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Abstract

We examine a routing problem arising when an unmanned aerial vehicle (UAV),
or drone, is used in the last-stretch of parcel delivery to an end customer. In the
scenario that we study, a delivery truck is dispatched carrying a shipment of parcels
to be delivered to customers, and it is required to end its route at a predetermined
location, which is not necessarily the same as the starting location. A drone
is charged with making the last-stretch delivery of a parcel from the truck to a
customer’s doorstep. Given a set of customers to be served, and a set of rendezvous
points where the drone can meet with the truck to pick up a parcel, we ask to
determine a route for the truck and an assignment for the drone to deliver parcels
between rendezvous points and customers, such that all parcels are delivered to
end customers in the minimum amount of time. We model this problem as a
problem of finding a special type of a path in a graph. We introduce two problem
models: the No-Wait Transit Last-Stretch Delivery Problem (NW-TLSDP), and the
Transit Last-Stretch Delivery Problem (TLSDP). Both of these graph problems are
NP-hard, and we propose polynomial time approximation algorithms for each of
the problem settings. We show that in metric graphs, there is a 2.6-approximation
algorithm for the NW-TLSDP, and a 2.5-approximation algorithm for the special
case when the given terminating location for the truck is the same as the starting
one. Further, we show a 1.6-approximation algorithm for the TLSDP in a metric
graph, and a 1.5-approximation algorithm for the special case of identical starting
and ending locations of the truck.

1 Introduction
For over a decade, Unmanned Aerial Vehicles (UAV-s), or widely known as drones,
have been utilized for many purposes, such as in military applications, command,
control and communications (3C) [8], remote sensing and scientific research [19], and
in precision agriculture [20]. Parcel delivery [3, 4, 18] is yet another application of
drones that attracts a great deal of attention with announcements for using drones. With
the expectation that drones could improve the competency of delivery operations, major
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delivery and logistics companies have unveiled investigations as they test the feasibility
and profitability of unmanned delivery drone services.

In this study, we undertake a scenario in which a drone and a delivery truck operate
in tandem to perform the last-stretch delivery of parcels to customers’ doorsteps. The
truck is required to start from a distribution center carrying a drone and parcels for a set
C of customers, and may either be required to end its route at the same, or some other
distribution center. The last-stretch deliveries of parcels from the truck to a customer’s
doorstep are performed exclusively by the drone. The drone has a payload capacity of
at most one parcel, and hence must return to the truck after each delivery. The drone
must return to the truck at the end of the truck’s route. Moreover, the drone can only
rendezvous with the truck at a set R of points along the truck’s route. The set R is
distinct from the set C. While the drone is making a delivery of a parcel, the truck may
either wait for it to return at the last rendezvous point, or proceeds along its route and
will intercept the drone at some future rendezvous point in the set R. Our objective is
to determine a routing policy for both the truck and the drone, such that all parcels are
delivered in the least amount of time.

With a motivation of cooperatively routing heterogeneous vehicles with different
capabilities, a similar routing problem was studied by Garone et al. [6], who named the
scenario carrier-vehicle systems.

A closely related model to our problem appears in the work of Mathew et al. [12].
In their study, they investigate a combination of a drone and a truck to perform parcel
deliveries. The drone is used to perform last-stretch deliveries, and deliveries are
performed solely by the drone, which delivers parcels between the truck and a customer’s
doorstep. The truck in turn is routed along a street network. In addition, they also
examined a special case of their problem where the drone’s route alternately visits
customers and points of a fixed set of depots. However, for this special case, the authors
do not give a comment on the computational complexity, or the approximability of the
problem.

Othman et al. [14] investigated a similar scenario as Mathew et al. [12], where a
drone is used in tandem with a delivery truck for the last-stretch delivery. In their
problem setting, it is assumed that a route for the truck is predetermined. The authors
introduced four problem models as problems of finding a minimum-cost path of a
special structure in a graph, and showed that all of those problems are NP-hard. They
also identified a special type of instance that can be solved in polynomial time. They
proposed a polynomial-time approximation algorithm for the graph problem, and proved
that the approximation ratio is bounded above by 2 in restricted metric graphs.

Apart from the application of the drone as a dedicated delivery vehicle, there are
several works in the literature that consider a setting where the last-stretch delivery can
be performed by either the truck or the drone, see, e.g., Agatz et al. [1], Murray and
Chu [13], Ha et al. [9], and Ponza [15].

