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Abstract

Let H = (Vy, Ey) be an undirected graph with a sub&ebf the edge sek’y;, where we

call the edges it red edgesand the edges i'; — E blue edges An embedding ofH into
the plane is called afv-planar embedding if no red edge crosses any other edges whereas two
blue edges may cross. In this paper, we give a complete characterization of an irfgfahge
that admits ndv-planar embedding via forbidden subgraphs with red/blue edges. Furthermore we
design a linear-time algorithm that finds eitheriasplanar embedding or a forbidden subgraph.

The problem setting can enable us to formulate a problem of finding a planar embedding of a
planar graplG with an additional constraint such that, for specified $gtss, . . ., S, of vertices,
all the vertices in eacld; appear along the same facial cycle. To see this, we regard all edges in
G asred edges and add a stawith blue edges;t, t € S; for eachi. For example, this allows us
to find a planar embedding of a planar grapisuch that the rotation systems of some vertices are
predetermined.

1 Introduction

Planar graphs are graphs that can be embedded in the plane without edge crossings, and extensively studied
by researchers in Graph Theory and Graph Algorithms, for example, planar graphsveitices can have

at most3n — 6 edges. A graph is planar if and only if it contains no subgraph that is a subdivisi@p of
and K3 3 [32]. Testingplanarity of a graph can be solved in linear time [28, 33], and some methods also
produce a planar embedding [9, 10, 12, 17, 18, 34, 36, 37] or forbidden minors [9, 10].

Variations of planarity with additional embedding or desired drawgngstraintswere studied. For
example, testing planarity with embedding constraints such as a rfixation systenti.e., the circular
ordering of edges for a vertex) of each vertex [22], and partially-fixed planar embeddings [2] are consid-
ered. Testing planarity with additional drawing constraints for extended graph models and digraphs such as
clustered (compound) graph planari-planarity, in short) [19],hierarchical (or leve) planarity [?], and
upwardplanarity [20] for digraphs were extensively studied.

Another recent variant of the planarity problem includesdineultaneous embeddinghich given two
planar graphg7; = (V, E;) andGy = (V, Ey) with the same vertex sét, asks the existence of two
planar drawingd); and D5 of G; andGs, respectively, such that each vertex V' is mapped to the same
point in Dy and Dy. Unfortunately, the problem of testing whether two planar graphs adgebanetric
simultaneous embedding, whellg and.D, are required to be straight-line drawings, is NP-hard [16].
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Note that simultaneous embedding can be considered as an embedding of two planar graphs, red and
blue, where red-red edge crossings and blue-blue edge crossings are not allowed, however red-blue cross-
ings are allowed in a combined drawing consisting of a red graph and a blue graph.

A recent research topic in topological graph theory generalizes the notion of plandréydod planar
graphs i.e., non-planar graphs with some specific crossings, or with some forbidden crossing patterns. Ex-
amples includé:-planargraphs (i.e., graphs that can be embedded with at inosissings per edge) [35],
k-quasi-planargraphs (i.e., graphs that can be embedded wittomtutually crossing edges) [IRAC
graphs (i.e., graphs that can be embedded with right angle crossings) [14hraeptanar graphs (i.e.,
graphs that can be embedded with fan-crossings) [30].

Recently, algorithmics and complexity for such graphs have been investigated. Unfortunately, testing
1-planarity of a graph is NP-complete [21, 31], and testing whether a given graph is a RAC graph is NP-
hard [3]. Similarly, testing fan-planarity of a graph is NP-hard [8], even if a rotation system of each vertex
in a graph is fixed [6].

On the positive side, linear-time algorithms are available for special subclasses of beyond planar graphs.
For example, testinghaximal 1-planarity(i.e., the addition of an edge destroys 1-planarity) of a graph can
be solved in linear time, if a rotation system of each vertex is given [15]. Testitgr-1-planarity(i.e.,
1-planar graphs with each vertex on the outer face) of a graph can be solved in linear time [4, 25]. Testing
maximal outer-fan-planarityi.e., fan-planar graphs with each vertex on the outer face and the addition of
an edge destroys outer-fan-planarity) [6], and teshiigputer-2-planarity(i.e., 2-planar graphs with each
vertex on the outer face and there is no crossing on the outer face) [26] can be solved in linear time.

As another problem on beyond planarity, this paper studies a problem of drawing a subset of edges
as a plane embedding while the other edges are allowed to cross each oth&fr. t&l/;;, Ey) be an
undirected graph with a subsktof the edge sel';, where we call the edges ifi red edgesnd the edges
not in £ blue edges An embedding offf into the plane is called-planar if no edge inE crosses any
other edges whereas two edgedip — EF may cross. The main problem of this paper can be defined as
follows.

Embedding a Graph with Crossable Edges
Input: A graphH = (Vy, E) with an edge subséi C Ey.

Output: Test whetherd admits anE-planar embedding and construct Arplanar embedding if
one exists.

See Fig. 1 for an example of a graphwith an edge subsédt and itsE-planar embedding. As a main result
in this paper, we give a complete characterization of an instaHcé”) that does not admit ai-planar
embedding via forbidden subgraphs with red/blue edges. Furthermore we design a linear-time algorithm
that finds either ailz-planar embedding or a forbidden subgraph.

Our problem setting can enable us to formulate a problem of finding a planar embedding of a planar
graphG = (V, E') with an additional constraint such that, for specified $5tsSs, . . ., Sj, of vertices, all
the vertices in eacl; appear along the same facial cycle. We call the constrairfattieg constraint To
see this, we regard all edges@has red edges and add a stawith blue edges;t, t € S; for eachi.
Then we observe that the augmented gréph- (V U {s1,..., s}, EU (Ui<i<k{sit | t € S;})) admits
an E-planar embedding if and only @& admits a planar embedding satisfying the facing constraint with
{S1,52,...,5;}.

For example, this allows us to find a planar embedding of a planar graptich that the rotation
systems of some vertices are predetermined, as studied by Gutwenger et al. [22]; ket ..., uq} be
the neighbors of a vertexin G. Then by settings; = {u;,u;+1} foralli = 1,2,...,d — 1, we see that
for any planar embedding' the facing constraint with.S, Ss, ..., Sy}, the rotation system af is either



(b)

Figure 1: (a) An instancéH, E') with a red edge seE = {vivs,v1v7, V109, Vovyg, V2V16, V3Us5, U3VT,
V407, V59, UsU10, UsU12, UsU16, UTUS, V7U10, V8V16, V10V12, U11V13, V11014, V12V16, V13V15, V14V15}; (D) An
E-planar embedding off .

(u1,us,...,uq) Orits reversal. We can impose the same constraint for some other vertices at the same time,
since we allow blue edges to cross each other.
Another way of asking our problem is to find a partitipX’;, Xo, ..., X3} of a specified vertex subset

X in a graphH such that the grapll’ obtained fromH by contracting each se¥; into a single vertex
x; becomes planar, where we call such a partiptanarizing It is not difficult to see that the problem of
finding a planarizing partition can be reduced to our problem by regarding all edges incident to a vertex in
X as blue edges.

The paper is organized as follows. Section 2 introduces basic notations and discusses data structure
for ordered trees. Section 3 states our main result that the instances that havelarar embeddings
can be characterized by five types of forbidden subgraphs, and shows how to restrict given instances of
the problem to instances with a special structure called “star instances,” where the red graph is connected.
Section 4 describes how to reduce a star instance with a red connected graph into a star instance with a
red biconnected graph in linear time. Section 5 presents an algorithm for testing whether given instance
(H, E) with a triconnected red graph 5-planar, where we use a geometric argument based on convex
grid drawings to make a naive quadratic time algorithm run in linear time. The last case where the red
graph is biconnected is treated by three sections. Section 6 first reviews a method of decomposing a bicon-
nected graph into triconnected components, and observes how the forbidden subgraphs may appear in such
triconnected components of the red biconnected graph. Our algorithm for testing whether some forbidden
subgraph appears in a triconnected component of the red biconnected graph consists of two major phases.
Section 7 shows the first phase which detects some types of forbidden subgraphs appear in a triconnected
component of the red graph, whereas Section 8 presents the second phase that mainly detects the last type
of forbidden subgraphs in a given instance with a red biconnected graph.

2 Preliminaries

This section introduces basic notations and discusses data structure for ordered trees.



2.1 Terminology

For agraphG, letV(G) andE(G) denote the sets of vertices and edgeS jmespectively. LeG = (V, E)
be a graph, where denotegV’| unless stated otherwise. For a vertex V, letdeg(v) denote the degree
of v, and N (v) denote the set of neighbousof v. For a subseE’ C F of edges, leV/(E’) denote the set
of end-vertices of all edges if’, and letG — E’ denote the graph obtained frathby removing the edges
in E'. Let X C V be subsets of vertices. L&tX) denote the set of edges betwe€randV — X, where
we may denoté({v}) by §(v). LetG — X denote the graph obtained fraghby removing the vertices in
X together with the edges incident to any vertexXin Let G[X| denote the subgraph induced fra@iby
the vertices inX, i.e.,G[X| = G — (V — X). We may indicate the underlying graghin these notations
in such a way tha#(X), deg(v) and N (v) are written a®(X; G), deg(v; G) and N (v; G). A vertex of
degreed is called adegreed vertex A staris a graph with a center and some other vertices which are
incident to onlys (possibly with multiple edges), which we may simply denote by the centite edge
set{st | t € N(s)} orthe neighbor seW (s) if it is clear from the context. A biconnected component of a
graph is called &lock

We say that two paths aisternally disjointif no internal vertex of one of the paths is contained by
the other. For two vertex subsetsT C V, a simple pathP with end verticess € S and¢ € T such
thatV(P) N (SUT) = {s,t} called anS, T-path We may denotés}, T-path bys, T-path and{s}, {t}-
path bys, t-path. For a pathP, let Vi,(P) denote the set of internal vertices fh Subdividingan edge
e = uv is to replace the edge withwg v-pathu, wy, ws, . . ., wi, v with k (> 1) new degree-2 vertices;,
1=1,2,..., k. AgraphH is asubdivisionof GG if H is obtained by subdividing some edge<inA graph
H is calledpseudo-triconnected it is a subdivision of a triconnected gragh It is known that a planar
embedding of a pseudo-triconnected graph is unique up to reversal or a choice of outer face.

For atre€l’ and two vertices andv in T', let P(u, v; T') denote the unique, v-path inT'. A rooted tree
is a tree with a designated vertexcalled theroot, which introduces a parent-child order among vertices
and defines thdepthdt(v) of each vertex to be the length of the path fromto v.

A u, v-chainis a graph obtained froma v-path(u; = u,us,...,u, = v) by replacing some edges
u;u;+1 With two internally disjointu;, u;+1-pathsP! and P2, and thelengthof the chain is defined to be
p — 1, the length of the originak, v-path. LetC; denote the cycle formed bi?! and P? (possiblyC; is
a cycle of length 2). Hence it is a sequence of edges,; or simple cycle<; fori = 1,2,...,p — 1,
where we call each of such cyclés afactor of the chain and each d@?! and P? of a factorC; is asideof
C;. We define aircular chainto be au, v-chain withu = v.

Let K denote the graph obtained from the complete grAptwith five vertices by splitting a vertex
into two degree-3 vertices; andv; with a new edge:, v1, where we calk; andv, thesplit vertices

A topological graphor embeddingy of a graphH is a representation of a graph (possibly with multiple
edges) in the plane, where each vertex is a point and each edge is a Jordan arc between the points represent-
ing its endpoints. Two edgesossif they have a point in common, other than their endpoints. The point
in common is acrossing To avoid pathological cases, standard non-degeneracy conditions apply: (i) two
edges intersect at most one point; (i) an edge does not contain a vertex other than its endpoints; (iii) no
edge crosses itself; (iv) edges must not meet tangentially; (v) no three edges share any crossing point; and
(vi) no two edges that share an endpoint cross.

2.2 Ordered Trees

Let T be anordered treei.e., a rooted tree with a left-right order, a total order over the children of each
vertex. For each vertex in T', let D(v; T)) denote the set of vertex and all descendants of and let
T'(v) denote the ordered subtré&D(v; T')] induced fromT" by D(v;T). For two verticesu andv in T,
letlca(u, v; T') be theleast common ancestof « andv. In 7', we define théeft dfs orderld, theright dfs
orderrd, theleft post ordedp and theright post orderrp to be functions froni” to the set of nonnegative
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integers such that

(i) 1d(u) > 1d(v), rd(u) > rd(v), Ip(u) < Ip(v) andrp(u) < rp(v) for a vertexv with a childu; and

(i) 1d(uw) < 1d(v), rd(u) > rd(v), Ip(u) < Ip(v) andrp(u) > rp(v) for two siblingsu andv such that:

is to the left ofv.

We assume that the maximum value used in these functiaD&i$. See Fig. 2(a) for an illustration of an
ordered tred” with vertices indexed by the left post order
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Figure 2: lllustration of an ordered tree and a mimic tree: (a) An instance orderefl taeged at vertex
va3, Where the vertices are indexed by the left post otde(b) The mimic treel’(N) = (N*, Ey) for
N = {Ul, Vs, U7, V9, V17, V16, UQ()}, whereN* — N = {1}4, Vg, V12, V13, V18, V19, V22, V21, 023}; and (C) The
mimic treeT* = T(N*) of the setN? = {uy,ua, ..., u;}.

Note thatu ¢ D(v; T) if and only if d(u) < 1d(v) orrd(u) < rd(v).

For a vertexv € T, we say that a vertex is on the left side of if 1d(u) < 1d(v) andlp(u) < Ip(v),
which means thalca(u,v; 1) has childrernw; andws such thatu € D(wy;T), v € D(ws;T) andw;
is to the left ofw,. Symmetrically we say that a vertexis on the right side ob if rd(u) < rd(v) and
rp(u) < rp(v). Observe thalp(u) < Ip(w) implies thatu € D(w; T') orld(u) < 1d(w).

Lemma 1 For a subsetS of vertices in an ordered tre€ and each functiorf € {dt,lp,rp}, letayg
denote a vertex € S with f(u) = min{f(s) | s € S}. Letv be a vertexirl". Then:

(i) Ifld(aip,s) < ld(v) andlp(aip,s) < Ip(v), thenay, s is a vertex on the left side of Conversely if the
setS — D(v; T) contains a vertex on the left sidewfthenld(ay, 5) < ld(v) andlp(ai, s) < Ip(v);

(i) Ifrd(awp,s) < rd(v)andrp(a,p ) < rp(v), thena,, s is a vertex on the right side of Conversely if
the setS — D(v; T') contains a vertex on the right side @fthenrd(a,p 5) < rd(v) andrp(awp,s) <
rp(v); and

(iif) Assume that — D(v;T') contains no vertex on the left or right side @f If dt(aq; ) < dt(v),
thenag; g is an ancestor ob; Conversely if the ses — D(v;T') contains an ancestor af, then

dt(ag,g) < dt(v).

Proof. (i) Let u = aj, 5. Hence ifld(u) < 1d(v) andlp(u) < Ip(v) thenw is on the left side ob by
definition. Assume that — D(v; T") contains a vertexs on the left side ob. By definition,1d(w) < 1d(v)
andlp(w) < Ip(v), from whichlp(u) < Ip(w) < Ip(v) sinceu = ay, g. Recall thalp(u) < Ip(w) implies
thatu € D(w;T) orld(u) < 1d(w), from which we knowld(u) < 1d(v).

(i) Symmetrically with (i).



