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Abstract

A graph G = (V,E) with a vertex set V and an edge set E is called a pairwise compati-

bility graph (PCG, for short) if there are a tree T whose leaf set is V , a non-negative edge

weight w in T , and two non-negative reals dmin ≤ dmax such that G has an edge uv ∈ E

if and only if the distance between u and v in the weighted tree (T,w) is in the interval

[dmin, dmax]. PCG is a new graph class motivated from bioinformatics. In this paper, we

give some necessary and sufficient conditions for PCG based on cut-vertices and twins, which

provide reductions among PCGs.
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1 Introduction

An unweighted simple undirected graph G = (V,E) with a vertex set V and an edge set E is

called a pairwise compatibility graph (PCG, for short) if there exist a tree T with edges weighted

by non-negative reals and two non-negative real numbers dmin and dmax such that: the leaf set of

T is V , and two vertices u, v ∈ V are adjacent in G if and only if the distance between u and v in

T is at least dmin and at most dmax. The tree T is also called a pairwise compatibility tree (PCT,

for short) of the graph G. The same tree T can be a PCT of more than one PCG. Figure 1

shows an edge-weighted tree (T,w) and two PCGs for (T,w) with (dmin, dmax) = (5, 7) and

(dmin, dmax) = (4, 8) respectively. The concept of PCG was first introduced by Kearney et al. [11]

to model evolutionary relationships among a set of organisms in bioinformatics. However, it is

a challenging problem to construct a pairwise compatibility tree for a given graph. Recognition

and characterization of PCGs became interesting problems in graph theory recently.

Not every graph is a PCG. Yanhaona, Bayzid and Rahman [13] constructed the first non-

PCG, which is a bipartite graph with 15 vertices. Later, an example with 8 vertices was found

in [8]. This is the smallest non-PCG, since it has been checked that all graphs with at most

seven vertices are PCGs [1]. Currently no polynomial-time algorithm is known to the problem

of testing whether a given graph is a PCG or not. It is widely believed that recognizing PCGs

is NP-hard [7, 8].

1Technical report 2017-003, December 1, 2017.
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Figure 1: (a) An edge-weighted tree (T,w), (b) The PCG obtained from (T,w) and

(dmin, dmax) = (5, 7), and (c) The PCG obtained from (T,w) and (dmin, dmax) = (4, 8).

In the literature, there are several contributions to recognizing some subclasses of PCG. It

is not difficult to see that every tree is a PCG [9]. Every cycle with at most one chord has

also been shown to be a PCG [14]. Other subclasses of graphs currently known as PCGs are

power graphs of trees [13], threshold graphs [5], triangle-free outerplanar 3-graphs [12], a special

subclasses of split matrogenic graphs [6], Dilworth 2 graphs [3, 4], the complement of a forest [9],

the complement of a cycle [2] and so on. Some conditions for a graph not being a PCG have also

been developed [8, 9, 13, 10]. However, there is still few known method for generating PCGs

and PCTs with complicated structures.

In this paper, we will give more necessary and sufficient conditions for PCG. The first one

is related to cut-vertices, where we show that a graph is a PCG if and only if each biconnected

component of it is a PCG. The second one is about a pair of vertices with the same neighbors,

called “twins.” We will show some conditions under which we can add a copy v′ of a vertex

v into a PCG so that v′ and v form twins to get another PCG. One of our results answers an

open problem on “true twins” [2]. These properties provide simple reductions rules, by which

we can reduce some graph into a smaller graph to check if it is a PCG and find more subclasses

of PCGs as well as non-PCGs with an arbitrary large size. For examples, our results imply that

complete k-partite graphs, cacti, and some other graphs are subclasses of PCG.

2 Preliminary

Let a graph G = (V,E) stand for an unweighted simple undirected graph with sets V and E

of vertices and edges, respectively. An edge with end-vertices u and v is denoted by uv. For a

graph G, let V (G) and E(G) denote the sets of vertices and edges in G, respectively, and let

NG(v) be the set of neighbors of a vertex v in G and let NG[v] = NG(v) ∪ {v}. Two vertices u

and v in a graph G are true twins (resp., false twins) if NG[v] = NG[u] (resp., NG(v) = NG(u)).

