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Abstract: Previously, the authors of this work have presented in a series of

papers polynomial-space algorithms for the TSP in graphs with degree at most

five, six and seven. Each of these algorithms is the first algorithm specialized

for the TSP in graphs of limited degree five, six, and seven respectively, and

the running time bound of these algorithms outperforms Gurevich and Shelah’s

O∗(4nnlogn) algorithm for the TSP in n-vertex graphs (SIAM Journal of Com-

putation, 16(3), pp. 486–502, 1987). Now we ask what is the highest degree i

until which a specialized polynomial-space algorithm for the TSP in graphs with

maximum degree i outperforms Gurevich and Shelah’s O∗(4nnlogn) algorithm?

As an answer to this question, this paper presents the first polynomial-space ex-

act algorithm specialized for the TSP in graphs with degree at most eight. We

develop a set of branching rules to aid the analysis of the branching algorithm,

and we use the measure-and-conquer method to effectively analyze our branch-

ing algorithm. We obtain a running time of O∗(4.1485n), and this running time

bound does not give an advantageous algorithm for the TSP in degree-8 graphs

over Gurevich and Shelah’s algorithm for the TSP in general, but it gives a limit

as to the applicability of our choice of branching rules and analysis method for

designing a polynomial-space exact algorithm for the TSP in graphs of limited

degree.

Keywords: Traveling Salesman Problem, Exact Exponential Algorithm, Branch-and-

Reduce, Measure-and-Conquer.

1 Introduction

The Traveling Salesman Problem, TSP, is one of the most well-known combinatorial op-

timization problems. In the multitude of investigated algorithms for the TSP, we confine

our exposition to those who use polynomial execution space. Gurevich and Shelah [5] have

shown that the TSP in a general n-vertex graph is solvable in time O∗(4nnlogn). This had

remained the only result for nearly two decades until Eppstein [2] started the exploration into

polynomial-space TSP algorithms specialized for graphs of bounded degree. From this view-

point, let degree-i graph stand for a graph in which each vertex has at most i incident edges.
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Eppstein [2] designed an algorithm for degree-3 graphs that runs in O∗(1.260n) time. Iwama

and Nakashima [6] have claimed an improvement of Eppstein’s time bound to O∗(1.251n)

time for the TSP in degree-3 graphs. Later, Liskiewicz and Schuster [7] have discovered some

oversights made in Iwama and Nakashima’s analysis, and proved that their algorithm actu-

ally runs in O∗(1.257n) time. Liskiewicz and Schuster then made some minor modifications

of Eppstein’s algorithm and showed that this modified algorithm runs in O∗(1.2553n) time.

Recently, Xiao and Nagamochi [12] have presented an O∗(1.2312n)-time algorithm for the

TSP in degree-3 graphs, and this improved all previous time bounds for polynomial-space

algorithms.

For the TSP in degree-4 graphs, Eppstein [2] designed an algorithm that runs inO∗(1.890n)

time. Later, Xiao and Nagamochi [13] showed an improved value for the upper bound of the

running time and showed that their algorithm runs in O∗(1.692n) time. Currently, this is the

fastest algorithm for the TSP in degree-4 graphs. To the best of our knowledge, presently

the only investigation on the TSP in graphs of degree five and up to seven has been done by

Md Yunos et al. [8, 9, 10]. Md Yunos et al. [8] gave an O∗(2.4723n)-time algorithm for the

TSP in degree-5 graphs, followed by an O∗(3.0335n)-time algorithm for the TSP in degree-6

graphs [9], and an O∗(3.5939n)-time algorithm for the TSP in degree-7 graphs [10].

Above all, there exist no reports in the literature of exact algorithms specialized to the

TSP in graphs of degree higher than seven. Furthermore, the following question arises; until

which value i of a maximum degree does a specialized polynomial-space algorithm for degree-

i graphs outperform Gurevich and Shelah’s O∗(4nnlogn)-time algorithm? Therefore, in this

paper, not only do we present the first polynomial-space branching algorithm for the TSP

in degree-8 graphs, but also breach the time bound of O∗(4n). This result does not give

an advantageous algorithm for the TSP in degree-8 graphs over Gurevich and Shelah, but

gives a limit as to the applicability of our choice of branching rules and analysis method

for designing a polynomial-space exact algorithm for the TSP in graphs of limited degree.

This means that in the quest of designing polynomial-space exact algorithms for the TSP

in graphs of limited degree, possibly different and improved branching rules and analysis

method should be sought for in order to achieve better results.

2 Preliminaries

For a graph G, let V (G) denote the set of vertices in G, and let E(G) denote the set of

edges in G. A vertex u is a neighbor of a vertex v if u and v are adjacent by an edge uv.

We denote the set of all neighbors of a vertex v by N(v), and denote by d(v) the cardinality

|N(v)| of N(v), also called the degree of v. For a subset of vertices W ⊆ V (G), let N(v;W ) =

N(v) ∩W . For a subset of edges E′ ⊆ E(G), let NE′(v) = N(v) ∩ {u | uv ∈ E′}, and let

dE′(v) = |NE′(v)|. Analogously, let NE′(v;W ) = NE′(v) ∩W , and dE′(v,W ) = |NE′(v,W )|.
Also, for a subset E′ of E(G), we denote by G − E′ the graph (V,E \ E′) obtained from G

by removing the edges in E′.

We employ a known generalization of the TSP proposed by Rubin [11], and named the

forced Traveling Salesman Problem by Eppstein [2]. We define an instance I = (G,F ) that

consists of a simple, edge weighted, undirected graph G, and a subset F of edges in G, called

forced. For brevity, throughout this paper let U denote E(G) \ F . A vertex is called forced

if exactly one of its incident edges is forced. Similarly, it is called unforced if no forced edge

is incident to it. A Hamiltonian cycle in G is called a tour if it passes through all the forced
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edges in F . Under these circumstances, the forced TSP requests to find a minimum cost tour

of an instance (G,F ).

Throughout this paper, we assume that the maximum degree of a vertex in G is at most

eight. We denote a forced (resp., unforced) vertex of degree i as a type fi vertex (resp., ui

vertex). We are interested in 12 types of vertices in an instance of (G,F ), namely, ui and fi

for i = 3, 4, . . . , 8. As shall be seen in Subsection 3.1, forced and unforced vertices of degree

two and one are treated as special cases. Let Vfi (resp., Vui), i = 3, 4, . . . , 8 denote the set of

fi-vertices (resp., ui-vertices) in (G,F ).

3 A Polynomial-Space Branching Algorithm

Our algorithm consists of two major steps which are repeated iteratively. In the first step,

the algorithm applies reduction rules until no further reduction is possible. In the second

step, the algorithm applies branching rules in a reduced instance to search for a solution.

3.1 Reduction Rules

Reduction is a process of transforming an instance to a smaller instance optimality. It takes

polynomial time to generate a solution of an original instance from a solution to a smaller

instance obtained through reduction.

If an instance admits no tour, we call it infeasible. Observation 1 gives two sufficient

conditions for an instance to be infeasible as observed by Rubin [11]. These two sufficient

conditions will be checked when executing the reduction rules.

Observation 1 If one of the following conditions holds, then the instance (G,F ) is infeasible.

(i) d(v) ≤ 1 for some vertex v ∈ V (G).

(ii) dF(v) ≥ 3 for some vertex v ∈ V (G).

An instance (G,F ) is called semi-feasible if it does not satisfy any of the conditions in

Observation 1. If the instance is semi-feasible, then the reduction rules will be executed. In

this paper, we apply two reduction rules as stated in Md Yunos et al. [8]. The reduction

rules as stated in Observation 2 preserve the minimum cost tour of an instance, and they are

applied in each of the branching operations.

Observation 2 Each of the following reductions preserves the feasibility and a minimum

cost tour of an instance (G,F ).

(i) If d(v) = 2 for a vertex v, then add to F any unforced edge incident to the vertex v;

and

(ii) If d(v) > 2 and dF(v) = 2 for a vertex v, then remove from G any unforced edge incident

to vertex v.

Our reduction algorithm is described as Algorithm 1. An instance (G,F ) is called reduced

if it does not satisfy any of the conditions in Observation 1 and Observation 2.
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3.2 Branching Rules

Our algorithm iteratively branches on an unforced edge e in a reduced instance I = (G,F )

by either including e into F , force(e), or excluding it from G, delete(e). By applying a

branching operation, the algorithm generates two new instances, called branches.

To describe our branching algorithm, let (G,F ) be a reduced instance. Recall that we

assume that an input graph has degree at most eight. Due to our reduction and branching

operations, the degree in sub-instance will never increase.

In (G,F ), an unforced edge e = vt incident to a vertex v of degree eight is called optimal,

if it satisfies a condition c-i with minimum index i, over all unforced edges vt in (G,F ). We

refer to the following conditions for choosing an optimal edge to branch on, c-1 to c-29, as

the branching rules. The set of branching rules for conditions c-1 to c-18 is illustrated in

Figure 1, and the set of branching rules for conditions c-19 to c-29 is illustrated in Figure 2.

Details of our branching algorithm are described in Algorithm 2.

For convenience of the analysis of the algorithm, cases c-5, c-8, c-11, c-14 and c-17 have

been divided into sub-cases according to the cardinality of the neighborhood intersection for

vertex v of degree eight and vertex t of degree four, five, six, seven and eight, respectively.

Vertex pairs with intersections of lower cardinality take precedence over higher ones.