We examine two particular cases of the problem arising in the scenario outlined
above. In the first setting, while the drone is making a delivery of a parcel, the truck is
not allowed to wait for the drone to return at the last rendezvous point. In particular,
the truck can only intercept the drone at any rendezvous point at most once. In contrast,
for the second setting, the truck is allowed to wait for the drone to return at the last
rendezvous point, or re-visit some rendezvous point multiple times. We term the former
theNo-Wait Transit Last-Stretch Delivery Problem, or NW-TLSDP for short. We
call the latter problem the Transit Last-Stretch Delivery Problem, or TLSDP.

With this work, we propose graph problem models for the NW-TLSDP and the
TLSDP. Both of the graph problems are NP-hard. Next, we propose polynomial
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time approximation algorithms for each of the problem settings. We show that in
metric graphs, there is a 2.6-approximation algorithm for the NW-TLSDP, and a 2.5-
approximation algorithm for a special instance of this problem where the truck has to
return to the same distribution center. Finally, we show that in metric graphs, there is
a 1.6-approximation algorithm for the TLSDP, and when the truck has to return to the
same distribution center, we show a 1.5-approximation algorithm.

The rest of this paper is organized as follows. Section 2 outlines the basic nota-
tion, the problem models for this paper, and the NP-hardness of our problem models.
Section 3 describes the approximation algorithm for our problem models, and finally,
Sect. 4 concludes the paper.

2 Preliminaries
2.1 Notation
The set of reals (resp., nonnegative reals) is denoted by R (resp., R+).

The vertex set and the edge set of a graph G are denoted by V (G) and E(G),
respectively. For vertices u, v ∈ V (G), we use uv to refer to an edge e ∈ E(G) such that
e is incident to u and v. Note that graphs in this paper are undirected, i.e., uv = vu. We
call u and v the end vertices of the edge uv. For a set E ′ ⊆ E(G) of edges, we write
V (E ′) for the set of all end vertices of edges in E ′. A graph G is complete if every two
vertices u, v ∈ V (G) are adjacent. The degree of a vertex u ∈ V (G) in a graph G is the
number of edges in E(G) incident to u.

A subgraphG′ of a graphG is a graph such thatV (G′) ⊆ V (G), and E(G′) ⊆ E(G),
and we write G′ ⊆ G. A graph G′ ⊆ G is an induced subgraph of G if it holds that
E(G′) =

(
V (G′)

2

)
∩ E(G), and we also say that G′ is induced by V (G′). Given a graph

G and a set V ′ ⊆ V (G), we write G[V ′] for the subgraph of G induced by V ′. In
addition, for a subset V ′′ ⊆ V (G), we write G − V ′′ for the graph G[V (G) − V ′′].

Given a graph G, a matching M ⊆ E(G) is a subset of edges such that each vertex
in V (G) is incident to at most one edge in M . A matching M ⊆ E(G) is perfect if
it holds that V (M) = V (G). Given a graph G and a matching M ⊆ E(G), a vertex
v ∈ V (G) such that v < V (M) is called exposed. Given two sets A, B ⊆ V (G), we call
a matching M ⊆ E(G) an A, B-matching if all edges e ∈ M are of the form e = ab,
a ∈ A and b ∈ B.

A path P = (v1, v2, . . . , vp) is a graph such that V (P) = {v1, v2, . . . , vp } and E(P) =
{vivi + 1 | i = 1, 2, . . . , p − 1}. Such a graph P is also called a v1, vp-path. A path
P = (v1, v2, . . . , vp) such that vi , vj for 1 ≤ i , j ≤ p is called a simple path. Given
two sets A, B ⊆ V (G), we call a path P ⊆ G an A, B-alternating path if P is of the form
P = (a1, b1, a2, b2, . . .), ai ∈ A, bi ∈ B.

A cycle C = (v1, v2, . . . , vp) is defined to be a path (v1, v2, . . . , vp) such that p ≥ 3
and v1 = vp . If vi , vj for all 1 ≤ i , j < p, then the cycle C is called a simple cycle.

