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Abstract

LetH = (VH , EH) be an undirected graph with a subsetE of the edge setEH , where we
call the edges inE red edgesand the edges inEH − E blue edges. An embedding ofH into
the plane is called anE-planar embedding if no red edge crosses any other edges whereas two
blue edges may cross. In this paper, we give a complete characterization of an instance(H,E)

that admits noE-planar embedding via forbidden subgraphs with red/blue edges. Furthermore we
design a linear-time algorithm that finds either anE-planar embedding or a forbidden subgraph.

The problem setting can enable us to formulate a problem of finding a planar embedding of a
planar graphGwith an additional constraint such that, for specified setsS1, S2, . . . , Sk of vertices,
all the vertices in eachSi appear along the same facial cycle. To see this, we regard all edges in
G as red edges and add a starsi with blue edgessit, t ∈ Si for eachi. For example, this allows us
to find a planar embedding of a planar graphG such that the rotation systems of some vertices are
predetermined.

1 Introduction

Planar graphs are graphs that can be embedded in the plane without edge crossings, and extensively studied
by researchers in Graph Theory and Graph Algorithms, for example, planar graphs withn vertices can have
at most3n − 6 edges. A graph is planar if and only if it contains no subgraph that is a subdivision ofK5

andK3,3 [32]. Testingplanarity of a graph can be solved in linear time [28, 33], and some methods also
produce a planar embedding [9, 10, 12, 17, 18, 34, 36, 37] or forbidden minors [9, 10].

Variations of planarity with additional embedding or desired drawingconstraintswere studied. For
example, testing planarity with embedding constraints such as a fixedrotation system(i.e., the circular
ordering of edges for a vertex) of each vertex [22], and partially-fixed planar embeddings [2] are consid-
ered. Testing planarity with additional drawing constraints for extended graph models and digraphs such as
clustered (compound) graph planarity (C-planarity, in short) [19],hierarchical(or level) planarity [?], and
upwardplanarity [20] for digraphs were extensively studied.

Another recent variant of the planarity problem includes thesimultaneous embeddingwhich given two
planar graphsG1 = (V,E1) andG2 = (V,E2) with the same vertex setV , asks the existence of two
planar drawingsD1 andD2 of G1 andG2, respectively, such that each vertexv ∈ V is mapped to the same
point inD1 andD2. Unfortunately, the problem of testing whether two planar graphs admit ageometric

simultaneous embedding, whereD1 andD2 are required to be straight-line drawings, is NP-hard [16].

1Technical report 2016-003, July 14, 2016.

1



Note that simultaneous embedding can be considered as an embedding of two planar graphs, red and
blue, where red-red edge crossings and blue-blue edge crossings are not allowed, however red-blue cross-
ings are allowed in a combined drawing consisting of a red graph and a blue graph.

A recent research topic in topological graph theory generalizes the notion of planarity tobeyond planar

graphs, i.e., non-planar graphs with some specific crossings, or with some forbidden crossing patterns. Ex-
amples includek-planargraphs (i.e., graphs that can be embedded with at mostk crossings per edge) [35],
k-quasi-planargraphs (i.e., graphs that can be embedded withoutk mutually crossing edges) [1],RAC

graphs (i.e., graphs that can be embedded with right angle crossings) [14], andfan-planar graphs (i.e.,
graphs that can be embedded with fan-crossings) [30].

Recently, algorithmics and complexity for such graphs have been investigated. Unfortunately, testing
1-planarity of a graph is NP-complete [21, 31], and testing whether a given graph is a RAC graph is NP-
hard [3]. Similarly, testing fan-planarity of a graph is NP-hard [8], even if a rotation system of each vertex
in a graph is fixed [6].

On the positive side, linear-time algorithms are available for special subclasses of beyond planar graphs.
For example, testingmaximal 1-planarity(i.e., the addition of an edge destroys 1-planarity) of a graph can
be solved in linear time, if a rotation system of each vertex is given [15]. Testingouter-1-planarity(i.e.,
1-planar graphs with each vertex on the outer face) of a graph can be solved in linear time [4, 25]. Testing
maximal outer-fan-planarity(i.e., fan-planar graphs with each vertex on the outer face and the addition of
an edge destroys outer-fan-planarity) [6], and testingfull outer-2-planarity(i.e., 2-planar graphs with each
vertex on the outer face and there is no crossing on the outer face) [26] can be solved in linear time.

As another problem on beyond planarity, this paper studies a problem of drawing a subset of edges
as a plane embedding while the other edges are allowed to cross each other. LetH = (VH , EH) be an
undirected graph with a subsetE of the edge setEH , where we call the edges inE red edgesand the edges
not inE blue edges. An embedding ofH into the plane is calledE-planar if no edge inE crosses any
other edges whereas two edges inEH − E may cross. The main problem of this paper can be defined as
follows.

Embedding a Graph with Crossable Edges

Input: A graphH = (VH , EH) with an edge subsetE ⊆ EH .

Output: Test whetherH admits anE-planar embedding and construct anE-planar embedding if
one exists.

See Fig. 1 for an example of a graphH with an edge subsetE and itsE-planar embedding. As a main result
in this paper, we give a complete characterization of an instance(H,E) that does not admit anE-planar
embedding via forbidden subgraphs with red/blue edges. Furthermore we design a linear-time algorithm
that finds either anE-planar embedding or a forbidden subgraph.

Our problem setting can enable us to formulate a problem of finding a planar embedding of a planar
graphG = (V,E) with an additional constraint such that, for specified setsS1, S2, . . . , Sk of vertices, all
the vertices in eachSi appear along the same facial cycle. We call the constraint thefacing constraint. To
see this, we regard all edges inG as red edges and add a starsi with blue edgessit, t ∈ Si for eachi.
Then we observe that the augmented graphH = (V ∪ {s1, . . . , sk}, E ∪ (∪1≤i≤k{sit | t ∈ Si})) admits
anE-planar embedding if and only ifG admits a planar embedding satisfying the facing constraint with
{S1, S2, . . . , Sk}.

For example, this allows us to find a planar embedding of a planar graphG such that the rotation
systems of some vertices are predetermined, as studied by Gutwenger et al. [22]. Let{u1, u2, . . . , ud} be
the neighbors of a vertexv in G. Then by settingSi = {ui, ui+1} for all i = 1, 2, . . . , d − 1, we see that
for any planar embeddingG the facing constraint with{S1, S2, . . . , Sd}, the rotation system ofv is either
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Figure 1: (a) An instance(H,E) with a red edge setE = {v1v5, v1v7, v1v9, v2v4, v2v16, v3v5, v3v7,
v4v7, v5v9, v6v10, v6v12, v6v16, v7v8, v7v10, v8v16, v10v12, v11v13, v11v14, v12v16, v13v15, v14v15}; (b) An
E-planar embedding ofH.

(u1, u2, . . . , ud) or its reversal. We can impose the same constraint for some other vertices at the same time,
since we allow blue edges to cross each other.

Another way of asking our problem is to find a partition{X1, X2, . . . , Xh} of a specified vertex subset
X in a graphH such that the graphH ′ obtained fromH by contracting each setXi into a single vertex
xi becomes planar, where we call such a partitionplanarizing. It is not difficult to see that the problem of
finding a planarizing partition can be reduced to our problem by regarding all edges incident to a vertex in
X as blue edges.

The paper is organized as follows. Section 2 introduces basic notations and discusses data structure
for ordered trees. Section 3 states our main result that the instances that have noE-planar embeddings
can be characterized by five types of forbidden subgraphs, and shows how to restrict given instances of
the problem to instances with a special structure called “star instances,” where the red graph is connected.
Section 4 describes how to reduce a star instance with a red connected graph into a star instance with a
red biconnected graph in linear time. Section 5 presents an algorithm for testing whether given instance
(H,E) with a triconnected red graph isE-planar, where we use a geometric argument based on convex
grid drawings to make a naive quadratic time algorithm run in linear time. The last case where the red
graph is biconnected is treated by three sections. Section 6 first reviews a method of decomposing a bicon-
nected graph into triconnected components, and observes how the forbidden subgraphs may appear in such
triconnected components of the red biconnected graph. Our algorithm for testing whether some forbidden
subgraph appears in a triconnected component of the red biconnected graph consists of two major phases.
Section 7 shows the first phase which detects some types of forbidden subgraphs appear in a triconnected
component of the red graph, whereas Section 8 presents the second phase that mainly detects the last type
of forbidden subgraphs in a given instance with a red biconnected graph.

2 Preliminaries

This section introduces basic notations and discusses data structure for ordered trees.
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2.1 Terminology

For a graphG, letV (G) andE(G) denote the sets of vertices and edges inG, respectively. LetG = (V,E)

be a graph, wheren denotes|V | unless stated otherwise. For a vertexv ∈ V , let deg(v) denote the degree
of v, andN(v) denote the set of neighborsu of v. For a subsetE′ ⊆ E of edges, letV (E′) denote the set
of end-vertices of all edges inE′, and letG−E′ denote the graph obtained fromG by removing the edges
in E′. LetX ⊆ V be subsets of vertices. Letδ(X) denote the set of edges betweenX andV −X, where
we may denoteδ({v}) by δ(v). LetG−X denote the graph obtained fromG by removing the vertices in
X together with the edges incident to any vertex inX. LetG[X] denote the subgraph induced fromG by
the vertices inX, i.e.,G[X] = G− (V −X). We may indicate the underlying graphG in these notations
in such a way thatδ(X), deg(v) andN(v) are written asδ(X;G), deg(v;G) andN(v;G). A vertex of
degreed is called adegree-d vertex. A star is a graph with a centers and some other vertices which are
incident to onlys (possibly with multiple edges), which we may simply denote by the centers, the edge
set{st | t ∈ N(s)} or the neighbor setN(s) if it is clear from the context. A biconnected component of a
graph is called ablock.

We say that two paths areinternally disjoint if no internal vertex of one of the paths is contained by
the other. For two vertex subsetsS, T ⊆ V , a simple pathP with end verticess ∈ S and t ∈ T such
thatV (P ) ∩ (S ∪ T ) = {s, t} called anS, T -path. We may denote{s}, T -path bys, T -path and{s}, {t}-
path bys, t-path. For a pathP , let Vin(P ) denote the set of internal vertices inP . Subdividingan edge
e = uv is to replace the edge with au, v-pathu,w1, w2, . . . , wk, v with k (≥ 1) new degree-2 verticeswi,
i = 1, 2, . . . , k. A graphH is asubdivisionofG if H is obtained by subdividing some edges inG. A graph
H is calledpseudo-triconnectedif it is a subdivision of a triconnected graphG. It is known that a planar
embedding of a pseudo-triconnected graph is unique up to reversal or a choice of outer face.

For a treeT and two verticesu andv in T , letP (u, v;T ) denote the uniqueu, v-path inT . A rooted tree

is a tree with a designated vertexr, called theroot, which introduces a parent-child order among vertices
and defines thedepthdt(v) of each vertexv to be the length of the path fromr to v.

A u, v-chain is a graph obtained from au, v-path(u1 = u, u2, . . . , up = v) by replacing some edges
uiui+1 with two internally disjointui, ui+1-pathsP 1

i andP 2
i , and thelengthof the chain is defined to be

p − 1, the length of the originalu, v-path. LetCi denote the cycle formed byP 1
i andP 2

i (possiblyCi is
a cycle of length 2). Hence it is a sequence of edgesuiui+1 or simple cyclesCi for i = 1, 2, . . . , p − 1,
where we call each of such cyclesCi a factorof the chain and each ofP 1

i andP 2
i of a factorCi is asideof

Ci. We define acircular chainto be au, v-chain withu = v.
LetK∗

5 denote the graph obtained from the complete graphK5 with five vertices by splitting a vertex
into two degree-3 verticesu1 andv1 with a new edgeu1v1, where we callu1 andv1 thesplit vertices.

A topological graphor embeddingγ of a graphH is a representation of a graph (possibly with multiple
edges) in the plane, where each vertex is a point and each edge is a Jordan arc between the points represent-
ing its endpoints. Two edgescrossif they have a point in common, other than their endpoints. The point
in common is acrossing. To avoid pathological cases, standard non-degeneracy conditions apply: (i) two
edges intersect at most one point; (ii) an edge does not contain a vertex other than its endpoints; (iii) no
edge crosses itself; (iv) edges must not meet tangentially; (v) no three edges share any crossing point; and
(vi) no two edges that share an endpoint cross.

2.2 Ordered Trees

Let T be anordered tree, i.e., a rooted tree with a left-right order, a total order over the children of each
vertex. For each vertexv in T , let D(v;T ) denote the set of vertexv and all descendants ofv, and let
T (v) denote the ordered subtreeT [D(v;T )] induced fromT by D(v;T ). For two verticesu andv in T ,
let lca(u, v;T ) be theleast common ancestorof u andv. In T , we define theleft dfs orderld, theright dfs

order rd, theleft post orderlp and theright post orderrp to be functions fromV to the set of nonnegative
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integers such that
(i) ld(u) > ld(v), rd(u) > rd(v), lp(u) < lp(v) andrp(u) < rp(v) for a vertexv with a childu; and
(ii) ld(u) < ld(v), rd(u) > rd(v), lp(u) < lp(v) andrp(u) > rp(v) for two siblingsu andv such thatu
is to the left ofv.
We assume that the maximum value used in these functions isO(n). See Fig. 2(a) for an illustration of an
ordered treeT with vertices indexed by the left post orderlp.
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Figure 2: Illustration of an ordered tree and a mimic tree: (a) An instance ordered treeT rooted at vertex
v23, where the vertices are indexed by the left post orderlp; (b) The mimic treeT ⟨N⟩ = (N∗, EN ) for
N = {v1, v5, v7, v9, v17, v16, v20}, whereN∗ − N = {v4, v6, v12, v13, v18, v19, v22, v21, v23}; and (c) The
mimic treeT i = T ⟨N i⟩ of the setN i = {u1, u2, . . . , ui}.

Note thatu ̸∈ D(v;T ) if and only if ld(u) < ld(v) or rd(u) < rd(v).
For a vertexv ∈ T , we say that a vertexu is on the left side ofv if ld(u) < ld(v) andlp(u) < lp(v),

which means thatlca(u, v;T ) has childrenw1 andw2 such thatu ∈ D(w1;T ), v ∈ D(w2;T ) andw1

is to the left ofw2. Symmetrically we say that a vertexu is on the right side ofv if rd(u) < rd(v) and
rp(u) < rp(v). Observe thatlp(u) ≤ lp(w) implies thatu ∈ D(w;T ) or ld(u) < ld(w).

Lemma 1 For a subsetS of vertices in an ordered treeT and each functionf ∈ {dt, lp, rp}, let af,S
denote a vertexu ∈ S with f(u) = min{f(s) | s ∈ S}. Letv be a vertex inT . Then:

(i) If ld(alp,S) < ld(v) andlp(alp,S) < lp(v), thenalp,S is a vertex on the left side ofv; Conversely if the

setS −D(v;T ) contains a vertex on the left side ofv, thenld(alp,S) < ld(v) andlp(alp,S) < lp(v);

(ii) If rd(arp,S) < rd(v) andrp(arp,S) < rp(v), thenarp,S is a vertex on the right side ofv; Conversely if

the setS −D(v;T ) contains a vertex on the right side ofv, thenrd(arp,S) < rd(v) andrp(arp,S) <

rp(v); and

(iii) Assume thatS − D(v;T ) contains no vertex on the left or right side ofv. If dt(adt,S) < dt(v),

thenadt,S is an ancestor ofv; Conversely if the setS − D(v;T ) contains an ancestor ofv, then

dt(adt,S) < dt(v).

Proof. (i) Let u = alp,S . Hence ifld(u) < ld(v) and lp(u) < lp(v) thenu is on the left side ofv by
definition. Assume thatS−D(v;T ) contains a vertexw on the left side ofv. By definition,ld(w) < ld(v)

andlp(w) < lp(v), from whichlp(u) ≤ lp(w) < lp(v) sinceu = alp,S . Recall thatlp(u) ≤ lp(w) implies
thatu ∈ D(w;T ) or ld(u) < ld(w), from which we knowld(u) < ld(v).

(ii) Symmetrically with (i).
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(iii) Assume thatS − D(v;T ) contains no vertex on the left or right side ofv. Then any vertex
w ∈ S − D(v;T ) is an ancestor ofv, and satisfieslca(w, v;T ) = w. Let u = lca(adt,S , v;T ). If
dt(u) < dt(v), thenu ∈ S−D(v;T ) is an ancestor ofv. If S−D(v;T ) contains an ancestorw of v, then
clearlydt(u) ≤ dt(w) < dt(v). 2

2.3 Mimic Trees

Let T = (V,E) be an ordered tree. It is known that we can findlca(u, v;T ) for any query of two vertices
u andv in O(1) time after anO(|V |)-time preprocessing on the rooted treeT (see [7, 24]).