Branching Rules

(c-1) v ∈ Vf8 and t ∈ NU (v;Vf3) such

that NU (v) ∩NU (t) = ∅;
(c-2) v ∈ Vf8 and t ∈ NU (v;Vf3) such

that NU (v) ∩NU (t) 6= ∅;
(c-3) v ∈ Vf8 and t ∈ NU (v;Vu3);

(c-4) v ∈ Vf8 and t ∈ NU (v;Vf4) such

that NU (v) ∩NU (t) = ∅;
(c-5) v ∈ Vf8 and t ∈ NU (v;Vf4) such

that NU (v) ∩NU (t) 6= ∅;
(I) |NU (v)∩NU (t)| = 1; and

(II) |NU (v) ∩NU (t)| = 2;

(c-6) v ∈ Vf8 and t ∈ NU (v;Vu4);

(c-7) v ∈ Vf8 and t ∈ NU (v;Vf5) such

that NU (v) ∩NU (t) = ∅;
(c-8) v ∈ Vf8 and t ∈ NU (v;Vf5) such

that NU (v) ∩NU (t) 6= ∅;
(I) |NU (v) ∩NU (t)| = 1;

(II) |NU (v)∩NU (t)| = 2; and

(III) |NU (v) ∩NU (t)| = 3;

(c-9) v ∈ Vf8 and t ∈ NU (v;Vu5);

(c-10) v ∈ Vf8 and t ∈ NU (v;Vf6) such

that NU (v) ∩NU (t) = ∅;
(c-11) v ∈ Vf8 and t ∈ NU (v;Vf6) such

that NU (v) ∩NU (t) 6= ∅;
(I) |NU (v) ∩NU (t)| = 1;

(II) |NU (v) ∩NU (t)| = 2;

(III) |NU (v)∩NU (t)| = 3; and

(IV) |NU (v) ∩NU (t)| = 4;

(c-12) v ∈ Vf8 and t ∈ NU (v;Vu6);

(c-13) v ∈ Vf8 and t ∈ NU (v;Vf7) such

that NU (v) ∩NU (t) = ∅;

(c-14) v ∈ Vf8 and t ∈ NU (v;Vf7) such

that NU (v) ∩NU (t) 6= ∅;
(I) |NU (v) ∩NU (t)| = 1;

(II) |NU (v) ∩NU (t)| = 2;

(III) |NU (v) ∩NU (t)| = 3;

(IV) |NU (v)∩NU (t)| = 4; and

(V) |NU (v) ∩NU (t)| = 5;

(c-15) v ∈ Vf8 and t ∈ NU (v;Vu7);

(c-16) v ∈ Vf8 and t ∈ NU (v;Vf8) such

that NU (v) ∩NU (t) = ∅;
(c-17) v ∈ Vf8 and t ∈ NU (v;Vf8) such

that NU (v) ∩NU (t) 6= ∅;
(I) |NU (v) ∩NU (t)| = 1;

(II) |NU (v) ∩NU (t)| = 2;

(III) |NU (v) ∩NU (t)| = 3;

(IV) |NU (v) ∩NU (t)| = 4;

(V) |NU (v)∩NU (t)| = 5; and

(VI) |NU (v) ∩NU (t)| = 6;

(c-18) v ∈ Vf8 and t ∈ NU (v;Vu8);

(c-19) v ∈ Vu8 and t ∈ NU (v;Vf3);

(c-20) v ∈ Vu8 and t ∈ NU (v;Vu3);

(c-21) v ∈ Vu8 and t ∈ NU (v;Vf4);

(c-22) v ∈ Vu8 and t ∈ NU (v;Vu4);

(c-23) v ∈ Vu8 and t ∈ NU (v;Vf5);

(c-24) v ∈ Vu8 and t ∈ NU (v;Vu5);

(c-25) v ∈ Vu8 and t ∈ NU (v;Vf6).

(c-26) v ∈ Vu8 and t ∈ NU (v;Vu6);

(c-27) v ∈ Vu7 and t ∈ NU (v;Vf7);

(c-28) v ∈ Vu8 and t ∈ NU (v;Vu7);

and

(c-29) v ∈ Vu8 and t ∈ NU (v;Vu8).
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Algorithm 1 Red(G,F )

Input: An instance (G,F ).

Output: A reduced instance (G′, F ′) of (G,F ); or a message for the infeasibility of (G,F ), which

evaluates to ∞.

1: Initialize (G′, F ′) := (G,F );

2: while (G′, F ′) is not a reduced instance do

3: if there is a vertex v in (G′, F ′) such that d(v) ≤ 1 or dF ′(v) ≥ 3 then

4: return message “Infeasible”

5: else if there is a vertex v in (G′, F ′) such that 2 = d(v) > dF ′(v) then

6: Let E† be the set of unforced edges incident to all such vertices;

7: set F ′ := F ′ ∪ E†

8: else if there is a vertex v in (G′, F ′) such that d(v) > dF ′(v) = 2 then

9: Let E† be the set of unforced edges incident to all such vertices;

10: set G′ := G′ − E†

11: end if

12: end while;

13: return (G′, F ′).

Algorithm 2 tsp8(G,F )

Input: An instance (G,F ) such that the maximum degree of G is at most 8.

Output: The minimum cost of a tour of (G,F ); or a message for the infeasibility of (G,F ), which

evaluates to ∞.

1: Run Red(G,F );

2: if Red(G,F ) returns message “Infeasible” then

3: return message “Infeasible”

4: else

5: Let (G′, F ′) := Red(G,F );

6: if Vu8 ∪ Vf8 6= ∅ then
7: Choose an optimal unforced edge e;

8: if both tsp8(G′, F ′ ∪ {e}) and tsp8(G′ − {e}, F ′) return message “Infeasible” then

9: return message “Infeasible”

10: else

11: return min{tsp8(G′, F ′ ∪ {e}), tsp8(G′ − {e}, F ′)}
12: end if

13: else /* the maximum degree of any vertex in (G′, F ′) is at most 7 */

14: return tsp7(G′, F ′)

15: end if

16: end if.

Note: The input and output of algorithm tsp7(G,F ) are as follows:

Input: An instance (G,F ) such that the maximum degree of G is at most 7.

Output: The minimum cost of a tour of (G,F ); or a message for the infeasibility of (G,F ), which

evaluates to ∞.

4 Analysis

4.1 Analysis Framework

To effectively analyze the running time of our branching algorithm, we use the measure-and-

conquer method as introduced by Fomin et al. [3]. Given an instance I = (G,F ) of the forced

TSP, we assign a nonnegative weight ω(v) to each vertex v ∈ V (G) according to its type. To

this effect, we set a non-negative vertex weight function ω : V → R+ in the graph G, and we
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Figure 1: Illustration of the branching rules c-1 to c-18.

use the sum of weights of all vertices in the graph as the measure µ(I) of instance I, that is,

µ(I) =
∑

v∈V (G)

ω(v). (1)

It is important for the analysis to find a measure which satisfies the following properties

(i) µ(I) = 0 if and only if I can be solved in polynomial time;
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Figure 2: Illustration of the branching rules c-19 to c-29.

(ii) If I ′ is a sub-instance of I obtained through a reduction or a branching operation, then

µ(I ′) ≤ µ(I).

We call a measure µ satisfying conditions (i) and (ii) above a proper measure.

We perform the time analysis of the branching algorithm via appropriately constructed

recurrences over the measure µ = µ(I) of an instance I = (G,F ), for each branching rule

of the algorithm. Let T (µ) denote the number of nodes in the search tree generated by

our algorithm when invoked on the instance I with measure µ. Let I ′ and I ′′ be instances

obtained from I by a branching operation, and let a ≤ µ(I)− µ(I ′) and b ≤ µ(I)− µ(I ′′) be

lower bounds on the amounts of decrease in the measure. We call (a, b) the branching vector

of the branching operation, and this implies the linear recurrence

T (µ) ≤ T (µ− a) + T (µ− b) . (2)

To evaluate the performance of this branching vector, we can use any standard method

for linear recurrence relations. In fact, it is known that T (µ) is of the form O (τµ), where

τ is the unique positive real root of the function f(x) = 1 −
(
x−a + x−b

)
. The value τ is

called the branching factor of the branching vector (a, b). The running time of the algorithm is

determined by considering the worst branching factor over all branching vectors generated by

the branching rules. For further details justifying this approach, as well as a solid introduction

to branching algorithms, the reader is referred to the book of Fomin and Kratsch [4].

4.2 Weight Constraints

In order to obtain a measure which will naturally give a running time bound as a function

of the size of a TSP instance, we require that the weight of each vertex to be not greater

than one. In what follows, we examine some necessary constraints which the vertex weights

should satisfy in order for us to obtain a proper measure.

For each i = 3, 4, . . . , 8, we denote by wi the weight of a ui-vertex, and by w′i the weight

of an fi-vertex. The conditions for a proper measure require that the measure of an instance
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obtained through a branching or a reduction operation will not be greater than the measure

of the original instance. Thus, the vertex weights should satisfy the following relations:

w8 ≤ 1, (3)

w′i ≤ wi, 3 ≤ i ≤ 8 (4)

wi ≤ wj , 3 ≤ i < j ≤ 8, and (5)

w′i ≤ w′j , 3 ≤ i < j ≤ 8. (6)

The vertex weight for vertices of degree less than three is set to be zero.

Lemma 1 states that given Algorithms 1 and 2, setting vertex weights which satisfy the

conditions of Eqs. (4) to (6) is sufficient to obtain a proper measure. We can prove Lemma 1

in a similar way as Lemma 3 by Md Yunos et al. [8, Lemma 3].

Lemma 1 If the weights of vertices are chosen as in Eqs. (4) to (6), then the measure µ(I)

never increases as a result of the reduction or the branching operations of Algorithm 1 and

Algorithm 2.

To simplify some arguments and the list of the branching vectors we are about to derive,

we introduce the following notation:

∆i = wi − w′i, 3 ≤ i ≤ 8

∆i,j = wi − wj , 3 ≤ j < i ≤ 8, and

∆′i,j = w′i − w′j , 3 ≤ j < i ≤ 8

further,

m1 = min{w′3, w3,∆
′
4,3,∆4,3,∆

′
5,4,∆5,4,∆

′
6,5,∆6,5,∆

′
7,6,∆7,6,∆

′
8,7,∆8,7}, (7)

m2 = min{w3,∆
′
4,3,∆4,3,∆

′
5,4,∆5,4,∆

′
6,5,∆6,5,∆

′
7,6,∆7,6,∆

′
8,7,∆8,7}, (8)

m3 = min{w′3,∆3, w
′
4,∆4, w

′
5,∆5, w

′
6,∆6, w

′
7,∆7, w

′
8,∆8}, (9)

m4 = min{∆′4,3,∆4,3,∆
′
5,4,∆5,4,∆

′
6,5,∆6,5,∆

′
7,6,∆7,6,∆

′
8,7,∆8,7}, (10)

m5 = min{w′4, w4,∆
′
5,3,∆5,3,∆

′
6,4,∆6,4,∆

′
7,5,∆7,5,∆

′
8,6,∆8,6}, (11)

m6 = min{∆4,3,∆
′
5,4,∆5,4,∆

′
6,5,∆6,5,∆

′
7,6,∆7,6,∆

′
8,7,∆8,7}, (12)

m7 = min{∆′5,4,∆5,4,∆
′
6,5,∆6,5,∆

′
7,6,∆7,6,∆

′
8,7,∆8,7}, (13)

m8 = min{∆′5,3,∆5,3,∆
′
6,4,∆6,4,∆

′
7,5,∆7,5,∆

′
8,6,∆8,6}, (14)

m9 = min{∆5,4,∆
′
6,5,∆6,5,∆

′
7,6,∆7,6,∆

′
8,7,∆8,7}, (15)

m10 = min{∆′6,5,∆6,5,∆
′
7,6,∆7,6,∆

′
8,7,∆8,7}, (16)

m11 = min{∆′6,4,∆6,4,∆
′
7,5,∆7,5,∆

′
8,6,∆8,6}, (17)

m12 = min{∆6,5,∆
′
7,6,∆7,6,∆

′
8,7,∆8,7}, (18)

m13 = min{∆′7,6,∆7,6,∆
′
8,7,∆8,7}, (19)

m14 = min{∆′7,5,∆7,5,∆
′
8,6,∆8,6}, (20)

m15 = min{∆7,6,∆
′
8,7,∆8,7}, (21)

m16 = min{∆′8,7,∆8,7}, (22)

m17 = min{∆′8,6,∆8,6}, (23)

m18 = min{w′3,∆3, w
′
4,∆4, w

′
5,∆5, w

′
6,∆6, w

′
7,∆7,∆8}, (24)

m19 = min{w′3, w3,∆
′
4,3,∆4,3,∆

′
5,4,∆5,4,∆

′
6,5,∆6,5,∆

′
7,6,∆7,6,∆8,7}. (25)
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4.3 Main Result