Given a graph G and an edge weight function w : E(G) → R+, we say that the
graph G is weighted by w, and write (G,w). For convenience, for any vertex v ∈ V (G),
we define that w(vv) = 0. For a subset E ′ ⊆ E(G), let w(E ′) denote

∑
e∈E′ w(e). For

brevity, let w(G) denote w(E(G)).
A weighted graph (G,w) is called metric if the edge weight function w satisfies the

triangle inequality, that is, for all u, v, q ∈ V (G) it holds that

w(uv) ≤ w(uq) + w(qv). (1)
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2.2 Problem Models
Let C be the set of customers to which parcels need to be delivered, and let R be the
set of points at which the delivery drone can rendezvous with the truck. In general, the
truck is required to start from a point s ∈ R, and end its route at t ∈ R. We call the
points s and t depots. If s = t, then the truck starts and returns to the same point s, and
we have a single depot. Let |R| = m and |C | = n. The drone has unit payload capacity,
and it never delivers two parcels consecutively without rendezvousing with the truck.
With this observation, we introduce the following distance functions:

- d(u, v): the time it takes for the drone to travel between a point u ∈ R and a
customer v ∈ C; and

- t(u, v): the time it takes for the truck to move from a point u ∈ R to a point v ∈ R
along its route.

We assume that for all u, v ∈ R and any q ∈ C, it holds that

t(u, v) ≤ d(u, q) + d(q, v), (2)

which is a natural assumption that the drone cannot take a shortcut between rendezvous
points by visiting a customer.

An illustration of the problem scenario when the truck is required to return to the
same depot, and it can wait for the drone to deliver a parcel at the last rendezvous point
is depicted in Fig. 1(a), while an illustration of a feasible solution of the given problem
scenario is depicted in Fig. 1(b).

Let (G,w) be a weighted graph such that R,C ⊆ V (G) and for the weight function
w restricted to the edge set

(
R∪C

2

)
−

(
C
2

)
it holds that

w(uv) =
{

d(u, v), for u ∈ C and v ∈ R,
t(u, v), for u, v ∈ R. (3)

With the observation of Eq. (2), given depots s, t ∈ R, in order to find a delivery
route for both the truck and the drone, we need to find an s, t-path P in the graph G such
that it holds that C ⊆ V (P) and no two vertices in C appear consecutively in the path P.
The total time needed for the drone and the truck to deliver all parcels and arrive to the
depot t will be given by w(P). Then, by the request that the truck does not rendezvous
with the drone more than once at any point in R, such a path P in the graph G must be
a simple path, whereas it need not be simple if repeated rendezvouses at a single point
in R are allowed.

Formally, we get the following problems.

The No-Wait Transit Last-Stretch Delivery Problem - NW-TLSDP
Instance: A weighted graph (G,w) with subsets R,C ⊆ V (G) and two vertices
s, t ∈ R.
Feasible Solution: A simple s, t-path P ⊆ G such that C ⊆ V (P), and no two vertices
in C are visited consecutively.
Objective: Minimize w(P).

Notice that such a path does not exist if |R| ≤ |C |.

The Transit Last-Stretch Delivery Problem - TLSDP
Instance: A weighted graph (G,w) with subsets R,C ⊆ V (G) and two vertices
s, t ∈ R.
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Figure 1: (a) An illustration of the problem scenario. The points at which the delivery
drone can rendezvous with the truck are illustrated as white circles. The customers to
which parcels need to be delivered are represented by black circles. (b) An illustration
of a feasible routing for the given problem scenario in (a). The truck’s route is shown
by dashed arrows, and the drone’s route is shown by solid arrows.

Feasible Solution: A (not necessarily simple) s, t-path P ⊆ G such that C ⊆ V (P),
and no two vertices in C are visited consecutively.
Objective: Minimize w(P).

Notice that the only difference between the NW-TLSDP and the TLSDP is in the
requirement that a feasible solution to the former must be a simple path, whereas this
is not required in the latter where some vertices in R may be visited more than once,
see Figs. 2(a) and 2(b). As will be seen in Section 3, this seemingly minor difference
results in approximation algorithms with different approximation ratios between the
two problems.

Observation 1 Let (G,w) be a metric graph, and R,C ⊆ V (G). Then, for both the
NW-TLSDP and the TLSDP there exists an R,C-alternating optimal path in G.