For two distinct verticesv1, v2 ∈ V , definelca∗(v1, v2;T ) to be the set of at most three verticesz, z1
andz2 such thatz = lca(v1, v2;T ), andzi, i = 1, 2 is the children ofz which isvi or an ancestor ofvi
(no such vertexzi exists ifvi = lca∗(v1, v2;T )); i.e., if z = lca∗(v1, v2;T ) ̸= v1, v2 thenlca∗(v1, v2;T ) =
{lca(v1, v2;T ), c1, c2} with ci ∈ Ch(z;T ) with vi ∈ D(ci;T ); and if z = lca∗(v1, v2;T ) ̸= vi for i = 1

or 2 thenlca∗(v1, v2;T ) = {lca(v1, v2;T ), cj} with cj ∈ Ch(z;T ) with vi ∈ D(cj ;T ) for j ̸= i. We
observe that given a query of two verticesv1 andv2, lca∗(v1, v2;T ) can be obtained inO(1) time using
the procedure for finding the least common ancestors. For example, ifT is a binary tree, then we can
easily find the childrenci of lca(v1, v2;T ) that is an ancestor ofvi in O(1) time if one exists. When
T is not a binary tree, each vertexv in T with d ≥ 3 childrenu1, u2, . . . , ud can be split intod − 2

verticesv1, . . . , vd−1 to obtain a binary ordered treeTleft (resp.,Tright) such thatui, vi+1 ∈ Ch(vi;Tleft),
i = 1, 2, . . . , d−2 andud−1, ud ∈ Ch(vd−1;Tleft) (resp.,ud−i+1, vi+1 ∈ Ch(vi;Tright), i = 1, 2, . . . , d−2

andu1, u2 ∈ Ch(vd−1;Tright)), whereui appears beforeui+1 in the left depth-first order along any ofTleft
andTright. Using the both modified treesTleft andTright, we can find the right childci of lca(v1, v2;T ) in
T in O(1) time.

For a subsetN of vertices in an ordered treeT = (V,E), letN∗ denote the setN∪(
∪

u,v∈N lca∗(u, v;T )),
and we call an ordered treeT ⟨N⟩ = (N∗, EN ) themimic treeinduced fromT byN if
(i) the edge setEN contains an edgeuv whenu is an ancestor ofv and no other vertexw ∈ N∗ − {u, v}
lies along the path betweenu andv in T ; and
(ii) for two siblingsu andv in T ⟨N⟩, u is to the left ofv in T ⟨N⟩, whenu is on the left side ofv.
Note that|N∗| ≤ 3|N |. See Fig. 2(b) for an illustration of a mimic tree.

Lemma 2 Given an ordered treeT with n vertices and a family{N1, N2, . . . , Nk} of subsets of vertices,

the mimic treesT ⟨Ni⟩, i = 1, 2, . . . , k can be constructed inO(n+
∑

1≤i≤k |Ni|) time.

Proof. First for each setN ∈ {N1, N2, . . . , Nk}, sort the vertices inN so thatN = {u1, u2, . . . , up}
satisfiesld(u1) < ld(u2) < · · · < ld(up). This can be done inO(n+

∑
1≤i≤k |Ni|) time by visiting each

vertexv in the ordered treeT according to the left dfs order and placing the vertexv as the latest one in a
new list for each setNi with v ∈ Ni.

Next we construct the mimic treeT ⟨N⟩ for each setN ∈ {N1, N2, . . . , Nk}. To prove the lemma, it
suffices to show that eachT ⟨N⟩ can be constructed inO(|N |) time.

LetN = {u1, u2, . . . , up}, whereld(ui) < ld(ui+1), i = 1, 2, . . . , |N | − 1. For eachi = 1, 2, . . . , p−
1, we computelca∗(ui, ui+1;T ) in O(1) time, and denote byzi lca(ui, ui+1;T ) and byci (resp.,c′i)
the child of zi that is an ancestor ofui (resp.,ui+1) if one exists. Note thatN∗ is obtained byN ∪
(
∪

i=1,2,...,p−1 lca
∗(ui, ui+1;T )).

For eachi = 1, 2, . . . , p, let T i denote the mimic treeT ⟨N i⟩ of the setN i = {u1, u2, . . . , ui} of
the firsti vertices. ClearlyT 1 is the tree consisting of vertexu1. Assuming thatT i for somei < |N | is
obtained, we show how to constructT i+1. Sinceu1, u2, . . . , up are indexed according to the left dfs order,
we observe that the pathP (ri, ui;T i) between the current rootri of T i is the rightmost path, i.e., we arrive
at ui from ri by choosing the rightmost child. See Fig. 2(c) for an illustration ofT i. To determine the
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right position where verticeszi, ci, c′i andui+1 are inserted or added inT i to obtainT i+1, we traverse
pathP (ri, ui;T i) from ui towardri to find the lowest vertexw in the path such thatdt(w) ≥ dt(zi). We
distinguish three cases:
(i) No such vertexw exists in the path: Then letri be a child of a new rootzi;
(ii) Such a vertexw exists anddt(w) = dt(zi): Thenw = zi holds; and
(iii) Such a vertexw exists anddt(w) > dt(zi): Then insertzi betweenw and its rightmost childw′.

In any of (i)-(iii), (a) if zi has a child and the right child ofzi is not c′i in the current tree, then insert
c′i betweenzi and the right child; (b) ifzi ̸= ui+1 ̸= c′i (resp., ifzi ̸= ui+1 = c′i) then appendc′i as the
rightmost child ofw andui+1 as a new child ofc′i (resp., appendui+1 as the rightmost child ofw). Note
that |V (T p)| = |N∗| ≤ 3|N |. When we traverse the rightmost pathP (ri, ui;T i), the edges in the path
traversed will not be traversed again later. This implies that the total time for constructingT p = T ⟨N⟩ is
O(|V (T p)|) = O(|N |), as required. 2
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Figure 3: Illustration of primely forbidden subgraphs: (a)K3,3 with at most one vertex to which a blue edge
is incident; (b)K5 with at most one vertex to which a blue edge is incident; (c)K∗

5 with blue edges incident
to only the split vertices; (d) A set of four red internally disjointu, v-pathsP1, P2, P3 andP4 together with
three blue edgesu1u2, v2v3 andw3w1 such thatu1, w1 ∈ V (P1) − {u, v}, u2, v2 ∈ V (P2) − {u, v},
v3, w3 ∈ V (P3) − {u, v}; and (e) A red circular chain withp ≥ 2 factorsC1, C2, . . . , Cp andp blue
edgesu1v2, u2v3, . . . , up−1vp andupv1 such that for eachi = 1, 2, . . . , p − 1, it holdsui ∈ Vin(P

k
i ) and

vi+1 ∈ Vin(P
k
i+1) for the samek ∈ {1, 2}, butup ∈ Vin(P

k
p ) andvi+1 ∈ Vin(P

ℓ
1) for k ̸= ℓ

3 Main Theorem

As our main result, this section states that every instance that has noE-planar embedding can be charac-
terized by five types of forbidden subgraphs, and shows how to restrict given instances of the problem to
instances with special structure called “star instances,” where the red graph is connected.

Let (H = (VH , EH), E) be a given instance. For convenience, we call the edges inE red edgesand the
edges inEH − E blue edges. A graph is calledred (resp.,blue) if it contains only red (resp., blue) edges.
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A graph is calledgray if it is allowed to contain both a red edge and a blue edge.
We call a graphH with red and blue edgesprimely forbiddenif it satisfies one of the following:

(i) H = K3,3 with at most one vertex to which a blue edge is incident (see Fig. 3(a));

(ii) H = K5 with at most one vertex to which a blue edge is incident (see Fig. 3(b));

(iii) H = K∗
5 with blue edges incident to only the split vertices (see Fig. 3(c));

(iv) H consists of four red internally disjointu, v-pathsP1, P2, P3 andP4 together with three blue edges
u1u2, v2v3 andw3w1 such thatu1, w1 ∈ Vin(P1), u2, v2 ∈ Vin(P2), v3, w3 ∈ Vin(P3) (see Fig. 3(d));
and

(v) H consists of a red circular chain of length at least 3 withp ≥ 2 factorsC1, C2, . . . , Cp (which may
not appear in this order along the circular chain) andp blue edgesuivi+1, i = 1, 2, . . . , p − 1 and
upv1 such that for eachi = 1, 2, . . . , p− 1, it holdsui ∈ Vin(P

k
i ) andvi+1 ∈ Vin(P

k
i+1) for the same

k ∈ {1, 2}, butup ∈ Vin(P
k
p ) andvi+1 ∈ Vin(P

ℓ
1) for k ̸= ℓ (see Fig. 3(e)).

We call a graph with red and blue edgesforbiddenif it is primely forbidden or it is obtained from a
primely forbidden graph by subdividing some edges such that each red edgeuv is replaced with a redu, v-
path and each blue edgeuv is replaced with a grayu, v-path. We say that a forbidden graph is of type (i)
(resp., (ii), (iii), (iv) and (v)) if it is obtained from a primely forbidden graph in (i) (resp., (ii), (iii), (iv) and
(v)). We call a red edgeuv in a primely forbidden graph (or a redu, v-path obtained by subdividing it) a
primely red path. Thecoreof a forbidden graph is defined to be the red graph that consists of primely red
paths, where we observe that the core is biconnected.

An embeddingγ of a graphH is called anE-planarembedding for a subsetE of edges inH if no edge
in E crosses any other edge. An instance(H,E) that admits anE-planar embedding is calledE-planar.

Lemma 3 LetF = (H,E) be a forbidden graph, whereE is the set of red edges in the graphH. ThenF

admits noE-planar embedding.

Proof. WhenF is of type (iv), the four internally disjoint redu, v-paths divides the plane into four faces
in any planar embedding of the four paths, and some of the three gray paths inF always crosses one of the
four red paths.

LetF be of type (i), (ii) or (iii). To derive a contradiction, assume thatF admits anE-planar embedding
γ, where we chooseγ so that the number of crossings is minimized. Then we see that no two gray paths
with the common end-vertexv1 have any crossing between them, since otherwise we could switch some
parts of these paths to get anotherE-planar embeddingγ′ with a smaller number of crossings. WhenF is
of type (i) or (ii), this means thatγ is a planar embedding. contradicting that no subdivision ofK3,3 and
K5 admits a planar embedding. WhenF is of type (iii), the embedding induced fromγ by the red paths in
F has a facef whose facial cycleCf contains the edges in the five gray paths ofF , and this implies that
a planar embedding of a subdivision ofK5 can be obtained by replacing the five gray paths with four red
paths, a contradiction.

Let F be of type (v). LetγQ be a planar embedding of the red circular chainQ such that the outer
boundary is not any factor cycle inQ. Since the length of the red circular chain is at least 3, no two factor
cycles are drawn as four internally disjointx, y-paths for some verticesx andy in γQ. Hence one of the
two sides of each factor cycle appears along the interiorfin of γQ and the other along the exteriorfex of
γQ (see Fig. 3(e)). WhenγQ can be extended to anE-planar embedding, each of the firstp− 1 gray paths
connects sidesP k

i andP k
i+1 for the samek ∈ {1, 2} so that bothP k

i andP k
i+1 appear infin or fex. This,

however, implies that thep-th path cannot join sideP k
p andP ℓ

1 with k ̸= ℓ without making a crossing with
the red graphQ. 2

The main result of this paper is described as follows.
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Theorem 4 Every instance(H,E) of a graphH and a subsetE ⊆ E(H) either admits anE-planar

embedding or contains a forbidden subgraph. Finding anE-planar embedding or a forbidden subgraph of

H can be done in linear time.

We prove the theorem by a constructive proof with an algorithm that actually finds anE-planar em-
bedding or a forbidden subgraph, showing that it can be implemented to run in linear time. For this,
we distinguish instances(H,E) depending on the vertex-connectivity of the red graph(V (E), E). More
specifically, we reduce an instance with a red graph of connectivity 0 to that with a red graph of connectivity
1, and reduce an instance with a red graph of connectivity 1 to those with biconnected red graphs. We then
design an algorithm that finds either anE-planar embedding or a forbidden graph for each of the cases
where the vertex-connectivity of a red graph is 2 and at least 3.

Our forbidden graph characterization enables us to easily reduce an instance with a red graph of con-
nectivity 0 to that with a red graph of connectivity 1. Since the core of a forbidden graph of any type
is biconnected, we see that regarding any blue edgee as a red edge does not change theE-planarity (or
(E ∪ {e})-planarity) if edgee is not in any cycle of the new red graph(V (E ∪ {e}), E ∪ {e}).

Lemma 5 Assume that Theorem 4 is true for any instance such that the red graph is connected. Given an

instance(H = (VH , EH), E) with a connected graphH, let ∆E ⊆ EH − E be a set of blue edges such

that no edge in∆E is contained in a cycle of the graph(VH , E′ = E ∪∆E). ThenH isE-planar if and

only ifH isE′-planar. Moreover,

(a) if (H,E′) admits anE′-planar embedding, then(H,E) admits anE-planar embedding(trivially); and

(b) if (H,E′) contains a forbidden subgraphF , then regarding the color of edges in∆E ∩ E(F ) as the

original red,F is a forbidden subgraph to(H,E).

Proof. By the assumption on Theorem 4, the instance(H,E′) either admits anE′-planar embedding or
contains a forbidden subgraphF . Hence (a) and (b) imply thatH isE-planar if and only ifH isE′-planar.
Since (a) is trivial, we show (b). LetF be a forbidden subgraph in(H,E′). Now blue edges in∆E are
regarded as red edges in(H,E′). However, by the choice of∆E, the new red graph(V ∪ V (∆E), E′ =

E ∪ ∆E) contains no red cycle which passes through some edge in∆E. On the other hand the core of
a forbidden graph of any type of (i)-(v) is biconnected. This means that the core ofF cannot contain any
edge in∆E; only a gray path ofF can contain some edges in∆E. Hence even after changing the color of
edges in∆E contained inF from red to blue, the graphF is a forbidden graph, which is now a subgraph
of (H,E). 2

In particular, given an instance(H = (VH , EH), E), we choose∆E as a minimal set of blue edges such
that(VH , E∪∆E) is connected. By the lemma, the new instance(H,E′ = E∪∆E) has a special structure
that the red graph(V (E′), E′) is a connected spanning subgraph ofH. See Fig. 4(a) for an illustration of an
instance(H = (VH , EH), E), where such a minimal set{e1, e2, . . . , e18} is chosen, and the new instance
(H,E′ = E ∪∆E) is illustrated in Fig. 4(b).

Now we show how to restrict given instances of the problem to instances with special structure called
“star instances.” For an instance(H,E), denote the red graph(V (E), E) by G = (V,E). We call an
instance(H = (VH , EH), E) astar instanceif it satisfies the following:
(i) The entire graphH is biconnected;
(ii) The red graphG is a connected planar graph but is not outerplanar (henceE ̸= ∅); and
(iii) The setV (H)− V (E) is a nonempty independent set inH, and each vertex inV (H)− V (E)

has at least two neighbors (hence the blue edges form a collection of stars).

Lemma 6 Theorem 4 is true if the statement of the theorem holds for star instances.

Proof. We prove the lemma by the following five steps (1)-(4).
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Figure 4: (a) An instance(H = (VH , EH), E) such that the red graphG = (V,E) is not connected,
whereX1, X2, . . . , X6 indicate the nontrivial components in the graph(VH , E); (b) An instance(H,E′ =

E ∪∆E) obtained from(H,E) in (a) by choosing a minimal set∆E = {e1, . . . , e18} of blue edges such
that(VH , E ∪∆E) is connected and regarding the edges in∆E as red edges.

(1) Without loss of generality we can assume that a given instance(H,E) has a connected graphH. If
a given instance(H,E) is not biconnected, then we decomposeH into the blocksHj , j = 1, 2, . . . , q, each
of which induces an instance(Hj , Ej = E(Hj) ∩E). We easily see that (a) If anEj-planar embedding of
Hj is given for eachj, then anE-planar embedding ofH can be obtained by combining them; and (b) If
a forbidden subgraphFj of Hj is given for somej, then it is also a forbidden subgraphF of H. Also all
the above tasks can be done in linear time. Now we assume that a given instance(H,E) has a biconnected
graphH, satisfying the condition (i) of star instances.

(2) Next find a minimal set∆E of blues edges that makes(VH , E) connected in linear time and regard
the edges in∆E as red edges. By Lemma 5, theE-planarity of(H,E) is equivalent with theE′-planarity of
(H,E ∪∆E), where the new instance has a special structure that the red graph(V (E′), E′) is a connected
spanning graph ofH. Hence each of the end-vertices of any blue edgeuv ∈ EH − E′ is adjacent to a red
edge. Then we subdivide each blue edgee = uv into uwe andwev with a new degree-2 vertexwe so that
the condition (iii) of star instances is satisfied.

(3) If the red graphG is not planar, then the original instance(H,E) has noE-planar embedding, and
a forbidden subgraph that is a subdivision ofK5 or K3,3 can be found in linear time. Note that such a
forbidden subgraph is a special case of the primely forbidden subgraph. Hence we can assume that the red
graphG is planar in the following.

(4) If the red graphG is outerplanar, then clearly the instance admits anE-planar embedding, which
can be obtained from an outerplanar embedding ofG by placing all blue edges in the outer face. Hence we
can assume that the red graphG is not outerplanar. Finally the condition (ii) of star instances is satisfied.

2

In fact, we can also assume thatH is not planar when we regard all edges inH red, since otherwise we
are done. WhenH is not planar, it contains a subdivision ofK5 or K3,3, which can be obtained in linear
time. In general, such a subgraph does not mean the non-E-planarity of(H,E) since it may be drawn in
the plane with some crossings between only blue edges.

Given a star instance(H,E), we denote the vertex setV (H)− V (E) byA = {s1, s2, . . . , sk}, the set
of neighbors ofsi by Si for eachi, where|Si| ≥ 2 for eachi. We also denote the star instance(H,E) by
(H,G,A) or (G,A). For simplicity, we may callsi ∈ A astar. Letn = |V | andm =

∑
1≤i≤k |Si|.

