
An Alternating Direction Method of Multiplier with the BFGS
update for Structured Convex Quadratic Optimization

Yan Gu, and Nobuo Yamashita

July 11, 2018

Abstract

The alternating direction method of multipliers (ADMM) is an effective method for solving wide fields of
convex problems. At each iteration, the classical ADMM solves two subproblems exactly. However, in many
applications, it is expensive or impossible to obtain the exact solutions of the subproblem. To overcome the
difficulty, some proximal terms are added to the subproblems. This class of methods normally solves the original
subproblem approximately, and thus takes more iterations. This fact urges us to consider that a special proximal
term can lead to a better result as the classical ADMM. In this paper, we propose a proximal ADMM whose
regularized matrix in the proximal term is generated by the BFGS update (or Limited memory BFGS) at every
iteration. These types of matrices use the second-order information of the objective function. The convergence of
the proposed method is proved under certain assumptions. Numerical results are given to show the effectiveness
of the proposed proximal ADMM.

Keywords: alternating direction method, variable metric semi-proximal method, convergence, BFGS method,
limited memory BFGS, convex minimization.

1 Introduction
We consider the following convex minimization problem:

minimize 1
2∥Ax− b∥2 + g(x)

subject to x ∈ Rn,
(1.1)

where g : Rn → R ∪ {∞} is a proper convex function, A ∈ Rm×n and b ∈ Rm. For example, “g” here can
be an indicator function on a convex set or the l1 penalty function : g(x) = ∥x∥1 :=

∑m
i=1 |xi|. The problem

(1.1) includes as special cases many important statistical learning problems such as the LASSO problem [14]. The
number n of variables in these learning problems is usually large.

Let f(x) = 1
2∥Ax− b∥2. Then the problem (1.1) can be written as

minimize f(x) + g(y)

subject to x− y = 0

x, y ∈ Rn.

(1.2)

Let Lβ(x, y, λ) be the augmented Lagrangian function for (1.2) that defined by

Lβ(x, y, λ) := f(x) + g(y)− ⟨λ, x− y⟩+ β

2
∥x− y∥2, (1.3)

where λ ∈ Rn is multipliers associated to the linear constraints and β > 0 is a penalty parameter.

1

Based on the classic Douglas-Rachford operator splitting method [3], the alternating direction method of mul-
tipliers (ADMM) was proposed by Gabay and Mercier [6], Glowinski and Marrocco [7] in the mid-1970s, which
generates the iterative sequence via the following recursion:

xk+1 = argmin
x

Lβ(x, y
k, λk), (1.4a)

yk+1 = argmin
y

Lβ(x
k+1, y, λk), (1.4b)

λk+1 = λk − β(xk+1 − yk+1). (1.4c)

The global convergence of the ADMM (1.4a)-(1.4c) can be established under very mild conditions [1].
By noting the fact that the subproblem in (1.4a)-(1.4c) may be difficult to solve exactly in many applications,

Eckstein [4] and He et al. [10] have considered to add proximal terms to the subproblems for different purpose.
Recently, Fazel et al. [5] proposed the following semi-proximal ADMM scheme:

xk+1 = argmin
x

Lβ(x, y
k, λk) +

1

2
∥x− xk∥2T , (1.5a)

yk+1 = argmin
y

Lβ(x
k+1, y, λk) +

1

2
∥y − yk∥2S , (1.5b)

λk+1 = λk − γβ(xk+1 − yk+1), (1.5c)

where γ ∈ (0, (1 +
√
5)/2) and ∥z∥G =

√
z⊤Gz for z ∈ Rn and G ∈ Rn×n. Fazel et al. [5] show its global

convergence when T and S are positive semidefinite, in contrast to the positive definite requirements in the classical
algorithms [4,10], which makes the algorithm more flexible. See [2,5,11,15] for a brief history of the development
of the semi-proximal ADMM and the corresponding convergence results.

In this paper, we suppose that yk+1 in (1.5b) is easily obtained. For example, if g(y) = τ∥y∥1 with τ > 0 and
S = 0, then we can get yk+1 within O(n). Then our main focus is how to solve (1.5a) when n is large. We may
choose a reasonable positive semidefinite matrix T so that we get xk+1 quickly.