For a subset X ⊆ V (G), let G−X denote the graph obtained from G by removing vertices in X

together with all edges incident to vertices in X, where G−{v} for a vertex v may be written as

G− v. Let G[X] denote the graph induced by a subset X ⊆ V (G), i.e., G[X] = G− (V (G) \X).
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A vertex is called a cut-vertex if deleting it increases the number of connected component of

the graph. A graph is biconnected if it has no cut-vertex. Note that a graph consisting of a single

edge is biconnected. A biconnected component in a graph is a maximal biconnected subgraph. A

cactus is a connected graph in which any two simple cycles have at most one vertex in common.

Note that each biconnected component of a cactus is either a cycle or an edge. A graph is called

a complete k-partite graph if the vertex set can be partitioned into k disjoint non-empty vertex

subsets such that no two vertices in the same subset are adjacent whereas any two vertices from

different subsets are adjacent. A complete k-partite graph with k subsets V1, V2, . . . , Vk with

|Vi| = si is denoted by Ks1,s2,...,sk .

Let T be a tree. A vertex in a tree is called an inner vertex if it is incident to at least two

edges and is called a leaf otherwise. Let L(T ) denote the set of leaves in the tree T . An edge

incident to a leaf in T is called a leaf edge of T . For a subset X ⊆ V (T ) of vertices, let T ⟨X⟩
denote a minimal subtree of T subject to the condition that any two vertices u, v ∈ X remain

connected in T ⟨X⟩. Note that for a given subset X, the minimal subtree is unique.

An edge-weighted graph (G,w) is defined to be a pair of a graph G and a non-negative weight

function w : E(G) → ℜ+. For a subgraph G′ of G, let w(G′) denote the sum
∑

e∈E(G′)w(e) of

edge weights in G′.

Let (T,w) be an edge-weighted tree. For two vertices u, v ∈ V (T ), the distance dT,w(u, v)

between them is defined to be w(T ⟨{u, v}⟩), i.e., the sum of weights of edges in the path between

u and v in T .

For a tuple (T,w, dmin, dmax) of an edge-weighted tree (T,w) and two non-negative reals dmin

and dmax, define G(T,w, dmin, dmax) to be the simple graph (L(T ), E) such that, for any two

distinct vertices u, v ∈ L(T ), uv ∈ E if and only if dmin ≤ dT,w(u, v) ≤ dmax. We define E to

be an empty set if |V (T )| = 1. Note that G(T,w, dmin, dmax) is not necessarily connected. For a

subset X ⊆ V (T ), let wX : E(T ⟨X⟩) → ℜ+ be a function such that wX(e) = w(e), e ∈ E(T ⟨X⟩),
where we regard wX as null if |X| ≤ 1.

A graph G is called a pairwise compatibility graph (PCG, for short) if there exists a tuple

(T,w, dmin, dmax) such that G is isomorphic to the graph G(T,w, dmin, dmax), where we call such

a tuple a pairwise compatibility representation (PCR, for short) of G, and call a tree T in a PCR

of G a pairwise compatibility tree (PCT, for short) of G. We call dmin and dmax the lower and

upper bounds of a PCR.

3 Some Structures on PCR

We start to review the following property, which has been frequently used in literature. The

correctness of it immediately follows from the definition of PCG.

Lemma 1 Let (T,w, dmin, dmax) be a PCR of a graph G. For any subset X ⊆ V (G), the tuple

(T ⟨X⟩, wX , dmin, dmax) is a PCR of the induced graph G[X].

A PCR (T,w, dmin, dmax) of a PCG is called non-singular if T contains at least three vertices,

0 < dmin < dmax, and w(e) > 0 holds for all edges e ∈ E(T ).
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Lemma 2 Let G be a PCG with at least two vertices. Then G admits a non-singular PCR.

Given a PCR of G, a non-singular PCR of G can be constructed in linear time.

Proof. Let G be a PCG with |V (G)| ≥ 2 and (T,w, dmin, dmax) be an arbitrary PCR of G. We

will construct a non-singular PCR of G by four steps below.

First, if there is a non-leaf edge e such that w(e) = 0, we can shrink it by identifying the

two end-vertices of it. The resulting graph is still a tree, a leaf in the original is still a leaf in

this tree, and the distance between any two vertices in the tree remains unchanged. So the new

tree is still a PCT of the graph G. Now we assume that the edge weight of any non-leaf edge in

the tree is positive.