Let a vertex weight function ω(v) be chosen as follows:

ω(v) =



w8 = 1 for a u8-vertex v

w′8 = 0.511412 for an f8-vertex v

w7 = 0.899136 for a u7-vertex v

w′7 = 0.464212 for an f7-vertex v

w6 = 0.779985 for a u6-vertex v

w′6 = 0.406731 for an f6-vertex v

w5 = 0.636671 for a u5-vertex v

w′5 = 0.349250 for an f5-vertex v

w4 = 0.454189 for a u4-vertex v

w′4 = 0.259479 for an f4-vertex v

w3 = 0.208484 for a u3-vertex v

w′3 = 0.116721 for an f3-vertex v

0 otherwise

(26)

The vertex weight function ω(v) given in Eq. (26) is obtained as a solution to a quasiconvex

program, according to the method introduced by Eppstein [1]. All the branching vectors are

in fact constraints in the quasiconvex program.

Lemma 2 If the vertex weight function ω(v) is set as in Eq. (26), then each of the branching

operations in Algorithm 2 has a branching factor not greater than 4.148449.

A proof of Lemma 2 can be derived analytically by analyzing the branching vectors which

result by applying the branching and reduction operations. From Lemma 2, we get our main

result as stated in Theorem 1.

Theorem 1 The TSP in an n-vertex graph G with maximum degree eight can be solved in

O∗(4.1485n) time and polynomial space.

In the remainder of the analysis, for an optimal edge e = vt1, we refer to NU (v) by

{t1, t2, . . . , ta}, a = dU (v), and to NU (t1) \ {v} by {ta+1, ta+2, . . . , ta+b}, b = dU (t1)− 1. We

assume without loss of generality that t1+i = ta+i for i = 1, 2, . . . , c, where c = |NU (v) ∩
NU (t1)| is the number of common neighbors of v and t1.

If there exists an f3-vertex ta+i in NU (t1) \ {v}, let x ∈ NU (ta+i) \ {v, t1}. We see that

the choice of vertex x is unique, because ta+i is of type f3 and |NU (ta+i) \ {v, t1}| = 1. This

vertex x will plays a key role in our analysis, as shown in Fig. 3.

4.4 Branching on Edges around f8-vertices (c-1 to c-18)

This subsection will show how we derive the branching vectors for the branching operations

on an optimal edge e = vt1, incident to a forced vertex v of degree eight, distinguishing the

18 cases for conditions c-1 to c-18. We analyze the branching vectors in a similar manner

with the analysis of the algorithm for the TSP in degree-5 graphs by Md Yunos et al. [8].

Case c-1. There exist vertices v ∈ Vf8 and t1 ∈ NU (v;Vf3) such that NU (v) ∩ NU (t1) = ∅
(see Figure 4): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8}.
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: newly forced edges by the

  branching operation

: newly deleted edges by the

  branching operation

: forced edges

: newly forced edges by reduction rules

: newly deleted edges by reduction rules

(a) force(e)

x

ta+i

t1

e

v

(b) delete(e)

x

ta+i

t1

e

v

Figure 3: Illustration of (a) newly forced and (b) deleted edge by a branching operation and

reduction rules for an f3 vertex ta+i.

(a) force(vt1) in c-1

v

t1

e

t7

t2
t3 t4

t5

t6

t8

(b) delete(vt1) in c-1

t8

t1

e

t7

t2
t3 t4

t5

t6

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

Figure 4: Illustration of branching rule c-1, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf3).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, and t1t8 will be deleted from G′ by the reduction rules.

Both v and t1 will become vertices of degree two. From Eq. (26), the weight of vertices of

degree two is zero. So the weight of vertex v decreases by w′8 and the weight of vertex t1
decreases by w′3. Each of the vertices t2, t3, t4, t5, t6 and t7 can be any of the possible vertex

types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and each of their weights

decreases by at least m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7,

∆8,7}.
In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation, and the edge t1t8 will be added to F ′ by the reduction rules. The weight of

vertex v decreases by ∆′8,7 and the weight of vertex t1 decreases by w′3.

There are two cases for vertex t8; 1) vertex t8 is of type f3, and 2) otherwise. We will

analyze these two cases separately for each of branches force(vt1) and delete(vt1).

First, we will analyze the case where vertex t8 is an f3-vertex (see Figure 3). Recall that

in this case, we denote by x the unique vertex in NU (t8) \ {t1}. In the branch of force(vt1),

edge xt8 will be added to F ′ by the reduction rules. Hence the weight of vertex t8 decreases

by w′3. If vertex x is an f3-vertex (resp., u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, or a u8-vertex),

then the weight decrease α1 of vertex x will be w′3 (resp., ∆3, w
′
4, ∆4, w

′
5, ∆5, w

′
6, ∆6, w

′
7,

∆7, w
′
8, and ∆8). Thus the total weight decrease for this case in the branch of force(vt1) is

at least w′8 + w′3 + w′3 + 6m1 + α1.

In the branch of delete(vt1), edge xt8 will be deleted from G′ be the reduction rules.

Hence the weight of vertex t8 decreases by w′3. If vertex x is an f3-vertex (resp., u3, f4, u4,
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f5, u5, f6, u6, f7, u7, f8, or a u8-vertex), then the weight decrease β1 of vertex x will be w′3
(resp., w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, and ∆8,7). Thus the total

weight decrease for this case in the branch of delete(vt1) is at least w′8−w′7 +w′3 +w′3 + β1.

As a result, for the ordered pair (α1, β1) taking values in {(w′3, w′3), (∆3, w3), (w′4,∆
′
4,3),

(∆4,∆4,3), (w′5,∆
′
5,4), (∆5,∆5,4), (w′6,∆

′
6,5), (∆6,∆6,5), (w′7,∆

′
7,6), (∆7,∆7,6), (w′8,∆

′
8,7),

(∆8,∆8,7)}, we get the following 12 branching vectors:

(w′8 + 2w′3 + 6m1 + α1, w
′
8 − w′7 + 2w′3 + β1). (27)

Next, we examine the case where vertex t8 is not an f3-vertex. In the branch of force(vt1),

if vertex t8 is a u3-vertex (resp., f4, u4, f5, u5, f6, u6, f7, u7, f8, or a u8-vertex), then the

weight decrease α2 of vertex t8 will be w3 (resp., ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6,

∆′8,7, and ∆8,7). Thus the total weight decrease for this case in the branch of force(vt1) is

at least w′8 + w′3 + 6m1 + α2.

In the branch of delete(vt1), if vertex t8 is a u3-vertex (resp., f4, u4, f5, u5, f6, u6, f7,

u7, f8, or a u8-vertex), then the weight decrease β2 of vertex t8 will be ∆3 (resp., w′4, ∆4, w
′
5,

∆5, w
′
6, ∆6, w

′
7, ∆7, w

′
8, and ∆8). Thus the total weight decrease for this case in the branch

of delete(vt1) is at least w′8 − w′7 + w′3 + β2.

As a result, for the ordered pair (α2, β2) taking values in {(w3,∆3), (∆′4,3, w
′
4), (∆4,3,∆4),

(∆′5,4, w
′
5), (∆5,4,∆5), (∆′6,5, w

′
6), (∆6,5,∆6), (∆′7,6, w

′
7), (∆7,6,∆7), (∆′8,7, w

′
8), (∆8,7,∆8)},

we get the following 11 branching vectors:

(w′8 + w′3 + 6m1 + α2, w
′
8 − w′7 + w′3 + β2). (28)

Case c-2. Case c-1 is not applicable, and there exist vertices v ∈ Vf8 and t1 ∈ NU (v;Vf3) such

that NU (v) ∩ NU (t1) 6= ∅: Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2}
(see Figure 5). We branch on the edge vt1.

(a) force(vt1) in c-2

v

t1

e

t7

t2
t3 t4

t5

t6

(b) delete(vt1) in c-2

t1

e

t7

t2
t3 t4

t5

t6

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

Figure 5: Illustration of branching rule c-2, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf3).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7 and t1t2 will be deleted from G′ by the reduction rules.

So the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by w′3. Each

of the vertices t3, t4, t5, t6 and t7 can be any of the possible vertex types f3, u3, f4, u4, f5,

u5, f6, u6, f7, u7, f8 and a u8-vertex, and each of their weights decreases by at least m1

= min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}.
If vertex t2 is an f3 or a u3-vertex, after applying the branching operation, t2 would

become a vertex of degree one. From Observation 1, case (i), this is infeasible, and the

algorithm will return a message of infeasibility and terminate. Otherwise, if vertex t2 is an

f4-vertex (resp., u4, f5, u5, f6, u6, f7, u7, f8, or a u8-vertex), then the weight decrease α3 of
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vertex t2 will be w′4 (resp., w4, ∆′5,3, ∆5,3, ∆′6,4, ∆6,4, ∆′7,5, ∆7,5, ∆′8,6, and ∆8,6). Thus the

total weight decrease for this case in the branch of force(vt1) is at least w′8 +w′3 + 5m1 +α3.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation, and the edge t1t2 will be added to F ′ by the reduction rules. So the weights of

vertices v and t1 decrease by ∆′8,7 and w′3, respectively. If vertex t2 is an f4-vertex (resp., u4,

f5, u5, f6, u6, f7, u7, f8, or a u8-vertex), then the weight decrease β3 of vertex t2 will be w′4
(resp., ∆4, w

′
5, ∆5, w

′
6, ∆6, w

′
7, ∆7, w

′
8, and ∆8). Thus the total weight decrease for this case

in the branch of delete(vt1) is at least w′8 − w′7 + w′3 + β3.