Proof. Due to the triangle inequality, without loss of generality we can assume that
V (G) = R ∪ C. Let P∗ be an optimal path in the graph G. If there exist three vertices
u, v, q, such that u, v ∈ R, q ∈ C and they appear consecutively in the path P∗ in the
order u, v, q or q, v, u, then we can obtain a path P′ from P∗ by replacing the edges uv
and vq by a single edge uq. For the cost w(P′) of the path P′ we get

w(P′) = w(P∗) − w(uv) − w(vq) + w(uq).

Then, from the triangle inequality we know that it holds that

w(uq) ≤ w(uv) + w(vq),
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Figure 2: Feasible solutions to the NW-TLSDP and the TLSDP. The set R of rendezvous
points is illustrated as white circles. The setC of customers points is presented by black
circles. (a) A simple s, t-path that visits all vertices in C, as a feasible path for the NW-
TLSDP. (b) An s, t-path that visits all vertices in C, as a feasible path for the TLSDP.
Some vertices in R may be visited more than once.

and therefore
w(P′) ≤ w(P∗).

We can repeat the above shortcutting procedure until no more such triplets u, v, q of
vertices exist. The resulting path from these shortcuts is alternating. �

Throughout this paper, we assume that the edge weight function w satisfies the
triangle inequality.

2.3 NP-hardness
Othman et al. [14] examined a similar problem with the one from this paper, where in
addition, for a given total order ≺ over the set R, a feasible path P needs to visit the
vertices in the set R obeying this total order. They have shown that their problem is
NP-hard even if the edge weight function takes only values in {1, 2}, and that the total
order over the set R can be taken without loss of generality. Therefore, we have the
following claim.

Theorem 1 The NW-TLSDP and the TLSDP are NP-hard.

3 Approximation Algorithms
First, we propose a (ρ + 1)-approximation algorithm for the NW-TLSDP with metric
weight w, where ρ is an approximation ratio for the metric TSP-path problem with fixed
terminals [10, 16]. Currently the lowest bound on ρ of 1.6 was given by [16].

For the special instance of the NW-TLSDP where s = t, our algorithm has an
approximation ratio of (δ + 1), where δ is an approximation ratio for the metric TSP. In
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this case, we can use the algorithm due to Christofides [2], which gives as a value for δ
of 1.5, the lowest one known so far for the general metric.

Wewill use the algorithm of Sebő in a similar fashion, to propose a ρ-approximation
algorithm for the TLSDP, and Christofides’ algorithm to obtain a δ-approximation
algorithm in the special case when s = t in the TLSDP.

3.1 Approximation algorithm for the NW-TLSDP
Before proceeding with the description of an approximation algorithm and the analysis
of its approximation ratio, we provide two technical lemmas which are useful for the
analysis.

Lemma 1 For an instance I = ((G,w); R,C ⊆ V (G); s, t ∈ R) of the NW-TLSDP such
that w satisfies the triangle inequality, let P∗ = (s = r1, c1, r2, . . . , rn, rn+1 = t) be an
R,C-alternating optimal solution for I. Let M be a minimum weight R,C-matching
such that s, t < V (M), and M leaves exposed exactly one c ∈ C. Then, it holds that

2w(M) + w(r1c1) + w(cnrn+1) ≤ w(P∗). (4)

Proof. Notice that E(P∗) contains two disjoint matchings

M ′ = {c1r2, c2r3, . . . , cn−1rn}

and
M ′′ = {r2c2, r3c3, . . . , rncn},

such that it holds that C − {cn} ⊆ V (M ′) and C − {c1} ⊆ V (M ′′), and

w(P∗) = w(M ′) + w(M ′′) + w(r1c1) + w(cnrn+1).

Moreover, notice that it holds that sc1 < M ′ and cnt < M ′′. By this observation, for the
minimum cost R,C-matching M it holds that

w(M) ≤ w(M ′)

and
w(M) ≤ w(M ′′).