By assumption of |V (G)| ≥ 2, it holds that |V (T )| ≥ |L(T )| = |V (G)| ≥ 2. Next if

|V (T )| = 2, then we subdivide the unique edge uv in T with a new inner vertex v∗ so that

w′(uv∗)+w′(v∗v) = w(uv) in the new tree T ′ obtained by subdividing the edge uv. It is easy to

see that the new tuple (T ′, w′, dmin, dmax) is still a PCR of G, and |V (T ′)| ≥ 3. In the following

we assume that a PCT has at least three vertices.

In a PCR (T,w, dmin, dmax) with |V (T )| ≥ 3, each path between two leaves contains exactly

two leaf edges. As for the third step, if w(e) = 0 for some leaf edge e ∈ E(T ) or dmin = 0, then

we can change all leaf edge weights and dmin positive if necessary, by increasing the weight of

each leaf edge by a positive real δ > 0 and increasing each of dmin and dmax by 2δ. The resulting

tuple is a PCR of the same graph G. Now all of edge weights, dmin and dmax are positive.

Finally, if the lower and upper bounds are same, i.e., dmin = dmax, then we augment the

upper bound dmax to d
′
max := dmax+ε by choosing a sufficiently small positive real ε so that every

two leaves u and v in T such that dT,w(u, v) > dmax still satisfies dT,w(u, v) > dmax+ε (= d′max).

Obviously the resulting tuple with d′max is a PCR of the same graph G and satisfies dmin ̸= d′max.

After executing the above four steps, we can get a non-singular PCR of the graph G. Fur-

thermore, all the four steps can be done in linear time.

A PCR (T,w, dmin, dmax) of a PCG is called normalized if 0 < dmin < 1, dmax = 1, w(e) > 0

holds for all edges e ∈ E(T ), and w(e) > 1/4 holds for all leaf edges e in T . We have the

following lemmas.

Lemma 3 Let G be a PCG with at least two vertices. Then there is a positive constant cG with

1/2 < cG < 1 such that for any real α with cG < α < 1, G admits a normalized PCR with

(dmin, dmax) = (α, 1). Given a PCR of G, such a normalized PCR of G can be constructed in

linear time.

Proof. By Lemma 2, we know that a non-singular PCR (T,w, dmin, dmax) of G can be con-

structed in linear time. For cG = dmin+dmax
dmax+dmax

, where 1/2 < cG < 1, let α be any real such that

cG < α < 1. To prove the lemma, it suffices to show that a normalized PCR (T,w′, α, 1) can be

constructed in linear time.

Let δ be the positive real such that dmin+δ
dmax+δ = α, where δ > dmax holds. We increase the

weight of each leaf edge in T by δ/2, which increases the weight of each path between two leaves
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in T by δ. We scale the weight in the tuple so that the lower and upper bounds become α and

1; i.e., we divide by dmax + δ the weight of each edge in T and each of dmin + δ and dmax + δ.

This results in a tuple (T,w′, α, 1) of G such that w′(e) ≥ (δ/2)/(dmax + δ) > 1/4 for each leaf

edge e in T .

Most of our arguments are based on normalized PCR, since it will be helpful for us to simplify

some proofs.

4 Properties on Induced Subgraphs of PCGs

In this section, we derive some sufficient conditions for induced subgraphs of a PCG to remain

PCGs, and show how to reduce a PCG to smaller PCGs or construct a larger PCG (resp., non-

PCG) from a given PCG (resp., non-PCG). For this, we first review the case when an induced

subgraph of a PCG G is a connected component of the graph.

Components. It is known that a graph is a PCG if and only if each connected component of

it is a PCG. The only if part trivially follows from Lemma 1. The if part is also easy to see:

choose an inner vertex from the PCT of a PCR of each connected component of G, where we

assume that dmax = 1 for all PCRs, and join the inner vertices to a new vertex with an edge

weighted by a positive real > 1 to get a single tree whose leaf set is V (G). We easily see that

the resulting tree is a PCT for a PCR to G, showing that G is a PCG. It would be natural to

consider similar properties on 2-edge-connected components (resp., biconnected components) of

graphs with bridges (resp., cut-vertices). In fact, we show that the above property also holds

for biconnected components.

Lemma 4 Let a graph G consist of biconnected components Bi, i = 1, 2, . . . , p. Then G is a

PCG if and only if each biconnected component Bi of G is a PCG.

Proof. The only if part trivially follows from Lemma 1. To show the if part, it suffices to consider

the case where G consists of two PCG graphs G1 and G2 such that |V (G1) ∩ V (G2)| = 1.