As a result, for the ordered pair (α3, β3) taking values in {(w′4, w′4), (w4,∆4), (∆′5,3, w
′
5),

(∆5,3,∆5), (∆′6,4, w
′
6), (∆6,4,∆6), (∆′7,5, w

′
7), (∆7,5,∆7), (∆′8,6, w

′
8), (∆8,6,∆8)}, we get the

following 10 branching vectors:

(w′8 + w′3 + 5m1 + α3, w
′
8 − w′7 + w′3 + β3). (29)

Case c-3. Case c-1 and case c-2 are not applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vu3) (see Figure 6): We branch on the edge vt1. Note that NU (t1)\{v} = {t8, t9}.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(b) delete(vt1) in c-3

t1
ve

t7

t2 t3 t4
t5

t6

t8 t9

(a) force(vt1) in c-3

ve

t7

t2 t3 t4
t5

t6

t1

t8 t9

Figure 6: Illustration of branching rule c-3, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vu3).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6 and vt7 will be deleted from G′ by the reduction rules. So

the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by ∆3. None

of the vertices t2, t3, t4, t5, t6 and t7 can be an f3-vertex because it would have been chosen

as an optimal edge in some previous case. Hence, each of the vertices t2, t3, t4, t5, t6 and

t7 can only be one of types u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and each

of their weights decreases by at least m2 = min{w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6,

∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this case in the branch of force(vt1) is

at least w′8 + w3 − w′3 + 6m2.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation, and edges t1t8 and t1t9 will be added to F ′ by the reduction rules. So the weight

of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases by w3. Each of vertices

t8 and t9 can be any of the possible vertex types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and

a u8-vertex, and each of their weights decreases by at least m3 = min{w′3, ∆3, w
′
4, ∆4, w

′
5,

∆5, w
′
6, ∆6, w

′
7, ∆7, w

′
8, ∆8}. Thus the total weight decrease for this case in the branch of

delete(vt1) is at least w′8 − w′7 + w3 + 2m3.

As a result, we get the following branching vector:

(w′8 + w3 − w′3 + 6m2, w
′
8 − w′7 + w3 + 2m3). (30)
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Case c-4. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vf4) (see Figure 7): We branch on the edge vt1. Note that NU (t1)\{v} = {t8, t9}.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(b) delete(vt1) in c-4

t1
ve

t7

t2 t3 t4
t5

t6

t8 t9

(a) force(vt1) in c-4

ve

t7

t2 t3 t4
t5

t6

t1

t8 t9

Figure 7: Illustration of branching rule c-4, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf4).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t8, and t1t9 will be deleted from G′ by the reduction

rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by w′4.

Each of the vertices t2, t3, t4, t5, t6 and t7 can only be one of types f4, u4, f5, u5, f6, u6, f7,

u7, f8, and a u8-vertex, and each of their weights decreases by at least m4= min{∆′4,3, ∆4,3,

∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Each of the vertices t8 and t9 can be any of

the possible vertex types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and each of

their weights decreases by at least m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6,

∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this case in the branch of force(vt1) is

at least w′8 + w′4 + 6m4 + 2m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′4,3. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′4 − w′3.
As a result, we get the following branching vector:

(w′8 + w′4 + 6m4 + 2m1, w
′
8 − w′7 + w′4 − w′3). (31)

Case c-5. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vf4) such that NU (v) ∩ NU (t1) 6= ∅: We distinguish two sub-cases, according to

the cardinality of the intersection NU (v) ∩NU (t1),

(c-5(I)) |NU (v) ∩NU (t1)| = 1; and

(c-5(II)) |NU (v) ∩NU (t1)| = 2.

Case c-5(I). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2} (see Fig-

ure 8): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8}.
In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2 and t1t8 will be deleted from G′ by the reduction

rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by w′4.

Vertex t2 can only be one of types f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and its

weight decreases by at least m5 = min{w′4, w4, ∆′5,3, ∆5,3, ∆′6,4, ∆6,4, ∆′7,5, ∆7,5, ∆′8,6, ∆8,6}.
Each of the vertices t3, t4, t5, t6, and t7 can only be one of types f4, u4, f5, u5, f6, u6, f7, u7,

f8, and a u8-vertex, and each of their weights decreases by at least m4= min{∆′4,3, ∆4,3, ∆′5,4,

∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Vertex t8 can be any of the possible vertex types

f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and its weight decreases by at least
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: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(a) force(vt1) in c-5(I)

v
t1

e

t7

t2 t3 t4
t5

t6

t8

(b) delete(vt1) in c-5(I)

t1

ve

t7

t2 t3 t4
t5

t6

t8

Figure 8: Illustration of branching rule c-5(I), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf4).

m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total

weight decrease for this case in the branch of force(vt1) is at least w′8 +w′4 +m5 + 5m4 +m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′4,3. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′4 − w′3.
As a result, we get the following branching vector:

(w′8 + w′4 +m5 + 5m4 +m1, w
′
8 − w′7 + w′4 − w′3). (32)

Case c-5(II). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3} (see

Figure 9): We branch on the edge vt1.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(a) force(vt1) in c-5(II)

v

t1

e

t7

t2 t3 t4
t5

t6

(b) delete(vt1) in c-5(II)

v

t1

e

t7

t2 t3 t4
t5

t6

Figure 9: Illustration of branching rule c-5(II), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf4).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2 and t1t3 will be deleted from G′ by the reduction

rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by w′4.

Each of the vertices t2 and t3 can only be one of types f4, u4, f5, u5, f6, u6, f7, u7, f8, and

a u8-vertex, and each of their weights decreases by at least m5 = min{w′4, w4, ∆′5,3, ∆5,3,

∆′6,4, ∆6,4, ∆′7,5, ∆7,5, ∆′8,6, ∆8,6}. Each of the vertices t4, t5, t6, and t7 can only be one of

types f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and each of their weights decreases by

at least m4= min{∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total

weight decrease for this case in the branch of force(vt1) is at least w′8 + w′4 + 2m5 + 4m4.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′4,3. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′4 − w′3.
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As a result, we get the following branching vector:

(w′8 + w′4 + 2m5 + 4m4, w
′
8 − w′7 + w′4 − w′3). (33)

Case c-6. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vu4) (see Figure 10): We branch on the edge vt1.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(b) delete(vt1) in c-6

t1
ve

t7

t2 t3 t4
t5

t6

(a) force(vt1) in c-6

ve

t7

t2 t3 t4
t5

t6

t1

Figure 10: Illustration of branching rule c-6, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vu4).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6 and vt7 will be deleted from G′ by the reduction rules. So

the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by ∆4. Each of

the vertices t2, t3, t4, t5, t6 and t7 can only be one of types u4, f5, u5, f6, u6, f7, u7 f8, and a

u8-vertex, and each of their weights decreases by at least m6 = min{∆4,3, ∆′5,4, ∆5,4, ∆′6,5,

∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this case in the branch of

force(vt1) is at least w′8 + w4 − w′4 + 6m6.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆4,3. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w4 − w3.

As a result, we get the following branching vector:

(w′8 + w4 − w′4 + 6m6, w
′
8 − w′7 + w4 − w3). (34)

Case c-7. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and t1 ∈
NU (v;Vf5) (see Figure 11): We branch on the edge vt1. Note that NU (t1)\{v} = {t8, t9, t10}.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(b) delete(vt1) in c-7

t1
ve

t7

t2 t3 t4
t5

t6

t9 t10

t8

(a) force(vt1) in c-7

ve

t7

t2 t3 t4
t5

t6

t1

t9 t10

t8

Figure 11: Illustration of branching rule c-7, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf5).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t8, t1t9, and t1t10 will be deleted from G′ by the
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reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′5. Each of the vertices t2, t3, t4, t5, t6 and t7 can only be one of types f5,

u5, f6, u6, f7, u7 f8, and a u8-vertex, and each of their weights decreases by at least m7 =

min{∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Each of the vertices t8, t9 and t10 can be

any of the types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and each of their

weights decreases by at least m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6,

∆′8,7, ∆8,7}. Thus the total weight decrease for this case in the branch of force(vt1) is at

least w′8 + w′5 + 6m7 + 3m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′5,4. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′5 − w′4.
As a result, we get the following branching vector:

(w′8 + w′5 + 6m7 + 3m1, w
′
8 − w′7 + w′5 − w′4). (35)

Case c-8. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vf5) such that NU (v) ∩NU (t1) 6= ∅: We distinguish three sub-cases, according to

the cardinality of the intersection NU (v) ∩NU (t1),

(c-8(I)) |NU (v) ∩NU (t1)| = 1;

(c-8(II)) |NU (v) ∩NU (t1)| = 2; and

(c-8(III)) |NU (v) ∩NU (t1)| = 3.

Case c-8(I). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2} (see Fig-

ure 12): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9}.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(a) force(vt1) in c-8(I)

v
t1

e

t7

t2 t3 t4
t5

t6

t8 t9

(b) delete(vt1) in c-8(I)

t1

ve

t7

t2 t3 t4
t5

t6

t8 t9

Figure 12: Illustration of branching rule c-8(I), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf5).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t8 and t1t9 will be deleted from G′ by the reduction

rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by w′5.

Vertex t2 can only be one of types f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and its weight

decreases by at least m8 = min{∆′5,3, ∆5,3, ∆′6,4, ∆6,4, ∆′7,5, ∆7,5, ∆′8,6, ∆8,6}. Each of the

vertices t3, t4, t5, t6 and t7 can only be one of types f5, u5, f6, u6, f7, u7, f8, and a u8-vertex,

and each of their weights decreases by at least m7 = min{∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6,

∆′8,7, ∆8,7}. Each of the vertices t8 and t9 can be any of the possible vertex types f3, u3, f4,

u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and each of their weights decreases by at least

m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total

weight decrease for this case in the branch of force(vt1) is at least w′8+w′5+m8+5m7+2m1.
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In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′5,4. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′5 − w′4.
As a result, we get the following branching vector:

(w′8 + w′5 +m8 + 5m7 + 2m1, w
′
8 − w′7 + w′5 − w′4). (36)

Case c-8(II). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3} (see

Figure 13): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8}.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(a) force(vt1) in c-8(II)

v

t1

e

t7

t2 t3 t4
t5

t6

t8

(b) delete(vt1) in c-8(II)

v

t1

e

t7

t2 t3 t4
t5

t6

t8

Figure 13: Illustration of branching rule c-8(II), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf5).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3 and t1t8 will be deleted from G′ by the reduction

rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by

w′5. Each of the vertices t2 and t3 can only be one of types f5, u5, f6, u6, f7, u7, f8, and a

u8-vertex, and each of their weights decreases by at least m8 = min{∆′5,3, ∆5,3, ∆′6,4, ∆6,4,

∆′7,5, ∆7,5, ∆′8,6, ∆8,6}. Each of the vertices t4, t5, t6 and t7 can only be one of types f5, u5, f6,

u6, f7, u7, f8, and a u8-vertex, and each of their weights decreases by at least m7 = min{∆′5,4,
∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Vertex t8 can be any of the possible vertex types f3,

u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and its weight decreases by at least m1 =

min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight

decrease for this case in the branch of force(vt1) is at least w′8 + w′5 + 2m8 + 4m7 +m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′5,4. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′5 − w′4.
As a result, we get the following branching vector:

(w′8 + w′5 + 2m8 + 4m7 +m1, w
′
8 − w′7 + w′5 − w′4). (37)

Case c-8(III). Without loss of generality, assume that NU (v)∩NU (t1) = {t2, t3, t4} (see

Figure 14): We branch on the edge vt1.