Based on these observations, it must hold that

w(P∗) = w(M ′) + w(M ′′) + w(r1c1) + w(cnrn+1)
≥ 2w(M) + w(r1c1) + w(cnrn+1),

as required. �

Lemma 2 For an instance I = ((G,w); R,C ⊆ V (G); s, t ∈ R) of the NW-TLSDP such
that w satisfies the triangle inequality, let P = (s = r1, c1, r2, . . . , rn, cn, rn+1 = t) be a
feasible R,C-alternating solution for I. Let p, q ∈ C be such that {sp, qt} ⊆ E(P), i.e.,
p and q are the vertices in C visited by P immediately after s and before t, respectively.
(i) If s = t, then for any δ-approximate Hamiltonian cycle HC = (p = c1, c2, . . . , cn, p)
in (G[C],w), δ ≥ 1, it holds that

w(HC ) ≤ δ · w(H). (5)
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(ii) If s , t, then for any ρ-approximateHamiltonian p, q-path PC = (p = c1, c2, . . . , cn =
q) in (G[C],w), ρ ≥ 1, it holds that

w(PC ) ≤ ρ · w(P). (6)

Proof. Note that it holds that p = c1 and q = cn.
(i) If s = t, then for w(H) we get

w(H) = w(sc1) + w(cns) +
n−1∑
k=1

(w(ckrk ) + w(rkck+1))

≥ w(c1cn) +
n−1∑
k=1

w(ckck+1), (7)

which follows by the triangle inequality of Eq. (1). Notice that the right-hand-side of
Eq. (7) defines the length w(H ′C ) of the Hamiltonian cycle H ′C in (G[C],w). It certainly
holds that

w(HC ) ≤ δ · w(H ′C ),

from where the claim follows.
(ii) If s , t, then writing the expression for w(P) we get

w(P) = w(sp) + w(qt) +
n−1∑
k=1

(w(ckrk ) + w(rkck+1))

≥

n−1∑
k=1

w(ckck+1), (8)

which follows by the triangle inequality of Eq. (1). Notice that the right-hand-side of
Eq. (8) defines the length w(P′C ) of the Hamiltonian p, q-path P′C = (c1, c2, . . . , cn) in
(G[C],w). It certainly holds that

w(PC ) ≤ ρ · w(P′C ),

from where the claim follows. �

Next, we propose an approximation algorithm for the NW-TLSDP, summarized as
Procedure Alternating Route I.

Procedure Alternating Route I

Input: A metric graph (G,w) with two subsets R,C ⊆ V (G), |R| > |C |, vertices
s, t ∈ R, and real numbers ρ ≥ 1 and δ ≥ 1.
Output: If s = t, a simple (δ + 1)-approximate R,C-alternating cycle H such that
C ⊆ V (H), otherwise a simple (ρ + 1)-approximate R,C-alternating s, t-path P ⊆ G
such that C ⊆ V (P).

1: Let n := |C |;
2: if s = t then
3: Find a δ-approximate Hamiltonian cycle HC in (G[C],w);
4: for each p ∈ C do
5: Compute a minimum cost R,C-matching Mp in (G − {p, s},w) such that
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C − {p} ⊆ V (Mp);
6: Re-index the vertices c1, c2, . . . , cn ∈ C such that HC = (p = c1, c2, . . . , cn, p);
7: Let R′ := R ∩ V (Mp);
8: Let µ : C → R′ be a bijection such that u = µ(v) holds iff uv ∈ Mp;
9: Let Hp be the cycle (s, c1, µ(c2), . . . , µ(cn), cn, s)
10: end for;
11: Let H := argmin{w(Hp) | p ∈ C};
12: return H
13: else
14: for all distinct p, q ∈ C do
15: Find a ρ-approximate Hamiltonian p, q-path PC = (p = c1, c2, . . . , cn = q)

in (G[C],w);
16: Compute a minimum cost R,C-matching Mp in (G − {p, s, t},w) such that

C − {p} ⊆ V (Mp);
17: Compute a minimum cost R,C-matching Mq in (G − {q, s, t},w) such that

C − {q} ⊆ V (Mq);
18: if w(Mp) ≤ w(Mq) then
19: Let R′ := R ∩ V (Mp);

/* The vertices in R that are matched by Mp */
20: Let µ : C → R′ be a bijection such that u = µ(v) holds iff uv ∈ Mp;
21: Let Ppq be the path (s, c1, µ(c2), . . . , µ(cn), cn, t)
22: else /* w(Mq) < w(Mp) */
23: Let R′ := R ∩ V (Mq);

/* The vertices in R that are matched by Mq */
24: Let µ : C → R′ be a bijection such that u = µ(v) holds iff uv ∈ Mq;
25: Let Ppq be the path (s, c1, µ(c1), . . . , µ(cn−1), cn, t)
26: end if
27: end for;
28: Let P := argmin{w(Ppq) | p, q ∈ C, p , q};
29: return P
30: end if.

