C ′ = (z, c, v, s), which,

however, contradicts that no two nega-cycles sharing a vertex z can share an edge incident

to z. Hence there is a nega-cycle C which encloses vertex z properly, as required. In any

of (α) and (β), there is a cycle C to which z is an in-factor.

(c)⇒(a): Let C = (u, c, v, s) be a posi-cycle (resp., nega-cycle) to which z is an in-factor,

where the biconnected graph G(G, γ) has a z, u-path and a z, v-path in the exterior (resp.,

interior) of C. By Lemma 5(i), we see that C is a posi-cycle when z appears along the

outer boundary of any cross-preserving embedding γ′. Hence if a cycle satisfying condition

(i)-(c) of the lemma exists, then no z-exposed cross-preserving embedding can be SLD.

(ii) By Lemma 6, we can find a cycle C to which z is an in-factor, if one exists. On

the other hand, a z-exposed SLD cross-preserving embedding of γ constructed in (i) can be

computed in linear time, as we have observed after Lemma 8. 2

5 One-connected Case

In this section, we prove the sufficiency of Theorem 4 by designing a linear-time algorithm

claimed in the theorem. Given a circular instance (G, γ), where G may be disconnected,

obviously we only need to test each connected component of G separately to find a forbidden

cycle pair. Thus we first consider a circular instance (G, γ) such that the connectivity of G
is 1; i.e., G is connected and has some cut-vertices.

A block B of G is a maximal biconnected subgraph of G. For a biconnected graph G,
we already know how to find a forbidden cycle pair or an SLD cross-preserving embedding

from the previous section. For a trivial block B with |V (B)| = 2, there is nothing to do.

If some block B of G with |V (B)| ≥ 3 contains a forbidden cycle pair, then (G, γ) cannot

admit any SLD cross-preserving embedding by Lemma 5.

We now observe that G may contain a forbidden cycle pair even if no single block of G
has a forbidden cycle pair.
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Lemma 10 For a circular instance (G, γ) such that the connectivity of G is 1, let B1 and

B2 be blocks of G and let zi ∈ V (Bi) be the closest vertex to Bj with j ∈ {1, 2} − {i}. If

γ|Bi has a posi- or nega-cycle Ci to which zi is an in-factor for each i = 1, 2, then {C1, C2}
is a forbidden cycle pair in G.

Proof. For each i = 1, 2, let Ci = (ui, ci, vi, si) with ui, vi ∈ V and ci, si ∈ χ, and we

know that each block Bi has a ui, vi-path Pi that passes through zi in the exterior (resp.,

interior) of Ci if Ci is a posi-cycle (resp., nega-cycle). Let P1,2 be a shortest z1, z2-path of G,
where V (Bi) ∩ V (P1,2) = {zi} for each i = 1, 2. Denote by H the subgraph of G consisting

of these paths Pi, i = 1, 2 and P1,2. We distinguish two cases.

(i) Both C1 and C2 are posi-cycles: If one of C1 and C2, say C1 encloses the other in the

current embedding γ, then z1, z2-path P1,2 would create a crossing along cycle C2. Hence

C1 and C2 share no inner face, and subgraph H contains a u1, u2-path and a v1, v2-path in

the exterior of C1 and C2. Therefore {C1, C2} is a forbidden cycle pair.

(ii) One of C1 and C2, say C1 is a nega-cycle: In the current embedding γ, vertex z1
is in the interior of C1. Hence the subgraph H with z1 ∈ V (H) is also in the interior of

C1. This implies that C2 cannot be a nega-cycle, since otherwise H also need to be in the

interior of C2 and would create a new crossing with C1 or C2. Then C2 is a posi-cycle,

which is in the interior of C1, and H exists in the interior of C1 and in the exterior of C2,

indicating that {C1, C2} is a forbidden cycle pair. 2

For a linear-time implementation, we do not apply the lemma for all pairs of blocks in

B. A block of G is called a leaf block if it contains only one cut-vertex of G, where we denote
the cut-vertex in a leaf block B by vB. Without directly searching for a forbidden cycle

pair in G, we use the next lemma to reduce a given embedding by repeatedly removing leaf

blocks.

Lemma 11 For a circular instance (G, γ) such that the connectivity of G = G(G, γ) is 1

and a leaf block B of G such that γ|B is vB-feasible, let H = G − (V (B) − {vB}) be the

graph obtained by removing the vertices in V (B)− {vB}. Then

(i) The instance (H, γ|H) is circular; and

(ii) If (H, γ|H) admits an SLD cross-preserving embedding γ∗H , then an SLD cross-preserving

embedding γ∗ of γ can be obtained by placing a vB-exposed SLD cross-preserving em-

bedding γ∗B of γ|B within a space next to the cut-vertex vB in γ∗H .

Proof. (i) The instance (H, γ|H) remains circular, because for any crossing c in γ|H , cut-

vertex vB separates no two vertices in the cycle of eight crossing-free edges that surrounds

c in G.

(ii) The embedding γ∗ obtained from γ∗H and γ∗B is an SLD cross-preserving embedding

of γ, since neither of γ∗H and γ∗B contains a W- or B-cycle. 2

Given a circular instance (G, γ) such that G = G(G, γ) is connected, an algorithm

Algorithm Re-Embed-1-Plane for Theorem 4 is designed by the following three steps.

The first step test whether G has a block B such that γ|B has a forbidden cycle pair,

based on Lemma 9. If one exists, the algorithm outputs a forbidden cycle pair and halts.