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3 and t1t4 will be deleted from G′ by the reduction

rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by w′5.

Each of the vertices t2, t3 and t4 can only be one of types f5, u5, f6, u6, f7, u7, f8, and a

u8-vertex, and each of their weights decreases by at least m8 = min{∆′5,3, ∆5,3, ∆′6,4, ∆6,4,

∆′7,5, ∆7,5, ∆′8,6, ∆8,6}. Each of the vertices t5, t6 and t7 can only be one of types f5, u5, f6,
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(a) force(vt1) in c-8(III)
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Figure 14: Illustration of branching rule c-8(III), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf5).

u6, f7, u7, f8, and a u8-vertex, and each of their weights decreases by at least m7 = min{∆′5,4,
∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this case in the

branch of force(vt1) is at least w′8 + w′5 + 3m8 + 3m7.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′5,4. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′5 − w′4.
As a result, we get the following branching vector:

(w′8 + w′5 + 3m8 + 3m7, w
′
8 − w′7 + w′5 − w′4). (38)

Case c-9. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vu5) (see Figure 15): We branch on the edge vt1.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(b) delete(vt1) in c-9

t1
ve

t7

t2 t3 t4
t5

t6

(a) force(vt1) in c-9

ve

t7

t2 t3 t4
t5

t6

t1

Figure 15: Illustration of branching rule c-9, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vu5).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6 and vt7 will be deleted from G′ by the reduction rules. So

the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by ∆5. Each

of the vertices t2, t3, t4, t5, t6 and t7 can only be one of types u5, f6, u6, f7, u7, f8, and a

u8-vertex, and each of their weights decreases by at least m9 = min{∆5,4, ∆′6,5, ∆6,5, ∆′7,6,

∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this case in the branch of force(vt1) is

at least w′8 + w5 − w′5 + 6m9.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆5,4. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w5 − w4.
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As a result, we get the following branching vector:

(w′8 + w5 − w′5 + 6m9, w
′
8 − w′7 + w5 − w4). (39)

Case c-10. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vf6) (see Figure 16): We branch on the edge vt1. Note that NU (t1) \ {v} =

{t8, t9, t10, t11}.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(b) delete(vt1) in c-10

t1
ve
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t8

(a) force(vt1) in c-10
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t2 t3 t4
t5
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t1

t9 t10 t11

t8

Figure 16: Illustration of branching rule c-10, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf6).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t8, t1t9, t1t10 and t1t11 will be deleted from G by

the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′6. Each of the vertices t2, t3, t4, t5, t6 and t7 can only be one of types f6, u6,

f7, u7, f8 and a u8-vertex, and each of their weights decreases by at least m10 = min{∆′6,5,
∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Each of the vertices t8, t9, t10 and t11 can be any of the possible

vertex types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and each of their weights

decreases by at least m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7,

∆8,7}. Thus the total weight decrease for this case in the branch of force(vt1) is at least

w′8 + w′6 + 6m10 + 4m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′6,5. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′6 − w′5.
As a result, we get the following branching vector:

(w′8 + w′6 + 6m10 + 4m1, w
′
8 − w′7 + w′6 − w′5). (40)

Case c-11. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vf6) such that NU (v) ∩NU (t1) 6= ∅: We distinguish four sub-cases, according to

the cardinality of the intersection NU (v) ∩NU (t1),

(c-11(I)) |NU (v) ∩NU (t1)| = 1;

(c-11(II)) |NU (v) ∩NU (t1)| = 2;

(c-11(III)) |NU (v) ∩NU (t1)| = 3; and

(c-11(IV)) |NU (v) ∩NU (t1)| = 4.

Case c-11(I). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2} (see

Figure 17): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9, t10}.
In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t8, t1t9, t1t10 will be deleted from G′ by the
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Figure 17: Illustration of branching rule c-11(I), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf6).

reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′6. Vertex t2 can only be one of types f6, u6, f7, u7, f8, and a u8-vertex, and

its weight decreases by at least m11 = min{∆′6,4, ∆6,4, ∆′7,5, ∆7,5, ∆′8,6, ∆8,6}. Each of the

vertices t3, t4, t5, t6 and t7 can only be one of types f6, u6, f7, u7, f8, and a u8-vertex, and

each of their weights decreases by at least m10 = min{∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}.
Each of the vertices t8, t9 and t10 can be any of the possible vertex types f3, u3, f4, u4, f5,

u5, f6, u6, f7, u7, f8, and a u8-vertex, and each of their weights decreases by at least m1 =

min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight

decrease for this case in the branch of force(vt1) is at least w′8 + w′6 +m11 + 5m10 + 3m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′6,5. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′6 − w′5.
As a result, we get the following branching vector:

(w′8 + w′6 +m11 + 5m10 + 3m1, w
′
8 − w′7 + w′6 − w′5). (41)

Case c-11(II). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3} (see

Figure 18): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9}.
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Figure 18: Illustration of branching rule c-11(II), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf6).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t8 and t1t9 will be deleted from G′ by

the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′6. Each of the vertices t2 and t3 can only be one of types f6, u6, f7, u7, f8,

and a u8-vertex, and each of their weights decreases by at least m11 = min{∆′6,4, ∆6,4, ∆′7,5,

∆7,5, ∆′8,6, ∆8,6}. Each of the vertices t4, t5, t6 and t7 can only be one of types f6, u6, f7,
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u7, f8, and a u8-vertex, and each of their weights decreases by at least m10 = min{∆′6,5,
∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Each of the vertices t8 and t9 can be any of the possible vertex

types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and each of their weights

decreases by at least m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7,

∆8,7}. Thus the total weight decrease for this case in the branch of force(vt1) is at least

w′8 + w′6 + 2m11 + 4m10 + 2m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′6,5. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′6 − w′5.
As a result, we get the following branching vector:

(w′8 + w′6 + 2m11 + 4m10 + 2m1, w
′
8 − w′7 + w′6 − w′5). (42)

Case c-11(III). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3, t4}
(see Figure 19): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8}.

: unforced edges : forced edges: newly deleted
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: newly forced
  edges

(a) force(vt1) in c-11(III)

v
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e
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t8

(b) delete(vt1) in c-11(III)

v

t1

e

t7

t2 t3 t4
t5

t6

t8

Figure 19: Illustration of branching rule c-11(III), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf6).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t4 and t1t8 will be deleted from G′ by

the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′6. Each of the vertices t2, t3 and t4 can only be one of types f6, u6, f7, u7, f8,

and a u8-vertex, and each of their weights decreases by at least m11 = min{∆′6,4, ∆6,4, ∆′7,5,

∆7,5, ∆′8,6, ∆8,6}. Each of the vertices t5, t6 and t7 can only be one of types f6, u6, f7, u7, f8,

and a u8-vertex, and each of their weights decreases by at least m10 = min{∆′6,5, ∆6,5, ∆′7,6,

∆7,6, ∆′8,7, ∆8,7}. Vertex t8 can be any of the possible vertex types f3, u3, f4, u4, f5, u5, f6,

u6, f7, u7, f8, and a u8-vertex, and its weight decreases by at least m1 = min{w′3, w3, ∆′4,3,

∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this

case in the branch of force(vt1) is at least w′8 + w′6 + 3m11 + 3m10 +m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′6,5. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′6 − w′5.
As a result, we get the following branching vector:

(w′8 + w′6 + 3m11 + 3m10 +m1, w
′
8 − w′7 + w′6 − w′5). (43)

Case c-11(IV). Without loss of generality, assume that NU (v)∩NU (t1) = {t2, t3, t4, t5}
(see Figure 20): We branch on the edge vt1.
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Figure 20: Illustration of branching rule c-11(IV), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf6).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t4 and t1t5 will be deleted from G′ by

the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′6. Each of the vertices t2, t3, t4 and t5 can only be one of types f6, u6, f7,

u7, f8, and a u8-vertex, and each of their weights decreases by at least m11 = min{∆′6,4,
∆6,4, ∆′7,5, ∆7,5, ∆′8,6, ∆8,6}. Each of the vertices t6 and t7 can only be one of types f6, u6,

f7, u7, f8, and a u8-vertex, and each of their weights decreases by at least m10 = min{∆′6,5,
∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this case in the branch of

force(vt1) is at least w′8 + w′6 + 4m11 + 2m10.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′6,5. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′6 − w′5.
As a result, we get the following branching vector:

(w′8 + w′6 + 4m11 + 2m10, w
′
8 − w′7 + w′6 − w′5). (44)

Case c-12. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vu6) (see Figure 21): We branch on the edge vt1.

: unforced edges : forced edges: newly deleted
  edges

: newly forced
  edges

(b) delete(vt1) in c-12

t1
ve
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t2 t3 t4
t5

t6

(a) force(vt1) in c-12

ve

t7

t2 t3 t4
t5

t6

t1

Figure 21: Illustration of branching rule c-12, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vu6).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6 and vt7 will be deleted from G′ by the reduction rules. So

the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by ∆6. Each of

vertices t2, t3, t4, t5, t6 and t7 can only be one of types u6, f7, u7, f8, and a u8-vertex, and

each of their weights decreases by at least m12 = min{∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the

total weight decrease for this case in the branch of force(vt1) is at least w′8 +w6−w′6 +6m12.
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In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆6,5. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w6 − w5.