(iii) Assume thatS — D(v;T") contains no vertex on the left or right side @of Then any vertex
w € S — D(v;T) is an ancestor of, and satisfiedca(w,v;T) = w. Letu = lca(agyg,v;T). If
dt(u) < dt(v), thenu € S — D(v; T) is an ancestor of. If S — D(v;T') contains an ancestar of v, then
clearlydt(u) < dt(w) < dt(v). O

2.3 Mimic Trees

LetT = (V, E) be an ordered tree. It is known that we can fiew|w, v; T") for any query of two vertices
uwandv in O(1) time after anO(]V'|)-time preprocessing on the rooted tBésee [7, 24]).

For two distinct vertices;,ve € V, definelca®(vy,v2; T') to be the set of at most three vertices:;
andzs such that: = lca(vi,ve;T), andz;, i = 1,2 is the children ofz which iswv; or an ancestor ofj;
(no such vertex; exists ifv; = lca*(v1,ve; T)); i.e., if z = lca® (v, va; T') # v1, v thenlca™ (v, ve; T) =
{lca(vy,v2; T'), c1,c2} With ¢; € Ch(z;T) with v; € D(¢;; T); and if z = lca™ (v, vo; T) # v; fori =1
or 2 thenlca® (vi,v; T) = {lca(vy,v;T),¢;} with ¢; € Ch(z; T) with v; € D(c;;T) for j # i. We
observe that given a query of two verticesandvs, lca*(vy,v9;T) can be obtained i®(1) time using
the procedure for finding the least common ancestors. For examgeijsifa binary tree, then we can
easily find the childrer; of lca(vi,v2;T') that is an ancestor af; in O(1) time if one exists. When
T is not a binary tree, each vertexin T with d > 3 childrenuy, us,...,uq can be split intod — 2
verticesvy, . .., v4—1 to obtain a binary ordered tréf.¢ (resp.,Tvigne) such thatu;, v 1 € Ch(v;; Tiek),
1=1,2,...,d—2 andud_l, Uqg € Ch(vd_l; T]Cft) (resp.,ud_iH, Vit1 € Ch(vi; Tright)a 1=1,2,...,d—2
anduy, ug € Ch(vg—1; Tiight ), Whereu; appears before;,; in the left depth-first order along any ®F;
andTighe. Using the both modified tre€S.q; and T}, We can find the right child; of lca(vi, vo; T) in
Tin O(1) time.

For asubsed of vertices inan ordered trde= (V, E), let V* denote the seVU(lJ,, ,,c v lca* (u, v; T)),
and we call an ordered trd& N) = (N*, E) themimic treeinduced fromI" by N if
(i) the edge seEy contains an edgev whenw is an ancestor of and no other vertew € N* — {u,v}
lies along the path betweenandv in T'; and
(i) for two siblingsw andv in T(N), w is to the left ofv in T'(IV), whenu is on the left side of.

Note that| N*| < 3|N|. See Fig. 2(b) for an illustration of a mimic tree.

Lemma 2 Given an ordered tre& with n vertices and a familyf NV, N, ..., Ny} of subsets of vertices,
the mimic treed(N;), i = 1,2,..., k can be constructed i®(n + >, ., | Vi]) time.

Proof. First for each sefV € {Ny, No,..., Ny}, sort the vertices inV so thatN = {ug,ug,...,up}
satisfiedd(u1) < ld(ug) < --- < 1d(up). This can be done i0(n + >, -, [V;|) time by visiting each
vertexv in the ordered tre& according to the left dfs order and pIacinE] the vertess the latest one in a
new list for each selV; with v € N;.

Next we construct the mimic tréB(NN) for each setV € {Ny, Na, ..., Ni}. To prove the lemma, it
suffices to show that eadi(N) can be constructed i@ (| N|) time.

Let N = {uy, ug,...,up}, whereld(u;) < ld(uiy1),i=1,2,...,|N|—1. Foreach =1,2,...,p—

1, we computelca™(u;, uiy1; T) in O(1) time, and denote by; lca(u;,u;+1;T) and bye; (resp.,c})
the child of z; that is an ancestor af; (resp.,u;+1) if one exists. Note thafV* is obtained byN U
Uiz12,..p1 lea” (wi, uig1; T))- A A ‘

For eachi = 1,2,...,p, let T* denote the mimic tred (N*) of the setN* = {uy,us,...,u;} Of
the firsti vertices. Clearlyl™! is the tree consisting of vertax. Assuming thafl™ for somei < |N| is
obtained, we show how to construEt™. Sinceus, us, . .., u, are indexed according to the left dfs order,
we observe that the pafi(r;, u;; T%) between the current roef of 7% is the rightmost path, i.e., we arrive
atu; from r; by choosing the rightmost child. See Fig. 2(c) for an illustratior’df To determine the



right position where vertices;, ¢;, ¢, andu;, are inserted or added A’ to obtain7*t!, we traverse
path P(r;, u;; T*) from u; towardr; to find the lowest vertex in the path such thatt(w) > dt(z;). We
distinguish three cases:

(i) No such vertexw exists in the path: Then let be a child of a new root;;

(i) Such a vertexv exists andit(w) = dt(z;): Thenw = z; holds; and

(iii) Such a vertexw exists andlt(w) > dt(z;): Then insert; betweenw and its rightmost childy’.

In any of (i)-(iii), (a) if z; has a child and the right child af is not¢, in the current tree, then insert
¢, betweenz; and the right child; (b) ifz; # uit1 # ¢, (resp., ifz; # w11 = ¢;) then append/, as the
rightmost child ofw andu,; as a new child ot/ (resp., append,; as the rightmost child ofy). Note
that|V (T?)| = |[N*| < 3|N|. When we traverse the rightmost patir;, u;; T%), the edges in the path
traversed will not be traversed again later. This implies that the total time for constraétingT’ (V) is
O(|V(TP)|) = O(|N|), as required. O

U1
U1

(a)

ui U1

(©)

Figure 3: lllustration of primely forbidden subgraphs: {&) 3 with at most one vertex to which a blue edge
is incident; (b)Ks with at most one vertex to which a blue edge is incident/{¢)with blue edges incident
to only the split vertices; (d) A set of four red internally disjoinw-pathsP;, P», P; and P, together with
three blue edges;usy, vovs andwsw, such thatu;, wy, € V(P1) — {u,v}, ug,v2 € V(P) — {u,v},
vg,w3 € V(P3) — {u,v}; and (e) A red circular chain witp > 2 factorsCy, Cs,...,C, andp blue
edgesu v, ugus, . . ., up—1v, andu,vy such that for each = 1,2,...,p — 1, it holdsu; € Vin(Pf) and
vir1 € Vin(Ph ) for the sameé: € {1, 2}, butu, € Vin(PF) andviy € Vin(PY) for k # ¢

3 Main Theorem

As our main result, this section states that every instance that haspl@anar embedding can be charac-
terized by five types of forbidden subgraphs, and shows how to restrict given instances of the problem to
instances with special structure called “star instances,” where the red graph is connected.

Let(H = (Vu, Eg), E) be a given instance. For convenience, we call the edgeséu edgesind the
edges inEy — E blue edgesA graph is calleded (resp.,blug) if it contains only red (resp., blue) edges.
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A graph is calledyray if it is allowed to contain both a red edge and a blue edge.
We call a graphi with red and blue edggwimely forbiddenf it satisfies one of the following:

(i) H = K33 with at most one vertex to which a blue edge is incident (see Fig. 3(a));
(i) H = K5 with at most one vertex to which a blue edge is incident (see Fig. 3(b));
(i) H = K3 with blue edges incident to only the split vertices (see Fig. 3(c));

(iv) H consists of four red internally disjoint, v-pathsP;, P», P3 and P, together with three blue edges
u1uUs, vovz andwsw such thalul, wy € ‘/in(Pl)’ U2,V € ‘/in(P2>, V3, W3 € V;n(Pg) (See Flg 3(d)),
and

(v) H consists of a red circular chain of length at least 3 with 2 factorsC1, Cs, . . ., C, (which may
not appear in this order along the circular chain) argue edges:;v; 1,7 = 1,2,...,p — 1 and
upvy such that for each=1,2,...,p—1, it holdsu; € Vi, (PF) andv;q € Vin(PF.,) for the same
k € {1,2}, butu, € Vin(PF) andv;y1 € Vin(PY) for k # ¢ (see Fig. 3(e)).

We call a graph with red and blue eddesbiddenif it is primely forbidden or it is obtained from a
primely forbidden graph by subdividing some edges such that each red:edgeeplaced with a red, v-
path and each blue edge is replaced with a gray, v-path. We say that a forbidden graph is of type (i)
(resp., (ii), (iii), (iv) and (v)) if it is obtained from a primely forbidden graph in (i) (resp., (ii), (iii), (iv) and
(v)). We call a red edgew in a primely forbidden graph (or a rad v-path obtained by subdividing it) a
primely red path Thecoreof a forbidden graph is defined to be the red graph that consists of primely red
paths, where we observe that the core is biconnected.

An embeddingy of a graphH is called ank-planarembedding for a subsét of edges inf if no edge
in E crosses any other edge. An instaiiék F) that admits arE-planar embedding is callefi-planar.

Lemma 3 Let F' = (H, E) be a forbidden graph, wherE is the set of red edges in the graph ThenF
admits noE-planar embedding.

Proof. WhenF is of type (iv), the four internally disjoint red, v-paths divides the plane into four faces
in any planar embedding of the four paths, and some of the three gray pdtheways crosses one of the
four red paths.

Let F' be of type (i), (ii) or (iii). To derive a contradiction, assume thaadmits an&-planar embedding
~, where we choose so that the number of crossings is minimized. Then we see that no two gray paths
with the common end-vertex; have any crossing between them, since otherwise we could switch some
parts of these paths to get anottigiplanar embedding’ with a smaller number of crossings. Wheris
of type (i) or (i), this means that is a planar embedding. contradicting that no subdivisiof@f and
K5 admits a planar embedding. Wheéhis of type (iii), the embedding induced fromby the red paths in
F has a facef whose facial cycle’'s contains the edges in the five gray pathg‘gfand this implies that
a planar embedding of a subdivision 8§ can be obtained by replacing the five gray paths with four red
paths, a contradiction.

Let F' be of type (v). Letyg be a planar embedding of the red circular ch@irsuch that the outer
boundary is not any factor cycle @. Since the length of the red circular chain is at least 3, no two factor
cycles are drawn as four internally disjointy-paths for some vertices andy in vg. Hence one of the
two sides of each factor cycle appears along the intgfjoof vo and the other along the exterigy, of
7o (see Fig. 3(e)). Wheng can be extended to ati-planar embedding, each of the figst- 1 gray paths
connects side®* and P% | for the samek € {1,2} so that bothP* and P\, appear infi, or fe. This,
however, implies that thg-th path cannot join siszgC and P! with k # ¢ without making a crossing with
the red graphi). O

The main result of this paper is described as follows.
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Theorem 4 Every instancg H, E) of a graph H and a subsefy C E(H) either admits ank-planar
embedding or contains a forbidden subgraph. Findingkaplanar embedding or a forbidden subgraph of
H can be done in linear time.

We prove the theorem by a constructive proof with an algorithm that actually findsglanar em-
bedding or a forbidden subgraph, showing that it can be implemented to run in linear time. For this,
we distinguish instanced?, ') depending on the vertex-connectivity of the red grépiF), E). More
specifically, we reduce an instance with a red graph of connectivity 0 to that with a red graph of connectivity
1, and reduce an instance with a red graph of connectivity 1 to those with biconnected red graphs. We then
design an algorithm that finds either &hplanar embedding or a forbidden graph for each of the cases
where the vertex-connectivity of a red graph is 2 and at least 3.

Our forbidden graph characterization enables us to easily reduce an instance with a red graph of con-
nectivity 0 to that with a red graph of connectivity 1. Since the core of a forbidden graph of any type
is biconnected, we see that regarding any blue edge a red edge does not change Byplanarity (or
(E U {e})-planarity) if edgee is not in any cycle of the new red graph (E U {e}), E U {e}).

Lemma5 Assume that Theorem 4 is true for any instance such that the red graph is connected. Given an
instance(H = (Vy, Ex), E) with a connected graplf, let AE C Ey — E be a set of blue edges such

that no edge iM\E is contained in a cycle of the graghvy, ' = F U AFE). ThenH is E-planar if and

only if H is E’-planar. Moreover,

(a)if (H, E’) admits anE’-planar embedding, thef¥, E') admits anE-planar embeddingtrivially ); and

(b) if (H, E’) contains a forbidden subgraph, then regarding the color of edges inE N E(F') as the
original red, F' is a forbidden subgraph toH, E).

Proof. By the assumption on Theorem 4, the instaffe E’) either admits arf’-planar embedding or
contains a forbidden subgraph Hence (a) and (b) imply thdf is E-planar if and only ifH is E’-planar.
Since (a) is trivial, we show (b). Left be a forbidden subgraph i, E’). Now blue edges il\FE are
regarded as red edges(ifl, E’). However, by the choice ah E, the new red graphlV’ U V(AFE), E' =

E U AFE) contains no red cycle which passes through some eddefin On the other hand the core of
a forbidden graph of any type of (i)-(v) is biconnected. This means that the cdfecahnot contain any
edge inAE; only a gray path of' can contain some edgesAF. Hence even after changing the color of
edges inAE contained inF' from red to blue, the graph' is a forbidden graph, which is now a subgraph
of (H, E). O

In particular, given an instand¢é/ = (Vy, Er), E'), we choosé\ E as a minimal set of blue edges such
that(Vy, EUAE) is connected. By the lemma, the new instale E' = FUAF) has a special structure
that the red graplV (E’), E') is a connected spanning subgraptibfSee Fig. 4(a) for an illustration of an
instance(H = (Vi, E), E), where such a minimal sty , es, . . ., e1s} is chosen, and the new instance
(H,E' = FUAE) isillustrated in Fig. 4(b).

Now we show how to restrict given instances of the problem to instances with special structure called
“star instances.” For an instan¢é/, £'), denote the red grapfV' (E), E) by G = (V, E). We call an
instance H = (V, En), E) astar instancef it satisfies the following:

(i) The entire graplH is biconnected,;

(i) The red graphG is a connected planar graph but is not outerplanar (héhgef)); and

(iii) The setV (H) — V(E) is a nonempty independent setffy and each vertex ity (H) — V (E)
has at least two neighbors (hence the blue edges form a collection of stars).

Lemma 6 Theorem 4 is true if the statement of the theorem holds for star instances.

Proof. We prove the lemma by the following five steps (1)-(4).
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(2) (H.E) (d) (H.E")

Figure 4: (a) An instancéH = (Vy, Fp), E) such that the red grapff = (V, E) is not connected,
whereX, X, ..., X indicate the nontrivial components in the grgph;, E); (b) An instancd H, E' =
E U AFE) obtained from H, E) in (a) by choosing a minimal s&8E = {ey, ..., e;s} of blue edges such
that(Vy, E U AFE) is connected and regarding the edgeAil as red edges.

(1) Without loss of generality we can assume that a given instghicé&’) has a connected gragh. If
agiven instancéH, E) is not biconnected, then we decompdsénto the blocksH;, j = 1,2, ..., ¢, each
of which induces an instangéi;, £; = E(H;) N E). We easily see that (a) If ali;-planar embedding of
Hj; is given for eacly, then anE-planar embedding off can be obtained by combining them; and (b) If
a forbidden subgraph; of H; is given for somej, then it is also a forbidden subgraphof H. Also all
the above tasks can be done in linear time. Now we assume that a given ingtadcehas a biconnected
graphH, satisfying the condition (i) of star instances.

(2) Next find a minimal sefA F of blues edges that mak€gy;, ) connected in linear time and regard
the edges i\ E as red edges. By Lemma 5, theplanarity of( H, E) is equivalent with thé~’-planarity of
(H, EUAE), where the new instance has a special structure that the red @@ph), E’) is a connected
spanning graph off. Hence each of the end-vertices of any blue edge £y — E’ is adjacent to a red
edge. Then we subdivide each blue edge wv into uw, andw,.v with a new degree-2 vertax, so that
the condition (iii) of star instances is satisfied.