Planarizing Star Partitions
A partitionA of a star setA is calledplanarizingif the graphH/A obtained fromH by contracting each
setA ∈ A into a single vertexsA is planar. If a planarizing partitionA = {A1, A2, . . . , Ah} exists, then an
E-planar embedding ofH can be obtained in linear time from a planar embeddingγH/A. In fact, letγredH/A
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denote the embedding of the red graphG obtained fromγH/A by deleting all contracted stars, and for each
setAj ∈ A, let fj denote the face ofγredH/A that contain the contracted starsAj . Then by placing the blue

edges incident tos ∈ Aj in the facefj of γredH/A for all j = 1, 2, . . . , h, we obtain anE-planar embedding
γH of H. In what follows, we construct a planarizing partition ofA instead of anE-planar embedding of
H if one exists.

4 Case of Connectivity 1

This section treats a star instance with a red graph of connectivity 1, and describes how to reduce such an
instance to star instances with red biconnected graphs in linear time.

Let (H,G,A) be a star instance with a red connected graphG and a setA of blue stars. By defi-
nition, H is biconnected andG is connected. In this section, we assume that a given red graph is not
biconnected, i.e.,G hasp ≥ 2 blocksB1, B2, . . . , Bp, and decompose the instance intop new instances
(Bj = (V j , Ej), Aj), j = 1, 2, . . . , p by setting each star setAi adequately so that(G,A) is E-planar if
and only if(Bj , Aj) isEj-planar for allj.

Let C(G) denote the set of cut-vertices inG, let B(G) denote the set of blocks inG, and letX,Y be
subsets ofV .

We call setX pendantif exactly one vertexc ∈ X is adjacent to a vertex inV − X ̸= ∅, where
c ∈ C(G) holds. A blockB is calledpendantif V (B) is pendant. The unique cut-vertexc ∈ C(G) in a
pendant setX (resp., blockB) is denoted bycX (resp.,cB).

We say that a stars ∈ A links setX ⊆ V (or a blockB with X = V (B)) to setY ⊆ V (or a blockB′

with Y = V (B′)) if
N(s;H) ∩ (X − C(G)) ̸= ∅ ̸= N(s;H) ∩ (Y −X).

A stars ∈ A is calledX-inter if it links X to V −X, i.e.,N(s;H) ∩ (X − C(G)) ̸= ∅ ̸= N(s;H)−X;
and a stars ∈ A is calledX-intra (or B-intra for a blockB with X = V (B)) if it does not linkX to
V − X, i.e.,N(s;H) ⊆ X. Let Ainter(X) andAintra(X) denote the sets ofX-inter starss ∈ A and
X-intra starss ∈ A. Note that whenX is pendant,X ′ = V − (X − {cX}) is also pendant and hence
Ainter(X) = Ainter(X ′).

WhenX = V (B) for a blockB, we may useB instead ofX in the above notationX-inter,X-intra,
Ainter(X) andAintra(X).

Let X1 be a pendant set inH, and denotec = cX1 andX2 = V − (X − {c}). Then we define two
instances(Hi, G[Xi], Ai), i = 1, 2 split from (G,A) as follows: For eachi = 1, 2, let Hi denote the
union of the induced red graphG[Xi] and blue starsAi = Aintra(Xi) ∪ {s′}, wheres′ is a new star whose
neighbor setN(s′;Hi) ⊆ Xi in Hi is obtained by merging the neighbors inXi of all Xi-inter starss and
includingc as a neighbor; i.e.,

N(s′;Hi) := {c} ∪
∪

s∈Ainter(Xi)

N(s;H) ∩Xi,

where|N(s′;Hi)| ≥ 2. See Fig. 5(a)-(c) for a process of splitting an instance(H,G,A) into instances
(Hi, G[Xi], Ai), i = 1, 2.

We call a pendant blockB ∈ B(G) removableif any two verticesu, v ∈ V − V (B) are connected in
the graphH − V (B).

Lemma 7 Let B be a removable block in a star instance(G,A), and let(Hi, G[Xi] = (Xi, Ei), Ai),

i = 1, 2 be the instances defined forc = cB, X1 = V (B), X2 = V − (X1 − {cB}), E1 = E(B) and

E2 = E − E1.
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Figure 5: Illustration of splitting a star instance(H,G,A) into two star instances(Hi, Gi, Ai), i = 1, 2:
(a) A given instance(H,G,A) with a pendant blockB5 at a cut-vertexc = cB5 , whereX1 = V (B5) and
X2 = V − (X − {c}) are pendent sets, ands1 ands2 areB5-inter stars whiles3 is aB5-intra star; (b)
The resulting instance(H2, G2, A2), whereH(s′;H2) includesc and all neighbors ofs1, s2 ∈ Ainter(B5)

not inB5; and (c) The resulting instance(H1, G1, A1), whereH(s′;H1) includesc and all neighbors of
s1, s2 ∈ Ainter(B5) in B5; and (d) A pendant setXi with c = cXi and edgesej , ej′ ∈ δ(Xi;H) which are
incident to the merged stars′.

(i) If (G[Xi], Ai) admits a planarizing partitionAi ofAi for both i = 1, 2, then, for the setsA0
i ∈ Ai,

i = 1, 2 with s′ ∈ A0
i and the merged setA′ = (A0

1 ∪ A0
2 − {s′}) ∪ Ainter(B), the partition

(A1 ∪ A2 − {A0
1, A

0
2}) ∪ {A′} ofA is a planarizing partition in(G,A);

(ii) If (G[Xi], Ai) for somei = 1, 2 contains a forbidden subgraphF , then (G,A) also contains a

forbidden subgraphF ′, which can be constructed fromF in O(n+m) time; and

(iii) For eachi = 1, 2, graphHi is biconnected.

Proof. Note thatAinter(B) = Ainter(X1) = Ainter(X2).
(i) For eachi = 1, 2, the star setAi contains a stars′ with N(s′;Hi) = {c} ∪

∪
s∈Ainter(B)N(s;H) ∩

V (B). SinceAi is a planarizing partition ofAi, the graphHi/Ai has a planar embeddingγi, where we
denote byγredi the embedding induced fromγi by Gi, and we denote byfi the face ofγredi in which the
edgecs′ between the merged stars′ and the cut-vertexc is placed. Without loss of generality assume that
f1 is the outer face ofγred1 . Therefore, by placingγred1 in the facef2 of γred2 , we obtain a planar embedding
γG for the red graphG of H. In the facef1 of γG, we can place all starss ∈ A0

1 ∪ A0
2 − {s′} and all stars

s ∈ Ainter(B) merged tos′, without creating any new crossing with red edges inG. Clearly the contracted
starsA for any other setA ∈ A1 ∪A2 − {A0

1, A
0
2} still can be placed in a face ofγG, without creating any

new crossing with red edges. This proves (i).
(ii) First we claim that for eachi = 1, 2, every pair of verticesu, v ∈ V −Xi admits au, v-path in the

graphH −Xi. The claim fori = 1 is immediate from the definition of removable blocks. SinceV −X2

induces a connected graphB − {c}, the claim fori = 2 also holds.
LetF be a forbidden subgraph in(G[Xi], Ai) for somei = 1, 2. We show that a forbidden subgraph in

H can be obtained fromF by replacing some blue edges with paths inH − (Xi − {c}).
If F does not contain the new stars′, then we are done sinceF is a subgraph of the original instance

H. Assume thatF containss′, and letej = ujs
′, j = 1, . . . , h be the blue edges incident tos′ in F , where

h = deg(s′;F ) is 2, 3 or 4, since in any type of a forbidden subgraph, the number of blue edges incident
to a vertex is 2, 3 or 4. There may be a new blue edgeej = cs′ ∈ δ(s′;Hi) in Hi such thatc is not adjacent
to anyB-inter star inH. We call such an edge asupporting edgein Hi. Let ej be a non-supporting edge
in δ(s′;Hi). Since the new stars′ is adjacent to all vertices inN(s;H) ∩ Xi of anXi-inter stars, we
see that the edgeej was a blue edge incident to anXi-inter star, saysj in H, wheresj has a neighbor
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tj ∈ N(sj ;H)−Xi in H, which is connected to vertexc by

a redtj , c-pathPtj ,c. (1)

Analogously for any other non-supporting edgeej′ ∈ δ(s′;Hi) was a blue edge incident to anXi-inter star,
saysj′ in H, which is adjacent totj ∈ N(sj ;H)−Xi in H. By the above claim,tj andtj′ are connected
by

a tj , tj′-pathPtj ,tj′ in H −Xi, (2)

and henceH has ansj , sj′-pathPsj ,sj′ that does not pass through any vertex inXi, where possiblysj = sj′ .
See Fig. 5(d) for an illustration of setXi and edgesej , ej′ ∈ δ(Xi;H). We distinguish three cases of
h = 2, 3 and4.

(a)h = 2: First assume that someej = ujs
′ ∈ δ(s′;Hi) is an edgecs′, sayu2s′ = cs′. We replace the

blue edgese1 = u1s
′, e2 = cs′ ∈ δ(s′;Hi) with a u1, c-path inH that consists of blue edgesu1s1, s1t1

and the above redt1, c-pathPt1,c in (1). Then the resulting graphF ′ is a forbidden subgraph toH.
Next assume thatc ̸= uj for eachj = 1, 2. If s1 = s2, i.e., e1 ande2 are adjacent to the same star

s1 = s2 in H, then we are done. Lets1 ̸= s2. We replace the blue edgese1, e2 ∈ δ(s′;Hi) in F with a
u1, u2-path inH that consists of blue edgesujsj , sjtj , j = 1, 2 and the abovet1, t2-pathPt1,t2 in (2). Then
the resulting graphF ′ is a forbidden subgraph toH.

(b) h = 3: Without loss of generality assume thatu3 = c if some edgeej ∈ δ(s′;Hi) is an edgecs′.
Analogously with the case ofh = 2, we see thatH has au1, u2-pathPu1,u2 which passes throughs1 and
contains no vertex inXi − {u1, u2} and no blue edges other thanu1s1 andu2s2 in Hi, where possibly
s1 = s2. GraphH also contains ans1, u3-pathPs1,u3 in H that consists of blue edgess1t1, t3s3 and
s3u3 and the abovet1, t3-pathPt1,t3 in (2) (or of blue edges1t1 and the above redt1, c-pathPt1,c in (1)
whenc = u3). Let x ∈ V (Pu1,u2) − {u1, u2} be the first vertex that appears for the first time when we
traversePs1,u3 from u3 to s1. LetPu3,x be the subpath ofPs1,u3 from u3 to x. Then we see that the graph
F ′ obtained fromF by replacing the blue edgese1, e2, e3 ∈ δ(s′;Hi) with pathsPu1,u2 andPu3,x is a
forbidden subgraph toH.

(c) h = 4: Now F is of types (ii). Without loss of generality assume thatu3 = c if some edge
ej ∈ δ(s′;Hi) is an edgecs′. LetPu1,u2 and andPu3,x be the paths defined for edgese1, e2, e3 ∈ δ(s′;Hi),
as in the case ofh = 3. Analogously with case ofh = 3, there is ans1, u4-pathPs1,u4 in H that contains
no vertex inXi −{u4} and no blue edges other thant4s4 ands4u4 in H. Let y ∈ V (Pu1,u2)∪ V (Pu3,x)−
{u1, u2, u3} be the first vertex that appears for the first time when we traversePs1,u4 from u4 to s1. Let
Pu4,y be the subpath ofPs1,u4 from u4 to y. Then we replace the blue edgese1, e2, e3, e4 ∈ δ(s′;Hi) in F
with pathsPu1,u2 , Pu3,x andPu4,y to obtain a graphF ′. Although possiblyF ′ becomes of type (iii) when
F is of type (ii) andx ̸= y, we see thatF ′ is a forbidden subgraph toH.

We easily see that the above construction ofF ′ from F can be executed inO(n+m) time.
(iii) Note that|N(s′;Hi)| ≥ 2 for eachi = 1, 2. Since each stars ∈ Ai in instance(Hi, Ai) is adjacent

to at least two vertices inXi but no other vertices inV −Xi, no stars ∈ Ai can be a cut-vertex inC(Hi).
Hence it suffices to show that no vertexc ∈ C(H) ∩Xi is a cut-vertex inHi. By claim in (ii), the vertex
c ∈ C(H) ∩X1 ∩X2 is not a cut-vertex inHi. Assume thatHi contains a cut-vertexc′ ∈ C(Hi), which
separates the vertexc and a blockB′ with V (B′) ⊆ Xi−{c, c′}. Since the new stars′ is adjacent to vertex
c, we see that no stars ∈ Ainter(B) has any neighbor inB′. This, however, implies that the vertexc′ was a
cut-vertex inH, contradicting the biconnectivity ofH. 2

Next we show that every star instance(G,A) such that|B(G)| = p ≥ 2 has a removable block, based
on which we can decompose a given instance(G,A) into p new star instances(Bj , Aj), j = 1, 2, . . . , p.
For this, we introduce a parent-child order among cut-vertices and blocks inG.

For two setsX1 andX2 ⊆ V , whereXi = {c} or V (B) for c ∈ C(G) or B ∈ B(G), thedistance

between them is defined to be the number of cut-vertices in anX1, X2-pathP , where|P ∩Xi| = 1 by the
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definition ofS, T -paths.
For each cut-vertexc ∈ C(G), letB(c;G) denote the set of blocksB ∈ B(G) such thatc ∈ V (B). For

each blockB ∈ B(G), letC(B;G) denote the set of cut-verticesc ∈ C(G) such thatc ∈ V (B).
Choose a blockB1 as a root, where we keepB1 as the root even after we remove some pendant blocks

B (̸= B1) fromG. For each cut-vertexc ∈ C(G), letB(c;G) be the blockB ∈ B(c;G) with minimum
distance to the rootB1, and denoteB−(c;G) = B(c;G)−{B(c;G)}, where the blockB(c;G) is called the
parentof a block inB−(c;G), and each block inB−(c;G) is called achild of B(c;G). For each non-root
blockB ∈ B(G), let cB denote the cut-vertexc such thatB ∈ B−(c;G).

For each blockB ∈ B(G), let c(B;G) denote the cut-vertexc ∈ C(B;G) with minimum distance to
the rootB1, and denoteC−(B;G) = C(B;G) − {c(B;G)}, where the cut-vertexc(B;G) is called the
parent cut-vertexof a blockB ∈ B−(c;G). A cut-vertexc with B−(c;G) = ∅ is called aleaf cut-vertex.
A non-root blockB is outer-linkedif some stars ∈ A links B to a blockB′ which is not a descendant
of B. We say that two blocksB andB′ arestar-connectedif B = B′ or there is an alternating sequence
(B1 = B, s1, B2, . . . , sh−1, Bh = B′) of blocks inB−(c;G) and stars such that eachsi linksBi andBi+1.

An orderB1, B2, . . . , Bh of blocks is calledproper to the set{B1, B2, . . . , Bh} of blocks if for each
i = 1, 2, . . . , h, blockBh is star-connected to an outer-linked blockBj′ with j′ ≤ j. By definition, the
orderB1, B2, . . . , Bj for anyj ≤ h is also proper to the set{B1, B2, . . . , Bj}.

Lemma 8 For a leaf cut-vertexc ∈ C(G) in a star instance(H,G,A) such thatH is biconnected, there

always exists a proper sequenceB1, B2, . . . , Bq of blocks inB−(c;G), and the last blockBq is removable.

Proof. Sincec is not a cut-vertex in the biconnected graphH, there is at least one outer-linked block in
B−(c;G) and each non-outer-linked blockB ∈ B−(c;G) is star-connected to an outer-linked block. This
implies that there always exists a proper sequence of blocks inB−(c;G). Let Bq be the last block in a
proper sequenceB1, B2, . . . , Bq of blocks inB−(c;G). Then any other blockBj ∈ B−(c;G) − {Bq} is
still star-connected to an outer-linked block. This means that any two verticesu, v ∈ V − V (Bq) admit a
u, v-path inH that does not pass through any vertex inV (Bq), i.e.,Bq is removable. 2

Given a proper sequenceB1, B2, . . . , Bq of blocks inB−(c;G) at a leaf-cut-vertexc, we can repeat-
edly apply the lemma to eachBi, i = q, q − 1, . . . , 1. More formally for eachi = q, q − 1, . . . , 1, let
(H ′

i+1, G
′
i+1, A

′
i+1) denote the current instance after the firstq − i instances

(Hq, Bq, Aq), (Hq−1, Bq−1, Aq−1), . . . (Hi+1, Bi+1, Ai+1)

are generated, where(H ′
q+1, G

′
q+1, A

′
q+1) = (H,G,A). Since each subsequenceB1, B2, . . . , Bi with

i < q is also proper, the last blockBi in the subsequence is removable inH ′
i+1 by Lemma 8 and the resulting

graphH ′
i obtained by splittingBi off is biconnected by Lemma 7(iii). Therefore by Lemma 7(i)-(ii), the

original instance(H,G = (V,E), A) is E-planar if and only if the instance(Hi, Gi, Ai) is Ei-planar for
eachi = 0, 1, . . . , q, whereGi = Bi, Ei = E(Bi) for i = 1, . . . , q, and(H0, G0 = (V0, E0), A0) denotes
the remaining instance(H ′

1, G
′
1, A

′
1). Note thatV0 = V − (∪1≤i≤qV (Bi)− {c}).