Concerning the running time of the Procedure Alternating Route I, a minimum
cost R,C-matching M such that C ⊆ V (M) in Procedure Alternating Route I can
be computed by standard combinatorial optimization techniques (see, e.g., Korte and
Vygen [11]), whereas Christofides [2] gave a δ-approximation algorithm for the metric
TSP with δ = 1.5, and this algorithm can be used to find a δ-approximate Hamiltonian
cycle in (G[C],w) in polynomial time. Furthermore, Sebő [16] gave a polynomial
time algorithm which can be used as a black-box to get a ρ-approximate Hamiltonian
p, q-path in (G[C],w) when ρ = 1.6.

Therefore, we have the following claim.

Lemma 3 For an instance I = ((G,w); R,C ⊆ V (G); s, t ∈ R) of the NW-TLSDP
where w satisfies the triangle inequality, and for values δ = 1.5 and ρ = 1.6 , Procedure
Alternating Route I can be implemented to run in polynomial time.

Theorem 2 For an instance I = ((G,w); R,C ⊆ V (G); s, t ∈ R) of the NW-TLSDP
such that w satisfies the triangle inequality, let P∗ = (s = r1, c1, r2, . . . , rn, cn, rn+1 = t)
be an R,C-alternating optimal solution for I.
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(i) If s = t, then for a simple cycle H = (s, c1, µ(c2), . . . , µ(cn), cn, s) returned by
Procedure Alternating Route I given the instance I as an input, it holds that

w(H) ≤ (δ + 1) · w(H∗). (9)

(ii) If s , t, then for a simple path P = (s, c1, µ(c2), . . . , µ(cn), cn, t) returned by
Procedure Alternating Route I given the instance I as an input, it holds that

w(P) ≤ (ρ + 1) · w(P∗). (10)

Proof.
(i) First, we examine the case when s = t. Let us observe a single iteration of the for-
loop of Lines 4 to 10 of Procedure Alternating Route I. Let HC be the δ-approximate
Hamiltonian cycle in (G[C],w) of Line 3 of the procedure. Then, for the cycle Hp of
Line 9 of Procedure Alternating Route I it holds that

w(Hp) = w(sc1) +
n−1∑
i=1

(w(ciµ(ci+1)) + w(µ(ci+1)ci+1)) + w(cns)

≤ w(sc1) + w(cns) +
n−1∑
i=1

w(cici+1) + 2
n∑
i=2

w(ciµ(ci)) (by Eq. (1))

≤ w(sc1) + w(cns) + w(HC ) + 2w(M).

The algorithm tries all possible choices of p, and returns a cycle H = Hp that minimizes
w(Hp). Then, by Eqs. (4) and (5) for the cycle H it holds that

w(H) ≤ δ · w(H∗) + w(H∗),

as required.
(ii) Next, if s , t, then we observe a single iteration of the for-loop of Lines 14 to 27
of Procedure Alternating Route I. Let PC be the ρ-approximate path in (G[C],w) as in
Line 15 of the procedure. Then, for the path Ppq in Line 21 of Procedure Alternating
Route I it holds that

w(Ppq) = w(sp) +
n−1∑
i=1

(w(ciµ(ci+1)) + w(µ(ci+1)ci+1)) + w(qt)

≤ w(sp) + w(qt) +
n−1∑
i=1

w(cici+1) + 2
n∑
i=2

w(ciµ(ci)) (by Eq. (1))

≤ w(sp) + w(qt) + w(PC ) + 2w(M).

The algorithm tries all possible choices of p and q, and returns a path P = Ppq that
minimizes w(Ppq). Then, by Eqs. (4) and (6) for the path P it holds that

w(P) ≤ ρ · w(P∗) + w(P∗),

as required. �
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3.2 Approximation algorithm for the TLSDP
Again, before proceeding with the description of an approximation algorithm and the
analysis of its approximation ratio, we state two technical lemmas to be used in the
proof.

First, we define a function w̃ :
(
C∪{s,t }

2

)
→ R+ to be

w̃(uv) =∆
{

w(uv), for u ∈ {s, t}, v ∈ C ∪ {s, t},
minr ∈R{w(ur) + w(rv)}, for u, v ∈ C. (11)

Lemma 4 For an instance I = ((G,w); R,C ⊆ V (G); s, t ∈ R) of the TLSDP , if the
weight function w satisfies the triangle inequality, then so does the weight function w̃

in Eq. (11).