(3) If the red graphG is not planar, then the original instancd, E') has noE-planar embedding, and
a forbidden subgraph that is a subdivisionff or K33 can be found in linear time. Note that such a

forbidden subgraph is a special case of the primely forbidden subgraph. Hence we can assume that the red

graphd is planar in the following.

(4) If the red graphG is outerplanar, then clearly the instance admitdzaplanar embedding, which
can be obtained from an outerplanar embedding bly placing all blue edges in the outer face. Hence we
can assume that the red gra@his not outerplanar. Finally the condition (ii) of star instances is satisfied.

O

In fact, we can also assume tHatis not planar when we regard all edgedHired, since otherwise we
are done. WhetH is not planar, it contains a subdivision &if; or K3 3, which can be obtained in linear
time. In general, such a subgraph does not mean thethplanarity of (H, E) since it may be drawn in
the plane with some crossings between only blue edges.

Given a star instancef, E), we denote the vertex set(H) — V(E) by A = {s1, s2, ..., si}, the set
of neighbors ofs; by S; for eachi, where|S;| > 2 for eachi. We also denote the star instar(dé, E) by
(H,G, A) or (G, A). For simplicity, we may calk; € A astar. Letn = |V|andm =), ., |Sil.

Planarizing Star Partitions

A partition A of a star setd is calledplanarizingif the graphH /.A obtained fromH by contracting each
setA € Ainto a single vertex 4 is planar. If a planarizing partitiod = {4, Ao, ..., Ay} exists, then an
E-planar embedding off can be obtained in linear time from a planar embedding,. In fact, Iew};;lA
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denote the embedding of the red graplobtained fromy;, 4 by deleting all contracted stars, and for each
setA; € A, let f; denote the face of}fle that contain the contracted star;. Then by placing the blue
edges incident te € A; in the facef; of 7;?;{4 forall j = 1,2,...,h, we obtain ank-planar embedding
~vg of H. In what follows, we construct a planarizing partition4finstead of anF-planar embedding of

H if one exists.

4 Case of Connectivity 1

This section treats a star instance with a red graph of connectivity 1, and describes how to reduce such an
instance to star instances with red biconnected graphs in linear time.

Let (H,G, A) be a star instance with a red connected gréphnd a setd of blue stars. By defi-
nition, H is biconnected and- is connected. In this section, we assume that a given red graph is not
biconnected, i.e (7 hasp > 2 blocks B!, B2,..., B?, and decompose the instance iptaew instances
(BJ = (VI EJ), A),j =1,2,...,p by setting each star set’ adequately so thd(, A) is E-planar if
and only if(B7, A7) is E7-planar for allj.

Let C(G) denote the set of cut-vertices @, let B(G) denote the set of blocks i#, and letX,Y be
subsets ol/.

We call setX pendantif exactly one vertex € X is adjacent to a vertex ilv — X =# (), where
¢ € C(G) holds. A blockB is calledpendantf V' (B) is pendant. The unique cut-vertexe C'(G) in a
pendant sek (resp., blockB) is denoted by:x (resp..cg).

We say that a star € A linkssetX C V (or a blockB with X = V(B)) to setY” C V (or a blockB’
withY = V(B')) if

N(s; H)N(X —C(GQ) #0D#N(s; H)n (Y — X).

Astars € Ais calledX-interifitlinks X toV — X, i.e, N(s; H)N (X —C(G)) #0 # N(s; H) — X;;
and a stas € A is called X-intra (or B-intra for a blockB with X = V(B)) if it does not link X to
V — X,ie,N(s;H) C X. Let An*r(X) and A""3(X) denote the sets ak-inter starss € A and
X-intra starss € A. Note that whenX is pendantX’ = V — (X — {cx}) is also pendant and hence
Ainter (X) — Ainter (X')

WhenX = V(B) for a block B, we may use3 instead ofX in the above notatioX -inter, X-intra,
Alnter( Xy and AMtra (X)),

Let X, be a pendant set i, and denote = cx, and Xy = V — (X — {¢}). Then we define two
instances H;, G[X;], 4;), i = 1,2 split from (G, A) as follows: For eachi = 1,2, let H; denote the
union of the induced red gragh[X;] and blue starsl; = A"2(X;) U {s'}, wheres’ is a new star whose
neighbor setV(s’; H;) C X; in H; is obtained by merging the neighborsif of all X;-inter starss and
includingc as a neighbor; i.e.,

N(siH):={ctu |J N(sH)NX,
seAinter(Xi)

where|N(s'; H;)| > 2. See Fig. 5(a)-(c) for a process of splitting an instaffleG, A) into instances
(HZ', G[Xl], Al), 1= 1, 2.

We call a pendant blocB € B(G) removabldf any two verticesu,v € V' — V(B) are connected in
the graphH — V(B).

Lemma 7 Let B be a removable block in a star instan¢€, A), and let(H;, G[X;] = (X;, E;), Ai),

i = 1,2 be the instances defined for= cp, X1 = V(B), Xo =V — (X1 — {cp}), E1 = E(B) and
E, =FE — E;.
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(a) (HG,A) ’ (b) (H2,G2,42) (c) (H1,G1,41)

Figure 5: lllustration of splitting a star instan¢&, G, A) into two star instance&H;, G;, A;), i = 1, 2:
(a) A given instanc¢H, G, A) with a pendant block3; at a cut-vertex = cp,, whereX; = V(Bs) and
Xy =V — (X — {c}) are pendent sets, and and sy are Bs-inter stars whiles; is a Bs-intra star; (b)
The resulting instancgfs, G2, As), whereH (s'; Hy) includesc and all neighbors of;, sy € AT (Bs)
not in Bs; and (c) The resulting instandél,, G1, A1), whereH (s’; Hy) includesc and all neighbors of
s1, 82 € A (Bs) in Bs; and (d) A pendant seX; with ¢ = cx, and edges;, e;; € §(X;; H) which are
incident to the merged stat.

() If (G[X;], A;) admits a planarizing partitiond; of A; for bothi = 1,2, then, for the setsl? e A,
i = 1,2 with ' € AY and the merged set’ = (A U A9 — {s'}) U An*r(B), the partition
(A1 U As — {AY, A9}) U {4’} of A is a planarizing partition in(G, A);

(i) If (G[X;], A;) for somei = 1,2 contains a forbidden subgraph, then (G, A) also contains a
forbidden subgrapt#”, which can be constructed fromin O(n + m) time; and

(i) Foreachi = 1,2, graph H; is biconnected.

Proof. Note thatA™er(B) = Anter( X)) = Ainter(x,),

(i) For eachi = 1,2, the star sef}; contains a stas’ with N (s; H;) = {c} U Ue ginter(g) N (s H) N
V(B). SinceA,; is a planarizing partition of4;, the graphH,/.A; has a planar embedding, where we
denote byy*! the embedding induced from by G;, and we denote by; the face ofy!*d in which the
edgecs’ between the merged stalrand the cut-vertex is placed. Without loss of generality assume that
f1 is the outer face oftd. Therefore, by placingi? in the facef, of 15°d, we obtain a planar embedding
¢ for the red graplt: of H. In the facef; of v, we can place all starsse A U A9 — {5} and all stars
s € Anter(B) merged tos’, without creating any new crossing with red edge€&/irClearly the contracted
stars 4 for any other setl € A; U Ay — {AY, A9} still can be placed in a face of;, without creating any
new crossing with red edges. This proves (i).

(i) First we claim that for eachh = 1, 2, every pair of vertices, v € V — X; admits au, v-path in the
graphH — X;. The claim fori = 1 is immediate from the definition of removable blocks. Sifte- X,
induces a connected graph— {c}, the claim for; = 2 also holds.

Let £ be a forbidden subgraph {i¢-[X;], A;) for somei = 1,2. We show that a forbidden subgraph in
H can be obtained fromt’ by replacing some blue edges with pathgin- (X; — {c}).

If F does not contain the new stelr then we are done sinde is a subgraph of the original instance
H. Assume thaf" containss’, and lete; = u;s’, j = 1, ..., h be the blue edges incident £6in F', where
h = deg(s'; F) is 2, 3 or 4, since in any type of a forbidden subgraph, the number of blue edges incident
to a vertex is 2, 3 or 4. There may be a new blue edge cs’ € 4(s'; H;) in H; such that is not adjacent
to any B-inter star inH. We call such an edgesapporting edgén H;. Lete; be a non-supporting edge
in §(s’; H;). Since the new sta¢’ is adjacent to all vertices itV (s; H) N X; of an X;-inter stars, we
see that the edge; was a blue edge incident to ax;-inter star, says; in H, wheres; has a neighbor
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tj € N(sj; H) — X;in H, which is connected to vertexby
aredt;, c-path P, .. )

Analogously for any other non-supporting edgec 6(s’; H;) was a blue edge incident to &f-inter star,
says; in H, which is adjacent to; € N(s;; H) — X; in H. By the above claimi; andt; are connected
by

atj,ty-pathpb ;. in H — X;, 2

and hencéd has ars;, sj/—pathPSj,S],, that does not pass through any vertexXin where possibly; = s;.
See Fig. 5(d) for an illustration of sef; and edges;,e;; € §(X;; H). We distinguish three cases of
h = 2,3 and4.

(@) h = 2: First assume that somg = u;s’ € 6(s'; H;) is an edge:s’, sayuss’ = cs’. We replace the
blue edges; = u1s’,e5 = ¢s’ € §(s'; H;) with auq, c-path in H that consists of blue edgessi, s1t1
and the above red, c-path P;, . in (1). Then the resulting grapf’ is a forbidden subgraph td.

Next assume that # u; for eachj = 1,2. If s; = s9, i.€.,e; andey are adjacent to the same star
s1 = so in H, then we are done. Let # s,. We replace the blue edges, e; € §(s’; H;) in F with a
u1, ug-path inH that consists of blue edgess;, s;t;, j = 1,2 and the above, to-path P, ;, in (2). Then
the resulting grapl#” is a forbidden subgraph t&.

(b) h = 3: Without loss of generality assume that = ¢ if some edge:; € d(s'; H;) is an edge:s’.
Analogously with the case df = 2, we see thaf] has au, us-path P,, ., which passes through and
contains no vertex iX; — {ui,u2} and no blue edges other thans; andusss in H;, where possibly
s1 = s. GraphH also contains aBy, uz-path P, ., in H that consists of blue edgest;, t3s3 and
szuz and the above, t3-path P, ;, in (2) (or of blue edges;¢; and the above reth, c-path P, . in (1)
whenc = ug). Letx € V(P,, 4,) — {u1,u2} be the first vertex that appears for the first time when we
traversepr, ,,, fromus to s;. Let P,, , be the subpath aP, ,, from us to . Then we see that the graph
F’ obtained fromF" by replacing the blue edges, e2,e3 € d(s'; H;) with pathsP,, ,, and P, , is a
forbidden subgraph téf.

(c) h = 4: Now F is of types (ii). Without loss of generality assume thgt = c if some edge
e; € 0(s'; H;) isan edgess’. Let P, ,, and andP,, , be the paths defined for edgases, e3 € d(s'; H;),
as in the case df = 3. Analogously with case of = 3, there is ars;, us-path Ps, ,,, in H that contains
no vertex inX; — {u4} and no blue edges other thags, andsug in H. Lety € V(Py, uy) UV (Puy ) —
{u1,u2,us} be the first vertex that appears for the first time when we travBssg, from uy to s;. Let
P,, , be the subpath aP, ,, from us toy. Then we replace the blue edgases, ez, es € §(s'; H;) in F
with pathsP,; v,, P, andP,, , to obtain a graptF”’. Although possiblyF” becomes of type (jii) when
F is of type (ii) andz # y, we see thaf” is a forbidden subgraph td.

We easily see that the above constructiod’6from F' can be executed i@(n + m) time.

(iii) Note that| N (s'; H;)| > 2 for eachi = 1, 2. Since each star € A; in instance(H;, A;) is adjacent
to at least two vertices iX; but no other vertices iV — X, no stars € A; can be a cut-vertex i6V(H;).
Hence it suffices to show that no vertexc C(H) N X, is a cut-vertex inH;. By claim in (ii), the vertex
c € C(H)N X1 N Xy is not a cut-vertex irf;. Assume tha#; contains a cut-vertex € C'(H;), which
separates the vertexand a blockB” with V(B’) C X; — {¢, ¢'}. Since the new sta{ is adjacent to vertex
¢, we see that no starc A™**( B) has any neighbor if3’. This, however, implies that the vertexwas a
cut-vertex inH, contradicting the biconnectivity of . O

Next we show that every star instan@e, A) such that3(G)| = p > 2 has a removable block, based
on which we can decompose a given instafGeA) into p new star instance&B’, A7), j = 1,2,...,p.
For this, we introduce a parent-child order among cut-vertices and bloks in

For two setsX; and Xy C V, whereX; = {c} or V(B) for ¢ € C(G) or B € B(G), thedistance
between them is defined to be the number of cut-vertices iki;aX,-path P, where| P N X;| = 1 by the
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definition of S, T-paths.

For each cut-vertex € C(G), let B(c; G) denote the set of blockB € B(G) such that € V(B). For
each blockB € B(G), let C(B; G) denote the set of cut-verticess C(G) such that € V(B).

Choose a blocl3! as a root, where we kedp' as the root even after we remove some pendant blocks
B (# B') from G. For each cut-vertex € C(G), let B(c; G) be the blockB € B(c; G) with minimum
distance to the roaB!, and denotés~(c; G) = B(c; G) — { B(c; G)}, where the block3(c; G) is called the
parentof a block inB~(c; G), and each block it8~ (¢; G) is called achild of B(c; G). For each non-root
block B € B(G), letcp denote the cut-vertexsuch thatB € B~ (¢; G).

For each blockB € B(G), let ¢(B; G) denote the cut-vertex € C(B; G) with minimum distance to
the rootB!, and denote”~ (B; G) = C(B;G) — {c(B;G)}, where the cut-vertex(B; ) is called the
parent cut-vertexf a block B € B~ (¢; G). A cut-vertexc with B~ (¢; G) = () is called aleaf cut-vertex
A non-root blockB is outer-linkedif some stars € A links B to a block B’ which is not a descendant
of B. We say that two block® and B’ arestar-connectedf B = B’ or there is an alternating sequence
(B1 = B, s1,Bs,...,s,_1, B, = B') of blocks inB~(¢; G) and stars such that eaghlinks B; andB; ;1.

An order By, Bo, ..., By, of blocks is calledproperto the set{ By, Bo, ..., By} of blocks if for each
i = 1,2,...,h, block By, is star-connected to an outer-linked blaBl with j' < j. By definition, the
orderBy, By, ..., Bjforany;j < his also proper to the s¢iB,, Bo, ..., B;}.

Lemma 8 For a leaf cut-vertex: € C(G) in a star instancg H, G, A) such thatH is biconnected, there
always exists a proper sequenBe, By, . . ., B, of blocks inB~ (¢; G), and the last block3, is removable.