Let v∗ ∈ V (G1)∩V (G2). By Lemma 3, we see that, for a real α > 0, each PCG Gi (i = 1, 2)

admits a normalized PCR (Ti, wi, dmin = α, dmax = 1), as illustrated in Figure 2(a). Since they

are normalized, it holds that wi(e) > 1/4 for each leaf edge e in T1 and T2.

Now we join the two PCRs by replacing the leaf edge uiv
∗ in Ti (i = 1, 2) with a new inner

vertex v′ and three edges u1v
′, u2v

′ and v′v∗ setting their weights by w(u1v
∗) := w1(u1v

∗),

w(u2v
∗) := w2(u2v

∗) and w(v′v∗) := 0, respectively. See Figure 2(b) for an illustration of

the operation. Let (T,w) denote the resulting edge-weighted tree, and let G′ be the graph

G(T,w, α, 1). We will show that G′ is isomorphic to the graph G.

Since wi(e) > 1/4 for each leaf edge e in Ti with i = 1 and 2, we see that dT,w(u, v) >

4 · (1/4) = 1 = dmax for any pair of vertices u ∈ L(T1) − {v∗} and v ∈ L(T2) − {v∗}. This

implies that uv ̸∈ E(G′). Obviously for each i = 1, 2 and any pair {u, v} ⊆ V (Ti), it holds that

uv ∈ E(G′) if and only if uv ∈ E(Gi). Therefore G′ is isomorphic to G, and G is a PCG.
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Figure 2: (a) A normalized PCR (Ti, wi, dmin = α, dmax = 1) for each i = 1, 2, (b) The weighted

tree (T,w) obtained from (Ti, wi), i = 1, 2 by joining edges u1v
∗ and u2v

∗ with a new inner

vertex v′, where w(u1v
′) = w1(u1v

∗), w(u2v
′) = w2(u2v

∗) and w(v′v∗) = 0

Lemma 4 is a powerful tool to construct PCGs. We can use it to ‘join’ small PCGs into a

large PCG to find new subclasses of PCGs. An edge or a single cycle has been shown to be a

PCG [14], and a cactus is a graph with each biconnected component being a cycle or an edge.

By simply applying Lemma 4, we see the next.

Lemma 5 Every cactus is a PCG.

A special case of cacti (where each biconnected component is a cycle) was shown to be a

subclass of PCG [14]. However, by using Lemma 4, we can greatly simplify the proofs [14].

Furthermore, Lemma 4 can be used to construct PCGs of more complicated structures.

Twins. Since twins have similar structures, we are interested to know wether PCG remains

close under the operation of adding a twin of a vertex. This problem has been considered by

Calamoneri et al. [2]. They found that this property holds for false twins and raised the case

for true twins as an interesting open problem. We will answer their question by exploring the

property of true twins.

For false twins, the following lemma has been proven [2]. We show that this can be proven

by using normalized PCR.

Lemma 6 Let G be a graph with false twins v1 and v2. Then G is a PCG if and only if G− v1

is a PCG.

Proof. The only if part trivially follows from Lemma 1. We show the if part assuming that

G′ = G− v1 is a PCG. By Lemma 3, we know that there is a normalized PCR (T ′, w′, α > 0, 1)

of G′ = G− v1. We replace the leaf edge v′v2 in T ′ with a new leaf v1 and a new inner vertex v′′

and three edges v′v′′, v′′v2 and v′′v1, setting their weights by w(v′v2) := w′(v′v2) and w(v′′v2) :=

w(v′′v1) := 0. Let (T,w) denote the resulting edge-weighted tree. Since dT,w(v1, v2) = 0 < α,

v1v2 is not an edge in the graph G(T,w, α, 1). For any other leaf v ∈ L(T ), it holds dT,w(v, v1) =

dT ′,w′(v, v2); and for any leaves u, v ∈ L(T )−{v1, v2}, it holds dT,w(u, v) = dT ′,w′(u, v). Therefore

(T,w, α, 1) is a PCR of G.
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Lemma 6 can also be used to construct PCGs. Based on Lemma 4, we can construct large

PCGs having cut-vertices. By using Lemma 6, we can increase the connectivity of PCGs. For

example, for each cut-vertex in a PCG, we can add a false twin of it to the graph to get another

PCG. Lemma 6 also implies the following result.

Lemma 7 Every complete k-partite graph is a PCG.