All the red graphsG[Vi] = Bi, i = 1, 2, . . . , q andG[V0] in theseq+1 instances are simply determined
by the set of blocks inG. Let us show how each star setAi will be constructed by the repeated application
of the lemma. The star setAi of thei-th instance is constructed as follows. LetAintra(Bi) ⊆ A′

i+1 be the
set ofBi-intar stars inH ′

i+1, and letAinter(Bi) ⊆ A′
i+1 be the set ofBi-inter stars inH ′

i+1. Clearly any
Bi-intra stars will be included inAi. HenceAintra(Bi) ⊆ Ai. We merge allBi-inter stars into a single star
s′ such that

N(s′;Hi) := {c}
∪
{N(s;H ′

i+1) ∩ V (Bi) | s ∈ Ainter(Bi)},
N(s′;H ′

i) := {c}
∪
{N(s;H ′

i+1)− (V (Bi)− {c}) | s ∈ Ainter(Bi)}.
(3)

Then let
Ai := Aintra(Bi) ∪ {s′}, A′

i := (A′
i+1 −Aintra(Bi)−Ainter(Bi)) ∪ {s′}, (4)
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where we call the stars′ thepreceding starof Hi and thesucceeding starof H ′
i.

The procedure for splitting all blocks inB−(c;G′) off at a leaf-cut-vertexc is summarized as follows.
SPLIT(c)

1. Find a proper order sequenceB1, B2, . . . , Bq of blocks inB−(c;G′);
2. Construct the red graphsG[Vi] = Bi, i = 1, 2, . . . , q andG[V0] with V0 = V − (∪1≤i≤qV (Bi)− {c});
3. Compute the star setsAi, i = q, q − 1, . . . , 1 andA0 = A′

1 according to (3) and (4).
To reduce a given instance(H,G,A) into p = |B(G)| instances(B,AB), B ∈ B(G), we repeatedly

choose a leaf-cut-vertexc in the current instance(H ′, G′, A′) and apply the above procedure SPLIT(c) to
the blocks inB−(c;G′). We show that generating star setsAB of (B,AB) for all blocksB ∈ B(G) can be
implemented to run inO(n+m) time.

The adjacency between blocks and cut-vertices inG can be represented by a tree structure, called the
block-cut-vertex treeBC(G) = (B(G) ∪ C(G), EBC), a bipartite tree between two vertex setsB(G) and
C(G) such that the edge setEBC contains an edgeBc if and only if c ∈ V (B). RegardBC(G) as an
ordered tree rooted at the rootB1, and letld : B(G) ∪ C(G) → {1, 2, . . . , |B(G) ∪ C(G)|} be the left
depth-first order. We choose cut-verticesc ∈ C(G) in the decreasing order ofld(c) and apply SPLIT(c).

LetEblue
c be the set of blue edges incident to a blockB ∈ B−(c;G′) in the current instance(H ′, G′, A′)

whenc is selected, i.e.,Eblue
c = ∪{δ(B;H ′)− E(G) | B ∈ B−(c;G′)}. We show the next lemma, which

implies that the entire algorithm of generating allp = |B(G)| instances runs inO(n+m) time.

Lemma 9 Let (H ′, G′, A′) be in the current instance when a leaf-cut-vertexc is selected. ThenSPLIT(c)

can be implement to run inO(|Eblue
c |) time.

Proof. Before we execute the entire algorithm, we first prepare the following data structure in a given
instance(H,G,A). Define a mappingψ : V → B(G) such thatψ maps a vertexv ∈ V to a blockB
closest to the rootB1 among blocksB with v ∈ V (B).

We prepare a listL(s) of all edges incident to each stars ∈ A so that an edgesu ∈ δ(s;H) appears
before any edgesv ∈ δ(s;H) with ld(ψ(u)) ≤ ld(ψ(u)). Let pL(s) denote a pointer that indicates the
address ofL(s). By visiting all blocksB ∈ B(G) in the left depth-first search manner, such listsL(s)

for all starss ∈ A can be constructed inO(n +m) time. By the above way of storing vertices in the list
L(s) for each stars ∈ A, when the blocks inB−(c;G) at a leaf-cut-vertexc are removed by the procedure
SPLIT(c), the vertices inN(s;H) ∩ (∪B∈B−(c;G)V (B)) appear consecutively in the listL(s), and there is
no need to access any other vertices stored in the listL(s) before we proceed to other leaf-cut-vertices.

When we merge several stars, says1, s2, . . . , sh into a single stars∗, we do not directly merge their
listsL(si), i = 1, 2, . . . , h. Instead, we link their pointerspL(si), i = 1, 2, . . . , h with a doubly-linked list
dll(s∗). In fact, each starsi may have consisted of several stars whose pointerspL are linked bydll(si). In
this case, merging stars1, s2, . . . , sh is executed by joining doubly-linked listsdll(si), i = 1, 2, . . . , h into
a single doubly-linked listdll(s∗) in O(h) time. Note that when some listL(si) becomes empty, it can be
removed fromdll(s∗) inO(1) time. Hence updating listsL(s) of allB-inter starss for someB ∈ B−(c;G)

still can be executed inO(|Eblue
c |) time.

When a leaf-cut-vertexc in the current instance(H ′, G′, A′) is selected, we execute SPLIT(c) as fol-
lows. LetV0 = V − (∪{V (B) | B ∈ B−(c;G′)} − {c}). First compute the setAc of starss that are
B-inters for some blockB ∈ B−(c;G′) in the current instance(H ′, G′, A′), and construct a bipartite graph
W = (B−(c;G′) ∪Ac, EW ) between two setsB−(c;G′) andAc such thatEW contains an edgeBs if and
only if N(s;H ′)∩ (V (B)−{c}) ̸= ∅. This can be constructed by scanning the edge setδ(B;H ′)−E(G′)

for all blocks inB ∈ B−(c;G′) in O(|Eblue
c |) time.

The set of outer-linked blocks inB−(c;G′) can be computed as follows. By checking the listL(s) for
each stars ∈ Ac, it takesO(|Eblue

c |) time to find the setAinter(V0) of all starss ∈ Ac such thats has
a neighborz ∈ V0 − {c}, since the edgessu in L(s) are stored in the order ofld(ψ(u)) and all edges
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su ∈ L(s) adjacent to a block inB−(c;G′) appear last. Then we can conclude that any blockB that is
adjacent to a star inAinter(V0) is outer-linked.

By a graph search procedure starting from outer-linked blocks in the graphW , we can construct a
spanning forest ofW , from which a proper sequenceB1, B2, . . . , Bq of blocks inB−(c;G′) is obtained
based on the distance from the outer-linked blocks inW . This again takesO(|Eblue

c |) time.
Finally we examine each iteration of SPLIT(c) which constructsAi andA′

i for eachi = q, q − 1, . . . , 1

according to the formula (3) and (4). From the way of constructing new star setsAi andA′
i, we observe

that once a blue edgesu with u ̸= c is scanned as an edge incident to a stars ∈ Aintra(Bi) ∪ Ainter(Bi),
the same edge will never be scanned in any instance(H ′

j , G
′
j , A

′
j) with j < i. SinceAi andA′

i can be
constructed in time linear to the number of blue edges incident to a stars ∈ Aintra(Bi) ∪Ainter(Bi) in H ′

i,
the total time for constructing all star setsAq, Aq−1, . . . , A1 andA0 = A′

1 isO(|Eblue
c |). 2

Finally we give an entire algorithm for a star instance(H,G,A) such thatG is not biconnected. As
observed in the above, we generate inO(n+m) timep = |B(G)| instances(Hj , Bj , Aj), j = p, p−1, . . . , 1

by a repeated application of SPLIT, where(Hj , Bj , Aj) means the(p − j + 1)-st instance generated by
the algorithm and(H

j
, G

j
, A

j
), j = p − 1, p − 2, . . . , 0 denotes the instance obtained from(H,G,A) by

splitting off the firstj blocksBp, Bp−1, . . . , Bp−j+1. During this execution, we store the set of starss′j ,

j = 1, 2, . . . , p − 1 such thats′j is the preceding star ofHj and is the succeeding star ofH
j

and the set
Aintra(Bi) ⊆ Ai+1 of Bi-intar stars inH i+1 for j = 1, 2, . . . , p − 1, where

∑
i |Aintra(Bi)| = O(m).

Assume that Theorem 4 is true for instances with red biconnected graphs, as will be shown in the following
sections. Then either there is an instance(Hj , Bj , Aj) which contains a forbidden subgraphF j or each
instance(Hj , Bj , Aj) admits a planarizing partitionAj of Aj . In the former, a forbidden subgraphF ′ in
the given instance can be obtained fromF j in O(n + m) time by Lemma 7(ii), and we are done. In the
latter, we construct a planarizing partitionAj

to instance(H
j
, G

j
, A

j
) in the order ofj = 1, 2, . . . , p. For

j = 1, a planarizing partitionA1 to instance(H1, B1, A1) = (H
1
, G

1
, A

1
) is obtained by assumption.

Assume that for somej, a planarizing partitionAj
of A

j
is obtained. For the succeeding stars′j of H

j
,

there is a setA
j
0 ∈ Aj

with s′j ∈ A
j
0, and the preceding stars′j of Hj , there is a setAj

0 ∈ Aj with

s′j ∈ Aj
0. Then by Lemma 7(i), for the merged setA′ = (A

j
0 ∪ Aj

0 − {s′j}) ∪ Ainter(Bj), the partition

(Aj ∪ Aj − {Aj
0, A

j
0}) ∪ {A′} of A is a planarizing partitionAj−1

to (H
j−1

, G
j−1

, A
j−1

). This can be
executed inO(1) time if we store stars in a partitionA of sets as a doubly-linked list in which the stars in
the same setA ∈ A appear consecutively. Therefore a planarizing partitionA of (H,G,A) can be obtained
in linear time.

5 Case of Connectivity at Least 3

This section treats a star instance with a red graph of vertex-connectivity at least 3, before Sections 6, 7 and
8 handle a star instance with a red graph of vertex-connectivity 2. Since we do not modify a given instance
any more in the following sections, we denote the setA of stars by{s1, s2, . . . , sk} and the setN(si;H)

for each starsi ∈ A by Si. We may denote byG+ δ(si) the graph(V ∪ {si}, E ∪ {sit | t ∈ Si}).
This section presents an algorithm for testing whether a given instance(H,E) with a triconnected red

graph isE-planar, where we use a geometric argument based on convex grid drawings to make a naive
quadratic time algorithm run in linear time.

To apply the result in this section to “triconnected components” in Section 7, we here assume that
G = (V,E) is a pseudo-triconnected planar graph obtained from a triconnected planar graphG′ = (V ′, E′)

by subdividing some edges inE′ inserting one vertex per edge so that no two degree-2 vertices are adjacent
in G. Fix a planar embeddingγG of G, and for each starsi ∈ A, let β(si) denote the set of facesf in γG
whose facial cycleCf contains all vertices inSi, where|β(si)| ≤ 2 since|Si| ≥ 2 is assumed.
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Theorem 10 Let (H,G = (V,E), A) be a star instance with a pseudo-triconnected planar graphG =

(V,E) obtained from a triconnected planar graphG′ = (V ′, E′) by subdividing some edges inE′ inserting

exactly one degree-2 vertex. LetγG be a planar embedding ofG.

(i) Then(H,G,A) isE-planar if and only ifβ(si) ̸= ∅ for eachsi ∈ A;

(ii) Computingβ(s) for all starss ∈ A can be done inO(n+m) time.

Proof. For each starsi ∈ A, letGi denote the graphG+ δ(si).
(i) From the fact that a combinatorial planar embedding is unique up to reversal, it is immediate to see

that, for eachi, the embeddingγG has no facial cycle that contains all the vertices inSi if and only ifGi is
not planar and has noE-planar embedding. If for eachi, the embeddingγG has a facial cycle that contains
all the vertices inSi, then clearly the current embeddingγG provides anE-planar embedding of(G,A),
where we draw each star{sit | t ∈ Si} within some facef ∈ β(si) of γG.

(ii) Let γG′ be a planar embedding of triconnected graphG′, andγG be the planar embedding ofG
obtained fromγG′ by inserting degree-2 vertices ofV (G) − C(G′) in the subdivided edges inG. See
Fig. 6(a) for an illustration of a planar embedding of a red pseudo-triconnected graphG.

Assume that for each vertexv ∈ V , we have an index setI(v) = {i | v ∈ Si} and the rotation system
ρ(v) of v as an alternating sequence of the neighbors ofv in γG and the faces incident tov:

ρ(v) = (u1, f1,2, u2, f2,3, . . . , ud, fd,1),

whereN(v;G) = {u1, u2, . . . , ud}, u1, u2, . . . , ud appear in this order aroundv in the anti-clockwise way,
andfj,j+1 is the face incident tov, uj anduj+1 (see vertexv in Fig. 6(a), whereI(v) = {1, 2, 3, 4, 5, 6}).

To obtainβ(s) for all s ∈ A, we initializeβs := ∅ for all s ∈ A, whereβ(s) will be given by a finalβs.
For the outer facefo of γG, we traverse the facial cycleCfo to countc(fo, i) = |{v ∈ V (Cfo) | i ∈ I(v)}|
for eachi such thati ∈ I(v) for some vertexv in Cfo . Clearly for eachi, |Si| = c(fo, i) if and only if
Cfo contains all the vertices inSi. Let βsi := {fo} for eachsi ∈ A with c(fo, i) = |Si|. For example,
|S8| = 3 = c(fo, 8) holds for stars8 in Fig. 6(a).

We can apply the same procedure to each of inner faces inγG to test whether eachSi is contained in
some facial cycle. However, this would takeΩ(nm) time, since the same vertext ∈ Si will be counted
deg(t;G) times in total. To avoid this, we prepare the following data structure:

(a) For each vertexv ∈ V and a starsi with v ∈ Si, we “guess” at most two inner facesf(i; v) and
f ′(i; v) in γG so that no other faces can containSi (where we call such facesinevitable). For example,
we see that for vertexv and stars5 in Fig. 6(a), the inevitable facesf(5; v) andf ′(5; v) are facesf5,1
andf1,2;

(b) We then modify in linear time the rotation systemρ(v) = (u1, f1,2, u2, f2,3, . . . , ud, fd,1) of each
vertexv as follows: At a vertexv ∈ V , each indexi ∈ I(v) has one inevitable facef(i; v) or two
inevitable facesf(i; v) andf ′(i; v) aroundv. We letI(v; fj,j+1) store all indicesi ∈ I(v) such that
fj,j+1 = f(i; v) or f ′(i; v). Then modifyρ(v) into an alternating sequence of the neighbors ofv and
the pairs{fj,j+1, I(v; fj,j+1)} of faces incident tov and the index sets; i.e.,

ρ∗(v) = (u1, {f1,2, I(v; f1,2)}, u2, {f2,3, I(v; f2,3)}, u3, . . . , ud, {fd,1, I(v; fd,1)}).

For example, vertexv in Fig. 6(a) is adjacent to six starssi with i ∈ I(v) = {1, 2, 3, 4, 5, 6}, and we
see that inevitable faces are given byf(1, v) = f1,2, f(2, v) = f5,1, f(3, v) = f2,3, f ′(3, v) = f3,4,
f(4, v) = f3,4, f(5, v) = f5,1 andf(6, v) = f5,1, from which we haveρ∗(v) = (u1, {f1,2, {1}}, u2,
{f2,3, {3}}, u3, {f3,4, {3, 4}}, u4, {f4,5, ∅}, u5, {f5,1, {2, 5, 6}}).
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With this data{ρ∗(v) | v ∈ V }, we traverse the facial cycleCf of each inner facef in γG in the
clockwise order as follows. Letv1, v2, . . . , vq be the vertices inV (Cf ) appearing in the clockwise along
Cf . Then we visitρ∗(v1), ρ∗(v2), . . . , ρ∗(vq) in this order, during which we collect the indices inI(v1; f),
I(v2; f), I(v3; f), . . . , I(vq; f). For each indexi ∈ I(v1; f) ∪ I(v2; f) ∪ I(v3; f) ∪ · · · ∪ I(vq; f), we
can test whetherCf containsSi by countingc(f, i), how many timesi appears in the union, and execute
βsi := βsi ∪ {f} for eachsi ∈ A with c(f, i) = |Si|. After traversing all inner faces, the resultingβs is
equal toβ(s). The total time for applying the procedure over all inner faces isO(n+m), since each indexi
of someSi appears in at most two sets among the setsI(v; f1,2), I(v; f2,3), . . . , I(v; fd,1) in each sequence
ρ∗(v).

Finally we show how to attain the conditions (a) and (b) above. For this, we use the fact that every
triconnected planar graph admits a convex drawing, in which each edge is drawn as a straight-line segment
and each facial cycle forms a convex polygon. Moreover, we can restrict the position of each vertex as a
grid point in a grid space of(n− 2)× (n− 2), and such a convex grid drawing can be constructed in linear
time [13]. We first construct a convex drawingDG′ of γG′ in a grid space of(n − 2) × (n − 2) in O(n)

time. Next double the scale to obtain a grid space of(2n− 4)× (2n− 4) so that each vertex inG′ is on a
grid point with even integers. To obtain a convex drawing ofγG in the grid space of(2n− 4)× (2n− 4),
we insert a degree-2 vertexw ∈ V (G)−C(G′) for each edgeuv that is subdivided intouw andwv inG in
such a way thatw is placed in the middle point of between the points for verticesu andv. Note that such a
middle point is a grid point in the space(2n− 4)× (2n− 4). LetDG be the resulting convex grid drawing
of γG. For each vertexu ∈ V , let (x(u), y(u)) be the grid point on whichu is drawn inDG. See Fig. 6(b)
for an illustration of a grid drawingDG of γG in Fig. 6(a).