Proof. We set to show that for all u, v, q ∈ C ∪ {s, t} it holds that

w̃(uv) ≤ w̃(uq) + w̃(qv).

First, observe that if any of u and v is in {s, t}, then by the definition of w̃ it holds
that w̃(uv) = w(uv), w̃(uq) = w(uq), and w̃(qv) = w(qv), and the claim follows from
the assumption that w satisfies the triangle inequality.

Second, if it holds that {u, v} ∩ {s, t} = ∅, but q ∈ {s, t}, then we get that it holds
that w̃(uq) = w(uq) and w̃(qv) = w(qv), and the claim follows from the definition of
w̃, i.e.,

w̃(uv) = min
r ∈R
{w(ur) + w(vr)}

≤ w(uq) + w(vq)
= w̃(uq) + w̃(qv).

Finally, let {u, v, q} ∩ {s, t} = ∅. Let rvq, ruq ∈ R be the minimizers of w̃(vq) and
w̃(uq), respectively. By the definition of w̃, it holds that

w̃(uv) ≤ w(uruq) + w(vruq).

From the triangle inequality we know that it holds that

w(vruq) ≤ w(vrvq) + w(rvqruq),

and also,
w(rvqruq) ≤ w(qrvq) + w(qruq).

Then, we get

w̃(uv) ≤ w(uruq) + w(vrvq) + w(rvqruq)
≤ w(uruq) + w(vrvq) + w(qrvq) + w(qruq)
= w̃(uq) + w̃(vq),

as required. �

Lemma 5 For an instance I = ((G,w); R,C ⊆ V (G); s, t ∈ R) of the TLSDP such
that w satisfies the triangle inequality, let P = (s = r1, c1, r2, . . . , rn, cn, rn+1 = t) be a
feasible R,C-alternating solution for I. Let w̃ be as in Eq. (11).
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(i) If s = t, then for any δ-approximate Hamiltonian cycle H ′C = (s, c′1, c
′
2, . . . , c

′
n, s) in

(G[C ∪ {s}], w̃), δ ≥ 1, it holds that

w̃(H ′C ) ≤ δ ·w(H). (12)

(ii) If s , t, then for any ρ-approximate Hamiltonian s, t-path P′C = (s, c′1, c
′
2, . . . , c

′
n, t)

in (G[C ∪ {s, t}], w̃), ρ ≥ 1, it holds that

w̃(P′C ) ≤ ρ· w(P). (13)

Proof.

(i) Writing the expression for w(H), we get

w(H) = w(sc1) + w(cns) +
n−1∑
k=1

(w(ckrk ) + w(rkck+1))

≥ w̃(sc1) + w̃(cns) +
n−1∑
k=1

w̃(ckck+1), (14)

which follows from the definition of w̃ of Eq. (11). The right-hand-side of Eq. (14)
gives the cost w̃(HC ) of a Hamiltonian cycle HC in (G[C ∪ {s}], w̃), and it certainly
holds that

w̃(H ′C ) ≤ δ · w̃(HC ),

as required.
(ii) If s , t, then writing the expression for w(P), we get

w(P) = w(sc1) + w(cnt) +
n−1∑
k=1

(w(ckrk ) + w(rkck+1))

≥ w̃(sc1) + w̃(cnt) +
n−1∑
k=1

w̃(ckck+1), (15)

which follows from the definition of w̃ of Eq. (11). The right-hand-side of Eq. (15) gives
the cost w̃(PC ) of an s, t-Hamiltonian path PC in (G[C ∪ {s, t}], w̃), and it certainly
holds that

w̃(P′C ) ≤ ρ · w̃(PC ),

as required. �

Next, we propose an approximation algorithm for the TLSDP, summarized as Pro-
cedure Alternating Route II.

Procedure Alternating Route II

Input: A metric graph (G,w) with two subsets R,C ⊆ V (G), vertices s, t ∈ R, and real
numbers ρ ≥ 1 and δ ≥ 1.
Output: If s = t, a ρ-approximate R,C-alternating (but not necessarily simple) cycle
H such thatC ⊆ V (H), otherwise a δ-approximate R,C-alternating (but not necessarily
simple) s, t-path P ⊆ G such that C ⊆ V (P).