Note that for a complete k-partite graph, if we iteratively delete a vertex in a pair of false

twins as long as false twins exist, finally we will get a clique of k vertices. It is trivial that a clique

is a PCG. By Lemma 6, we know that any complete k-partite graph is a PCG. In fact, complete

k-partite graphs contain many interesting graphs. For examples, K1,2,2 is a 5-wheel, K2,2,2 is an

octahedron, K1,2,4 is a (4, 3)-fan, K2,2,5 is a (4, 5)-cone, K4,4,4 is a circulate graph Ci12(1, 2, 4, 5),

and so on. Some of them have been shown to be PCGs by using different techniques in the

literature.

Next, we consider true twins. In fact, the statement in Lemma 6 for true twins is no longer

correct because there is an example of a non-PCG G such that deleting a vertex in true twins

results in a PCG.

The graph G in Figure 3(a) has only seven vertices. This is a PCG since it has been proved

that any graph with at most seven vertices is a PCG [1]. The graph G′ in Figure 3(b) is obtained

from the graph G by a copy v′ of vertex v so that v and v′ form true twins in G′. The graph G′

has been shown to be a non-PCG [8].

v

(a) (b)

v’

v

(c)

u v3v1v2

c0

Figure 3: (a) A graph G with seven vertices, and (b) A graph G′ obtained from G by adding a

vertex v′ so that v and v′ are true twins in G′, (c) A PCT T obtained from T ′ with a new leaf

edge c0v1

We show that a non-PCG remains to be a non-PCG after removing one of three true twins.

Lemma 8 Let G be a graph with three true twins v1, v2 and v3, i.e., NG[v1] = NG[v2] = NG[v3].

Then G is a PCG if and only if G− v1 is a PCG.

Proof. The only if part trivially follows from Lemma 1. We show the if part assuming that

G′ = G− v1 is a PCG. Let (T ′, w′, d′min, d
′
max) be a PCR of G′, where |V (T ′)| ≥ |L(G)| ≥ 2. We

will construct a PCR (T,w, d′min, d
′
max) of G.
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Let c0 be the middle point of the path between v2 and v3 in T ′, i.e., c0 is an inner vertex or

an interior point on an edge such that dT ′,w′(v2, c0) = dT ′,w′(c0, v3).

We add v1 to T ′ as a new leaf creating a new edge between v1 and c0 in T ′ to construct a tree

T with L(T ) = V (G). We set the edge weight w(v1c0) :=
1
2dT ′,w′(v2, v3). If c0 is an interior point

on an edge u1u2 in T ′, then we subdivide u1u2 into two edges u1c0 and c0u2 setting their weights

so that w(u1c0)+w(c0u2) = w′(u1u2) and c0 is still the middle point of the path between v2 and

v3 in T . For all other edges e in T ′, we set w(e) := w′(e). Note that dT,w(v1, c0) = dT,w(v2, c0) =

dT,w(v3, c0) =
1
2dT,w(v2, v3) =

1
2dT ′,w′(v2, v3). To prove that (T,w, d′min, d

′
max) is a PCR of G, it

suffices to prove that for each vertex u ∈ V (G)\{v1}, dT,w(v1, u) is equal to dT,w(vi, u) for i = 2

or 3, which implies that v1u ∈ E(G) if and only if viu ∈ E(G′). Recall that v2u ∈ E(G′) if and

only if v3u ∈ E(G′) by assumption of NG[v2] = NG[v3].

Let u ∈ V (G)\{v1}, where we assume without loss of generality that dT,w(v2, u) ≤ dT,w(v3, u),

which means that the path between u and v3 passes through c0 in T ′, as illustrated in Figure 2(c).

Hence dT,w(v3, u) = dT,w(v1, u) holds, as required.

Lemma 8 implies that a PCG with true twins u1 and u2 can be augment to a larger PCG

with any number of new vertices u2, . . . , uk so that every two vertices ui and uj , 1 ≤ i < j ≤ k

form true twins.

5 Conclusions

In this paper, we have introduced some reduction rules on PCGs. By using these rules, we

can find more subclasses of PCG and simplify some arguments in previous papers. Also the

reduction rules can be used to find a class of non-PCGs by constructing lager non-PCGs from a

given non-PCG in a similar way. All graphs with at most seven vertices are known to be PCGs,

and a non-PCG with eight vertices has been found. To find all non-PCGs with n = 8 vertices,

the reduction rules can be used to eliminate graphs with false twins or cut-vertices from the

class of simple graphs with n = 8 vertices, because such graphs are reduced to graphs with at

most seven vertics which are all PCGs. It is interesting to find more reduction rules on PCG.
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