Proof. Sincec is not a cut-vertex in the biconnected grafih there is at least one outer-linked block in
B~ (c; G) and each non-outer-linked blodk € B~ (¢; G) is star-connected to an outer-linked block. This
implies that there always exists a proper sequence of blocks (i2; G). Let B, be the last block in a
proper sequencs, Bsy, ..., B, of blocks inB~(¢; G). Then any other bloclB; € B~ (¢;G) — {By} is
still star-connected to an outer-linked block. This means that any two vettieces V' — V (B,) admit a

u, v-path inH that does not pass through any verte¥ifB,), i.e., B, is removable. O

Given a proper sequendg, Bs, ..., B, of blocks inB~(c; G) at a leaf-cut-vertex, we can repeat-
edly apply the lemma to eacB;, i = ¢,q — 1,...,1. More formally for each = ¢,¢ — 1,...,1, let
(H{,Gj, 1, A, ) denote the current instance after the first i instances

(Hq, Bg, Ag), (Hy—1,Bq—1,Ag-1), ... (Hit1, Bit1, Ait1)

are generated, whered, ,,,G 1,4, 1) = (H,G,A). Since each subsequengg, B, ..., B; with

i < qis also proper, the last blodg; in the subsequence is removabléip,_; by Lemma 8 and the resulting
graphH/ obtained by splittingB; off is biconnected by Lemma 7(jii). Therefore by Lemma 7(i)-(ii), the
original instancg H,G = (V, E), A) is E-planar if and only if the instancef;, G;, A;) is E;-planar for
eachi =0,1,...,q, whereG,; = B;, E; = E(B;) fori = 1,...,q, and(Hy, Gy = (W, Ep), Ag) denotes
the remaining instancg, G/, A). Note thatlVy =V — (Ui<i<,V(B;) — {c}).

All the red graphs7[V;] = B;,i = 1,2,...,qg andG[V}] in theseg + 1 instances are simply determined
by the set of blocks id~. Let us show how each star s&f will be constructed by the repeated application
of the lemma. The star set; of thei-th instance is constructed as follows. L&t***(B;) C A, , be the
set of B;-intar stars inH/, ;, and letA"™*"(B;) C A/, be the set of3;-inter stars inH/_,. Clearly any
B;-intra stars will be included in4;. HenceA™"3(B;) C A;. We merge allB;-inter stars into a single star
s’ such that

N(s's Hi) = {c} U{N(s; Hi;1) NV (Bi) | s € A™(B;)},

N HY) = {e} UIN(s: HLy) — (V(By) — {c}) | s €A™ (By)}. )

Then let
Ai = Aintra(Bi) U {S/}, A; = ( ;—&-1 _ Aintra(Bi) _ Ainter(Bi)) U {S,}, (4)
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where we call the stat’ the preceding staof H; and thesucceeding staof H.

The procedure for splitting all blocks i~ (¢; G’) off at a leaf-cut-vertex is summarized as follows.

SPLIT(c)

1. Find a proper order sequenBg, B, . . ., B, of blocks inB~ (¢; G');

2. Construct the red grapligV;] = B;, i = 1,2,...,g andG[Vp] with Vo =V — (Ui<i<,V(B;) — {c});
3. Compute the star sets, i = ¢,¢ — 1,...,1 and Ay = A} according to (3) and (4).

To reduce a given instandéf, G, A) into p = |B(G)| instances B, Ag), B € B(G), we repeatedly
choose a leaf-cut-vertexin the current instanceH’, G’, A’) and apply the above procedurel$7(c) to
the blocks inB~ (¢; G'). We show that generating star seits of (B, Ap) for all blocks B € B(G) can be
implemented to run i®(n + m) time.

The adjacency between blocks and cut-vertice§' ican be represented by a tree structure, called the
block-cut-vertex treBC(G) = (B(G) U C(G), Epc), a bipartite tree between two vertex sB{&7) and
C(G) such that the edge sélfpc contains an edgé&c if and only if c € V(B). RegardBC(G) as an
ordered tree rooted at the roBt, and letld : B(G) U C(G) — {1,2,...,|B(G) U C(G)|} be the left
depth-first order. We choose cut-vertices C'(G) in the decreasing order &d(c) and apply ®LIT(c).

Let EPue pe the set of blue edges incident to a bldtk B~ (c; G') in the current instancgi’, G, A')
whenc is selected, i.e EP" = U{§(B; H') — E(G) | B € B~(¢; G')}. We show the next lemma, which
implies that the entire algorithm of generatingak= |B(G)| instances runs i) (n + m) time.

Lemma 9 Let(H',G’, A’) be in the current instance when a leaf-cut-vertag selected. TheSPLIT(c)
can be implement to run i@ (| EX™|) time.

Proof. Before we execute the entire algorithm, we first prepare the following data structure in a given
instance(H, G, A). Define a mapping’ : V. — B(G) such that) maps a vertex € V to a block B
closest to the rooB! among blocks3 with v € V(B).

We prepare a lisL(s) of all edges incident to each starc A so that an edgeu € d(s; H) appears
before any edgev € 4(s; H) with 1d(¢(u)) < 1d(¢(u)). LetpL(s) denote a pointer that indicates the
address ofL(s). By visiting all blocksB € B(G) in the left depth-first search manner, such li5(s)
for all starss € A can be constructed i@(n + m) time. By the above way of storing vertices in the list
L(s) for each stas € A, when the blocks iB~ (c; G) at a leaf-cut-vertex are removed by the procedure
SPLIT(c), the vertices inN (s; H) N (Upep-(;)V (B)) appear consecutively in the lis(s), and there is
no need to access any other vertices stored in thé (ist before we proceed to other leaf-cut-vertices.

When we merge several stars, sayss, ..., s, into a single stak*, we do not directly merge their
lists L(s;), i = 1,2,...,h. Instead, we link their pointensL(s;), i = 1,2, ..., h with a doubly-linked list
dll(s*). In fact, each stag; may have consisted of several stars whose poiplersre linked bydll(s;). In
this case, merging stati, so, . . ., sy is executed by joining doubly-linked list81(s;), 7 = 1,2,..., hinto
a single doubly-linked listlll(s*) in O(h) time. Note that when some ligf(s;) becomes empty, it can be
removed fromdll(s*) in O(1) time. Hence updating lists(s) of all B-inter starss for someB € B~ (¢; G)
still can be executed i®(|EP¢|) time.

When a leaf-cut-vertex in the current instancéH’, G’, A’) is selected, we executeP8IT(c) as fol-
lows. LetVy =V — ({V(B) | B € B (¢;G')} — {c}). First compute the sed. of starss that are
B-inters for some bloclB € B~ (¢; G’) in the current instanceH’, G’, A’), and construct a bipartite graph
W = (B~ (¢; G') U A., Ey) between two set8~ (¢; G') and A, such thatEy contains an edg8s if and
only if N(s; H')N(V(B) —{c}) # 0. This can be constructed by scanning the edgé(detH’) — E(G’)
for all blocks inB € B~ (c; G') in O(|EP™e|) time.

The set of outer-linked blocks iB~(¢; G') can be computed as follows. By checking the ligs) for
each stas € A, it takesO(|EP'"|) time to find the setd™e(1}) of all starss € A, such thats has
a neighborz € Vy — {c}, since the edgesu in L(s) are stored in the order dfl(v(u)) and all edges
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su € L(s) adjacent to a block iB~(¢; G') appear last. Then we can conclude that any biBcthat is
adjacent to a star id™*°"(1}) is outer-linked.
By a graph search procedure starting from outer-linked blocks in the diaptve can construct a

spanning forest oft, from which a proper sequend®,, Bs, ..., B, of blocks inB~(¢; G’) is obtained
based on the distance from the outer-linked block&/inThis again take®(|EP'¢|) time.
Finally we examine each iteration oPSIT(c) which constructsi; and A} for eachi = ¢, ¢ —1,...,1

according to the formula (3) and (4). From the way of constructing new stardsetad A}, we observe
that once a blue edge: with u # c is scanned as an edge incident to a star A™2(B;) U AT (B;),
the same edge will never be scanned in any instéftieG’;, A;) with j < i. SinceA; and 4; can be
constructed in time linear to the number of blue edges incident to a stat™™"?(B;) U A™°r(B;) in H,
the total time for constructing all star setg, 4,1, ..., A; andA4y = A} is O(|EP™e|). O

Finally we give an entire algorithm for a star instar{dé, G, A) such thatG is not biconnected. As
observed in the above, we generat®im-+m) timep = |B(G)|instancesH’, B/, A7), j = p,p—1,...,1
by a repeated application ofP8IT, where(H7, B/, A7) means theép — j + 1)-st instance generated by
the algorithm andH”, G, A7), j = p — 1,p — 2,...,0 denotes the instance obtained froff, G, A) by
splitting off the first;j blocks B?, B>~1, ..., BP~7*1. During this execution, we store the set of stes
j=1,2,...,p— 1such thats} is the preceding star dff/ and is the succeeding star Bf and the set
Amtra(B) C A;y of B-intar stars inH,4q for j = 1,2,...,p — 1, where}_, |A"™2(B;)| = O(m).
Assume that Theorem 4 is true for instances with red biconnected graphs, as will be shown in the following
sections. Then either there is an instang€, B/, A7) which contains a forbidden subgraph or each
instance( H7, B7, A7) admits a planarizing partitiod’ of A7. In the former, a forbidden subgrag in
the given instance can be obtained fr(t?ﬁin O(n + m) time by Lemma 7(ii), and we are done. In the
latter, we construct a planarizing partitiotl to instancg H”, G”, A?) in the order ofj = 1,2,...,p. For
j = 1, a planarizing partitiond to instance(H', B*, A) = (#',G",A") is obtained by assumption.
Assume that for som¢, a planarizing partitiond’ of A’ is obtained. For the succeeding sﬁgtrof 7,
there is a seﬂé e A with s € A’ and the preceding staf; of HI, there is a seﬂé e A7 with
s € A}. Then by Lemma 7(i), for the merged sét = (A U A) — {s/}) U A™(B;), the partition
(A v A — {4, AJ}) U {A'} of Ais a planarizing partitiond’ ' to (7', &7, A1), This can be
executed irD(1) time if we store stars in a partitiad of sets as a doubly-linked list in which the stars in
the same sefl € A appear consecutively. Therefore a planarizing partifiosf (H, G, A) can be obtained
in linear time.

5 Case of Connectivity at Least 3

This section treats a star instance with a red graph of vertex-connectivity at least 3, before Sections 6, 7 and
8 handle a star instance with a red graph of vertex-connectivity 2. Since we do not modify a given instance
any more in the following sections, we denote the 4eif stars by{si, so, ..., sx} and the seiV(s;; H)
for each stak; € A by S;. We may denote by + 6(s;) the graphV U {s;}, EU {s;t | t € S;}).

This section presents an algorithm for testing whether a given instdhcE) with a triconnected red
graph isE-planar, where we use a geometric argument based on convex grid drawings to make a naive
gquadratic time algorithm run in linear time.

To apply the result in this section to “triconnected components” in Section 7, we here assume that
G = (V, E) is a pseudo-triconnected planar graph obtained from a triconnected planatfrapti’’, E’)
by subdividing some edges i inserting one vertex per edge so that no two degree-2 vertices are adjacent
in G. Fix a planar embedding; of G, and for each sta; € A, let 5(s;) denote the set of facesin ¢
whose facial cycle”; contains all vertices i¥;, where|((s;)| < 2 since[S;| > 2 is assumed.
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Theorem 10 Let (H,G = (V, E), A) be a star instance with a pseudo-triconnected planar gréph-
(V, E) obtained from a triconnected planar gragh = (V’, E’) by subdividing some edgesii inserting
exactly one degree-2 vertex. l-gi be a planar embedding @f.

(i) Then(H, G, A) is E-planar if and only if3(s;) # () for eachs; € A;

(i) Computings(s) for all starss € A can be done itD(n + m) time.

Proof. For each stas; € A, letG; denote the graptr + 6(s;).

(i) From the fact that a combinatorial planar embedding is unique up to reversal, it is immediate to see
that, for each, the embedding has no facial cycle that contains all the vertice$jiif and only if G; is
not planar and has nB-planar embedding. If for eachthe embeddings has a facial cycle that contains
all the vertices inS;, then clearly the current embedding provides anE-planar embedding ofG, A),
where we draw each stds;t | t € S;} within some facef € 3(s;) of q.

(i) Let v be a planar embedding of triconnected grd@gh and+: be the planar embedding 6f
obtained fromm: by inserting degree-2 vertices &f(G) — C(G’) in the subdivided edges . See
Fig. 6(a) for an illustration of a planar embedding of a red pseudo-triconnected @raph

Assume that for each vertexc V', we have an index sdé{v) = {i | v € S;} and the rotation system
p(v) of v as an alternating sequence of the neighborsiofy. and the faces incident ta

,0('0) = (u17 fLQ,UQ, f2,37 <oy Ud, fd,l)u

whereN (v; G) = {u1,uz,...,uq}, ui, ue, ..., uq appear in this order aroundn the anti-clockwise way,
andf; ;11 is the face incident to, v; andu;, (see vertex in Fig. 6(a), wherd (v) = {1,2, 3,4, 5, 6}).

To obtaing(s) for all s € A, we initialize 35 := () for all s € A, wheref(s) will be given by a final3;.
For the outer facg® of v, we traverse the facial cycté;. to countc(f°,i) = [{v € V(Cyo) | i € I(v)}|
for eachi such thati € I(v) for some vertex in Cy.. Clearly for each, |S;| = ¢(f°,4) if and only if
Cy. contains all the vertices if;. Let 3, := {f°} for eachs; € A with ¢(f°,i) = |S;|. For example,
|Ss| = 3 = ¢(f?,8) holds for starsg in Fig. 6(a).

We can apply the same procedure to each of inner faceg to test whether each; is contained in
some facial cycle. However, this would tak&nm) time, since the same vertéxe S; will be counted
deg(t; G) times in total. To avoid this, we prepare the following data structure:

(a) For each vertex € V and a staw; with v € S;, we “guess” at most two inner facggi; v) and
f(i;v) in v so that no other faces can cont&in(where we call such facésevitable. For example,
we see that for vertex and stars; in Fig. 6(a), the inevitable faceq5; v) and f(5; v) are facesfs ;
and f1 o;

(b) We then modify in linear time the rotation systgr(v) = (u1, fi2,u2, f23,...,uq, fa.1) Of each
vertexv as follows: At a vertew € V, each index € I(v) has one inevitable facg(i; v) or two
inevitable faced (i; v) and f/(i; v) aroundv. We letI(v; f; j+1) Store all indices € I(v) such that
fij+1 = f(@i;v) or f/(i;v). Then modifyp(v) into an alternating sequence of the neighbors afid
the pairs{ f; j1+1, I(v; fjj+1)} of faces incident t@ and the index sets; i.e.,

p*(v) = (u1, {f12, L(v; f12)},u2, { fo3, L(v; fo3)}, us, ..., ug, { fa1, I(v; far)})-

For example, vertex in Fig. 6(a) is adjacent to six stass with i € I(v) = {1,2,3,4,5,6}, and we
see that inevitable faces are given p§l,v) = fi2, f(2,v) = fs1, f(3,0) = fa3, f'(3,v) = f34,
f(4, U) = f3,4, f(5,v) = f571 andf(6,v) = f5,1, from which we haVQO*(U) = (ul,{fl,g,{l}},u%
{f2,3v {3}}7 us, {f3,4a {37 4}}’ Uq, {f475’ (Z)}’ Us, {f5,1’ {2’ 9, 6}})
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With this data{p*(v) | v € V}, we traverse the facial cycle's of each inner facef in 7 in the
clockwise order as follows. Let;, v, ..., v, be the vertices iV (C;) appearing in the clockwise along
Cy. Then we visitp*(v1), p*(v2), . . ., p*(vg) In this order, during which we collect the indicesli(v:; f),
I(vo; f), I(v3; f), ..., I(vg; f). For each index € I(vi; f) U I(ve; f) U I(vs; f)U---UI(vg; f), we
can test whethe€'; containsS; by countinge( f, ), how many times appears in the union, and execute
Bs, = Bs; U{f} for eachs; € A with ¢(f,i) = |S;|. After traversing all inner faces, the resultigg is
equal tog(s). The total time for applying the procedure over all inner fac&3(is+ m ), since each indek
of someS; appears in at most two sets among the $€is f12), I(v; f2,3), . .., I(v; fa.1) in each sequence
p*(v).