One of such examples of T is T = γI −A⊤A with γ > λmax(A
⊤A). Then (1.5a) is written as

xk+1 = argmin
x

{
f(x)− ⟨λk, x− yk⟩+ β

2
∥x− yk∥2 + 1

2
∥x− xk∥2T

}
= argmin

x

{
(Axk − b)⊤Ax− λkx+

β

2
∥x− yk∥2 + γ

2
∥x− xk∥2

}
= (λk + βyk + γxk −A⊤Axk +A⊤b)/(β + γ).

The other example is T = γI − βI −A⊤A with γ > λmax(βI +A⊤A). Then (1.5a) is written as

xk+1 = xk − γ−1(A⊤Axk −A⊤b− λk + βxk − βyk).

In both cases xk+1 is calculated within O(mn). However, since the subproblems do not include second-order
information on f , the convergence of ADMM with such T might be slow.

It is obvious that a desired matrix T is a matrix such that it is positive semidefinite, the subproblem (1.5a)
is easily solved, and it has some information on f . Let M be defined as the Hessian matrix of the augmented
Lagrangian function Lβ , that is M : = ∇2

xxLβ(x, y, λ) = A⊤A+ βI . Note that M ≻ 0 whenever β > 0.
Then, we consider a matrix B that has the following three properties:

(i) T = B −M ;

(ii) B ≽ M ;

(iii) B has some second order information on M .

2

Using B, x-subproblem (1.5a) is written as

xk+1 = argmin
x

{
f(x)− ⟨λk, x− yk⟩+ β

2
∥x− yk∥2 + 1

2
∥x− xk∥2T

}
= argmin

x

{
⟨A⊤(Axk − b) + β(xk − yk)− λk, x⟩+ 1

2
∥x− xk∥2B

}
= xk −B−1

(
A⊤Axk −A⊤b− λk + β(xk − yk)

)
.

In this paper, we propose to construct B via the BFGS update at every iteration. Then the proximal term B

and T at every step depend on k, that is, they become Bk and Tk, and the resulting ADMM is a variable metric
semidefinite proximal ADMM. The detail discussion about the choice of Bk will be shown later in Section 3. We
consider the iterative scheme of the variable metric semi-proximal ADMM (short by VMSP-ADMM) algorithm
given as:

xk+1 = argmin
x

Lβ(x, y
k, λk) +

1

2
∥x− xk∥2Tk

, (1.6a)

yk+1 = argmin
y

Lβ(x
k+1, y, λk) +

1

2
∥y − yk∥2S , (1.6b)

λk+1 = λk − β(xk+1 − yk+1), (1.6c)

which is also related to the methods studied in He et al. [10] with the Tk is assumed to be positive definite and
Gonçalves et al. [8].

The main contributions of the paper are as follows:

1. We give sufficient conditions on positive semidefinite Tk under which a sequence {xk} generated by VMSP-
ADMM (1.6) globally converges to a solution of (1.2).

2. We propose update formulae of Tk with BFGS which satisfy the above sufficient conditions for global
convergence.

3. We report some numerical results for the proposed methods which shows that they outperform the existing
proximal ADMM when n is large.

The rest of the paper is organized as follows. Some preliminary results for the variable metric semi-proximal
ADMM are provided in Section 2. In Section 3, we propose our algorithm and show the convergence of the
proposed method under certain flexible conditions on the proximal matrices sequence. In Section 4, we present
some numerical experiment results for ADMM with BFGS and Limited memory BFGS. Finally, we make some
concluding remarks in Section 5.

Notations : Here we give some notation that will be used in following sections.
We define ⟨·, ·⟩ as the standard inner product in Rn:

⟨x, y⟩ =
n∑

i=1

xiyi, x, y ∈ Rn.

We use ∥ · ∥ to denote the 2-norm of a vector:

∥x∥ = ⟨x, x⟩1/2.

For a real symmetric matrix S, we mark S ≽ 0 (S ≻ 0) if S is positive semidefinite (positive definite).