We fix a vertexv ∈ V with a rotation systemρ(v) = (u1, f1,2, u2, f2,3, . . . , ud, fd,1). Regarding
(x(v), y(v)) as the origin of the gridxy-plane, denotex(u) − x(v) andy(u) − y(v) by x̄(u) and ȳ(u),
respectively, for a notational convenience. Then for example, the angleθ ∈ [0, 2π) of line segment(v, u1)
from the horizontal line isθ(x(u1)−x(v), y(u1)−y(v)) = θ(x̄(u1), ȳ(u1)), where we denoteθ(x̄(u), ȳ(u))
by θv(u) for simplicity. For each indexi ∈ I(v), we choose a vertexwi ∈ Si − {v} to determine the
direction fromv towi in the convex grid drawing. For example, a vertexwi ∈ Si is chosen for each starsi
with i ∈ I(v) in Fig. 6(a).

Since each facef is drawn as a convex polygonPf , if v andwi are contained in the same facial cycle
Cf , then the line-segment from(x(v), y(v)) to (x(wi), y(wi)) must be contained in the polygonPf . Hence,
if the angleθv(wi) satisfies

θv(uj) < θv(wi) < θv(uj+1)

then we can conclude that the facefj,j+1 betweenuj anduj+1 at v must be the inevitable facef(i; v),
where no other facial can containSi. Analogously, if

θv(wi) = θv(uj)

then the facesfj−1,j andfj,j+1, one betweenuj−1 anduj and the other betweenuj anduj+1 atv must be
the inevitable facesf(i; v) andf ′(i; v).

This proves that we can meet the condition (a) in the above. To construct the modified rotation system
ρ∗(v) in the condition (b), we sort the verticesu in {u1, u2, . . . , ud} ∪ {wi | i ∈ I(v)} in a non-decreasing
order of their anglesθv(u). This can be done inO(deg(v) + |I(v)|) time, as will be shown by Lemma 11
in this section. Based on the sorted list, we can easily determine the inevitable faces of eachi ∈ I(v) and
constructρ∗(v) in O(deg(v) + |I(v)|) time. The total time for constructing the modified rotation system
ρ∗(v) over all verticesv ∈ V is O(

∑
v∈V (deg(v) + |I(v)|) = O(n +m). This proves that we can meet

the condition (b) in the above. 2

To complete the above proof of Theorem 10, we present a technical lemma on how to approximate
angles between grid points in thex, y-grid plane. Let[a, b]Z denote the set of integersx with a ≤ x ≤ b.
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Figure 6: (a) An instance(H,G,A) with a red pseudo-triconnected planar graphG = (V,E) and stars
A = {s1, s2, . . . , s8} and a planar embeddingγG of G; (b) A grid convex drawingDG of G, wherewi

is another neighbor of each starsi adjacent to vertexv, and the direction from vertexv to each vertex in
N(v;G) = {u1, . . . , u5} or in the set{w1, w2, . . . , w6} is indicated by an arrow. The order of the angles
θv(u), u ∈ N(v;G) ∪ {wi | i ∈ I(v)} is determined as follows.θv(w6) < θv(w5) = θv(u1) < θv(w1) <

θv(u2) < θv(w3) = θv(u3) < θv(w4) < θv(u4) < θv(u5) < θv(w2). Then a modified rotation system atv
is given byρ∗(v) = (u1, {f1,2, {1}}, u2, {f2,3, {3}}, u3, {f3,4, {3, 4}}, u4, {f4,5, ∅}, u5, {f5,1, {2, 5, 6}}).

When a sequence(a1, a2, . . . , ap) is lexicographically smaller than a sequence(b1, b2, . . . , bp), we write
(a1, a2, . . . , ap) ≺ (b1, b2, . . . , bp). Let GS(n) denote the set of grid points(x, y) with x, y ∈ [−n, n]Z
and (x, y) ̸= (0, 0) in the grid plane. For a grid point(x, y) in the grid plane, letθ(x, y) ∈ [0, 2π)

denote the angle made by two vectors(1, 0) and(x, y). The next lemma tells that given a set ofp points
(x1, y1), . . . , (xp, yp) ∈ GS(n−1), sorting thesep points in a non-decreasing order of anglesθ(xi, yi) can
be executed inO(p) time by the radix sort after anO(n)-time preprocessing.

Lemma 11 There is a functioncode : GS(n−1) → [0, 7]Z × [−n, n]Z × [−n, n]Z such that

(i) Given a point(x, y) ∈ GS(n−1), code(x, y) can be computed inO(1) time; and

(ii) for any two points(x, y), (x′, y′) ∈ GS(n−1), it holds thatθ(x, y) < θ(x′, y′) if and only ifcode(x, y) ≺
code(x′, y′); andθ(x, y) = θ(x′, y′) if and only ifcode(x, y) = code(x′, y′).

Proof. For a point(x, y) ∈ GS(n−1), defineσ(x, y) to be⌊θ(x, y)/(π/4)⌋, whereσ(x, y) can be obtained
as follows:

σ(x, y) = 0 if x ≥ y ≥ 0; σ(x, y) = 1 if y > x > 0;
σ(x, y) = 2 if y > −x ≥ 0; σ(x, y) = 3 if −x ≥ −y > 0;
σ(x, y) = 4 if −x > y ≥ 0; σ(x, y) = 5 if −y ≥ −x > 0;
σ(x, y) = 6 if −y > x ≥ 0; σ(x, y) = 7 otherwise, i.e.,x ≥ −y > 0.

Note that
if σ(x, y) < σ(x′, y′) thenθ(x, y) < θ(x′, y′). (5)

Let (x, y), (x′, y′) ∈ GS(n− 1) be points withk = σ(x, y) = σ(x′, y′). For k ∈ {0, 4}, where
|y/x|, |y′/x′| ∈ [0, 1],

θ(x, y) < θ(x′, y′) if and only if |y/x| < |y′/x′|; (6)
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Fork ∈ {1, 5}, where|x/y|, |x′/y′| ∈ [0, 1],

θ(x, y) < θ(x′, y′) if and only if−(x/y) < −(x′/y′); (7)

Fork ∈ {2, 6}, where|x/y|, |x′/y′| ∈ [0, 1],

θ(x, y) < θ(x′, y′) if and only if x/y < x′/y′; (8)

Fork ∈ {3, 7}, where|y/x|, |y′/x′| ∈ [0, 1],

θ(x, y) < θ(x′, y′) if and only if−(y/x) < −(y′/x′). (9)

For two integersa ∈ {1, 2, . . . , n−1} andb ∈ {0, 1, . . . , n−1}, we approximateb/a with ann-adic
numberδ1δ2 with two digits defined to be

δ1(a, b) ≜ ⌊nb/a⌋, and
δ2(a, b) ≜ ⌊n2b/a− nδ1(a, b)⌋ = ⌊n(nb/a− δ1(a, b))⌋.

Note that|δ1(a, b)| ∈ [0, n]Z if |b/a| ≤ 1. It holds that|δ2(a, b)| ∈ [0, n]Z since|nb/a − δ1(a, b)| ≤ 1.
Then we definecode : GS(n−1) → [0, 7]Z × [−n, n]Z × [−n, n]Z to be:

code(x, y) ≜ (σ(x, y), δ1(|x|, |y|), δ2(|x|, |y|)) if σ(x, y) ∈ {0, 4};
code(x, y) ≜ (σ(x, y),−δ1(|y|, |x|),−δ2(|y|, |x|)) if σ(x, y) ∈ {1, 5};
code(x, y) ≜ (σ(x, y), δ1(|y|, |x|), δ2(|y|, |x|)) if σ(x, y) ∈ {2, 6}; and
code(x, y) ≜ (σ(x, y),−δ1(|x|, |y|),−δ2(|x|, |y|)) if σ(x, y) ∈ {3, 7}.

We see that given a point(x, y) ∈ GS(n−1), code(x, y) can be computed inO(1) time. To prove the
lemma, it suffices to show the next.

Claim 1. For two points(x, y), (x′, y′) ∈ GS(n−1), it holds that

(a)θ(x, y) < θ(x′, y′) if and only ifcode(x, y) ≺ code(x′, y′);

(b) θ(x, y) = θ(x′, y′) if and only ifcode(x, y) = code(x′, y′).

PROOF. Note that (a) implies (b) because one ofcode(x, y) ≺ code(x′, y′), code(x′, y′) ≺ code(x, y) and
code(x, y) = code(x′, y′) always holds. We show (a).

The claim (a) is clear whenσ(x, y) ̸= σ(x′, y′) by definition of functionσ. Assume thatσ(x, y) =

σ(x′, y′). We show the case ofσ(x, y) = σ(x′, y′) = 0 (the other case can be treated analogously). Note
that0 < y/x, y′/x′ ≤ 1. Recall thatθ(x, y) < θ(x′, y′) if and only if y/x < y′/x′. Hence we see that
code(x, y) ≺ code(x′, y′) impliesy/x < y′/x′, i.e., θ(x, y) < θ(x′, y′). To show the converse, assume
thaty/x < y′/x′. If δ1(x, y) < δ1(x

′, y′) thencode(x, y) ≺ code(x′, y′). Let us assume thatδ1(x, y) =
δ1(x

′, y′). We show that the difference betweenn(ny′/x′−δ1(x, y)) andn(ny/x−δ1(x, y)) is greater than
1. In fact, we haven(ny′/x′−δ1(x, y))−n(ny/x−δ1(x, y)) = n2(y′/x′−y/x) = n2(y′x−x′y)/(xx′) ≥
n2/(n−1)2 > 1. This implies thatδ2(x, y) = ⌊n(ny/x−δ1(x, y))⌋ < ⌊n(ny′/x′−δ1(x, y))⌋ = δ2(x

′, y′),
as required. 2

We use the lemma withGS(2n− 1) in the proof of Theorem 10.

6 Case of Connectivity 2

Sections 6, 7 and 8 handle the last case where the vertex-connectivity of a red graph in a star instance 2.
Our algorithm for this case consists of two major phases, which are presented in the next two sections,
respectively. This section first reviews a method of decomposing a red biconnected graphG of an instance
(H,G,A) into triconnected components, and observes some structure of triconnected components ofG

which indicates the existence a forbidden graph.
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6.1 SPR-tree Decomposition

To consider all the possible planar embeddings of a biconnected planar graph, we use a decomposition of
a biconnected graph intotriconnected components, defined by Hopcroft and Tarjan (for details, see [27]),
which can be computed in linear time [23, 27]. More specifically, we use the SPR-tree, a simplified version
of the SPQR-tree defined by Di Battista and Tamassia (for details, see [5]), without Q-nodes. Here we give
a brief description on the definition of the SPR-tree using the terminology from [27].

Let G = (V,E) be a biconnected graph. LetV be the set of triconnected componentsν of G, where
each triconnected componentν is represented by a multigraph, called theskeletonskl(ν) = (V (ν), E(ν))

of ν with the following property:

• V (ν) ⊆ V ; E(ν) consists of some edges inE, calledreal edgesandvirtual edgessuch that each
virtual edgee = uv is associated with a connected subgraphGe of G with the following property:

Ge − {u, v} remains connected;

for any two distinct virtual edgese = uv, e′ = u′v′ ∈ E(ν),

E(Ge) ∩ E(Ge′) = ∅ andV (Ge) ∩ V (Ge′) = {u, v} ∩ {u′, v′}; and

• V = ∪ν∈VV (ν) andE ⊆ ∪ν∈VE(ν) (i.e., each edge inE is contained inE(ν) as a real edge for
some nodeν ∈ V).

There are three types of graph structure of skeletonsskl(ν):

1. S-type:skl(ν) is a simple cycle with at least three vertices;

2. P-type:skl(ν) consists of two vertices joined by at least three edges; and

3. R-type:skl(ν) is a simple triconnected graph with at least four vertices.

For a virtual edgee = uv ∈ E(ν), au, v-path in the associated graphGe is called arepresenting path

of e. A graph obtained from the skeletonskl(ν) by replacing each virtual edgee with a representing path
Pe is called arepresenting graphof the skeleton. As a graph structure, a representing graph of a skeleton
is obtained by subdividing virtual edges in the skeleton. From the definition of skeletons, we observe the
next.

Lemma 12 For a triconnected componentν ∈ V for a biconnected graphG = (V,E), let e = uv ∈
E(ν) be a virtual edge in the skeletonskl(ν). Any cut-vertex in the graphGe separatesu and v. For a

representingu, v-pathPe of e and a vertexw ∈ V (Ge) − {u, v}, there is aw, (V (Pe) − {u, v})-path,

which can be found inO(|V (Ge)|+ |E(Ge)|) time.

TheSPR-treeT of G is a tree constructed on the setV of triconnected components ofG that represents
the adjacency among triconnected components. We call a triconnected componentν ∈ V as a node inT .
A nodeν with an S-type (resp., P-type and R-type) skeletonskl(ν) is called an S-node (resp., P-node and
R-node). Then the SPR-tree is a treeT = (V, E) with an edge setE such that
(i) νµ ∈ E only if the skeletonsskl(ν) = (V (ν), E(ν)) and skl(µ) = (V (µ), E(µ)) have exactly two
common vertices;
(ii) two nodes which are both S-nodes or P-nodes are not adjacent inT ; and
(iii) any node of degree 1 inT is an S- or R-node.
It is known that

∑
ν∈V(|V (ν)|+ |E(ν)|) = O(|V |+ |E|) [5].
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6.2 Rooted SPR-trees

In the SPR-treeT of a biconnected graphG, we choose a nodeνroot and regardT as a tree rooted atνroot.
The rooted treeT defines a parent-child order, whereCh(ν) denotes the set of all children of a nodeν and
pt(ν) denotes the parent of a non-rootν. Let ν be a non-root node inT , andη = pt(ν) be the parent of
ν, where the skeletonskl(ν) contains a virtual edgee = st ∈ E(ν) such that the skeletonskl(η) of the
parent also contains a virtual edgee′ = st ∈ E(η). Such a virtual edgee = st ∈ E(ν) is called theparent

virtual edgein skl(ν), and is denoted bype(ν). DenoteE−(ν) = E(ν)− {pe(ν)}, and call a virtual edge
in E−(ν) achild virtual edgein skl(η). Let skl−(ν) denote the graph(V (ν), E−(ν)) obtained fromskl(ν)
by deleting its parent virtual edge.

For the rootνroot, let skl−(νroot) = skl(νroot).

6.3 Some Forbidden Configurations over Skeletons

Given an instance(H,G,A) with a red biconnected graphG = (V,E), let V be the set of nodes (i.e.,
triconnected components) ofG. Note that the skeletonskl(ν) of a P- or S-nodeν ∈ V is a planar graph. In
particular,skl(ν) of an S-nodeν has a planar embeddingγν , which is a unique combinatorial embedding.
The skeletonskl(ν) of a P-nodeν with p edges admitsp! possible planar embeddings.

SinceG is planar, the triconnected skeletonskl(ν) = (V (ν), E(ν)) of each R-nodeν ∈ V admits a
planar embeddingγν , which is unique combinatorial embedding, butO(|V (ν)|) planare embedding de-
pending on the choice of the outer face. We assume that planar embeddingsγν for all R-nodesν ∈ V have
been computed inO(

∑
ν∈V(|V (ν)|+ |E(ν)|)) = O(|V |+ |E|) = O(n) time. LetΦ(γν) denote the set of

faces in the planar embeddingγν of an S- or R-nodeν.
In this subsection, we show how a forbidden subgraph of types (i), (ii) and (iv) inH may appear in the

skeletons of P- and R-nodes together with stars inA.
Let skl(ν) = (V (ν), E(ν)) be the skeleton of a nodeν ∈ V. We say that a starsi ∈ A touchesan

element inz ∈ V (ν) ∪ E(ν) if z is a vertexv ∈ Si ∩ V (ν) or z is a virtual edgee = uv ∈ E(ν) such that
the associated graphGe contains a vertexwe ∈ Si − {u, v}.

With a single starsi ∈ A, the following conditions on P- or R-node tells us the existence of forbidden
subgraph of type (i) or (ii) inH.
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Figure 7: Illustration of forbidden configurations in the skeletonskl(ν) of a P-nodeν ∈ V in the SPR-tree
of the red graphG: (a) A stars that touches three virtual edges inE(ν); (b) Three starssi, i = 1, 2, 3 such
thatsi touches virtual edgese1, ei+1 ∈ E(ν); (a) A set ofp = 5 starsi, i = 1, 2, . . . , p such thatsi touches
virtual edgesei, ei+1 ∈ E(ν), whereep+1 = e1.
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Lemma 13 (i) For a P-nodeν ∈ V, if there is a starsi ∈ A that touches three virtual edges inE(ν),

as shown in Fig. 7(a), then the graphG + δ(si) contains a forbidden subgraphF of type (i), which

can be found inO(n+m) time.

(ii) Let ν ∈ V be an R-node andγν be a planar embedding of the skeletonskl(ν). For a starsi ∈ A,

let V1 = Si ∩ V (ν) andE1 be the set of all virtual edges inE(ν) touched bysi. If γν has no facial

cycle that containsV1 andE1, then the graphG+ δ(si) contains a forbidden subgraphF of type (i)

or (ii), which can be found inO(n+m) time.

Proof. (i) Let V (ν) = {u, v}, and letej ∈ E(ν), j = 1, 2, 3 be three virtual edges touched by a star
si, where the associated graphGej contains a vertexwj ∈ Si − {u, v}. Choose a representingu, v-path
Pj of each virtual edgeej . Then we can find awj , (V (Pj) − {u, v})-pathPwj ,zj with an end-vertex
zj ∈ V (Pj) − {u, v} in time linear to the size ofGej by Lemma 12, where possiblywj = zj . Then we
see that the six red pathsPj andPwj ,zj , j = 1, 2, 3 and three blue edgessiwj , j = 1, 2, 3 form a forbidden
subgraphF of type (i) inH. The above construction can be executed inO(n+m) time.