Finally we show how to attain the conditions (a) and (b) above. For this, we use the fact that every
triconnected planar graph admits a convex drawing, in which each edge is drawn as a straight-line segment
and each facial cycle forms a convex polygon. Moreover, we can restrict the position of each vertex as a
grid point in a grid space dfr — 2) x (n — 2), and such a convex grid drawing can be constructed in linear
time [13]. We first construct a convex drawitg;: of v¢ in a grid space ofn — 2) x (n — 2) in O(n)
time. Next double the scale to obtain a grid spacef— 4) x (2n — 4) so that each vertex i@’ is on a
grid point with even integers. To obtain a convex drawing@fin the grid space of2n — 4) x (2n — 4),
we insert a degree-2 vertex< V(G) — C(G’) for each edgew that is subdivided intaw andwv in G in
such a way thatv is placed in the middle point of between the points for verticemdwv. Note that such a
middle point is a grid point in the spa¢en — 4) x (2n — 4). Let D¢ be the resulting convex grid drawing
of y¢. For each vertex € V, let (z(u), y(u)) be the grid point on which is drawn inD¢. See Fig. 6(b)
for an illustration of a grid drawin@« of ¢ in Fig. 6(a).

We fix a vertexv € V with a rotation systemp(v) = (u1, fi,2,u2, f2.3,-..,ud, fa1). Regarding
(z(v),y(v)) as the origin of the gridy-plane, denote:(u) — z(v) andy(u) — y(v) by z(u) andg(u),
respectively, for a notational convenience. Then for example, the &rgl®, 27) of line segmentv, u;)
from the horizontal line i8(x(u;)—z(v), y(u1)—y(v)) = 0(Z(u1), y(u1)), where we denoté(z(u), y(u))
by 6, (u) for simplicity. For each index € I(v), we choose a vertew; € S; — {v} to determine the
direction fromo to w; in the convex grid drawing. For example, a vertexc S; is chosen for each stay
with ¢ € I(v) in Fig. 6(a).

Since each fac¢ is drawn as a convex polygafy, if v andw; are contained in the same facial cycle
Cy, then the line-segment frota (v), y(v)) to (x(w;), y(w;)) must be contained in the polygdty. Hence,
if the angled,, (w;) satisfies

O (u;) < Ou(w;) < Oy(ujt1)

then we can conclude that the fagg; ;1 betweenu; andu;,; atv must be the inevitable facg(i; v),
where no other facial can conta#. Analogously, if

Oy (w;) = 0, (uy)

then the faceg;_; ; andf; j+1, one betweenm;_; andu; and the other betweery andu;; atv must be
the inevitable faceg(i; v) and f’(i;v).

This proves that we can meet the condition (a) in the above. To construct the modified rotation system
p*(v) in the condition (b), we sort the verticasn {u;,ug,...,uq} U{w; | i € I(v)} in a non-decreasing
order of their angle8, (u). This can be done iV (deg(v) + |I(v)|) time, as will be shown by Lemma 11
in this section. Based on the sorted list, we can easily determine the inevitable faces ofeag@h and
constructp*(v) in O(deg(v) + |I(v)|) time. The total time for constructing the modified rotation system
p*(v) over all verticess € V' is O(Y_, ¢y (deg(v) + |I(v)]) = O(n +m). This proves that we can meet
the condition (b) in the above. O

To complete the above proof of Theorem 10, we present a technical lemma on how to approximate
angles between grid points in they-grid plane. Lefa, b|z denote the set of integetswith a < = < b.
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Figure 6: (a) An instancéH, G, A) with a red pseudo-triconnected planar graph= (V, E') and stars

A = {s1,s92,...,ss} and a planar embedding; of G; (b) A grid convex drawingD¢ of G, wherew;

is another neighbor of each stgradjacent to vertex, and the direction from vertex to each vertex in
N(v;G) = {u1,...,us} orinthe sef{wy,ws, ..., we} is indicated by an arrow. The order of the angles
Oy(u), u € N(v;G)U{w; | i € I(v)} is determined as followd), (wg) < 0, (ws) = 0, (u1) < Oy(wy) <

Oy (u2) < Oy(ws) = Oy (uz) < Oy(ws) < Oy(us) < y(us) < 6,(w2). Then a modified rotation systemaat

is given byp*(v) = (u1, {f1,2, {1}},ua, { fo,3, {3} }, us, { f3,4, {3, 4} }, ua, { fa5, 0}, us, { f5,1, {2, 5,6} }).

When a sequencgui, as, . . ., ap) is lexicographically smaller than a sequeriée, by, . .., b,), we write
(a1,a2,...,ap) < (by,b2,...,b,). Let GS(n) denote the set of grid pointg, y) with z,y € [—n,n|z
and (z,y) # (0,0) in the grid plane. For a grid pointz,y) in the grid plane, lef(x,y) € [0,27)
denote the angle made by two vect¢ts0) and(x, y). The next lemma tells that given a setyopoints
(x1,91)s - -, (zp, yp) € GS(n—1), sorting these points in a non-decreasing order of anglés;, y;) can
be executed i) (p) time by the radix sort after af(n)-time preprocessing.

Lemma 11 There is a functiorode : GS(n—1) — [0, 7]z X [-n, n]z x [-n, n]z such that

(i) Given a poinf(x, y) € GS(n—1), code(z,y) can be computed i®(1) time; and

(ii) for any two pointgz, y), (2',y') € GS(n—1), itholds thatd(z, y) < 6(2/, ') if and only ifcode(z, y) <
code(z’,y"); andO(x,y) = 6(2’, ') if and only ifcode(x, y) = code(z’, /).

Proof. Forapoint(z,y) € GS(n—1), defines(z, y) to be|0(x,y)/(7w/4)|, whereo(x, y) can be obtained
as follows:

o(x,y) =0if z >y > 0; o(x,y)=1ify >z >0;

o(z,y) =2ify>—-2>0;, o(z,y)=3if —o>—-y>0;

o(z,y) =4if —x >y >0; o(z,y)=5if —y>—z>0;

o(x,y) =6if —y > >0; o(x,y)="T7otherwise,i.e.x > —y > 0.
Note that

if o(x,y) < o(2',y) thenb(z,y) < 6(',y'). (5)

Let (z,y),(«',y') € GS(n—1) be points withk = o(z,y) = o(2/,y'). Fork € {0,4}, where

ly/x], ly' /2’| € [0,1],
O(z,y) < 0(«',y) ifand only if |y/z| < |y /2’

; (6)
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Fork € {1,5}, where|z/y|,|2'/y'| € [0, 1],
O(z,y) < 0(2',y) ifand only if —(z/y) < —(2'/y/); )

Fork € {2,6}, where|z/y|,|2'/y| € [0, 1],
O(z,y) < 6(«',y) ifand only ifz/y < 2’ /y/; (8)

Fork € {3,7}, where|y/x|, |y /2’| € [0, 1],
0(x,y) < 0(«',y') ifand only if —(y/x) < —(y'/2). 9)

For two integers: € {1,2,...,n—1} andb € {0,1,...,n—1}, we approximaté/a with ann-adic
numberd; §, with two digits defined to be

61(a,b) = |nb/a], and

82(a,b) = [n%b/a — ndi(a,b)| = |n(nb/a — §1(a,b))].
Note that|d;(a,b)| € [0,n]z if [b/a| < 1. It holds that|d2(a,b)| € [0,n]z since|nb/a — d1(a,b)| < 1.
Then we defineode : GS(n—1) — [0, 7]z X [-n,n]z X [-n,n|z to be:

code(z,y) = (o (z,y), 61(|zl, [y]), 62(|zl, [y])) if o(z,y) € {0,4};
code(z,y) = (o (z,y), =01 (|yl, |z]), =62(lyl, |z)) i o(z,y) € {1,5};
code(z,y) £ (o(x,y),01(|yl, |=]), b2(ly], |])) if o(z,y) € {2,6}; and
code(z,y) = (o(z,y), =01, |yl), —62(|zl, [y)) if o(z,y) € {3,7}.

We see that given a poilit, y) € GS(n—1), code(x,y) can be computed i®(1) time. To prove the
lemma, it suffices to show the next.

Claim 1. For two points(z, y), (2, ") € GS(n—1), it holds that

(@) 6(z,y) < 6(2',y) ifand only ifcode(z, y) < code(2’,y');

(b) O(x,y) = 6(2’,y') if and only ifcode(z,y) = code(z’, /).

PrROOF Note that (a) implies (b) because onecofle(z, y) < code(z’, '), code(2’,y') < code(x,y) and
code(z,y) = code(z’,y’) always holds. We show (a).

The claim (a) is clear whea(x,y) # o(2’,') by definition of functiono. Assume that (z,y) =
o(2',y"). We show the case af(x,y) = o(2/,y’) = 0 (the other case can be treated analogously). Note
that0 < y/z,y'/2’ < 1. Recall that(z,y) < 0(2',') if and only if y/z < y/'/2’. Hence we see that
code(z,y) < code(z’,y') impliesy/x < y'/a’, i.e.,0(x,y) < O(«',y). To show the converse, assume
thaty/x < y'/a’. If 61(z,y) < 61(2,y’) thencode(z,y) < code(z’,y). Let us assume thaj (z,y) =
01(2',y"). We show that the difference betweefny' /2’ — 1 (z,y)) andn(ny/x—d1(z, y)) is greater than
1. Infact, we havew(ny’ /2’ —61(x,y)) —n(ny/z—61(z,y)) = n2(y' /2’ —y/z) = n?(y'z—2'y)/(z2") >
n?/(n—1)% > 1. Thisimplies thaby(z, y) = |n(ny/z—61(z,y))| < [n(ny’ /2’ —d1(z,y))] = (2, '),
as required. 0

We use the lemma witfxS(2n — 1) in the proof of Theorem 10.

6 Case of Connectivity 2

Sections 6, 7 and 8 handle the last case where the vertex-connectivity of a red graph in a star instance 2.
Our algorithm for this case consists of two major phases, which are presented in the next two sections,
respectively. This section first reviews a method of decomposing a red biconnected-goph instance

(H,G, A) into triconnected components, and observes some structure of triconnected comporents of
which indicates the existence a forbidden graph.
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6.1 SPR-tree Decomposition

To consider all the possible planar embeddings of a biconnected planar graph, we use a decomposition of
a biconnected graph intoiconnected componentdefined by Hopcroft and Tarjan (for details, see [27]),
which can be computed in linear time [23, 27]. More specifically, we use the SPR-tree, a simplified version
of the SPQR-tree defined by Di Battista and Tamassia (for details, see [5]), without Q-nodes. Here we give
a brief description on the definition of the SPR-tree using the terminology from [27].

Let G = (V, E) be a biconnected graph. L¥tbe the set of triconnected componentsf G, where
each triconnected components represented by a multigraph, called gkeletorskl(v) = (V(v), E(v))
of v with the following property:

* V(v) C V; E(v) consists of some edges i, calledreal edgesandvirtual edgessuch that each
virtual edgee = uw is associated with a connected subgréfiof G with the following property:

G, — {u,v} remains connected;
for any two distinct virtual edges= wv, e’ = u'v' € E(v),
E(G.)NE(Gey) =0andV(G.) NV(Ge) = {u,v} N {,v'}; and

e V =UeyV(v)andE C U,cpE(v) (i.e., each edge i is contained in£(v) as a real edge for
some node € V).

There are three types of graph structure of skeletkh():

1. S-type:skl(v) is a simple cycle with at least three vertices;

2. P-type:skl(v) consists of two vertices joined by at least three edges; and
3. R-type:skl(v) is a simple triconnected graph with at least four vertices.

For a virtual edge = uwv € E(v), au,v-path in the associated graph is called arepresenting path
of e. A graph obtained from the skeletekl(v) by replacing each virtual edgewith a representing path
P, is called arepresenting graptof the skeleton. As a graph structure, a representing graph of a skeleton
is obtained by subdividing virtual edges in the skeleton. From the definition of skeletons, we observe the
next.

Lemma 12 For a triconnected componemt € V for a biconnected grapli- = (V, E), lete = uv €
E(v) be a virtual edge in the skeletahl(»). Any cut-vertex in the grapt¥. separates, andv. For a
representingu, v-path P, of e and a vertexw € V(Ge) — {u, v}, there is aw, (V(F.) — {u,v})-path,
which can be found IO (|V (G.)| + |E(G.)|) time.

TheSPR-tre€] of G is a tree constructed on the 3&0f triconnected components 6f that represents
the adjacency among triconnected components. We call a triconnected companéhas a node irv .
A noder with an S-type (resp., P-type and R-type) skelefiolfv) is called an S-node (resp., P-node and
R-node). Then the SPR-tree is a tfEe= (V, £) with an edge sef such that
(i) v € & only if the skeletonskl(v) = (V(v), E(v)) andskl(p) = (V (), E(n)) have exactly two
common vertices;
(i) two nodes which are both S-nodes or P-nodes are not adjacgntand
(iif) any node of degree 1 iff is an S- or R-node.
Itis known that > .., (|V (v)| + |E(v)|) = O(|V] + | E|) [5].
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6.2 Rooted SPR-trees

In the SPR-tred” of a biconnected grapi, we choose a hodg,.; and regard” as a tree rooted @t ot.
The rooted tred defines a parent-child order, wheré () denotes the set of all children of a nodand
pt(v) denotes the parent of a non-raatLet v be a non-root node iff, andn = pt(v) be the parent of
v, where the skeletoskl(») contains a virtual edge = st € E(v) such that the skeletaskl(n) of the
parent also contains a virtual edge= st € E(n). Such a virtual edge = st € E(v) is called theparent
virtual edgein skl(v), and is denoted bye(v). DenoteE~ (v) = E(v) — {pe(v)}, and call a virtual edge
in £~ (v) achild virtual edgein skl(n). Letskl™ (v) denote the grapfi/ (v), E~ (v)) obtained fromskl(v)
by deleting its parent virtual edge.
For the rootv;ot, letskl™ (vroot) = Skl(2root )-

6.3 Some Forbidden Configurations over Skeletons

Given an instancéH, G, A) with a red biconnected grapl = (V, E), let V be the set of nodes (i.e.,
triconnected components) 6f. Note that the skeletaskl(v) of a P- or S-node € V is a planar graph. In
particular,skl(v) of an S-node’ has a planar embedding, which is a uniqgue combinatorial embedding.
The skeletorskl(v) of a P-node’ with p edges admitg! possible planar embeddings.

Sinced is planar, the triconnected skeleter(v) = (V(v), E(v)) of each R-noder € V admits a
planar embedding,,, which is unique combinatorial embedding, |V (v)|) planare embedding de-
pending on the choice of the outer face. We assume that planar embegdiiogsll R-nodes’ € V have
been computed i0(>_,.,,(|V(v)| + |E(v)])) = O(|V] + |E|) = O(n) time. Let®(v,) denote the set of
faces in the planar embedding of an S- or R-node.

In this subsection, we show how a forbidden subgraph of types (i), (ii) and (i) imay appear in the
skeletons of P- and R-nodes together with stard.in

Letskl(v) = (V(v), E(v)) be the skeleton of a node € V. We say that a stay; € A touchesan
elementinz € V(v) U E(v) if zis avertexw € S; NV (v) or z is a virtual edge: = uv € E(v) such that
the associated gragh, contains a vertex, € S; — {u, v}.

With a single stak; € A, the following conditions on P- or R-node tells us the existence of forbidden
subgraph of type (i) or (ii) ird.

U1
Q

€1

O
v2

(2) (b)

Figure 7: lllustration of forbidden configurations in the skeletki{r) of a P-nodes € V in the SPR-tree
of the red grapl@:: (a) A stars that touches three virtual edgeshitv); (b) Three stars;, i = 1,2, 3 such

thats; touches virtual edges , e;+1 € E(v); (&) Asetofp = 5 stars;, i = 1,2, ..., p such that; touches
virtual edges;, e;11 € E(v), wheree, 1 = e;.