As a result, we get the following branching vector:

(w′8 + w6 − w′6 + 6m12, w
′
8 − w′7 + w6 − w5). (45)

Case c-13. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vf7) (see Figure 22): We branch on the edge vt1. Note that NU (t1) \ {v} =

{t8, t9, t10, t11, t12}.
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Figure 22: Illustration of branching rule c-13, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf7).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t8, t1t9, t1t10, t1t11 and t1t12 will be deleted from G′

by the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′7. Each of the vertices t2, t3, t4, t5, t6 and t7 can only be one of types f7, u7, f8

and a u8-vertex, and each of their weights decreases by at least m13 = min{∆′7,6, ∆7,6, ∆′8,7,

∆8,7}. Each of the vertices t8, t9, t10, t11 and t12 can be any of the possible vertex types f3,

u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and each of their weights decreases by at

least m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the

total weight decrease for this case in the branch of force(vt1) is at least w′8+w′7+6m13+5m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′7,6. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′6.
As a result, we get the following branching vector:

(w′8 + w′7 + 6m13 + 5m1, w
′
8 − w′6). (46)

Case c-14. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vf7) such that NU (v) ∩ NU (t1) 6= ∅: We distinguish five sub-cases, according to

the cardinality of the intersection NU (v) ∩NU (t1),

(c-14(I)) |NU (v) ∩NU (t1)| = 1;

(c-14(II)) |NU (v) ∩NU (t1)| = 2;

(c-14(III)) |NU (v) ∩NU (t1)| = 3;

(c-14(IV)) |NU (v) ∩NU (t1)| = 4; and

(c-14(V)) |NU (v) ∩NU (t1)| = 5.
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Case c-14(I). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2} (see

Figure 23): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9, t10, t11}.

: unforced edges : forced edges: newly deleted
  edges
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  edges
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v
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(b) delete(vt1) in c-14(I)
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t6

t9 t10 t11
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Figure 23: Illustration of branching rule c-14(I), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf7).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t8, t1t9, t1t10 and t1t11 will be deleted from G′ by

the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′7. Vertex t2 can only be one of types f7, u7, f8 and a u8-vertex, and its weight

decreases by at least m14 = min{∆′7,5, ∆7,5, ∆′8,6, ∆8,6}. Each of the vertices t3, t4, t5, t6
and t7 can only be one of types f7, u7, f8 and a u8-vertex, and each of their weights decreases

by at least m13 = min{∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Each of the vertices t8, t9, t10 and t11 can be

any of the possible vertex types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, f8, and a u8-vertex, and

each of their weights decreases by at least m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5,

∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this case in the branch of

force(vt1) is at least w′8 + w′7 +m14 + 5m13 + 4m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′7,6. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′6.
As a result, we get the following branching vector:

(w′8 + w′7 +m14 + 5m13 + 4m1, w
′
8 − w′6). (47)

Case c-14(II). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3} (see

Figure 24): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9, t10}.
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Figure 24: Illustration of branching rule c-14(II), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf7).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t8, t1t9 and t1t10 will be deleted from G′ by
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the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′7. Each of the vertices t2 and t3 can only be one of types f7, u7, f8 and a

u8-vertex, and each of their weights decreases by at least m14 = min{∆′7,5, ∆7,5, ∆′8,6, ∆8,6}.
Each of the vertices t4, t5, t6 and t7 can only be one of types f7, u7, f8 and a u8-vertex, and

each of their weights decreases by at least m13 = min{∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Each of the

vertices t8, t9 and t10 can be any of the possible vertex types f3, u3, f4, u4, f5, u5, f6, u6,

f7, u7, f8 and a u8-vertex, and each of their weights decreases by at least m1 = min{w′3, w3,

∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for

this case in the branch of force(vt1) is at least w′8 + w′7 + 2m14 + 4m13 + 3m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′7,6. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′6.
As a result, we get the following branching vector:

(w′8 + w′7 + 2m14 + 4m13 + 3m1, w
′
8 − w′6). (48)

Case c-14(III). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3, t4}
(see Figure 25): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9}.
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v

t1

e

t7

t2 t3 t4
t5

t6

t8 t9
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Figure 25: Illustration of branching rule c-14(III), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf7).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t4, t1t8 and t1t9 will be deleted from G′ by

the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′7. Each of the vertices t2, t3 and t4 can only be one of types f7, u7, f8 and a

u8-vertex, and each of their weights decreases by at least m14 = min{∆′7,5, ∆7,5, ∆′8,6, ∆8,6}.
Each of the vertices t5, t6 and t7 can only be one of types f7, u7, f8 and a u8-vertex, and

each of their weights decreases by at least m13 = min{∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Each of the

vertices t8 and t9 can be any of the possible vertex types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7,

f8 and a u8-vertex, and each of their weights decreases by at least m1 = min{w′3, w3, ∆′4,3,

∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this

case in the branch of force(vt1) is at least w′8 + w′7 + 3m14 + 3m13 + 2m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′7,6. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′6.
As a result, we get the following branching vector:

(w′8 + w′7 + 3m14 + 3m13 + 2m1, w
′
8 − w′6). (49)
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Case c-14(IV). Without loss of generality, assume that NU (v)∩NU (t1) = {t2, t3, t4, t5}
(see Figure 26): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8}.

: unforced edges : forced edges: newly deleted
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: newly forced
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Figure 26: Illustration of branching rule c-14(IV), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf7).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t4, t1t5 and t1t8 will be deleted from G′ by

the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′7. Each of the vertices t2, t3, t4 and t5 can only be one of types f7, u7, f8 and a

u8-vertex, and each of their weights decreases by at least m14 = min{∆′7,5, ∆7,5, ∆′8,6, ∆8,6}.
Each of the vertices t6 and t7 can only be one of types f7, u7, f8 and a u8-vertex, and each

of their weights decreases by at least m13 = min{∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Vertex t8 can be

any of the possible vertex types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, f8 and a u8-vertex, and

its weight decreases by at least m1 = min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6,

∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this case in the branch of force(vt1) is

at least w′8 + w′7 + 4m14 + 2m13 +m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′7,6. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′6.
As a result, we get the following branching vector:

(w′8 + w′7 + 4m14 + 2m13 +m1, w
′
8 − w′6). (50)

Case c-14(V). Without loss of generality, assume that NU (v)∩NU (t1) = {t2, t3, t4, t5, t6}
(see Figure 27): We branch on the edge vt1.
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Figure 27: Illustration of branching rule c-14(V), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf7).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t4, t1t5 and t1t6 will be deleted from G′ by
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the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′7. Each of the vertices t2, t3, t4 t5 and t6 can only be one of types f7, u7, f8

and a u8-vertex, and each of their weights decreases by at least m14 = min{∆′7,5, ∆7,5, ∆′8,6,

∆8,6}. Vertex t7 can only be one of types f7, u7, f8 and a u8-vertex, and its weight decreases

by at least m13 = min{∆′7,6, ∆7,6, ∆′8,7, ∆8,7}. Thus the total weight decrease for this case

in the branch of force(vt1) is at least w′8 + w′7 + 5m14 +m13.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′7,6. Thus the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′6.
As a result, we get the following branching vector:

(w′8 + w′7 + 5m14 +m13, w
′
8 − w′6). (51)

Case c-15. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vu7) (see Figure 28): We branch on the edge vt1.
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Figure 28: Illustration of branching rule c-15, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vu7).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6 and vt7 will be deleted from G′ by the reduction rules. So,

the weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by ∆7. Each of

the vertices t2, t3, t4, t5, t6 and t7 can only be one of types u7, f8 and a u8-vertex, and each

of their weights decreases by at least m15 = min{∆7,6, ∆′8,7, ∆8,7}. Thus, the total weight

decrease for this case in the branch of force(vt1) is at least w′8 + w7 − w′7 + 6m15.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆7,6. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w7 − w6.

As a result, we get the following branching vector:

(w′8 + w7 − w′7 + 6m15, w
′
8 − w′7 + w7 − w6). (52)

Case c-16. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vf8) (see Figure 29): We branch on the edge vt1. Note that NU (t1) \ {v} =

{t8, t9, t10, t11, t12, t13}.
In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t8, t1t9, t1t10, t1t11, t1t12 and t1t13 will be deleted

from G′ by the reduction rules. So the weight of vertex v decreases by w′8, and the weight
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Figure 29: Illustration of branching rule c-16, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf8).

of vertex t1 decreases by w′8. Each of the vertices t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12 and

t13 can only be either a type f8 or a u8-vertex, and each of their weights decreases by at

least m16 = min{∆′8,7, ∆8,7}. Thus, the total weight decrease for this case in the branch of

force(vt1) is at least w′8 + w′8 + 12m16.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′8,7. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′8 − w′7.
As a result, we get the following branching vector:

(2w′8 + 12m16, 2w′8 − 2w′7). (53)

Case c-17. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vf8) such that NU (v) ∩ NU (t1) 6= ∅: We distinguish six sub-cases, according to

the cardinality of the intersection NU (v) ∩NU (t1),

(c-14(I)) |NU (v) ∩NU (t1)| = 1;

(c-14(II)) |NU (v) ∩NU (t1)| = 2;

(c-14(III)) |NU (v) ∩NU (t1)| = 3;

(c-14(IV)) |NU (v) ∩NU (t1)| = 4;

(c-14(V)) |NU (v) ∩NU (t1)| = 5; and

(c-14(VI)) |NU (v) ∩NU (t1)| = 6.

Case c-17(I). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2} (see

Figure 30): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9, t10, t11, t12}.
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Figure 30: Illustration of branching rule c-17(I), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf8).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t8, t1t9, t1t10, t1t11 and t1t12 will be deleted
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from G′ by the reduction rules. So the weight of vertex v decreases by w′8, and the weight

of vertex t1 decreases by w′8. Vertex t2 can only be either a type f8 or a u8-vertex, and its

weight decreases by at least m17 = min{∆′8,6, ∆8,6}. Each of the vertices t3, t4, t5, t6, t7,

t8, t9, t10, t11 and t12 can only be either a type f8 or a u8-vertex, and each of their weights

decreases by at least m16 = min{∆′8,7, ∆8,7}. Thus, the total weight decrease for this case in

the branch of force(vt1) is at least w′8 + w′8 +m17 + 10m16.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′8,7. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′8 − w′7.
As a result, we get the following branching vector:

(2w′8 +m17 + 10m16, 2w′8 − 2w′7). (54)

Case c-17(II). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3} (see

Figure 31): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9, t10, t11}.
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Figure 31: Illustration of branching rule c-17(II), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf8).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t8, t1t9, t1t10 and t1t11 will be deleted

from G′ by the reduction rules. So the weight of vertex v decreases by w′8, and the weight

of vertex t1 decreases by w′8. Each of the vertices t2 and t3 can only be either a type f8 or

a u8-vertex, and each of their weights decreases by at least m17 = min{∆′8,6, ∆8,6}. Each of

the vertices t4, t5, t6, t7, t8, t9, t10 and t11 can only be either a type f8 or a u8-vertex, and

each of their weights decreases by at least m16 = min{∆′8,7, ∆8,7}. Thus, the total weight

decrease for this case in the branch of force(vt1) is at least w′8 + w′8 + 2m17 + 8m16.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′8,7. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′8 − w′7.
As a result, we get the following branching vector:

(2w′8 + 2m17 + 8m16, 2w′8 − 2w′7). (55)

Case c-17(III). Without loss of generality, assume that NU (v) ∩ NU (t1) = {t2, t3, t4}
(see Figure 32): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9, t10}.