(ii) Let E1 = {ej = ujvj | j = 1, 2, . . . , q}, where the associated graphGej contains a vertex
wj ∈ Si − {uj , vj}, andskl∗ be the pseudo-triconnected graph obtained fromskl(ν) by subdividing each
edgeej = ujvj ∈ E1 into two edgesujwj andwjvj . By the fact that a planar embedding of a pseudo-
triconnected graph is a unique combinatorial embedding, we see that the graphskl∗ + δ(si) is not planar,
and hence we see thatG+δ(si) is not planar. By Kuratowski’s theorem [32], the non-planar graphG+δ(si)

contains a subgraphF which is a subdivision ofK3,3 orK5, which can be found inO(n + |Si|) = O(n)

time [23]. SinceG is assumed to be planar, the subgraphF must contain some blue edge in{sit | t ∈ Si}.
Since all blue edges in{sit | t ∈ Si} are incident tosi, the numberℓ of blue edges contained inF is
ℓ ∈ {2, 3, 4}. Whenℓ = 2, the two blue edges contained in a path between some two vertices of degree3

or 4 in F . Whenℓ = 3 (resp.,ℓ = 4), graphF is a subdivisionF of K3,3 (resp.,K5) which has a vertex to
which only blue edges are incident. In any case,F is a forbidden subgraphF of type (i) or (ii) inH. 2

With a set of several stars inA, the following conditions on P- or R-node tells us the existence of
forbidden subgraph of type (i) or (iv) inH.

Lemma 14 Letν ∈ V be a P-node.

(i) If there are three starss1, s2, s3 ∈ A and four virtual edgese1, e2, e3, e4 ∈ E(ν) such thatsj touches

{e1, ej+1} for eachj, as shown in Fig. 7(b), then the graphG + δ(s1) + δ(s2) + δ(s3) contains a

forbidden subgraphF of type (i), which can be found inO(n+m) time.

(ii) If there arep starss1, . . . , sp ∈ A andp virtual edgese1, . . . , sp ∈ E(ν) such that3 ≤ p < |E(ν)|
and sj touches{ej , ej+1} for eachj, whereep+1 meanse1, as shown in Fig. 7(c), then the graph

G+δ(s1)+· · ·+δ(sp) contains a forbidden subgraphF of type (iv), which can be found inO(n+m)

time.

Proof. LetV (ν) = {u, v} and letwi
j denote a vertex in(V (Gej )−V (ej))∩Si. Choose a representingu, v-

pathPj inGej . Then we can find awi
j , (V (Pj)−{u, v})-pathPwi

j ,z
i
j

with an end vertexzij ∈ V (Pj)−{u, v}
in time linear to the size ofGej by Lemma 12, where possiblywi

j = zij .
(i) Without loss of generality assume that verticesz11 , z

1
2 , z

1
3 appear in this order along pathP1 from u

to v, where possibly some of these three vertices may be identical. For eachj = 1 or 3, let Pw1
j ,z

1
2

be the

w1
j , z

1
2-path that consists ofPw1

j ,z
1
j

and the subpath ofP1 from zj1 to z21 . Then we see that the six pathsPj ,

j = 2, 3, 4 andPw1
2 ,z

1
2
Pw1

1 ,z
1
2

andPw1
3 ,z

1
2

and six blue edgessjw
j
1, sjw

j
j+1, j = 1, 2, 3 form a forbidden

subgraphF of type (i). The above construction can be executed inO(n+m) time.
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(ii) Let e0 ∈ E(ν)−{ej | j = 1, 2, . . . , p}, and letP0 be a representingu, v-path inGe0 . For eachj =
1, 2, . . . , p, wherep+1 means1, letP ′

j be thezjj , z
j+1
j -path that consists of blue edgessj , w

j
j andsj , w

j+1
j

and redwj
j , z

j
j -path andwj+1

j , zj+1
j -path. LetP ′′

3 be az32 , z
1
p-path that consists ofP ′

j , j = 3, 4, . . . , p and

the subpath ofPj , j = 3, 4, . . . , p from zj−1
j to zjj . Then we see that the four pathsPj , j = 0, 1, 2, 3 and

the three pathsP ′
1, P

′
2 andP ′′

3 form a forbidden subgraphF of type (iv). The above construction can be
executed inO(n+m) time. 2

An Overview of Algorithm We design an algorithm that finds a forbidden graph or a planarizing partition
of a star set for a given instance(H,E) with a red biconnected graph. The algorithm consists of two phases.
The first phase tests inO(n +m) time whether some condition in Lemmas 13 and 14 holds. To facilitate
test of condition in Lemma 13(i) for a non-root R-nodeν and a starsi ∈ A touching the parent-edgepe(ν),
we modify the rooted SPR-treeT by splitting each R-node into four types of nodes in the next section.

Unfortunately, an instance to which none of conditions in Lemmas 13 and 14 holds still may contain
a forbidden graph (whose type is (i), (iv) or (v)). This is because each virtual edgee ∈ E(η) of a node
η corresponds to the skeletonskl(νe) of the corresponding nodeνe, which has two possible embeddings
in an embedding ofη, and there may be no combination of embeddings of skeletonsskl(νe) over all child
virtual edgesνe ∈ E−(η) so that all stars inA can be drawn in some face without creating a crossing with
a red edge. The second phase examines whether there is a combination of embeddings of skeletonsskl(ν)

over all child virtual edgesν ∈ E−(η) for each P- or R-node such that all stars inA can be drawn without
creating a crossing with a red edge. To facilitate the examination, we introduce a “simplified structure” of
the skeletonsskl(ν) of each P- or R-nodeν, and combine the “simplified skeletons” into the skeleton of the
parent nodeη of ν (or the parentη of parent ofν if the parent ofν is an S-node). This results in a skeleton
of η where each virtual edgee ∈ E−(η) is replaced with a simplified skeleton (or a chain of simplified
skeletons ife corresponds to an S-node), which is called “refined skeletons” in Section 8.

In the next two sections, we do not find a forbidden graph of type (iii). In our algorithmic proof for
Theorem 4, a forbidden graph of type (iii) is generated only when we construct a forbidden graphF ′ of
type (iii) of an instance(H,G,A) with |B(G)| ≥ 2 from a forbidden graphF of type (ii) in an instance
(B,AB) with B ∈ B(G) (see the case (c) in the proof of Lemma 7(ii)).

7 Phase 1 for Case of Connectivity 2

This section describes the first phase which tests inO(n+m) time whether some condition in Lemmas 13
and 14 holds.

7.1 Split SPR-treeT̂

SinceG is not outerplanar, the SPR-treeT has a P- or R-node. We choose a P- or R-node as the root node
νroot of T .

If the root of T is an R-nodeν, then letγν denote a planar embedding of the simple triconnected
graphskl(ν). Let ν be a non-root R-node. Defineγν to be a planar embedding of the simple triconnected
graphskl(ν) such that the parent edge ofν appears as an outer edge ofγν , and defineγ−ν to be the planar
embedding of graphskl−(ν) obtained fromγν by deleting the parent edge ofν. Since a planar embedding
of a planar graph can be constructed in linear time and the total size of all skeletons inT isO(n), we can
obtainγν andγ−ν for all R-nodes inO(n) time.

We modify the rooted SPR-treeT by splitting each non-root R-nodeν into four nodes, the cp-R-node
νcp, the o1-R-nodeνo1, the o2-R-nodeνo2 and the in-R-nodeνin of ν (calledsplit R-node ofν) as follows.
Let uv be the parent-edge ofν, and letP1 andP2 denote the two internally disjointu, v-paths which form
the outer boundary ofskl−(ν). Then partition the vertex setV (ν) and the edge setE−(ν) of the skeleton

24



skl−(ν) into the vertex and edge sets of the four split nodes ofν as follows.
V (νcp) ≜ {u, v}, E(νcp) ≜ ∅;
V (νoj) ≜ V (Pj)− {u, v}, E(νoj) ≜ E(Pj) for j = 1, 2;
V (νin) ≜ V (ν)− {u, v} − V (P1)− V (P2), E(νin) ≜ E(ν)− E(P1)− E(P2).

See Fig. 11(c) for an illustration of the four nodes, cp-R-, o1-R-, o2-R- and in-R-nodes of an R-nodeη.
The virtual edges inE(νin) and the vertices inV (νin) are calledinner, whereas those inE(νo1), E(νo2),
V (νo1) andV (νo2) are calledouter.
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Figure 8: Illustration of forbidden configurations in the skeletonskl(ν) of a non-root R-nodeν ∈ V: (a)
A stars1 which touches the parent-virtual edgepe(ν), an elementv8 ∈ V (νo1) ∪ E(νo1), and an element
e2 ∈ V (νo2)∪E(νo2); (b) A stars1 which touches the parent-virtual edgepe(ν) and a vertexv9 ∈ V (νin),
and a stars2 which touchespe(ν) and a virtual edgee11 ∈ E(νin).

Replace each non-root R-nodeν with νcp, letting νo1, νo2 andνin be the three children ofνcp. Then
each childµ ∈ Ch(ν) of ν will be a child of the nodeν ′ ∈ {νo1, νo2, νin} such that the parent-edge of
µ belongs toE(ν ′). Let T̂ = (V̂, Ê) be the resulting rooted tree obtained fromT by applying the above
procedure to all non-root R-nodesν. We call T̂ thesplit SPR-tree ofG. We regardT̂ as an ordered tree
by introducing an arbitrary sibling order for each child set. In what follows, we defineld(ν), rd(ν), dt(ν),
lp(ν) andrp(ν) for each nodeν ∈ V̂ in the ordered treêT .

7.2 Mappingψ from V to V̂

For each starsi ∈ A, any neighbort ∈ Si is a vertex in the vertex set of skeleton of a nodeν or the
associated graphGe for some virtual edge of a nodeν. Such a nodeν may not be unique in general. We
here determine uniquely a mapping from a vertext ∈ V to a nodeν. Let us define a mappingψ : V → V̂
that maps each vertexv ∈ V to the highest nodeν ∈ V̂ with v ∈ V (ν), where we see by the construction
of T̂ that such a nodeψ(v) is uniquely determined. For each nodeν ∈ V̂, letψ−1(ν) be the set of vertices
v ∈ V such thatψ(v) = ν. We can construct the mappingsψ andψ−1 in O(n) time by visiting each node
ν in the ordered treêV in a breadth-first search manner and checking for each vertexv ∈ V (ν) whetherv
is scanned for the first time, where ifv is scanned for the first time thenψ(v) = ν, andψ−1(ν) is the set of
such verticesv ∈ V (ν).

For each starsi ∈ A, letNi ≜ {ψ(v) | v ∈ Si}. For eachi = 1, 2, . . . , k, we construct the mimic tree
T̂ ⟨Ni⟩ obtained from the ordered split SPR-treeT̂ induced byNi. For simplicity, we denotêT ⟨Ni⟩ by Ti.
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All Ti, i = 1, 2, . . . , k can be obtained inO(n+
∑

1≤i≤k |Ni|) = O(n+m) time by Lemma 2, where we
see thatψ−1

i (ν) = {t ∈ Si | ψ(t) = ν}, ν ∈ N ∗
i can be computed for alli = 1, 2, . . . , k in O(n +m)

time.

Lemma 15 For a star si ∈ A, let ν be a non-root P-node(resp., a non-root R-node) inV such thatNi

contains(resp., one ofνcp, νo1, νo2 andνin). Then it takesO(1) time to test whether starsi touches the

parent edgepe(ν).

Proof. Let {u, v} beV (ν) (resp.,V (νcp)) if ν is a P-node (resp.,ν is an R-node). Then ifsi touches the
parent edgepe(ν), thenν (resp.,νcp) has the nodeα(si) as its ancestor inTi, and “|Ch(α(si); Ti)| ≥ 2” or
“ |Ch(α(si); Ti)| = 1 andψ−1

i (ν)−{u, v} ̸= ∅.” Conversely ifν (resp.,νcp) has the nodeα(si) as such an
ancestor,si touches the parent edgepe(ν). Testing whetherν (resp.,νcp) admitsα(si) as such an ancestor
can be checked inO(1) time. 2

For a fixed starsi ∈ A, if a nodeν is not inTi, then the lemma does not tell that we can test inO(1)

time whethersi touches the parent edgepe(ν) (since the nodeν may not appear inTi).
We now prepare a data structure so that we can test inO(1) time whether a given nodeν admits some

starsi ∈ A that touches the parent edgepe(ν) and an element in a descendant inD(ν; T̂ ). For a subset
S ⊆ V in G and a functionf ∈ {dt, lp, rp} over T̂ , let argminf (S) denote the set of all verticesu ∈ S

with minimum value inf ; i.e,

argminf (S) ≜ {u ∈ S | f(ψ(u)) = min
t∈S

f(ψ(t))}.

For each integerj ≥ 0, we leta(j)f (S) denote a set ofmin{j, |argminf (S)|} vertices arbitrarily chosen from

argminf (S). For each nodeν in T̂ , we letIν = {i | Ni ∩D(ν; T̂ ) ̸= ∅}, and constructa(j)f (
∪

i∈Iν Si) for

each functionf ∈ {dt, lp, rp}. For simplicity, we denotea(j)f (∪i∈IνSi) by a
(j)
f ⟨ν⟩, anda(1)f ⟨ν⟩ by af ⟨ν⟩,

wherea(j)f ⟨ν⟩ = ∅ if Iν = ∅.

Lemma 16 The set{a(3)f ⟨ν⟩ | ν ∈ V̂} for each functionf ∈ {dt, lp, rp} can be constructed inO(n+m)

time.

Proof. First for all i = 1, 2, . . . , k, computea(3)f (Si) in O(
∑

1≤i≤k |Si|) = O(m) time. Next for each

vertexν ∈ V̂, compute the setI ′ν = {i | ν ∈ Ni} of indices fromψ−1(ν). Finally computea(3)f ⟨ν⟩ for all

verticesν ∈ V̂ in a bottom-up manner alonĝT . (i) For each leafν in T̂ , computea(3)f ⟨ν⟩ by choosing at

most three verticesu ∈
∪

i∈I′ν a
(3)
f (Si) with the minimumf(ψ(u)), which takesO(|I ′ν |) time. (ii) For each

non-leaf vertexv such thata(3)f ⟨µ⟩ has been computed for all childrenµ ∈ Ch(ν; V̂), we computea(3)f ⟨ν⟩
by choosing at most three verticesu ∈ (

∪
i∈I′ν a

(3)
f (Si)) ∪ {a(3)f ⟨µ⟩ | µ ∈ Ch(ν; V̂)} with the minimum

f(ψ(u)) value, which takesO(|I ′ν |+ |Ch(ν; V̂)|) time.
The total time to computea(3)f ⟨ν⟩ for all verticesν ∈ V̂ is O(n +

∑
ν∈V̂(|I

′
ν | + |Ch(ν; V̂)|)) =

O(n+
∑

1≤i≤k |Si|). 2

Lemma 17 Let ν be a non-root node inV, and µ be a P- or S-node in̂V such thatµ ∈ D(ν; T ) or

µ ∈ {τ cp, τo1, τo2, τ in} for some R-nodeτ ∈ D(ν; T ). With data{alp⟨ν⟩, arp⟨ν⟩, a
(3)
dt ⟨ν⟩ | all nodesν in

V̂}, it takesO(1) time to test whether there is a stars ∈ A that touches the parent edgepe(ν) and a vertex

z withψ(z) ∈ D(µ; T̂ ) and to find one of such stars if one exists.

Proof. Let pe(ν) = uv, whereV (pe(ν)) = {u, v}. By definition ofIµ, a starsi touches a vertexz with
ψ(z) ∈ D(µ; T̂ ) if and ony if i ∈ Iµ.
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Some starsi with i ∈ Iµ touches the parent edgepe(ν)−uv if and only if a vertexw ∈ ∪i∈IµSi−{u, v}
is mapped to a nodeψ(w) in V̂ −D(ν; T̂ ); i.e.,

∪
i∈Iµ Ni −D(ν; T̂ ) contains a nodeη = ψ(w) for some

vertexw ∈ ∪i∈IµSi − {u, v}.
To see when∪i∈IµNi−D(ν; T̂ ) contains such a nodeη, we apply Lemma 1 toS = ∪i∈IµNi−D(ν; T̂ ),

v = ν andT = T̂ . By Lemma 1(i), if the set∪i∈IµNi −D(ν; T̂ ) contains a nodeη on the left side ofν in
T̂ , then one of such nodesη is given by the nodeψ(w) of the vertexw ∈ alp⟨µ⟩ ld(ψ(w)) < ld(ν) such
that lp(ψ(w)) < lp(ν), where if the vertexw ∈ alp⟨µ⟩ does not satisfies these inequalities then there is no
such nodeη. Symmetrically for a nodeη on the right side ofν in T̂ by Lemma 1(ii).

First assume that the nodeη = ψ(w) with a vertexw ∈ alp⟨µ⟩ ∪ arp⟨µ⟩ on the left or right side ofν in
T̂ . Then clearlyw ̸∈ {u, v} because otherwisew ∈ {u, v} would imply that the parent nodeη′ = pt(η) of
η = ψ(w) also contains the vertexw in the skeleton vertex setV (η′), contradicting thatψ(w) is chosen as
the highest node that containsw in its skeleton.