22



Lemma 13 (i) Fora P-nodev € V), if there is a stars; € A that touches three virtual edges B\v),
as shown in Fig. 7(a), then the gragh+ d(s;) contains a forbidden subgraph of type (i), which
can be found irO(n 4+ m) time.

(i) Letr € V be an R-node and, be a planar embedding of the skeletd(). For a stars; € A,
letV, = S; NV (v)and E; be the set of all virtual edges ifi(v) touched bys;. If 4, has no facial
cycle that containd; and £, then the graplG + 4(s;) contains a forbidden subgrapfi of type (i)
or (ii), which can be found it (n + m) time.

Proof. (i) Let V(v) = {u,v}, and lete; € E(v), j = 1,2,3 be three virtual edges touched by a star
s;, Where the associated graph, contains a vertexy; € S; — {u,v}. Choose a representingv-path

P; of each virtual edge;;. Then we can find av;, (V(P;) — {u,v})-path P, ., with an end-vertex
zj € V(Pj) — {u,v} in time linear to the size of., by Lemma 12, where possibly; = z;. Then we
see that the six red patt§ and P, ., j = 1,2, 3 and three blue edgesw;, j = 1,2, 3 form a forbidden
subgraph?’ of type (i) in H. The above construction can be execute@{m + m) time.

(i) Let £y = {e; = wjv; | j = 1,2,...,q}, where the associated gragh; contains a vertex
w; € S; — {u;,v;}, andskl* be the pseudo-triconnected graph obtained fsgitv) by subdividing each
edgee; = ujv; € Fy into two edges:;w; andw;v;. By the fact that a planar embedding of a pseudo-
triconnected graph is a unique combinatorial embedding, we see that thesgraghd(s;) is not planar,
and hence we see th@to(s;) is not planar. By Kuratowski’s theorem [32], the non-planar graphd (s;)
contains a subgraphA which is a subdivision of; 3 or K5, which can be found il®(n + |S;|) = O(n)
time [23]. SinceG is assumed to be planar, the subgr@pmust contain some blue edge{is;t | t € S;}.
Since all blue edges ifis;t | t € S;} are incident tos;, the number’ of blue edges contained iA is
¢ € {2,3,4}. When/ = 2, the two blue edges contained in a path between some two vertices of degree
or4in F. When! = 3 (resp.,l = 4), graphF' is a subdivisiorn¥’ of K3 3 (resp.,/s) which has a vertex to
which only blue edges are incident. In any cakeas a forbidden subgraph of type (i) or (i) in H. O

With a set of several stars id, the following conditions on P- or R-node tells us the existence of
forbidden subgraph of type (i) or (iv) if.

Lemma 14 Letr € V be a P-node.

(i) Ifthere are three stars;, s2, s3 € A and four virtual edges, ez, e3, e4 € E(v) such thats; touches
{e1, ej+1} for eachy, as shown in Fig. 7(b), then the gragh+ 6(s1) + d(s2) + d(s3) contains a
forbidden subgrapl# of type (i), which can be found if(n + m) time.

(i) If there arep starssy,...,s, € Aandp virtual edges, ..., s, € E(v) suchthad < p < |E(v)|
and s; touches{e;, e; 11} for eachj, wheree,,; meanse;, as shown in Fig. 7(c), then the graph
G+6(s1)+---+6(sp) contains a forbidden subgraph of type (iv), which can be found @(n+m)
time.

Proof. LetV(v) = {u,v}and Ietw§ denote a vertex iV (G.,)—V (e;))NS;. Choose a representingv-
pathP;in G.,. Thenwe can find ev}, (V(Pj)—{u, v})-patth;_’Z;; with an end verte)z; e V(Pj)—{u,v}
in time linear to the size aof/., by Lemma 12, where possibly: = 2!.
(i) Without loss of generality assume that vertiegsz3, 3 appear in this order along path from u
to v, where possibly some of these three vertices may be identical. Forjeachor 3, let P, 1 be the
]’

wj, 23-path that consists aF,,1 .1 and the subpath aP from 2 to z2. Then we see that the six patPs,

j=23,4andP, 1 P11 andP,; i and six blue edges;w?, s;wl,,, j = 1,2,3 form a forbidden
subgraph?’ of type (i). The above construction can be execute@{n + m) time.
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(i) Leteg € E(v) —{e; |  =1,2,...,p}, and letP) be a representing, v-path inG.,. For eachj =
1,2,...,p, wherep+ 1 meansl, let P/ be thez/, 2/ *"-path that consists of blue edges w’ ands;, w! ™

and recw?, zJ-path andw/ ", 2J*'-path. LetP} be az3, zl-path that consists P/, j = 3,4,...,p and
the subpath o, j = 3,4,...,p from 2/~ to 2J. Then we see that the four paths, j = 0,1,2,3 and
the three path®], P; and P}’ form a forbidden subgraph' of type (iv). The above construction can be

executed irO(n + m) time. O

An Overview of Algorithm We design an algorithm that finds a forbidden graph or a planarizing partition
of a star set for a given instan¢#, E') with a red biconnected graph. The algorithm consists of two phases.
The first phase tests i(n + m) time whether some condition in Lemmas 13 and 14 holds. To facilitate
test of condition in Lemma 13(i) for a non-root R-nadand a stas; € A touching the parent-edge:(v),

we modify the rooted SPR-treéE by splitting each R-node into four types of nodes in the next section.

Unfortunately, an instance to which none of conditions in Lemmas 13 and 14 holds still may contain
a forbidden graph (whose type is (i), (iv) or (v)). This is because each virtual edgé’(n) of a node
n corresponds to the skeletehl(v,) of the corresponding node, which has two possible embeddings
in an embedding of), and there may be no combination of embeddings of skeletds.) over all child
virtual edges/, € E~(n) so that all stars il can be drawn in some face without creating a crossing with
ared edge. The second phase examines whether there is a combination of embeddings of skiletons
over all child virtual edges € E~(n) for each P- or R-node such that all starsdircan be drawn without
creating a crossing with a red edge. To facilitate the examination, we introduce a “simplified structure” of
the skeletonskl(r) of each P- or R-node, and combine the “simplified skeletons” into the skeleton of the
parent nodey of v (or the parent; of parent ofv if the parent ofv is an S-node). This results in a skeleton
of n where each virtual edge € E~(n) is replaced with a simplified skeleton (or a chain of simplified
skeletons ife corresponds to an S-node), which is called “refined skeletons” in Section 8.

In the next two sections, we do not find a forbidden graph of type (iii). In our algorithmic proof for
Theorem 4, a forbidden graph of type (iii) is generated only when we construct a forbiddenigraph
type (iii) of an instancé H, G, A) with |B(G)| > 2 from a forbidden graplF of type (ii) in an instance
(B, Ap) with B € B(G) (see the case (c) in the proof of Lemma 7(ii)).

7 Phase 1 for Case of Connectivity 2

This section describes the first phase which tests(im + m) time whether some condition in Lemmas 13
and 14 holds.

7.1 Split SPR-treeT

Sinced is not outerplanar, the SPR-trgehas a P- or R-node. We choose a P- or R-node as the root node
Vroot OF T .

If the root of 7 is an R-nodev, then let, denote a planar embedding of the simple triconnected
graphskl(v). Letv be a non-root R-node. Defing to be a planar embedding of the simple triconnected
graphskl(») such that the parent edge mfppears as an outer edgepf and definey, to be the planar
embedding of grapkkl™ () obtained fronty, by deleting the parent edge of Since a planar embedding
of a planar graph can be constructed in linear time and the total size of all skeletpris ®(n), we can
obtain~, and~, for all R-nodes inD(n) time.

We modify the rooted SPR-treéE by splitting each non-root R-nodeinto four nodes, the cp-R-node
v°P, the 01-R-node°!, the 02-R-node°? and the in-R-node™ of v (calledsplit R-node ofv) as follows.

Let uv be the parent-edge of and letP; and P, denote the two internally disjoint, v-paths which form
the outer boundary ofkl™ (v). Then partition the vertex s&f(v) and the edge sdf~ (v) of the skeleton
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skl™ (v) into the vertex and edge sets of the four split nodes a$ follows.
V(v°P) & {u,v}, E(%P) 2,
V(o) 2V (P) - {u,v}, EWwY) £ E(P;)forj=1,2;
V(™) £ V() - {u,v} -V (P) - V(P), EW") = E()— E(P)— E(P).
See Fig. 11(c) for an illustration of the four nodes, cp-R-, 01-R-, 02-R- and in-R-nodes of an Rxnode
The virtual edges i (v'™) and the vertices i (') are callednner, whereas those it (v°!), E(v°2),
V(v°!) andV (v°2) are callecbuter.

U1 e U2

Figure 8: lllustration of forbidden configurations in the skeletki{») of a non-root R-node € V: (a)
A star s; which touches the parent-virtual edge(v), an elements € V(v°!) U E(v°!), and an element
ea € V(vr°2)U E(v°?); (b) A stars; which touches the parent-virtual edge() and a vertexy € V (v'™"),
and a stak, which touchepe(r) and a virtual edge;; € E(v™).

Replace each non-root R-nodewith v°P, letting v°t, v°2 and™® be the three children af?. Then
each childu € Ch(v) of v will be a child of the node/ € {v°!,1°? 1"} such that the parent-edge of
u belongs toE (V). Let7 = ()7,5‘) be the resulting rooted tree obtained frgmby applying the above
procedure to all non-root R-nodes We call7 the split SPR-tree of7. We regard7A' as an ordered tree
by introducing an arbitrary sibling order for each child set. In what follows, we dé&fipg, rd(v), dt(v),
Ip(v) andrp(v) for each nodes € Vin the ordered tred .

7.2 Mapping ¢ from V to V

For each stag; € A, any neighbort € S; is a vertex in the vertex set of skeleton of a neder the
associated grapf. for some virtual edge of a node Such a node may not be unique in general. We
here determine uniquely a mapping from a vertex V' to a nodev. Let us define a mapping : V' — %
that maps each vertexe V' to the highest node € Y with v € V(v), where we see by the construction
of 7 that such a node (v) is uniquely determined. For each nade V, lety)—1 (1) be the set of vertices
v € V such that)(v) = v. We can construct the mappingsandy—! in O(n) time by visiting each node
v in the ordered tre® in a breadth-first search manner and checking for each vereX (v) whetherv
is scanned for the first time, whereuifis scanned for the first time thei(v) = v, andy~!(v) is the set of
such vertices € V(v).

For each stas; € A, letV; = {¢(v) | v € S;}. For eachi = 1,2, ..., k, we construct the mimic tree
7A'<Ni> obtained from the ordered split SPR-tfeénduced byN;. For simplicity, we denoté’(/\@) by 7;.
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Al 7;,i=1,2,...,k can be obtained i®(n + >, ., [Vi]) = O(n + m) time by Lemma 2, where we
see that); ' (v) = {t € S; | ¥(t) = v}, v € N can be computed for all= 1,2,...,kin O(n + m)
time.

Lemma 15 For a stars; € A, letv be a non-root P-nodéresp., a non-root R-node) il such thatV;
contains(resp., one of°P, v°, 1°% and ™). Then it takeg)(1) time to test whether stay; touches the
parent edgepe(v).

Proof. Let{u,v} beV(v) (resp.,V (vP)) if v is a P-node (respy is an R-node). Then i; touches the
parent edgee(r), thenv (resp.,vP) has the node(s;) as its ancestor iff;, and |Ch(a(s;); 7;)| > 2" or
“|Ch(a(si); T7)| = 1 andyy; *(v) — {u,v} # 0.” Conversely ifv (resp.,/°P) has the node(s;) as such an
ancestors; touches the parent edge(v). Testing whether (resp.,»P) admitsa(s;) as such an ancestor
can be checked i®(1) time. O

For a fixed stag; € A, if a nodev is not in7;, then the lemma does not tell that we can tesDin)
time whethers; touches the parent edge(v) (since the node may not appear iff;).

We now prepare a data structure so that we can tg3t i) time whether a given node admits some
stars; € A that touches the parent edge(r) and an element in a descendantZiy; 7A’). For a subset
S C Vin G and a functionf € {dt,lp,rp} over T, let argmin ¢(S) denote the set of all vertices€ S
with minimum value inf; i.e,

argmin () = {u € S| f(¢(w)) = min f(4)())}.

tesS

For each integef > 0, we Ietagcj) (S) denote a set ahin{j, [argmin (S5)|} vertices arbitrarily chosen from
argmin(5). For each node in T, weletl, = {i | N;nD(v; T) # 0}, and construatg?)(uiely S;) for
each functionf € {dt,lp,rp}. For simplicity, we denotagcj)(uiefusi) by a?(u), andagcl)(w by ar(v),
whereagf)<y> =0if 1, = 0.

Lemma 16 The set{agf’)(u) | v € V} for each functionf € {dt,Ip,rp} can be constructed i®(n + m)
time.

Proof. Firstforalli =1,2,... F, computeagf’)(si) in O3 ;<< 1Sil) = O(m) time. Next for each

vertexv € V, compute the sel, = {i | v € N;} of indices fromy~1(v). Finally computeng’)(w for all

verticesy € Vin a bottom-up manner alonﬁ. (i) For each leal in T, computea(fg)(w by choosing at

most three vertices € |J;c, aﬁf’)(Si) with the minimum{ (¢ («)), which takegO(|1},|) time. (ii) For each

non-leaf vertex> such thatagcg) (1) has been computed for all childrgne Ch(v; ]7), we computexgcg’)(u)

by choosing at most three verticese (U, agf’)(Si)) U {agf)’) (1) | p € Ch(v;V)} with the minimum
F(1(w)) value, which take®)(|I’| + |Ch(v; V)|) time.

The total time to computa}g)@) for all verticesy € V is O(n + > e + |Ch(v;V)])) =
O(n+ 3 1<i<p [Sil)- O

Lemma 17 Let v be a non-root node i), and i be a P- or S-node iV such thaty € D(v;T) or
p € {r, ol 702 rin} for some R-node € D(v; T). With data{a,(v), arp(y>,ag?<y> | all nodesv in
V}, ittakesO(1) time to test whether there is a sta A that touches the parent edge(rv) and a vertex

~

z with ¢(z) € D(u;T) and to find one of such stars if one exists.

Proof. Letpe(v) = uv, whereV (pe(v)) = {u,v}. By definition of I, a stars; touches a vertex with

~

Y(z) € D(u; T) ifand ony ifi € I,.
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Some stas; with i € I, touches the parent edge(v) —uv ifand only if a vertexw € Uies, Si —{u, v}
is mapped to a nodeé(w) inV — D(v; T); i.e., Uiel“ N; — D(v; T) contains a node = (w) for some
vertexw € Uier, S; — {u, v}.

To see when;c;, N;—D(v; T) contains such a nodg we apply Lemma 1t6' = Ui, Ni—D(v; T),

v =vandT = T. By Lemma 1(i), if the set);c;, N; — D(v; T) contains a nodg on the left side of in

T, then one of such nodesis given by the node)(w) of the vertexw € ay, (1) 1d(¢(w)) < 1d(v) such
thatlp(¢(w)) < Ip(v), where if the vertexw € aj, (1) does not satisfies these inequalities then there is no
such node). Symmetrically for a node on the right side of in 7 by Lemma 1(ii).

First assume that the noge= v(w) with a vertexw € a, (1) U a,p (1) on the left or right side o# in
7. Then clearlyw ¢ {u,v} because otherwise € {u, v} would imply that the parent nodg = pt(n) of
n = ¢ (w) also contains the vertex in the skeleton vertex s&f(n’), contradicting that)(w) is chosen as
the highest node that containsin its skeleton.