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t4, t1t8, t1t9 and t1t10 will be deleted from G′

by the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
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Figure 32: Illustration of branching rule c-17(III), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf8).

decreases by w′8. Each of the vertices t2, t3 and t4 can only be either a type f8 or a u8-vertex,

and each of their weights decreases by at least m17 = min{∆′8,6, ∆8,6}. Each of the vertices

t5, t6, t7, t8, t9 and t10 can only be either a type f8 or a u8-vertex, and each of their weights

decreases by at least m16 = min{∆′8,7, ∆8,7}. Thus, the total weight decrease for this case in

the branch of force(vt1) is at least w′8 + w′8 + 3m17 + 6m16.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′8,7. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′8 − w′7.
As a result, we get the following branching vector:

(2w′8 + 3m17 + 6m16, 2w′8 − 2w′7). (56)

Case c-17(IV). Without loss of generality, assume that NU (v)∩NU (t1) = {t2, t3, t4, t5}
(see Figure 33): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8, t9}.
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Figure 33: Illustration of branching rule c-17(IV), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf8).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t4, t1t5, t1t8 and t1t9 will be deleted from G′

by the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′8. Each of the vertices t2, t3, t4 and t5 can only be either a type f8 or a

u8-vertex, and each of their weights decreases by at least m17 = min{∆′8,6, ∆8,6}. Each of

the vertices t6, t7, t8 and t9 can only be either a type f8 or a u8-vertex, and each of their

weights decreases by at least m16 = min{∆′8,7, ∆8,7}. Thus, the total weight decrease for this

case in the branch of force(vt1) is at least w′8 + w′8 + 4m17 + 4m16.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases
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by ∆′8,7. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′8 − w′7.
As a result, we get the following branching vector:

(2w′8 + 4m17 + 4m16, 2w′8 − 2w′7). (57)

Case c-17(V). Without loss of generality, assume thatNU (v)∩NU (t1) = {t2, t3, t4, t5, t6}
(see Figure 34): We branch on the edge vt1. Note that NU (t1) \ {v} = {t8}.
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Figure 34: Illustration of branching rule c-17(V), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf8).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t4, t1t5, t1t6 and t1t8 will be deleted from G′

by the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′8. Each of the vertices t2, t3, t4, t5 and t6 can only be either a type f8 or a

u8-vertex, and each of their weights decreases by at least m17 = min{∆′8,6, ∆8,6}. Each of

the vertices t7 and t8 can only be either a type f8 or a u8-vertex, and each of their weights

decreases by at least m16 = min{∆′8,7, ∆8,7}. Thus, the total weight decrease for this case in

the branch of force(vt1) is at least w′8 + w′8 + 5m17 + 2m16.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′8,7. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′8 − w′7.
As a result, we get the following branching vector:

(2w′8 + 5m17 + 2m16, 2w′8 − 2w′7). (58)

Case c-17(VI). Without loss of generality, assume thatNU (v)∩NU (t1) = {t2, t3, t4, t5, t6, t7}
(see Figure 35): We branch on the edge vt1.

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6, vt7, t1t2, t1t3, t1t4, t1t5, t1t6 and t1t7 will be deleted from G′

by the reduction rules. So the weight of vertex v decreases by w′8, and the weight of vertex t1
decreases by w′8. Each of the vertices t2, t3, t4, t5, t6 and t7 can only be either a type f8 or a

u8-vertex, and each of their weights decreases by at least m17 = min{∆′8,6, ∆8,6}. Thus, the

total weight decrease for this case in the branch of force(vt1) is at least w′8 + w′8 + 6m17.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆′8,7. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w′8 − w′7.
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Figure 35: Illustration of branching rule c-17(VI), where vertex v ∈ Vf8 and t1 ∈ NU (v;Vf8).

As a result, we get the following branching vector:

(2w′8 + 6m17, 2w′8 − 2w′7). (59)

Case c-18. None of the previous cases are applicable, and there exist vertices v ∈ Vf8 and

t1 ∈ NU (v;Vu8) (see Figure 36): We branch on the edge vt1.
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Figure 36: Illustration of branching rule c-18, where vertex v ∈ Vf8 and t1 ∈ NU (v;Vu8).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges vt2, vt3, vt4, vt5, vt6 and vt7 will be deleted from G′ by the reduction rules. So the

weight of vertex v decreases by w′8, and the weight of vertex t1 decreases by ∆8. Each of the

vertices t2, t3, t4, t5, t6 and t7 can only be a u8-vertex, and each of their weights decreases

by ∆8,7. Thus, the total weight decrease for this case in the branch of force(vt1) is at least

w′8 + w8 − w′8 + 6(w8 − w7).

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆′8,7, and the weight of vertex t1 decreases

by ∆8,7. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w′8 − w′7 + w8 − w7.

As a result, we get the following branching vector:

(7w8 − 6w7, w
′
8 − w′7 + w8 − w7). (60)

4.5 Branching on Edges around u8-vertices (c-19 to c-29)

If none of the first 18 conditions can be executed, this means that the graph has no f8-vertices.

But this does not mean that the maximum degree of the graph has been reduced to seven,

since there might still be u8-vertices. This section derives branching vectors for branchings on
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an optimal edge e = vt1 incident to a u7-vertex v, distinguishing the 11 cases for conditions

c-19 to c-29.

Case c-19. There are no more f8-vertices, and there exist vertices v ∈ Vu8 and t1 ∈
NU (v;Vf3) (see Figure 37): We branch on the edge vt1. Note that NU (t1) \ {v} = {t9}.
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Figure 37: Illustration of branching rule c-19, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vf3).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and the edge t1t9 will be deleted from G′ by the reduction rules. So the weight of vertex v

decreases by ∆8, and the weight of vertex t1 decreases by w′3.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation, and the edge t1t9 will be added to F ′ by the reduction rules. So the weight of

vertex v decreases by ∆8,7, and the weight of vertex t1 decreases by w′3.

There are two cases for vertex t9; 1) the vertex t9 is of type f3,and 2) otherwise. We will

analyze these two cases separately for each of branches force(vt1) and delete(vt1).

First, we analyze the case where vertex t9 is an f3-vertex (see Figure 3). Recall that in

this case, we denote by x the unique vertex in NU (t9)\{t1}. In the branch of force(vt1), the

edge xt9 will be added to F ′ by the reduction rules. Hence the weight of vertex t9 decreases

by w′3. If vertex x is an f3-vertex (resp., u3, f4, u4, f5, u5, f6, u6, f7, u7, or a u8-vertex), then

the weight decrease α4 of vertex x will be w′3 (resp., ∆3, w
′
4, ∆4, w

′
5, ∆5, w

′
6, ∆6, w

′
7, ∆7,

and ∆8). Thus, the total weight decrease for this case in the branch of force(vt1) is at least

w8 − w′8 + w′3 + w′3 + α4.

In the branch of delete(vt1), the edge xt9 will be deleted from G′ by the reduction rules.

Hence the weight of vertex t9 decrease by w′3. If vertex x is an f3-vertex (resp., u3, f4, u4, f5,

u5, f6, u6, f7, u7, or a u8-vertex), then the weight decrease β4 of vertex x will be w′3 (resp.,

w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, and ∆8,7). Thus, the total weight decrease

for this case in the branch of delete(vt1) is at least w8 − w7 + w′3 + w′3 + β4.

As a result, for the ordered pair (α4, β4) taking values in {(w′3, w′3), (∆3, w3), (w′4,∆
′
4,3),

(∆4,∆4,3), (w′5,∆
′
5,4), (∆5,∆5,4), (w′6,∆

′
6,5), (∆6,∆6,5), (w′7,∆

′
7,6), (∆7,∆7,6), (∆8,∆8,7)},

we get the following 11 branching vectors:

(w8 − w′8 + 2w′3 + α4, w8 − w7 + 2w′3 + β4). (61)

Next, we examine the case where vertex t9 is not an f3-vertex. In the branch of force(vt1),

if vertex t9 is a u3-vertex (resp., f4, u4, f5, u5, f6, u6, f7, u7, or a u8-vertex), then the weight

decrease α5 of vertex t9 will be w3 (resp., ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, and

∆8,7). Thus, the total weight decrease for this case in the branch of force(vt1) is at least

w8 − w′8 + w′3 + α5.

In the branch of delete(vt1), if vertex t9 is a u3-vertex (resp., f4, u4, f5, u5, f6, u6, f7,

u7, or a u8-vertex), then the weight decrease α5 of vertex t9 will be ∆3 (resp., w′4, ∆4, w
′
5,
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∆5, w
′
6, ∆6, w

′
7, ∆7, and ∆8). Thus, the total weight decrease for this case in the branch of

delete(vt1) is at least w8 − w7 + w′3 + β5.

As a result, for the ordered pair (α5, β5) taking values in {(w3,∆3), (∆′4,3, w
′
4), (∆4,3,∆4),

(∆′5,4, w
′
5), (∆5,4,∆5), (∆′6,5, w

′
6), (∆6,5,∆6), (∆′7,6, w

′
7), (∆7,6,∆7), (∆8,7,∆8)}, we get the

following 10 branching vectors:

(w8 − w′8 + w′3 + α5, w8 − w7 + w′3 + β5). (62)

Case c-20. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vu3) (see Figure 38): We branch on the edge vt1. Note that NU (t1) \ {v} =

{t9, t10}.
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Figure 38: Illustration of branching rule c-20, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vu3).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation.

So the weight of vertex v decreases by ∆8, and the weight of vertex t1 decreases by ∆3. Thus

the total weight decrease for this case in the branch of force(vt1) is at least w8−w′8+w3−w′3.
In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation, and edges t1t9 and t1t10 will be added to F ′ by the reduction rules. So the weight

of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases by w3. Each of the

vertices t9 and t10 can be any of the possible vertex types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7,

and a u8-vertex, and each of their weights decreases by at least m18 = min{w′3, ∆3, w
′
4, ∆4,

w′5, ∆5, w
′
6, ∆6, w

′
7, ∆7, ∆8}. Thus, the total weight decrease for this case in the branch of

delete(vt1) is at least w8 − w7 + w3 + 2m18.