Next assume that the set∪i∈IµNi −D(ν; T̂ ) contains no nodeη on the left or right side ofν in T̂ . By
Lemma 1(iii), if the set∪i∈IµNi −D(ν; T̂ ) contains an ancestorη of ν, then one of such nodesη is given

by the nodeψ(w) of any vertexw ∈ a
(3)
dt ⟨µ⟩ such thatdt(ψ(w)) < dt(ν). In this case, the seta(3)dt ⟨µ⟩

may contain a vertex in{u, v}. If a vertexw∗ ∈ ∪i∈IµSi − {u, v} is mapped to an ancestorψ(w) of ν,

thendt(ψ(w)) ≤ dt(ψ(w∗)) for anyw ∈ a
(3)
dt ⟨µ⟩, wherew ̸= w∗ holds only whenw ∈ {u, v}. Since

|{u, v}| < 3, the seta(3)dt ⟨µ⟩ contains a vertexw ̸∈ {u, v} if and only if such a vertexw∗ exists.

The above procedure of testing the inequalites onw ∈ alp⟨µ⟩ ∪ arp⟨µ⟩ ∪ a
(3)
dt ⟨µ⟩ can be executed in

O(1) time. 2

7.3 Proper Embeddings

For each S- or R-nodeν ∈ V, any planar embeddingγν of the skeletonskl(ν) is calledproper. For a
P-nodeν, a planar embedding of the skeletonskl(ν) is determined by an order(e1, e2, . . . , ep) of the edges
in E(ν). An order(e1, e2, . . . , ep) of the edges inE(ν) is called aproper embeddingif no stars ∈ A

touches edgesei andej , i < j such that “i + 1 ̸= j” or “ i = 1 andj = p.” For a proper embeddingγν
of an S-, P- or R-nodeν, let Φ(γν) denote the set of faces inγν , where the two faces whose facial cycles
share an edgee ∈ E(ν) are denoted byf1(e) andf2(e). We call a facef ∈ Φ(γν) genuineif Cf does not
contain the parent-edgepe(ν). There are exactly two non-genuine facesf1(pe(ν)), f2(pe(ν)) ∈ Φ(γν) if
ν is not the root.

Function α For each starsi ∈ A, defineα(si) to be the highest nodeν in N ∗
i such that|Ch(ν; Ti)| +

|ψ−1
i (ν)| ≥ 2 (such a nodeν exists since|Si| ≥ 2). LetAR (resp.,AP andAS) be the set of starssi ∈ A

such thatα(si) is a split R-node or the root R-nodeνroot (resp.,α(si) is a P-node and an S-node).

Function β For each starsi ∈ A with α(si) = ν for a nodeν, there are at most two faces inΦ(γν)
in which the starsi with incident blue edges can be drawn without creating any crossing with a red edge,
and we denote byβ(si) the set of such faces inΦ(γν), whereβ(si) ⊆ {f1(e), f2(e)} for some edges
e ∈ E−(ν).

We call a planar embedding ofγG of the red graphG proper if the planar embedding of the skeleton
skl(ν) of each P-nodeν becomes the proper embeddingγν . Note that a proper embedding ofG is not
unique in general. A proper embedding ofG is determined by choosing a bijectionϕν for each non-root S-,
P- or R-nodeν, called aflip mapping, such thatϕν : {f1(pe(ν)), f2(pe(ν))} → {f1(eν), f2(eν)}, where
eν denotes the child virtual edge inE(η) of the parent nodeη.

In a given proper embedding ofG, switching a flip mapping fromϕν(fi(pe(ν))) = fji(eν), i = 1, 2 to
ϕν(fi(pe(ν))) = f3−ji(eν), i = 1, 2 is denoted byϕν := ϕν .

Note that for a non-genuine facef = fi(pe(ν)) in γν of a nodeν, the mapped faceϕν(f) may be a
non-genuine face again. We denote byϕ∗(f) the genuine facef ′ mapped fromf by repeatedly applying
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flip mappings; i.e.,f ′ = ϕνq(ϕνq−1(· · · (ϕν1(f)) · · · )) is a genuine face inΦ(γνq) for ν1 = ν and the parent
νi+1 of νi, i = 1, 2, . . . , q − 1.

In the following, we fix a proper embedding ofγG of G by fixing a flip mappingϕν(fi(pe(ν))) =

fi(eν), i = 1, 2 for each non-root S-, P- or R-nodeν.

7.4 Testing P-nodes in the First Phase

A P-nodeν admits a proper embedding if and only if there are no stars that satisfy the condition in
Lemma 13(i), or Lemma 14(i) or (ii) for the P-nodeν. We first show how to test if there is a P-node
which satisfies the condition in Lemma 13(i).
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Figure 9: Illustration of forbidden configurations in the skeletonskl(ν) of a non-root P-nodeν in the rooted
SPR-tree of the red graphG: (a) A stars1 that touches three virtual edges inE−(ν) and a stars2 that
touches the parent-virtual edgepe(ν) and two virtual edges inE−(ν); (b) Three starssi, i = 1, 2, 3 such
that si touches virtual edgese2, ei+2 ∈ E−(ν), and three starss′i, i = 1, 2, 3 such thats′i touches the
parent-virtual edgepe(ν) and a virtual edgeei+1 ∈ E−(ν); (c) A set ofp = 4 starsi, i = 1, 2, . . . , p such
thatsi touches virtual edgesei+1, ei+2 ∈ E−(ν), whereep+2 = e1, and a set ofp = 3 stars′1, s

′
2 ands′3

such thats′1 touches the parent-virtual edgepe(ν) and a virtual edgee1 ∈ E−(ν), s′2 touches two virtual
edgese1, e2 ∈ E−(ν), ands′3 touches virtual edgee2 ∈ E−(ν) andpe(ν).

Lemma 18 For each starsi ∈ A, testing if there exists a P-nodeν such that starsi touches three virtual

edges inE(ν) can be done inO(|Si|) time. The total time for testing this for all starssi isO(m).

Proof. Fix a starsi and a P-nodeν. See Fig. 9(a) for an illustration ofskl(ν) of a P-nodeν with some star
touching three virtual edges. We see thatsi touches three virtual edges inE−(ν) if and only if P-nodeν
appears in the mimic treeTi having at least three child nodes. Assume thatsi touches at most two virtual
edges inE−(ν). Thensi touches three edges inE(ν) if and only if P-nodeν appears in the mimic treeTi
having exactly two child nodes. andsi touches the parent-edgepe(ν). For any nodeν in Ti, we can test
whethersi touchespe(ν) in O(1) time by Lemma 15.

Recall that the number of vertices in the mimic treeTi is at most3|Si|. Hence the time for testing for
all P-nodes over all starssi isO(

∑
1≤i≤k |Si|) = O(m). 2

We next show how to test whether there is a P-node which satisfies the condition in Lemma 14(i) or (ii).

Lemma 19 Assume that for each P-node inV, no stars ∈ A touches at least three virtual edges in the

skeleton of the P-node. Testing whether there is a P-nodeν ∈ V which satisfies the condition of Lemma 14(i)

or (ii) can be done inO(n+m) time.
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Proof. See Fig. 9(b) and (c) for an illustration ofskl(ν) of a P-nodeν with some stars touching three
virtual edges. By the assumption, any P-node in any mimic treeTi can have at most two children. We first
traverse each mimic treeTi to find the set of all P-nodes with exactly two child nodes inTi in O(m) time.
Then we know that, for each P-nodeν ∈ V, which pair of virtual edges inE−(ν) are touched by some star
s ∈ A.

Next select a P-nodeν ∈ V and a virtual edgeeµ ∈ E−(ν), which corresponds to a child node
µ ∈ Ch(ν; T̂ ). Then we can test whether there is a starsi that touchespe(µ) and the virtual edgeeµ in
O(1) time by Lemma 17. After applying this to all P-nodes and their child nodes inO(n) time, we know
that which virtual edge inE−(ν) andpe(ν) are touched by some stars ∈ A.

Based on the above observation, we can test whether there is a P-nodeν that satisfies the condition of
Lemma 14(i) or (ii) inO(n+m) time. 2

In the following, we assume that each P-nodeν admits a proper embeddingγν .

7.5 Testing R-nodes in the First Phase

We test whether there is an R-node which satisfies the condition in Lemma 13(ii) by three steps. The first
step checks the following condition.

Lemma 20 It takesO(m) time to test whether there is a non-root R-nodeν ∈ V such that some starsi ∈ A

touches the parent edgepe(ν) and two elementsz1 andz2 such thatV (νoj) ∪ E(νoj) for eachj = 1, 2,

Proof. Let si be a star inA. Assume that there is a non-root R-node satisfying the condition in the lemma
for the starsi. See Fig. 8(a) for an illustration ofskl(ν) of an R-nodeν with some stars touching three
virtual edges. Then for any such R-nodeν, the mimic treeTi must contain the split nodesνcp, νo1 andνo2.
When nodesνo1 andνo2 appear inTi, it holdsNi ∩ D(νoj ; T̂ ) ̸= ∅ for both j = 1, 2, i.e.,si touches an
element inV (νoj) ∪E(νoj) for eachj = 1, 2. Testing whetherTi contains a nodeνcp satisfying the above
can be done inO(|Si|) time.

By Lemma 15, we can test inO(1) time whether starsi ∈ A touches the parent edgepe(ν) and a vertex
z with ψ(z) ∈ D(νcp; T̂ ).

Therefore we can test inO(m) time whether there is a non-root R-nodeν ∈ V satisfying the condition
in the lemma for some starsi ∈ A. 2

The second step checks the following condition.

Lemma 21 It takesO(n) time to test whether there is a non-root R-nodeν ∈ V such that some starsi ∈ A

touches the parent edgepe(ν) and an element inV (νin) ∪ E(νin).

Proof. See Fig. 8(b) for an illustration ofskl(ν) of an R-nodeν with some stars touching three virtual
edges. For each non-root R-nodeν ∈ V, we test whether there is a stars ∈ A that touches the parent edge
pe(ν) and a vertexz with ψ(z) ∈ D(νin; T̂ ). This can be done inO(1) by Lemma 17. Therefore we can
test inO(n) time whether there is a non-root R-nodeν ∈ V satisfying the condition in the lemma. 2

In the following, we assume that no non-root R-node satisfies the condition in Lemma 20 or Lemma 21.
If a starsi ∈ A satisfies the condition in Lemma 13(ii) for an R-nodeν ∈ V, then the starsi touches two
elements in(V (ν) − V (νcp)) ∪ E−(ν), but does not touch the parent edgepe(ν). For such a starsi and
an R-nodeν, it holds thatα(si) ∈ {νcp, νin, νo1, νo2} (or α(si) = ν for the root R-nodeνroot). Therefore
the condition in Lemma 13(ii) for some R-node holds if and only ifβ(si) = ∅ holds for some starsi ∈ AR.
Finally the third step computesβ(si) for all such starssi ∈ AR.

Lemma 22 It takesO(n+m) time to computeβ(si) for all such starssi ∈ AR.
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Proof. Let ν ∈ V be an R-node. For each starsi ∈ AR such thatα(si) is a split node ofν or ν = νroot, all
virtual edges inE−(ν) touched bysi correspond to the children of nodesνin, νo1 andνo2 in the mimic tree
Ti, while the set of the verticesV (ν) touched bysi is the unionψ−1(νcp)∪ψ−1(νo1)∪ψ−1(νo2)∪ψ−1(νin).
With the planar embeddingγν and the elements inV (ν)∪E−(ν) touched by stars inAR, we can compute
β(s) for all such stars inO(|V (ν)|+ |E(ν)|+ |{s ∈ AR | α(s) = ν}|) time by Theorem 10. The total time
for computingβ(s), s ∈ AR with α(s) = ν overall R-nodesν ∈ V isO(n+m). 2

Simplified Skeletons
Before we proceed to the second phase, we define “simplified skeletons” for P- and R-nodes.
For each non-root P-nodeν ∈ V with a proper embeddingγν = (pe(ν), e1, e2, . . . , ep) of edges in

E(ν), we define thesimplified skeletonsskl(ν) to be a cycle of length 2

sskl(ν) = (V (ν), Es(ν) = {e1, ep}).

For each non-root R-nodeν ∈ V, we define thesimplified skeletonsskl(ν) to be a cycle of length 2

sskl(ν) = (V (νcp), Es(ν) = {e1, e2}),

by settinge1 ande2 correspond to the o1-R-node and o2-R-nodeνo1, νo2 ∈ V̂ of ν, respectively. We say
that a starsi ∈ A touchesedgeej if it touches an element inV (νoj) ∪ E(νoj).

We do not prepare any simplified skeleton ofskl(ν) of any S-node. Note that each cycle of a simplified
skeleton for a P- or R-nodeν has two possible embeddingsϕν when we determine a planar embedding of
the entire red graphG. The next section finally tests whether there is a proper embedding of the red graph
G that gives anE-planar embedding of(H,G,A).

8 Phase 2 for Case of Connectivity 2

The second phase examines whether there is a combination of embeddings of simplified skeletonsskl(ν)

over all child virtual edgesν ∈ E−(η) for each P- or R-node such that all stars inA can be drawn in a
face without creating a crossing with a red edge. To facilitate the examination, we combine the simplified
skeletons into the skeleton of the parent nodeη of ν (or the parentη of parent ofν if the parent ofν
is an S-node). This results in a skeleton ofη where each virtual edgee ∈ E−(η) is replaced with a
simplified skeleton (or a chain of simplified skeletons ife corresponds to an S-node), which is called
“refined skeletons.”

Refined Skeletons
We define a “refined skeleton”rskl(η) for each nodeν ∈ V as follows:

• For each S-nodeη ∈ V, therefined skeletonrskl(η) is defined to be a circular chain obtained from the
simple cycleskl(η) by replacing each virtual edgee ∈ E−(η) corresponding to a child P- or R-node
ν ∈ Ch(η; T ) with the simplified skeletonsskl(ν); and
For each non-root S-nodeη ∈ V, let rskl−(η) denote theu, v-chain obtained fromrskl(η) by remov-
ing the parent-edgepe(η) = uv.

• For a P- or R-nodeη ∈ V, therefined skeletonrskl(η) is defined to be the planar embedding obtained
from the planar embeddingγη of skeletonskl(η) by replacing each virtual edgee = uv ∈ E−(η)

with au, v-chainQe such thatQe is the simplified skeletonsskl(ν) if the corresponding childνe ∈
Ch(η; T ) is a P- or R-node; andQe is theu, v-chainrskl−(ν) if νe is an S-node.
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Figure 10: Illustration of skeletonskl(η) and refined skeletonrskl(η) of a P-node: (a) A P-node
η ∈ V in the rooted SPR-treeT of G, whereCh(η; T ) = {ν1, . . . , ν5}. (b) The skeletonskl(η) =

(V (η) = {v1, v2}, E(η) = {e1, . . . , e5,pe(η)}) of P-nodeη in (a); (c) The refined skeletonrskl(η) with
V (rskl(η)) = {v1, v2, v3, . . . , v9} andE(rskl(η)) = {e6, e7, . . . , e25, pe(η)} of P-nodeη in (a), and some
stars touching elements inrskl(η), whereVE(s1; η) = {v4, e10} andVE(s2; η) = {e10, e12, e15}; (d) The
parent-child relation among the edges inE(rskl(η)); and (e) A chain instance(Q∗

e2 , Ae2 = {s1, s2}) with
two factor cyclesC1 = (e10, e11) andC∗

e2 = (e∗1, e
∗
2), where the instance contains a twisted set that induces

a forbidden graph of type (i).
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Figure 11: Illustration of skeletonskl(η) and refined skeletonrskl(η) of an R-node: (a) The skeleton
skl(η) = (V (η) = {v1, v2, . . . , v12}, E(η) = {e1, . . . , e18, pe(η)}) of an R-nodeη (b) R-nodeη ∈ V
in the rooted SPR-treeT of G, whereCh(η; T ) = {ν2, ν3, ν4, ν5, ν7, ν8, ν12, ν15}; (c) The split nodes of
R-nodeη in (a); and (d) The refined skeletonrskl(η) of R-nodeη in (a); (e) The parent-child relation among
the edges inE(rskl(η)).
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Note that, whenη is not the root,rskl(η) still contains the original parent-virtual edgepe(η), which is
not replaced with any chain. See Fig. 10(c)-(d) and Fig. 11(d)-(e) for illustrations of the refined skeleton
rskl(η) of a P- or R-nodeη and the corresponding nodes in̂T .

The u, v-chainsQe replaced from child virtual edgese ∈ E−(ν) are calledelementary chainsin
rskl(η). For each elementaryu, v-chainQ in rskl(η), letEcycle(Q) denote the set of edges in factor cycles
in Q and letVin(Q) denote the set of vertices inQ other than the terminalsu andv of Q. An elementary
chain withEcycle(Q) ̸= ∅ is callednontrivial. LetE(rskl(η)) be the set of all real and virtual edges over all
elementary chains inrskl(η), andV (rskl(η)) be the set of all end-vertices of edges inE(rskl(η)), where
V (rskl(η)) ⊆ V .

As for the size of refined skeletons, the refined skeletons of all P- and R-nodes are obtained from
skeletons of all nodes by replacing each virtual edge with two multiple edges and by merging the skeleton
of each S-node into the skeleton of the parent node of the S-node. Therefore the total size of all refined
skeletons remainsO(n). Then we see that constructing the refined skeletonsrskl(η) for all P- and R-nodes
η ∈ V can be done inO(n) time.

Twistless Embeddings
Let η ∈ V be a P- or R-node. For each stars ∈ A, let VE(s; η) denote the set of the elements in

V (rskl(η)) ∪ E(rskl(η)) that are touched bys. LetA(η) be the set of starss ∈ A with VE(s; η) ̸= ∅. See
Fig. 12(a) for an illustration of several different types of starss ∈ A that touches some vertex or edge in the
refined skeletonrskl(η) of an R-nodeη. Notice that no stars ∈ A(η) touches the both sides of the same
factor cycle in any elementary chain, since otheriwise there would be a P-node (or R-node) satisfying the
condition in Lemma 18 (or Lemma 20). For example, stars7 in the refined skeletonrskl(η) in Fig. 12(a)
could not exist in fact, since it touches the two sidese24 ande25 of the same factor cycle.