Next assume that the sefc;, N; — D(v; ’f) contains no node on the left or right side of in T. By
Lemma 1(iii), if the setU;c1, NV; — D(v; T) contains an ancestgrof v, then one of such nodesis given
by the nodey(w) of any vertexw € a((f;) (u) such thatdt(¢(w)) < dt(v). In this case, the selff;) ()
may contain a vertex ifu,v}. If a vertexw* € Ui, S; — {u, v} is mapped to an ancestgi(w) of v,
thendt(¢(w)) < dt(¢(w*)) for anyw € aff;) (1), wherew # w* holds only whernw € {u,v}. Since
{u,v}| < 3, the setaff;) (u) contains a vertex ¢ {u, v} if and only if such a vertexo* exists.

The above procedure of testing the inequaliteswr aj, (1) U aw, (1) U aé? () can be executed in
O(1) time. O

7.3 Proper Embeddings

For each S- or R-node € V, any planar embedding, of the skeletorskl(v) is calledproper. For a
P-nodev, a planar embedding of the skeletdd(v) is determined by an ordée;, es, . . ., e,) of the edges
in E(v). An order(eq,eq,...,e,) of the edges inE(v) is called aproper embeddingf no stars € A
touches edges; ande;, ¢ < jsuchthatf+4 1 # j”or“i = 1 andj = p.” For a proper embedding,

of an S-, P- or R-node, let ®(~, ) denote the set of faces i, where the two faces whose facial cycles
share an edge € E(v) are denoted by (e) and f2(e). We call a facef € ®(v,) genuineif Cy does not
contain the parent-edge:(v). There are exactly two non-genuine faggépe(v)), fa(pe(v)) € ®(v,) if

v is not the root.

Function o For each stas; € A, definea(s;) to be the highest node in N;* such thaiCh(v; 7;)| +
|¢;1(y)] > 2 (such a node exists since.S;| > 2). Let Ar (resp.,Ap and Ag) be the set of stars, € A
such thatx(s;) is a split R-node or the root R-node,, (resp.,«(s;) is a P-node and an S-node).

Function 5 For each stag; € A with a(s;) = v for a noder, there are at most two faces v, )

in which the star; with incident blue edges can be drawn without creating any crossing with a red edge,
and we denote by(s;) the set of such faces if(~,), whereS(s;) C {fi(e), f2(e)} for some edges

ee€ E~(v).

We call a planar embedding et; of the red graphG properif the planar embedding of the skeleton
skl(v) of each P-noder becomes the proper embedding Note that a proper embedding 6fis not
unique in general. A proper embedding®is determined by choosing a bijectigp for each non-root S-,
P- or R-nodev, called aflip mapping such that, : {fi(pe(v)), fo(pe(v))} — {fi(e,), f2(e,)}, where
e, denotes the child virtual edge () of the parent node.

In a given proper embedding 6f, switching a flip mapping from,, ( f;(pe(v))) = fj,(ev), i = 1,210
ou(fipe(v)) = fs—j.(ev), i = 1,2 is denoted by, := ¢,.

Note that for a non-genuine fage= f;(pe(v)) in ~, of a noder, the mapped face, (f) may be a
non-genuine face again. We denotedy /) the genuine facg¢’ mapped from/ by repeatedly applying
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flip mappings; i.e.f = ¢,,(¢v,_, (-~ (¢, (f))---)) is agenuine face i®(y,,) for v, = v and the parent
Vit1 of y;,i = 1,2,...,9—1.

In the following, we fix a proper embedding of; of G by fixing a flip mappinge, (fi(pe(v))) =
fi(ey), i = 1,2 for each non-root S-, P- or R-node

7.4 Testing P-nodes in the First Phase

A P-noder admits a proper embedding if and only if there are no stars that satisfy the condition in
Lemma 13(i), or Lemma 14(i) or (ii) for the P-node We first show how to test if there is a P-node
which satisfies the condition in Lemma 13(i).

Figure 9: lllustration of forbidden configurations in the skeletkl{») of a non-root P-node in the rooted
SPR-tree of the red grapfi: (a) A stars; that touches three virtual edges i1 (v) and a star, that
touches the parent-virtual edge(r) and two virtual edges v~ (v); (b) Three stars;, i = 1,2,3 such
that s; touches virtual edges;,e;1 2 € E~(v), and three stars], i = 1,2,3 such thats, touches the
parent-virtual edgee(rv) and a virtual edge; 1 € E~(v); (c) A set ofp = 4 stars;, i = 1,2,...,p such
thats; touches virtual edges 1, e;12 € E~(v), wheree, 2 = e, and a set op = 3 stars], s, ands}
such thats} touches the parent-virtual edge(r) and a virtual edge; € E~(v), s, touches two virtual
edges;, es € E~ (v), andsj touches virtual edge, € E~(v) andpe(v).

Lemma 18 For each stars; € A, testing if there exists a P-nodesuch that star; touches three virtual
edges inE(v) can be done irD(]S;|) time. The total time for testing this for all stagsis O(m).

Proof. Fix a stars; and a P-node. See Fig. 9(a) for an illustration ekl(») of a P-node with some star
touching three virtual edges. We see thatouches three virtual edges i (v) if and only if P-nodev
appears in the mimic treg having at least three child nodes. Assume thdabuches at most two virtual
edges inE~ (v). Thens; touches three edges m(v) if and only if P-nodes appears in the mimic treg
having exactly two child nodes. ang touches the parent-edge(~). For any node’ in 7;, we can test
whethers; touchee(v) in O(1) time by Lemma 15.

Recall that the number of vertices in the mimic tfEes at most3|.S;|. Hence the time for testing for
all P-nodes over all starg is O(>_, -, <, |5i]) = O(m). O

We next show how to test whether there is a P-node which satisfies the condition in Lemma 14(i) or (ii).

Lemma 19 Assume that for each P-node W) no stars € A touches at least three virtual edges in the
skeleton of the P-node. Testing whether there is a P-nogl@’ which satisfies the condition of Lemma 14(i)
or (ii) can be done ir0(n + m) time.
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Proof. See Fig. 9(b) and (c) for an illustration efl(») of a P-noder with some stars touching three
virtual edges. By the assumption, any P-node in any mimicffe@an have at most two children. We first
traverse each mimic treg to find the set of all P-nodes with exactly two child node§jin O(m) time.
Then we know that, for each P-node= V', which pair of virtual edges i~ (v) are touched by some star
s € A.

Next select a P-node € V and a virtual edge,, € E~(v), which corresponds to a child node
1 € Ch(v; 7). Then we can test whether there is a stathat touchege(u) and the virtual edge,, in
O(1) time by Lemma 17. After applying this to all P-nodes and their child nod€3(in) time, we know
that which virtual edge itE~ (v) andpe(v) are touched by some star A.

Based on the above observation, we can test whether there is a P-tlatesatisfies the condition of
Lemma 14(i) or (i) InO(n + m) time. O

In the following, we assume that each P-nodaedmits a proper embedding.

7.5 Testing R-nodes in the First Phase

We test whether there is an R-node which satisfies the condition in Lemma 13(ii) by three steps. The first
step checks the following condition.

Lemma 20 It takesO(m) time to test whether there is a non-root R-nede V' such that some stay;, € A
touches the parent edge:(r) and two elements; and z, such thatV’ (v°7) U E(v*/) for eachj = 1,2,

Proof. Lets; be a star inA. Assume that there is a non-root R-node satisfying the condition in the lemma
for the stars;. See Fig. 8(a) for an illustration ekl(~) of an R-noder with some stars touching three
virtual edges. Then for any such R-nadehe mimic tree7; must contain the split nodesP, »°! andv°2.
When nodes°! and»°2 appear in7;, it holdsA; N D(v°; T) # @ for bothj = 1,2, i.e., s; touches an
element inV/ (v°7) U E(v°7) for eachj = 1, 2. Testing whethef; contains a node” satisfying the above
can be done 0 (|.S;|) time.

By Lemma 15, we can test i0(1) time whether stag; € A touches the parent edge(v) and a vertex
2 with ¢(z) € D(VP; T).

Therefore we can test i@ (m) time whether there is a non-root R-node V satisfying the condition
in the lemma for some stat ¢ A. O

The second step checks the following condition.

Lemma 21 It takesO(n) time to test whether there is a non-root R-nede V such that some stas; ¢ A
touches the parent edge:(v) and an element i (v'*) U E(v'™™).

Proof. See Fig. 8(b) for an illustration akl(») of an R-noder with some stars touching three virtual
edges. For each non-root R-nade V', we test whether there is a stae A that touches the parent edge
pe(v) and a vertex with 1(z) € D(v'™;T). This can be done if(1) by Lemma 17. Therefore we can
testinO(n) time whether there is a non-root R-node& V satisfying the condition in the lemma. O

In the following, we assume that no non-root R-node satisfies the condition in Lemma 20 or Lemma 21.
If a stars; € A satisfies the condition in Lemma 13(ii) for an R-nade& V, then the stas; touches two
elements inV (v) — V(v°?)) U E~(v), but does not touch the parent edg€r). For such a stas; and
an R-node, it holds thata(s;) € {vP, v v°1 1°?} (or a(s;) = v for the root R-node,..t). Therefore
the condition in Lemma 13(ii) for some R-node holds if and onl§(if;) = () holds for some stay; € Ag.
Finally the third step compute¥(s;) for all such stars; € Ag.

Lemma 22 It takesO(n + m) time to compute(s;) for all such starss; € Ag.
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Proof. Letv € V be an R-node. For each stare Ar such thatx(s;) is a split node o or v = vy, all
virtual edges ik~ (v) touched bys; correspond to the children of node’s, »°! andv°? in the mimic tree
7T:, while the set of the verticés(v) touched by; is the uniony =1 (vP)Uyp~L (vO1 Uy~ (1°2) Uy~ ().
With the planar embedding, and the elements iW () U E~(v) touched by stars idgr, we can compute
B(s) forall such stars i (|V (v)| + | E(v)| + |{s € Ar | a(s) = v}|) time by Theorem 10. The total time
for computing3(s), s € Ar with a(s) = v overall R-nodeg € V is O(n + m). 0

Simplified Skeletons
Before we proceed to the second phase, we define “simplified skeletons” for P- and R-nodes.
For each non-root P-node € V with a proper embedding, = (pe(v),ei1,ea,...,e,) of edges in
E(v), we define thesimplified skeletorskl(v) to be a cycle of length 2

sskl(v) = (V(v), Es(v) = {e1, ep}).
For each non-root R-nodec V, we define theimplified skeletorskl(v) to be a cycle of length 2
sskl(v) = (V (1), Es(v) = {e1, e2}),

by settinge; ande, correspond to the 01-R-node and 02-R-notfe 1°% ¢ Vofu, respectively. We say
that a stas; € A touchesedgee; if it touches an element il (v°7) U E(v7).

We do not prepare any simplified skeletorskf(») of any S-node. Note that each cycle of a simplified
skeleton for a P- or R-node has two possible embeddings when we determine a planar embedding of
the entire red grapty. The next section finally tests whether there is a proper embedding of the red graph
G that gives arE-planar embedding ofH, G, A).

8 Phase 2 for Case of Connectivity 2

The second phase examines whether there is a combination of embeddings of simplified sKelgtpns
over all child virtual edges € E~(n) for each P- or R-node such that all starsdrcan be drawn in a

face without creating a crossing with a red edge. To facilitate the examination, we combine the simplified
skeletons into the skeleton of the parent ngdef v (or the parent; of parent ofv if the parent ofv

is an S-node). This results in a skeletonrohere each virtual edge € E~(n) is replaced with a
simplified skeleton (or a chain of simplified skeletonsitorresponds to an S-node), which is called
“refined skeletons.”

Refined Skeletons
We define a “refined skeleton$kl(n) for each node € V as follows:

» For each S-nodg € V, therefined skeletomskl(n) is defined to be a circular chain obtained from the
simple cycleskl(n) by replacing each virtual edgec E~(n) corresponding to a child P- or R-node
v € Ch(n; T) with the simplified skeletosskl(r); and
For each non-root S-nodec V, letrskl™ (n) denote the:, v-chain obtained fromskl(rn) by remov-
ing the parent-edgge(n) = uv.

» ForaP-or R-node € V, therefined skeletomskl(n) is defined to be the planar embedding obtained
from the planar embedding, of skeletonskl(n) by replacing each virtual edge= uwv € E~(n)
with au, v-chain@,. such that). is the simplified skeletorsskl(v) if the corresponding child, €
Ch(n; T) is a P- or R-node; an@. is thew, v-chainrskl™ (v) if v, is an S-node.
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Figure 10: lllustration of skeletorkl(n) and refined skeletomskl(n) of a P-node: (a) A P-node

n € V in the rooted SPR-treg of G, whereCh(n;7) = {v1,...,vs5}. (b) The skeletorskl(n) =
(V(n) = {vi,v2}, E(n) = {e1,...,e5,pe(n)}) of P-noden in (a); (c) The refined skeletarskl(n) with
V(rskl(n)) = {v1,v2,vs,...,v9} andE(rskl(n)) = {es, e7, ..., €25, pe(n)} of P-noden in (a), and some
stars touching elements inkl(n), whereVE(s1;n) = {v4,e10} andVE(s2; 1) = {e10, €12, e15}; (d) The
parent-child relation among the edgesfi(rskl(n)); and (e) A chain instanc@);,, Ac, = {s1, s2}) with

two factor cycles”; = (e10,e11) andCy, = (e, e3), where the instance contains a twisted set that induces
a forbidden graph of type (i).
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Figure 11: lllustration of skeletorkl(n) and refined skeletomskl(rn) of an R-node: (a) The skeleton
skl(n) = (V(n) = {v1,v2,...,v12}, E(n) = {e1,...,e1s,pe(n)}) of an R-noden (b) R-noden € V

in the rooted SPR-tre@ of G, whereCh(n; T) = {ve, v3,v4,vs5, 7,18, V12, V15 }; (C) The split nodes of
R-nodern in (a); and (d) The refined skeletoskl(n) of R-noden in (a); (e) The parent-child relation among
the edges irE(rskl(n)).
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Note that, when is not the rootyskl(n) still contains the original parent-virtual edge(n), which is
not replaced with any chain. See Fig. 10(c)-(d) and Fig. 11(d)-(e) for illustrations of the refined skeleton
rskl(n) of a P- or R-nodey and the corresponding nodesiin

The u, v-chainsQ. replaced from child virtual edges € E~(v) are calledelementary chaingn
rskl(n). For each elementany, v-chain@ in rskl(n), let E.y.(Q) denote the set of edges in factor cycles
in @ and letVi,(Q) denote the set of vertices @ other than the terminalg andv of Q). An elementary
chain withE.,1.(Q) # 0 is callednontrivial. Let E(rskl(n)) be the set of all real and virtual edges over all
elementary chains irskl(n), andV (rskl(n)) be the set of all end-vertices of edgesHiirskl(n)), where
V(rskl(n)) C V.

As for the size of refined skeletons, the refined skeletons of all P- and R-nodes are obtained from
skeletons of all nodes by replacing each virtual edge with two multiple edges and by merging the skeleton
of each S-node into the skeleton of the parent node of the S-node. Therefore the total size of all refined
skeletons remain®(n). Then we see that constructing the refined skeletsiti$n) for all P- and R-nodes
n € V can be done i (n) time.

Twistless Embeddings

Letn € V be a P- or R-node. For each starc A, let VE(s; ) denote the set of the elements in
V(rskl(n)) U E(rskl(n)) that are touched by. Let A(n) be the set of stars € A with VE(s;n) # (). See
Fig. 12(a) for an illustration of several different types of stars A that touches some vertex or edge in the
refined skeletomskl(n) of an R-node;. Notice that no stas € A(n) touches the both sides of the same
factor cycle in any elementary chain, since otheriwise there would be a P-node (or R-node) satisfying the
condition in Lemma 18 (or Lemma 20). For example, stain the refined skeletorskl(n) in Fig. 12(a)
could not exist in fact, since it touches the two sidesandes; of the same factor cycle.