After the first step, no block has a forbidden cycle pair. In the current circular instance

(G, γ), one of the following holds:
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(i) the number of blocks in G is at least two and there is at most one leaf block B such that

γ|B is not vB-feasible; and

(ii) G has two leaf blocks B and B′ such that γ|B is not vB-feasible and γ|B′ is not vB′-

feasible; and

(iii) the number of blocks in G is at most one.

In (ii), vB is an in-factor of a cycle C in γ|B and vB′ is an in-factor of a cycle C ′ in γ|B′

by Lemma 9, and we obtain a forbidden cycle pair {C,C ′} by Lemma 10. Otherwise if (i)

holds, then we can remove all leaf blocks B such that γ|B is not vB-feasible by Lemma 11.

The second step keeps removing all leaf blocks B such that γ|B is not vB-feasible until

(ii) or (iii) holds to the resulting embedding. If (i) occurs, then the algorithm outputs a

forbidden cycle pair and halts.

When all the blocks of G can be removed successfully, say in an order of B1, B2, . . . , Bm,

the third step constructs an embedding with no B- or W-cycles by starting with such an

SLD embedding of Bm and by adding an SLD embedding of Bi to the current embedding in

the order of i = m− 1,m− 2, . . . , 1. By Lemma 11, this results in an SLD cross-preserving

embedding of the input instance (G, γ).

The entire description of algorithm Algorithm Re-Embed-1-Plane is given as fol-

lows.

Algorithm Re-Embed-1-Plane

Input: A circular instance (G, γ) such that G = G(G, γ) is connected and has m ≥ 1 blocks.

Output: Either an SLD cross-preserving embedding of γ∗ of γ or a forbidden cycle pair in

G.

Step 1:

Among the m blocks in G, test whether there is a block B such that γ|B has a forbidden

cycle pair, based on Lemma 9;

if γ|B for some block B of G contains a forbidden cycle pair then

Halt outputting a forbidden cycle pair in γ|B
end if;

Step 2:

Let G′ := G; γ′ := γ; p := 1;

while the number of blocks of G′ is at least two do

Test whether the embedding γ|B of each leaf block B of G′ is vB-feasible,

i.e., vB is not an in-factor of any cycle C in γ|B, based on Lemma 9;

if for some two leaf blocks B and B′, vB is an in-factor of a cycle C in γ|B and

vB′ is an in-factor of a cycle C ′ in γ|B′ then

Halt outputting the forbidden cycle pair {C,C ′}
else

Let Bp, Bp+1, . . . ,Bq be the leaf blocks of G′ such that γ|Bi is vBi-feasible

in γ′; /* possibly one leaf block B such that γ|B is vB-infeasible is left */

For H = G− ∪p≤i≤q(V (Bi)− {vBi}), let γ′ := γ|H and G′ := G(H, γ|H);

Let p := q + 1;

end if

end while;

if G′ is not empty; i.e., G′ contains only one block B then

Remove Bm := B from G′
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end if;

/* B1, B2, . . . , Bm are the m blocks of G indexed such that Bi is the i-th block

removed from G during Step 2 */

Step 3:

Denote H i = G− ∪1≤j≤i−1(V (Bj)− {vBj}) for i = 1, . . . ,m;

Construct an SLD cross-preserving embedding γ∗Hm = γ∗Bm of γ|Bm based on Lemma 9;

for i = m−1,m−2, . . . , 1 do

Construct a vBi-exposed SLD cross-preserving embedding γ∗
Bi of γ|Bi based on

Lemma 9;

Place the embedding γ∗
Bi within a region next to the cut-vertex vBi in γ∗

Hi+1

to obtain a cross-preserving embedding γ∗
Hi of γ|Hi

end for;

Output embedding γ∗H1 , which is an SLD cross-preserving embedding of γ.

Note that we can obtain an SLD cross-preserving embedding γ∗H1 of γ in the third step

when the first and second step did not find any forbidden cycle pair. Thus the algorithm

finds either an SLD cross-preserving embedding of γ or a forbidden cycle pair. This proves

the sufficiency of Theorem 4.

By the time complexity result from Lemma 9, we see that the algorithm can be imple-

mented in linear time.

6 Concluding Remarks

In this paper, we studied the problem of re-embedding a 1-plane graph so that it is drawn

as a straight-line drawing. By Thomassen’s forbidden characterization via the B- and

W-configurations, this is reduced to a problem of embedding the planarization of a given

1-plane graph so that special types of cycles do not appear. Just to test whether the current

embedding contains such a cycle or not, we can check each block separately or can assume

that a given instance is biconnected without loss of generality. However, this is not the case

to finding an SDL re-embedding, where we have to examine how the blocks are connected

in the whole connected graph.

To detect sa special type of cycle and a subgraph to be flipped, it would be natural to

use the triconnected component decomposition or the SPQR tree to see the whole structure

of cut-pairs in some graph. However, a hard B-cycle is not related to any cut-pair of the

planarization and is related to a cut-pair of the spanning subgraph induced by the crossing-

free edges. This would require us to construct the SPQR tree of the crossing-free spanning

graph and establish a method based on some comparison between the SPQR tree and the

planarization. On the other hand, all soft B- and W-cycles are related to only cut-pairs

in the planarization, which suggests to us use of the SPQR tree of the planarization. As

we have observed in this paper, we could avoid such troublesome situation by devising the

inclusion-forest of non-intersecting cycles and a fast implementation of flipping procedure.

It would be interesting to see how our new approach can be extended to a problem of

re-embedding k-plane graphs with k ≥ 2 into a straight-line drawing.
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