Fix a virtual edgee = uv ∈ E−(η) such thatQe is nontrivial. Letf1(e) andf2(e) denote the two faces
in Φ(γη) of the planar embeddingγη such that their facial cyclesCf1(e) andCf2(e) share edgee. Note that
each factor cycleC inQe has two possible embeddings, one of the sides ofC is drawn inf1(e) and the other
in f2(e), which is determined by a choice of the flip mappingϕµ. An embeddingγe of Qe is determined
by a combination of flip mappingsϕµ of all factor cyclesC = sskl(µ) in Qe. Since a flip mappingϕµ for
each factor cycleC = sskl(µ) is currently fixed, we denote by a setCflip of factor cycles in an elementary
chainQe to mean an embeddingγe of Qe that is obtained by flipping each cycleC = sskl(µ) ∈ Cflip, i.e.,
settingϕµ := ϕµ. LetA(e) be the set of starss ∈ A(η) that touches an element inVin(Qe) ∪ E(Qe). An
embeddingγe = Cflip of Qe is calledtwistlessif each stars ∈ A(e) can be drawn inside one of the two
facesf1(e), f2(e) ∈ Φ(γη) without creating crossing with red edges inrskl(η).

Chain Instances
To test whetherQe admits a twistless embeddingγe, we define “chain instances.” Construct a circular

chainQ∗
e from the elementaryu, v-chainQe by adding a cycleC∗

e of two new virtual edgese∗1, e
∗
2 = uv.

For j = 1, 2, let e∗j be a new virtual edgeuv that corresponds to the setQj of elementary chainsQe′

generated from virtual edgese′ (̸= e) along facial cycleCfj(e). We say that a stars ∈ A(e) touchesa
virtual edgee∗j if s touches some element inVin(Qe′) ∪ E(Qe′) of an elementary chainQe′ ∈ Qj . LetQ∗

e

be the circular chain obtained fromQe by adding these virtual edgese∗1 ande∗2, which form a cycleC∗
e . We

call a pair(Q∗
e, A(e)) of a red graphQ∗

e and a setA(e) of stars achain instance(defined for a virtual edge
e ∈ E−(η)). See Fig. 10(e) and Fig. 12(b) for an illustration of a chain instance(Q∗

e, A(e)).

Twisted Sets
A twistedset is defined to be a pair({s1, s2, . . . , sp}, {C1, C2, . . . , Cp}) of a set ofp ≥ 2 distinct stars

in A(e) and a set ofp distinct factor cycles inQ∗
e (possiblyCi = C∗

e for somei) with sidesP 0
i andP 1

i of
each cycleCi such that, for eachi = 1, 2, . . . , p− 1, starsi touches an edge inP k

i and an edge inP k
i+1 for
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Figure 12: (a) Illustration of starss ∈ A that touches some vertex or edge in the refined skeletonrskl(η)

of an R-node, whereVE(s1; η) = {e27, e30, v15}, VE(s2; η) = {e22, e39}, VE(s3; η) = {e32, e38},
VE(s4; η) = {e18,pe(η), v13}, VE(s5; η) = {e22,pe(η)}, VE(s6; η) = {e24, e25, v3} andVE(s7; η) =

{e32, e35, pe(η)}. It holds that{s1, s2, . . . , s7} ⊆ A(η), wheres6 must not exist after the first phase;
si, i = 1, 2, . . . , 6 are linking stars, ands5 is an e22-bridging star, whiles7 ̸∈ Alink(η) ∪ Abr(η); (b)
A chain instance(Q∗

e15 , Ae15 = {s2, s3}) with three factor cyclesC1 = (e38, e39), C2 = (e40, e41) and
C∗
e15 = (e∗1, e

∗
2), where the instance contains a twisted set that induces a forbidden graph of type (v); (c)

A chain instance(Q∗
e7 , Ae7 = {s3, s5}) with two factor cyclesC1 = (e22, e23) andC∗

e7 = (e∗1, e
∗
2), where

the instance contains a twisted set that induces a forbidden graph of type (iv); and (d) The auxiliary graph
We15 defined to the chain instance(Q∗

e15 , Ae15) in (b), where(s3, e38, s3, e∗2, e
∗
1) is a chordless odd cycle of

length 5.
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the samek ∈ {1, 2}, but starsp touches an edge inP k
p and an edge inP ℓ

1 for k ̸= ℓ. Observe that if there
is no twisted set inQ∗

e, thenQe admits a twistless embeddingγe.

Lemma 23 If a chain instance(Q∗
e, A(e)) for a virtual edgee = uv ∈ E−(η) has a twisted set, then

(G,A(e)) contains a forbidden graphF of type of (i), (iv) or (v), which can be found inO(n+m) time.

Proof. Let ({s1, s2, . . . , sp}, {C1, C2, . . . , Cp}) be a twisted set in(Q∗
e, A(e)). We distinguish two cases.

Case 1.p ≥ 3: See Fig. 12(b) for such a circular instance(Q∗
e, A(e)). If there is a twisted set, then we

see by Lemma 12 that each sideP j
i of Ci has an associated red pathP of G and each blue edge touching

sideP j
i can be extended to reach a vertex inP by adding some red edges. Hence given a twisted set with

p ≥ 3, we can construct a forbidden subgraphF of type (v) inO(n+m) time.
Case 2.p = 2: See Fig. 10(e) and Fig. 12(c) for such a circular instance(Q∗

e, A(e)). In this case,
Cp = C2 = C∗

e andC1 = (e1, e2) is a simplified skeleton of a child P- or R-nodeν ∈ Ch(η; T ), which
corresponds to the virtual edge ine = uv ∈ E−(η). Without loss of generality assume thatsj , j = 1, 2

touchese1 ande∗j . Then the red graphG has four internally disjoint redu, v-pathsPi, i = 1, 2, 3, 4 such
thatPj is a representing path of virtual edgee∗j , j = 1, 2, andP3 (resp.,P4) represents to the outer boundary
of γν − pe(η) corresponding to edgee1 (resp.,e2). We distinguish two subcases.

(a)C1 = (e1, e2) is a simplified skeleton of a child R-node. Since the skeletonγν is triconnected, the
associated red subgraphGe′ has a redz, z′-pathPz,z′ that joins a vertexz ∈ P1 and a vertexz′ ∈ P4, as
illustrated in Fig. 10(e). Then analogously with Lemma 14(i), we see that the set of these five paths and
two starss1 ands2 give rise to a forbidden graph of type (i), which can be obtained inO(n+m) time.

(b) C1 = (e1, e2) is a simplified skeleton of a child P-node: In this case,η is an R-node, and the red
graphG − V (Ge) has a redz, z′-pathPz,z′ that joins a vertexz ∈ P1 and a vertexz′ ∈ P4, as illustrated
in Fig. 12(c). Then analogously with Lemma 14(ii), we see that the set of these five paths and two starss1
ands2 give rise to a forbidden graph of type (iv), which can be obtained inO(n+m) time. 2

Valid Sets
However, identifying all stars inA(η) and computing the setVE(s; η) for eachs ∈ A(η) for all nodes

η may take more time thanO(n+m).
We here define a subsetAη ⊆ A(η) as a “valid” set in the sense that if the refined skeletonrskl(η) with

{VE(s; η) | s ∈ A(η)} admits a twisted set then so doesrskl(η) with {VE(s; η) | s ∈ Aη}.
- A stars ∈ A is calledlinking if VE(s; η) contains elementsz andz′ such thatz = e ∈ E(C) of a

factor cycleC in an elementary chainQ andz ∈ V (rskl(η)) ∪ E(rskl(η)) − V (Q) − E(C) − {pe(η)}.
LetAlink(η) be the set of all linking starss ∈ A in rskl(η).

- A stars ∈ A is calledbridging (or e-bridging) if
(i) |VE(s; η)| = 2 holds, andVE(s; η) = {z, z′} consists of the parent edgez = pe(η) and an edge
z′ = e ∈ E(C) of a factor cycleC in an elementary chainQ; and
(ii) there is no linking stars′ ∈ Alink(η) with VE(s′; η) ⊇ VE(s; η).
LetAbr(η) be the set of all bridging starss ∈ A in rskl(η).

See Fig. 12(a) for an illustration of linking stars and bridging stars, wheresi, i = 1, 2, . . . , 7 are linking
stars, ands5 is ane22-bridging star.

We easily see that, for each edgee ∈ E(rskl(η)) − {pe(η)} that admits ane-bridging star, only one
e-bridging star is enough to detect a possible twisted set. Then we call a subsetAη of Alink(η) ∪ Abr(η)

valid if
(i) Alink(η) ⊆ Aη; and
(ii) for each edgee ∈ E(rskl(η))− {pe(η)} that admits ane-bridging star, the setAη contains at least one
e-bridging stars ∈ Abr(η).
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Lemma 24 Valid setsAη ⊆ Alink(η) ∪ Abr(η) together with{VE(s; η) | s ∈ Aη} for all P- and R-nodes

η ∈ V can be computed inO(n+m) time. Hence it holds that
∑

P-, R-nodesη∈V |Aη| = O(n+m).

Proof. (I) We first show how to test whether a starsi ∈ A belongs the setAlink(η) for some P- or R-node
η ∈ V. We fix a starsi ∈ A, and distinguish two cases:η is a P- or R-node.

Case of P-nodes: By definition, for a P-nodeη ∈ V, a starsi belongs toAlink(η) if and only if
si touches an edgee ∈ E(C) of a factor cycleC in an elementary chainQ in rskl(η) and an element
z ∈ V (rskl(η)) ∪ E(rskl(η)) − V (Q) − E(C) − {pe(η)}. HenceAlink(η) can containsi only when the
mimic treeTi = (Vi, Ei) of si satisfies at least one of the following:
(a) the P-nodeη appears inTi having at least two child nodes (i.e.,η ∈ Vi and|Ch(η; Ti)| ≥ 2);
(b) a child S-nodeν ∈ Ch(η; T̂ ) appears inTi having at least two child nodes (i.e.,ν ∈ Vi and

|Ch(ν; Ti)| ≥ 2).
First this implies that all P-nodesη that satisfy (a) or (b) forsi can be found just by checkingTi in
O(|Vi|) = O(|Si|) time. Next it suffices to show thatVE(si; η) for all P-nodesη satisfying (a) or (b)
for si can be constructed inO(|Si|) time, from which we can find all P-nodesη such thatsi ∈ Alink(η) in
O(|Si|) time.

Let η be a P-node which satisfies (a) or (b) forsi. Let Chη = Ch(η; Ti) ∪ {S-nodesν ∈ Ch(η; T̂ ) |
|Ch(ν; Ti)| ≥ 2}. Then:
- Each edge inVE(si; η)− {pe(η)} corresponds to a child nodeµ ∈ Ch(ν; Ti) of a nodeν ∈ Chη, where
ν is an S-node or a split node of an R-node inCh(η; T );
- Each vertex inVE(si; η) corresponds to a vertexu that is mapped toη or a child S-nodeν ∈ Chη. Hence
the set of vertices inVE(si; η) is given by the union ofψ−1

i (η) andψ−1
i (ν) for all such S-nodesµ; and

- pe(η) ∈ VE(si; η) if and only if si touchespe(η), which can be checked inO(1) time by Lemma 15.
Hence computingVE(si; η) for all P-nodesη satisfying (a) or (b) forsi can be executed in the size of

the mimic treeTi and the total size of|ψ−1(ν)|, ν ∈ Vi, which isO(|Si|).
Case of R-nodes: This case can be treated analogously with case of P-nodes. By definition, for an

R-nodeη ∈ V,Alink(η) can containsi only when the mimic treeTi = (Vi, Ei) of si satisfies at least one of
the following:
(a) the cp-R-nodeηcp appears inTi having at least two child nodes;
(b) a child S-nodeν ∈ Ch(η′; T̂ ) with η′ ∈ {ηo1, ηo2, ηin} appears inTi having at least two child nodes
(i.e., |Ch(ν; Ti)| ≥ 2). This implies that all R-nodesη that satisfy (a) or (b) forsi can be found just by
checkingTi in O(|Vi|) = O(|Si|) time. Analogously with case of P-nodes, we can show thatVE(si; η

′)

for all R-nodesη′ satisfying (a) or (b) forsi can be constructed inO(|Si|) time, from which we can find all
R-nodesη′ such thatsi ∈ Alink(η′) in O(|Si|) time.

(II) Next we show how to find bridging stars by using the split SPR-treeT̂ . Let η ∈ V be a P-node (the
case whereη is an R-node can be treated analogously). LetEη be the set of virtual edgese ∈ E(C) for
some factor cycleC in rskl(η) such that there is no linking stars′ ∈ Alink(η) with {pe(η), e} ⊆ VE(s′; η).
Since we have computedVE(s; η) for all starss ∈ Alink(η), we can obtainEη. By definition, a stars ∈ A

is e-bridging if and only ife ∈ Eη andVE(s; η) = {pe(η), e}.
Let e ∈ Eη be an edge. Thene is an edge in a simplified skeleton of a P- or R-nodeξ (whereξ is a child

node ofη or a child node of a child S-nodeν of η). If ξ is a P-node, then letµe be the node corresponding
to edgee; and ifξ is an R-node, then letµe be the o1- or o2-R-node corresponding to edgee. Hence finding
an e-bridging stars ∈ Abr(η), i.e., finding a stars ∈ A that touches the parent edgepe(η) and a vertex
z with ψ(z) ∈ D(µe; T̂ ) can be done inO(1) time by Lemma 17. Therefore we can find a subsetBη of
bridging stars so thatAη = Bη ∪Alink(η) becomes valid in time linear to the size ofrskl(η). The total time
for constructing valid setsAη for all P- and R-nodes isO(n+m). 2

For each virtual edgee = uv ∈ E−(η), letAe = A(e) ∩ Aη. We are ready to detect a possible twisted
set in(Q∗

e, Ae) by testing whether an auxiliary graphWe is bipartite. LetC(Q∗
e) be the set of factor cycles
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in the circular chainQ∗
e, where we denote the two sides of each cycleC ∈ C(Q∗

e) by P 1
C andP 2

C . We
represent each cycleC ∈ C(Q∗

e) as an edgez1Cz
2
C and join a starsi and a vertexziC with an edgesziC if s

touches sideP i
C . LetWe = (Ae ∪ {z1C , z2C | C ∈ C(Q∗

e)}, Ee ∪ {z1Cz2C | C ∈ C(Q∗
e)}) be the resulting

graph, whereziC , i = 1, 2 denotes a vertex that corresponds to sideP i
C of a cycleC, andEe contains an

edgesziC if s touches sideP i
C . See Fig. 12(d) for an example of graphWe. Notice that no vertexs ∈ Ae

is adjacent to the both vertciesz1Cz
2
C of the same cycle, since no linking stars touches the both sides of the

same factor cycle in any elementary chain. HenceWe contains no cycle of length 3.
Then we see thatWe is a bipartite graph if and only ifQe admits a twistless embeddingγe = Cflip. In

fact, a twisted set is given by a chordless odd cycle inWe, whose length is at least 5. WhenWe is bipartite,
the setAe is partitioned intoAf1(e) andAf2(e) such that a stars ∈ Afi(e) is placed in the facefi(e) in the
twistless embeddingγe. We can test whetherWe contains a chordless odd cycle orQe admits a twistless
embeddingγe in time linear to the size ofQe andAe by the breadth-first search.

By Lemma 24, we have
∑

P-, R-nodesη∈V
∑

e∈E−(η)(|E(Qe)|+|Ae|) =
∑

P-, R-nodesη∈V(|E(rskl(η)|+
|Aη|) = O(n +m). Hence it takesO(n +m) time to find a twisted set in a chain instance(Q∗

e, Ae) for
some virtual edgee ∈ E−(η) in a P- or R-nodeη ∈ V or construct a twistless embeddingγe = Cflip for all
virtual edgese ∈ E−(η) of all P- and R-nodesη ∈ V.

In the former, the instance(H,G,A) has a forbidden graphF of type of (i), (iv) or (v), which can be
found inO(n+m) time by Lemma 23.

In the latter, we change the current proper embeddingγG of the red graphG by flipping each factor
cycleC = sskl(µ) in γe = Cflip by executingϕµ := ϕµ. Let γ′G denote the resulting proper embedding of
G, which we do not need to actually construct, since we instead construct a planarizing partitionA of A as
follows. For each stars ∈ A, we assign a genuine face of some proper embeddingγν of a nodeν so that
(i) if |β(s)| = 1, then letβs := f for the facef ∈ β(s);
(ii) if |β(s)| = 2 ands ∈ Ae for a virtual edgee ∈ E−(η) for a P- or R-nodeη, then letβs := fi(e) for the
facefi(e) with s ∈ Afi(e) (i.e.,s is placed in facefi(e) in the twistless embeddingγe); and
(iii) Otherwise,|β(s)| = 2 but s ̸∈ Ae for any virtual edgee, where it holdsSi = {u, v} for some virtual
edgee = uv ∈ E−(ν) for a nodeν ∈ V, letβs be any off1(e) andf2(e).
Finally we letA = {A1, A2, . . . , Ah} be a partition of star setA such thats, s′ ∈ Ai if and only if
ϕ∗(βs) = ϕ∗(βs′). ThenA is planarizing. Since computing the functionβ∗(f) for all non-genuine faces
f can be executed in a bottom-up way along the rooted SPR-treeT , the time to constructA from twistless
embeddings isO(n).
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