Fix a virtual edge: = uv € E~(n) such that). is nontrivial. Letf;(e) and f2(e) denote the two faces
in ®(v,) of the planar embedding, such that their facial cycleSy, .y andCy, (e) share edge. Note that
each factor cycl€’ in Q. has two possible embeddings, one of the sid&s isfdrawn inf; (e) and the other
in f2(e), which is determined by a choice of the flip mapping An embeddingy. of Q). is determined
by a combination of flip mappings,, of all factor cyclesC' = sskl() in Q.. Since a flip mapping,, for
each factor cycl€' = sskl(y) is currently fixed, we denote by a s&f;,, of factor cycles in an elementary
chain@. to mean an embedding of Q. that is obtained by flipping each cyale = sskl(x) € Caip, i.€.,
settingg, := ¢,. Let A(e) be the set of stars € A(n) that touches an element 18, (Q.) U E(Q.). An
embeddingy. = Cpip, Of Q. is calledtwistlessif each stars € A(e) can be drawn inside one of the two
facesfi(e), f2(e) € ®(v,) without creating crossing with red edgesrifl().

Chain Instances

To test whethef). admits a twistless embedding, we define “chain instances.” Construct a circular
chain@; from the elementary, v-chain(). by adding a cycle’ of two new virtual edges], e5 = uv.
Forj = 1,2, lete; be a new virtual edgewv that corresponds to the s@; of elementary chaing)./
generated from virtual edges (# e) along facial cycleC'y, ). We say that a stas € A(e) touchesa
virtual edgee; if s touches some element i, (Q.) U E(Q. ) of an elementary chai@Q. € Q;. LetQ;
be the circular chain obtained fro@. by adding these virtual edge$ ande3, which form a cycleC. We
call a pair(Q:, A(e)) of a red graphQ: and a setd(e) of stars achain instancédefined for a virtual edge
e € E~(n)). See Fig. 10(e) and Fig. 12(b) for an illustration of a chain instagte A(e)).

Twisted Sets

A twistedset is defined to be a paifsi, s2,...,sp}, {C1,Ca,...,Cp}) of a set ofp > 2 distinct stars
in A(e) and a set op distinct factor cycles i (possiblyC; = C; for somei) with sidesP? and P! of
each cycleC; such that, for each= 1,2,...,p — 1, stars; touches an edge iR* and an edge ian-’fH for
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(d) Weys

Figure 12: (a) lllustration of stars € A that touches some vertex or edge in the refined skeletd())

of an R-node, Wheré/E(Sl;n) = {627,630,1)15}, VE(SQ;T]) = {622,639}, VE(Sg;’I?) = {632,638},
VE(s4;n) = {e1s, pe(n), vis}, VE(s5;m) = {ea2, pe(n)}, VE(s6;m) = {e24, €25, v3} andVE(s7;n) =
{e32, €35, pe(n)}. It holds that{si,so,...,s7} C A(n), wheress must not exist after the first phase;

s;, 1 = 1,2,...,6 are linking stars, ands is an esy-bridging star, whiles; ¢ Al"(n) U AP"(n); (b)

A chain instancgQ;, ., Ac,; = {s2,s3}) with three factor cycle€'; = (ess,e39), C2 = (eqo,e41) and

C; . = (ef,e5), where the instance contains a twisted set that induces a forbidden graph of type (v); (c)
A chain instanc€Q;._, Ac, = {s3, s5}) with two factor cycles’; = (e22, e23) andCy. = (e}, e5), where

the instance contains a twisted set that induces a forbidden graph of type (iv); and (d) The auxiliary graph
We,; defined to the chain instan¢@;, _, A.,;) in (b), where(ss, ess, 53, €5, e7) is a chordless odd cycle of
length 5.
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the samé: € {1, 2}, but stars, touches an edge iﬁ’];€ and an edge itP{ for k # ¢. Observe that if there
is no twisted set i)}, then. admits a twistless embedding.

Lemma 23 If a chain instancgQ?, A(e)) for a virtual edgee = wv € E~(n) has a twisted set, then
(G, A(e)) contains a forbidden graph’ of type of (i), (iv) or (v), which can be found @(n + m) time.

Proof. Let({s1,52,...,5,},{C1,Cq,...,C,}) be a twisted set ifQ}, A(e)). We distinguish two cases.

Case 1p > 3: See Fig. 12(b) for such a circular instar{¢g:, A(e)). If there is a twisted set, then we
see by Lemma 12 that each siﬂ’ﬁ of C; has an associated red pathof G and each blue edge touching
sidePl? can be extended to reach a vertexfirby adding some red edges. Hence given a twisted set with
p > 3, we can construct a forbidden subgraplof type (v) inO(n + m) time.

Case 2.p = 2: See Fig. 10(e) and Fig. 12(c) for such a circular instaf@g A(e)). In this case,

Cp = Cy = CF andC; = (ey,e2) is a simplified skeleton of a child P- or R-nodec Ch(n; 7"), which
corresponds to the virtual edgedn= uv € E~(n). Without loss of generality assume thgt j = 1,2
touchese; ande. Then the red grapty has four internally disjoint red, v-pathsP;, i = 1,2,3,4 such
that P; is a representing path of virtual edgg j = 1,2, andP; (resp.,P’;) represents to the outer boundary
of v, — pe(n) corresponding to edgg (resp..ez2). We distinguish two subcases.

(@) C1 = (e1,e2) is a simplified skeleton of a child R-node. Since the skeletors triconnected, the
associated red subgragh. has a rect, z’-path P, .. that joins a vertex € P; and a vertex’ € Py, as
illustrated in Fig. 10(e). Then analogously with Lemma 14(i), we see that the set of these five paths and
two starss; andss give rise to a forbidden graph of type (i), which can be obtained(in + m) time.

(b) Cy = (e, e2) is a simplified skeleton of a child P-node: In this cagés an R-node, and the red
graphG — V(G.) has a red, z’-path P, . that joins a vertex € P, and a vertex’ € P, as illustrated
in Fig. 12(c). Then analogously with Lemma 14(ii), we see that the set of these five paths and twg stars
ands, give rise to a forbidden graph of type (iv), which can be obtained(in + m) time. a

Valid Sets

However, identifying all stars iml(n) and computing the s&fE(s; n) for eachs € A(n) for all nodes
n may take more time thaf(n + m).

We here define a subséf, C A(n) as a “valid” set in the sense that if the refined skeletdi(r) with
{VE(s;n) | s € A(n)} admits a twisted set then so daekl(n) with {VE(s;n) | s € A, }.

- Astars € Ais calledlinking if VE(s;n) contains elements andz’ such that: = e € E(C) of a
factor cycleC' in an elementary chai@ andz € V (rskl(n)) U E(rskl(n)) — V(Q) — E(C) — {pe(n)}.
Let Al'"k(n) be the set of all linking stars € A in rskl(n).

- Astars € A is calledbridging (or e-bridging) if
(i) [VE(s;n)| = 2 holds, andVE(s;n) = {z,2'} consists of the parent edge= pe(n) and an edge
z' = e € E(C) of afactor cycleC in an elementary chai@; and
(ii) there is no linking stas’ € A'"k(n) with VE(s'; ) D VE(s; 7).

Let AP"(n) be the set of all bridging stakse A in rskl().

See Fig. 12(a) for an illustration of linking stars and bridging stars, wheie=1,2,...,7 are linking
stars, and; is anegq-bridging star.

We easily see that, for each edgec E(rskl(n)) — {pe(n)} that admits are-bridging star, only one
e-bridging star is enough to detect a possible twisted set. Then we call a supettAlk(n) U AP (n)
valid if
(i) Alink(n) C A,; and
(ii) for each edge: € E(rskl(n)) — {pe(n)} that admits ar-bridging star, the sed,, contains at least one
e-bridging stars € A" (7).
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Lemma 24 Valid setsA,, C Alink(n) U AP*(n) together with{ VE(s; 1) | s € A,} for all P- and R-nodes
n € V can be computed i@ (n + m) time. Hence it holds that p_ R_nodesev [4n| = O(n +m).

Proof. (I) We first show how to test whether a starc A belongs the set'"*(1) for some P- or R-node
n € V. We fix a stars; € A, and distinguish two cases:is a P- or R-node.

Case of P-nodes: By definition, for a P-noglec V, a stars; belongs toA'""¥(n) if and only if
s; touches an edge € E(C) of a factor cycleC in an elementary chaiy in rskl(n) and an element
z € V(rskl(n)) U E(rskl(n)) — V(Q) — E(C) — {pe(n)}. HenceA'""(n) can contairs; only when the
mimic tree7; = (V;, &;) of s; satisfies at least one of the following:

(a) the P-nodey appears ir7; having at least two child nodes (i.@.< V; and|Ch(n; 7;)| > 2);

(b) a child S-nodevy € Ch(??;7A') appears in7; having at least two child nodes (i.er, € V; and
Ch(; T7)] = 2).
First this implies that all P-nodes that satisfy (a) or (b) for; can be found just by checking; in
O(|Vi]) = O(]S;|) time. Next it suffices to show tha&fE(s;;n) for all P-nodesy satisfying (a) or (b)
for s; can be constructed i@(|S;|) time, from which we can find all P-nodessuch thats; € A"k (n) in
O(]S;]) time.

Let » be a P-node which satisfies (a) or (b) for Let Ch,, = Ch(n;7;) U {S-nodess € Ch(n; T) |
|Ch(v; T;)| > 2}. Then:

- Each edge iVE(s;; ) — {pe(n)} corresponds to a child nodec Ch(v;7;) of a nodev € Ch,,, where
v is an S-node or a split node of an R-nodein(n; T);

- Each vertex irVE(s;; i) corresponds to a vertexthat is mapped tg or a child S-nodes € Ch,,. Hence
the set of vertices iVE(s;;7) is given by the union Of/Ji_l(n) and@b;l(y) for all such S-nodeg; and

- pe(n) € VE(s;;n) if and only if s; touchespe(n), which can be checked i@ (1) time by Lemma 15.

Hence computing/E(s;; ) for all P-nodes; satisfying (a) or (b) fos; can be executed in the size of
the mimic tree7; and the total size ofy—!(v)|, v € V;, which isO(|S;]).

Case of R-nodes: This case can be treated analogously with case of P-nodes. By definition, for an
R-noden € V, Al"k(n) can contairs; only when the mimic treg; = (V;, &;) of s; satisfies at least one of
the following:

(a) the cp-R-nod@“P appears irf; having at least two child nodes;

(b) a child S-nodes € Ch(r/; T) with € {n°!,n°2, "} appears irff; having at least two child nodes
(i.e.,|Ch(v; T;)| > 2). This implies that all R-nodes that satisfy (a) or (b) for; can be found just by
checking7; in O(|V;|) = O(|S;|) time. Analogously with case of P-nodes, we can show Yiats;; ')
for all R-nodes;’ satisfying (a) or (b) fos; can be constructed if¥(|.S;|) time, from which we can find all
R-nodes;’ such thats; € A'(7) in O(|S;|) time.

(1) Next we show how to find bridging stars by using the split SPR—‘liAFedaetn € V be a P-node (the
case wherey is an R-node can be treated analogously). Egtbe the set of virtual edgese E(C) for
some factor cycl€ in rskl(n) such that there is no linking star € A" () with {pe(n), e} C VE(s'; 7).
Since we have computedE(s; n) for all starss € Ali"k(), we can obtairE,,. By definition, a stas € A
is e-bridging if and only ife € E,, andVE(s; ) = {pe(n), e}.

Lete € E, be an edge. Thenis an edge in a simplified skeleton of a P- or R-ngéd&here¢ is a child
node ofn or a child node of a child S-nodeof 7). If £ is a P-node, then let. be the node corresponding
to edger; and if¢ is an R-node, then lgt. be the 01- or 02-R-node corresponding to eelgdence finding
ane-bridging stars € A"*(7), i.e., finding a stas € A that touches the parent edge(r) and a vertex
2z with 4(z) € D(ue;T) can be done i)(1) time by Lemma 17. Therefore we can find a subBgtof
bridging stars so that,, = B, U A'"k(n)) becomes valid in time linear to the sizerskl(n). The total time
for constructing valid setd,, for all P- and R-nodes i®(n + m). 0

For each virtual edge = wv € E~ (1), let A. = A(e) N A,,. We are ready to detect a possible twisted
setin(Q?, A.) by testing whether an auxiliary grapti, is bipartite. LetC(Q?) be the set of factor cycles
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in the circular chainQ}, where we denote the two sides of each cy€les C(Q}) by PL and P3. We
represent each cycté € C(Q}) as an edge/ 2% and join a stas; and a vertex!, with an edgeszf, if s
touches sideP,. Let W, = (A. U {z4,22 | C € C(Q})}, E. U {222 | C € C(Q?)}) be the resulting
graph, wherezic, i = 1,2 denotes a vertex that corresponds to sli@eof a cycleC', and E, contains an
edgesz), if s touches side’,. See Fig. 12(d) for an example of grapfi.. Notice that no vertex € A,

is adjacent to the both vertcie$ 22, of the same cycle, since no linking statouches the both sides of the
same factor cycle in any elementary chain. Hergecontains no cycle of length 3.

Then we see thdl’, is a bipartite graph if and only if). admits a twistless embedding = Cgip. In
fact, a twisted set is given by a chordless odd cycld/in whose length is at least 5. Whé#, is bipatrtite,
the setA. is partitioned intoAy, .y and Ay, ) such that a stas € Ay, is placed in the facg; () in the
twistless embedding.. We can test whethdii’, contains a chordless odd cycle @ admits a twistless
embeddingy. in time linear to the size of). and A. by the breadth-first search.

By Lemma 24, we hav®_p. R.nodesicy 2-cci- (n) (1E(Qe)+|Ac]) = >_p-, R-nodesev (| £ (rskl(n)|+
|A,]) = O(n + m). Hence it take)(n + m) time to find a twisted set in a chain instan@@;, A.) for
some virtual edge € £~ (n) in a P- or R-node) € V or construct a twistless embeddifng= Ca;j, for all
virtual edges: € £~ (n) of all P- and R-nodes € V.

In the former, the instanc@d, G, A) has a forbidden graph of type of (i), (iv) or (v), which can be
found inO(n + m) time by Lemma 23.

In the latter, we change the current proper embeddingf the red graphG by flipping each factor
cycleC' = sskl(u) in v, = Caip by executingp,, := ¢,,. Let~/, denote the resulting proper embedding of
G, which we do not need to actually construct, since we instead construct a planarizing patrtitiohas
follows. For each stag € A, we assign a genuine face of some proper embeddiraf a noder so that
(i) if |8(s)| = 1, then lets, := f for the facef € S(s);

(i) if |B(s)] =2 ands € A, for a virtual edge: € E~(n) for a P- or R-nodey, then lets; := f;(e) for the
facef;(e) with s € Ay, (i-e.,s is placed in facg;(e) in the twistless embedding.); and

(iii) Otherwise, |3(s)| = 2 buts & A, for any virtual edges, where it holdsS; = {u, v} for some virtual
edgee = wv € E~(v) foranodev € V, let 5, be any off; (e) and fa(e).

Finally we let A = {A;, As,..., Ay} be a partition of star setl such thats, s’ € A; if and only if
»*(Bs) = ¢*(Bs). ThenA is planarizing. Since computing the functign( f) for all non-genuine faces
f can be executed in a bottom-up way along the rooted SPRFréee time to constructl from twistless
embeddings i®(n).
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