3

2 Variable metric semi-proximal ADMM and its Convergence Property
In this section, we consider the variable metric semi-proximal ADMM (1.6) for problem (1.2) with a general

convex function f . We first give the optimality condition of problem (1.2) and some properties which will be
frequently used in our analysis. Then we show some general convergence properties for the variable metric semi-
proximal ADMM (1.6a)-(1.6c) (VMSP-ADMM).

The KKT conditions of problem (1.2) are written as:
f ′(x∗)− λ∗ = 0, (2.1a)

g′(y∗) + λ∗ = 0, (2.1b)

x∗ − y∗ = 0, (2.1c)

where f ′(x∗) ∈ ∂f(x∗) and g′(y∗) ∈ ∂g(y∗).

Let Ω∗ be a set of (x∗, y∗, λ∗) satisfying the KKT condition (2.1). Throughout this paper, we make the
following assumption.

Assumption 2.1. The set Ω∗ of KKT points is non-empty.

Let

F (w) =

 f ′(x)− λ

g′(y) + λ

x− y

 ,

where f ′(x) ∈ ∂f(x) and g′(y) ∈ ∂g(y), and let Ω = Rn × Rn × Rm.

Definition 2.2. F is said to be monotone if (u− v)⊤(F (u)− F (v)) ≥ 0, ∀u, v ∈ Ω.

2.1 The algorithms

Let (x0, y0, λ0) ∈ Ω be the initial arbitrary triplet. By deriving the first-order optimality conditions of the
involved subproblems in (1.6), we can easily show that for the given triplet (xk, yk, λk) ∈ Ω, and β > 0, the new
triplet (xk+1, yk+1, λk+1) is generated by the following procedure.

• step 1: Find xk+1 ∈ Rn such that f ′(xk+1) ∈ ∂f(xk+1) and

f ′(xk+1)− λk + β(xk+1 − yk) + Tk(x
k+1 − xk) = 0, (2.2)

• step 2: Find yk+1 ∈ Rn such that g′(yk+1) ∈ ∂g(yk+1) and

g′(yk+1) + λk − β(xk+1 − yk+1) + S(yk+1 − yk) = 0, (2.3)

• step 3: Update λk+1 via
λk+1 = λk − β(xk+1 − yk+1). (2.4)

In the following analysis, we will use (2.2) to (2.4).

2.2 Convergence property of variable metric semi-proximal ADMM

In this subsection, we give conditions on Tk under which VMSP-ADMM converges globally. To this end, we
fist show that a sequence related to {(xk, yk, λk)} generated by (1.6) is contractive.

For k = 0, 1, 2, ..., we use the following notation:

u∗ =

(
x∗

y∗

)
, uk =

(
xk

yk

)
, wk =

 xk

yk

λk

 , and Dk =

(
Tk 0

0 S

)
.

4

Moreover, for simplicity, we denote

F (wk) =

 f ′(xk)− λk

g′(yk) + λk

xk − yk

 , (2.5)

where f ′(xk) and g′(yk) are obtained in steps 1 and 2 in VMSP-ADMM. Note that F is a set to point map in
general.

Lemma 2.3. Let {wk} be generated by (1.6). Then it holds that for given w∗ = (x∗, y∗, λ∗) ∈ Ω∗,

(uk+1 − u∗)⊤Dk(u
k+1 − uk) +

1

β
(λk+1 − λ∗)⊤(λk+1 − λk) ≤ β(xk+1 − x∗)⊤(yk − yk+1).

Proof. Since w∗ ∈ Ω∗ and xk+1, yk+1 ∈ Rn, there exist f ′(x∗) ∈ ∂f(x∗) and g′(y∗) ∈ ∂g(y∗) such that

(xk+1 − x∗)⊤{f ′(x∗)− λ∗} = 0 (2.6)

and
(yk+1 − y∗)⊤{g′(y∗) + λ∗} = 0. (2.7)

On the other hand, from (2.2)-(2.3), we have

(x∗ − xk+1)⊤{f ′(xk+1)− λk + β(xk+1 − yk) + Tk(x
k+1 − xk)} = 0

and
(y∗ − yk+1)⊤{g′(yk+1) + λk+1 + S(yk+1 − yk)} = 0. (2.8)