As a result, we get the following branching vector:

(w8 − w′8 + w3 − w′3, w8 − w7 + w3 + 2m18). (63)

Case c-21. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vf4) (see Figure 39): We branch on the edge vt1. Note thatNU (t1)\{v} = {t9, t10}.
In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges t1t9 and t1t10 will be deleted from G′ by the reduction rules. So the weight of

vertex v decreases by ∆8, and the weight of vertex t1 decreases by w′4. Each of the vertices

t9 and t10 can be any of the possible vertex types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, and

a u8-vertex, and each of their weights decreases by at least m19 = min{w′3, w3, ∆′4,3, ∆4,3,

∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆8,7}. Thus, the total weight decrease for this case in the

branch of force(vt1) is at least w8 − w′8 + w′4 + 2m19.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases
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Figure 39: Illustration of branching rule c-21, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vf4).

by ∆′4,3. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w8 − w7 + w′4 − w′3.
As a result, we get the following branching vector:

(w8 − w′8 + w′4 + 2m19, w8 − w7 + w′4 − w′3). (64)

Case c-22. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vu4) (see Figure 40): We branch on the edge vt1.
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Figure 40: Illustration of branching rule c-22, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vu4).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation.

So the weight of vertex v decreases by ∆8, and the weight of vertex t1 decreases by ∆4. Thus,

the total weight decrease for this case in the branch of force(vt1) is at least w8−w′8+w4−w′4.
In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases

by ∆4,3. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w8 − w7 + w4 − w3.

As a result, we get the following branching vector:

(w8 − w′8 + w4 − w′4, w8 − w7 + w4 − w3). (65)

Case c-23. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vf5) (see Figure 41): We branch on the edge vt1. Note that NU (t1) \ {v} =

{t9, t10, t11}.
In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges t1t9, t1t10 and t1t11 will be deleted from G′ by the reduction rules. So the weight

of vertex v decreases by ∆8, and the weight of vertex t1 decreases by w′5. Each of the vertices

t9, t10, and t11 can be any of the possible vertex types f3, u3, f4, u4, f5, u5, f6, u6, f7, u7, and
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Figure 41: Illustration of branching rule c-23, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vf5).

a u8-vertex, and each of their weights decreases by at least m19 = min{w′3, w3, ∆′4,3, ∆4,3,

∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆8,7}. Thus, the total weight decrease for this case in the

branch of force(vt1) is at least w8 − w′8 + w′5 + 3m19.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases

by ∆′5,4. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w8 − w7 + w′5 − w′4.
As a result, we get the following branching vector:

(w8 − w′8 + w′5 + 3m19, w8 − w7 + w′5 − w′4). (66)

Case c-24. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vu5) (see Figure 42): We branch on the edge vt1.
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Figure 42: Illustration of branching rule c-24, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vu5).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation.

So the weight of vertex v decreases by ∆8, and the weight of vertex t1 decreases by ∆5. Thus,

the total weight decrease for this case in the branch of force(vt1) is at least w8−w′8+w5−w′5.
In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases

by ∆5,4. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w8 − w7 + w5 − w4.

As a result, we get the following branching vector:

(w8 − w′8 + w5 − w′5, w8 − w7 + w5 − w4). (67)

Case c-25. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vf6) (see Figure 43): We branch on the edge vt1. Note that NU (t1) \ {v} =

{t9, t10, t11, t12}.
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Figure 43: Illustration of branching rule c-25, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vf6).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges t1t9, t1t10, t1t11 and t1t12 will be deleted from G′ by the reduction rules. So the

weight of vertex v decreases by ∆8, and the weight of vertex t1 decreases by w′6. Each of the

vertices t9, t10, t11 and t12 can be any of the possible vertex types f3, u3, f4, u4, f5, u5, f6,

u6, f7, u7, and a u8-vertex, and each of their weights decreases by at least m19 = min{w′3,
w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆8,7}. Thus, the total weight decrease for

this case in the branch of force(vt1) is at least w8 − w′8 + w′6 + 4m19.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases

by ∆′6,5. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w8 − w7 + w′6 − w′5.
As a result, we get the following branching vector:

(w8 − w′8 + w′6 + 4m19, w8 − w7 + w′6 − w′5). (68)

Case c-26. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vu6) (see Figure 44): We branch on the edge vt1.
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Figure 44: Illustration of branching rule c-26, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vu6).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation.

So the weight of vertex v decreases by ∆8, and the weight of vertex t1 decreases by ∆6. Thus,

the total weight decrease for this case in the branch of force(vt1) is at least w8−w′8+w6−w′6.
In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases

by ∆6,5. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w8 − w7 + w6 − w5.

As a result, we get the following branching vector:

(w8 − w′8 + w6 − w′6, w8 − w7 + w6 − w5). (69)
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Case c-27. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vf7) (see Figure 45): We branch on the edge vt1. Note that NU (t1) \ {v} =

{t9, t10, t11, t12, t13}.
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Figure 45: Illustration of branching rule c-27, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vf7).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation,

and edges t1t9, t1t10, t1t11, t1t12 and t1t13 will be deleted from G′ by the reduction rules. So

the weight of vertex v decreases by ∆8, and the weight of vertex t1 decreases by w′7. Each

of the vertices t9, t10, t11, t12 and t13 can be any of the possible vertex types f3, u3, f4, u4,

f5, u5, f6, u6, f7, u7, and a u8-vertex, and each of their weights decreases by at least m19

= min{w′3, w3, ∆′4,3, ∆4,3, ∆′5,4, ∆5,4, ∆′6,5, ∆6,5, ∆′7,6, ∆7,6, ∆8,7}. Thus, the total weight

decrease for this case in the branch of force(vt1) is at least w8 − w′8 + w′7 + 5m19.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases

by ∆′7,6. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w8 − w7 + w′7 − w′6.
As a result, we get the following branching vector:

(w8 − w′8 + w′7 + 5m19, w8 − w7 + w′7 − w′6). (70)

Case c-28. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vu7) (see Figure 46): We branch on the edge vt1.
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Figure 46: Illustration of branching rule c-28, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vu7).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation.

So the weight of vertex v decreases by ∆8, and the weight of vertex t1 decreases by ∆7. Thus,

the total weight decrease for this case in the branch of force(vt1) is at least w8−w′8+w7−w′7.
In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases
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by ∆7,6. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

w8 − w7 + w7 − w6.

As a result, we get the following branching vector:

(w8 − w′8 + w7 − w′7, w8 − w6). (71)

Case c-29. None of the previous cases are applicable, and there exist vertices v ∈ Vu8 and

t1 ∈ NU (v;Vu8) (see Figure 47): We branch on the edge vt1.
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Figure 47: Illustration of branching rule c-29, where vertex v ∈ Vu8 and t1 ∈ NU (v;Vu8).

In the branch of force(vt1), the edge vt1 will be added to F ′ by the branching operation.

So the weight of vertex v decreases by ∆8, and the weight of vertex t1 decreases by ∆8. Thus,

the total weight decrease for this case in the branch of force(vt1) is at least 2w8 − 2w′8.

In the branch of delete(vt1), the edge vt1 will be deleted from G′ by the branching

operation. So the weight of vertex v decreases by ∆8,7, and the weight of vertex t1 decreases

by ∆8,7. Thus, the total weight decrease for this case in the branch of delete(vt1) is at least

2w8 − 2w7.

As a result, we get the following branching vector:

(2w8 − 2w′8, 2w8 − 2w7). (72)

4.6 Switching to the TSP in Degree-7 Graphs

If none of the 29 cases of Figures 1 and 2 apply, this means that all vertices in the graph have

degree seven or less. In that case, we can use a fast algorithm for the TSP in degree-7 graphs,

called tsp7(G,F ) to solve the remaining instances. Xiao and Nagamochi [14, Lemma 3] have

shown how to leverage results obtained by a measure-and-conquer analysis, and that an

algorithm can be used as a sub-procedure. We can get a non-trivial time bound on this sub-

procedure if we know the respective weight setting mechanism. We calculate the maximum

ratio of the vertex weights for the TSP in degree-7 graphs and the TSP in degree-8 graphs,

and this will become a constraint in the quasiconvex program whose solution gives us the

respective vertex weights.

Here we use the O∗(3.5939n)-time algorithm for the TSP in degree-7 graphs by Md Yunos

et al. [10], where the weight ŵ′3 for an f3-vertex is 0.129815, the weight ŵ3 for a u3-vertex is

0.231850, the weight ŵ′4 for an f4-vertex is 0.285517, the weight ŵ4 for a u4-vertex is 0.503746,

the weight ŵ′5 for an f5-vertex is 0.378022, the weight ŵ5 for a u5-vertex is 0.707555, the weight

ŵ′6 for an f6-vertex is 0.449136, the weight ŵ6 for a u6-vertex is 0.867483, the weight ŵ′7 for

an f7-vertex is 0.508069, and the weight ŵ7 for a u7-vertex is 1. Let ω̂ denote the weight of
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vertices in degree-7 graphs, and let κ = max{ ω̂(v)ω(v) | v ∈ Vfi ∪ Vui, i = 3, 4, . . . , 7}. For this

step, the running time bound is

T (µ(I)) ≤ O (3.5939κ) . (73)

4.7 Overall Analysis

As a result, by solving all branching vectors from Eqs. (27) to (72) and the switching con-

straint of Eq. (73) in a quasiconvex program according to the method introduced by Epp-

stein [1], the branching factor of each of the branching vectors from Eqs. (27) to (72) and

the switching constraint of Eq. (73) does not exceed 4.148449, and the tight constraints are

in conditions c-10, c-21, c-23, c-25, and the switching constraint of Eq. (73). This completes

a proof of Theorem 1.

5 Conclusion

In this paper, we presented an exact algorithm for the TSP in degree-8 graphs. We use a

similar technique as in the algorithm of the TSP in degree-5 graphs by Md Yunos et al. [8].

Even though the result does not give an advantageous algorithm for the TSP in degree-8

graphs over Gurevich and Shelah’s algorithm for the TSP in general, it gives a limit as to the

applicability of our choice of branching rules and analysis method for designing a polynomial-

space exact algorithm for the TSP in degree bounded graphs. Perhaps, a different set of the

branching rules and improving the analysis technique not only for the algorithm of the TSP

in degree-8 graphs, but improving the running time bound of the algorithm for the TSP in

degree-5, 6 and 7 graphs should be sought for to achieve better results.
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