1: Calculate w̃ according to Eq. (11);

12



2: if s = t then
3: Find a δ-approximate Hamiltonian cycle HC = (s, c1, c2, . . . , cn, s)

in (G[C] ∪ {s}, w̃);
4: for i = 1, 2, . . . , n − 1 do
5: Let r ′i := argmin{w(cir) + w(rci+1) | r ∈ R}
6: end for;
7: Let R′ := {r ′1, r

′
2, . . . , r

′
n−1};

8: Let H be the cycle (s, c1, r ′1, c2, . . . , r ′n−1, cn, s);
9: return H
10: else
11: Find a ρ-approximate Hamiltonian s, t-path PC = (s, c1, c2, . . . , cn, t)

in (G[C ∪ {s, t}], w̃);
12: for i = 1, 2, . . . , n − 1 do
13: Let r ′i := argmin{w(cir) + w(rci+1) | r ∈ R}
14: end for;
15: Let R′ := {r ′1, r

′
2, . . . , r

′
n−1};

16: Let P be the path (s, c1, r ′1, c2, . . . , r ′n−1, cn, t);
17: return P
18: end if.

By the virtue of Lemma 4, we can be assured that the Christofides algrithm with
δ = 1.5, and the ρ-approximation algorithm with ρ = 1.6 due to Sebő [16], can
indeed be used, and that Procedure Alternating Route II can be implemented to run in
polynomial time.

Lemma 6 For an instance I = ((G,w); R,C ⊆ V (G); s, t ∈ R) of the TLSDP such
that w satisfies the triangle inequality, and for values δ = 1.5 and ρ = 1.6, Procedure
Alternating Route II can be implemented to run in polynomial time.

Theorem 3 For an instance I = ((G,w); R,C ⊆ V (G); s, t ∈ R) of the TLSDP such
that w satisfies the triangle inequality, let P∗ = (s = r1, c1, r2, . . . , rn, cn, rn+1 = t) be
an R,C-alternating optimal solution for I.
(i) If s = t, then for a cycle H = (s, c1, r ′1, c2, . . . , r ′n−1, cn, s) returned by Procedure
Alternating Route II given the instance I as an input, it holds that

w(H) ≤ δ · w(H∗). (16)

(ii) If s , t, then for a path P = (s, c1, r ′1, c2, . . . , r ′n−1, cn, t) returned by Procedure
Alternating Route II given the instance I as an input, it holds that

w(P) ≤ ρ · w(P∗). (17)

Proof.
(i) First, we examine the case when s = t. Let us observe a single iteration of the
for-loop of Lines 4 to 6 of Procedure Alternating Route II. Let HC be a δ-approximate
Hamiltonian cycle in (G[C ∪ {s}], w̃) as in Line 3 of the procedure. Then, for the cycle
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H in Line 8 Procedure Alternating Route II it holds that

w(H) = w(sc1) + w(cns) +
n−1∑
i=1

w(cir ′i ) +
n−1∑
i=1

w(r ′ici+1)

= w̃(sc1) + w̃(cns) +
n−1∑
i=1

w̃(cici+1)

= w̃(HC ). (18)

(ii) Next, if s , t, then we observe a single iteration of the for-loop of Lines 12 to 14
of Procedure Alternating Route II. Let PC be a ρ-approximate Hamiltonian s, t-path
in (G[C ∪ {s, t}], w̃) as in Line 11 of the procedure. Then, for the path P in Line 16
Procedure Alternating Route II it holds that

w(P) = w(sc1) + w(cnt) +
n−1∑
i=1

w(cir ′i ) +
n−1∑
i=1

w(r ′ici+1)

= w̃(sc1) + w̃(cnt) +
n−1∑
i=1

w̃(cici+1)

= w̃(PC ). (19)

The claim readily follows from Eqs. (12) and (13) of Lemma 5. �

4 Conclusion
In this work, we have investigated a scenario in which a drone is used in tandem with a
delivery truck for the last-stretch delivery of parcels to customers’ doorsteps.

In the problem that we investigated, only the drone is allowed to perform deliveries.
As future work, it would be interesting to analyze some extensions of this routing
problem, especially to examine a combinatorial optimization based model for a routing
problem where both the delivery truck and the drone can make deliveries [1, 9].

Another possible extension would be to investigate metric settings, but with edge
weight bias to account for additional transportation effort exerted by the drone when
delivering a parcel [17].
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