It then follows from λk+1 = λk − β(xk+1 − yk+1) that

(x∗ − xk+1)⊤{f ′(xk+1)− λk+1 + β(yk+1 − yk) + Tk(x
k+1 − xk)} = 0 (2.9)

Since the subdifferential mapping ∂f is maximal monotone, we have

(xk+1 − x∗)⊤(f ′(xk+1)− f ′(x∗)) ≥ 0. (2.10)

Adding Eqs. (2.6) and (2.9) and using the monotonicity (2.10), we have

(xk+1 − x∗)⊤Tk(x
k+1 − x∗) + (xk+1 − x∗)⊤(λ∗ − λk+1) ≤ β(xk+1 − x∗)⊤(yk − yk+1). (2.11)

In a similar way, adding Eqs. (2.7) and (2.8) and using the monotonicity of ∂g, we have that

(yk+1 − y∗)⊤S(yk+1 − y∗) + (y∗ − yk+1)⊤(λ∗ − λk+1) ≤ 0. (2.12)

Adding (2.11) and (2.12) and using x∗ − y∗ = 0, it follows that

(uk+1 − u∗)⊤Dk(u
k+1 − uk) + (xk+1 − yk+1)⊤(λ∗ − λk+1) ≤ β(xk+1 − x∗)⊤(yk − yk+1).

Using xk+1 − yk+1 = 1
β (λ

k − λk+1), the assertion follows directly.

Lemma 2.4. Let w∗ = (x∗, y∗, λ∗) ∈ Ω∗, and let {wk} be generated by the scheme (1.6). Then it holds that

∥uk+1 − u∗∥2Dk
+

1

β
∥λk+1 − λ∗∥2 + β∥yk+1 − y∗∥2

≤ ∥uk − u∗∥2Dk
+

1

β
∥λk − λ∗∥2 + β∥yk − y∗∥2 − (∥uk+1 − uk∥2Dk

+ β∥xk+1 − yk∥2). (2.13)

5

Proof. First, by the identity ∥a+ b∥2 = ∥a∥2 − ∥b∥2 + 2(a+ b)⊤b, we get

∥uk+1 − u∗∥2Dk
+

1

β
∥λk+1 − λ∗∥2 + β∥yk+1 − y∗∥2

= ∥uk − u∗∥2Dk
+

1

β
∥λk − λ∗∥2 + β∥yk − y∗∥2 − (∥uk+1 − uk∥2Dk

+
1

β
∥λk+1 − λk∥2 + β∥yk+1 − yk∥2)

+ 2(uk+1 − u∗)⊤Dk(u
k+1 − uk) +

2

β
(λk+1 − λ∗)⊤(λk+1 − λk) + 2β(yk+1 − y∗)⊤(yk+1 − yk). (2.14)

Now we deal with the last three crossing terms of the right-hand side of (2.14). We want to relate the summation
of these three terms to the term β∥xk+1 − yk∥2, and then the assertion (2.13) can be proved.

From Lemma 2.3, it follows that

2(uk+1 − u∗)⊤Dk(u
k+1 − uk) +

2

β
(λk+1 − λ∗)⊤(λk+1 − λk) ≤ 2β(xk+1 − x∗)⊤(yk − yk+1),

which implies that

2(uk+1 − u∗)⊤Dk(u
k+1 − uk) +

2

β
(λk+1 − λ∗)⊤(λk+1 − λk) + 2β(yk+1 − y∗)⊤(yk+1 − yk)

≤ 2β(xk+1 − x∗)⊤(yk − yk+1) + 2β(yk+1 − y∗)⊤(yk+1 − yk) (use x∗ − y∗ = 0)

= 2β(xk+1 − yk+1)⊤(yk − yk+1) (use (2.4))

= − 2(λk+1 − λk)⊤(yk − yk+1). (2.15)

We can also get

1

β
∥λk+1 − λk∥2 + β∥yk+1 − yk∥2 + 2(λk+1 − λk)⊤(yk − yk+1) = β∥xk+1 − yk∥2. (2.16)

Substituting (2.15) to (2.14) and using (2.16), we get the assertion of this lemma.

Remark 2.5. Lemma 2.4 provides the fundamental result in the convergence analysis of the method. Note that
when Tk ≡ T , that is, Dk ≡ D, it yields form (2.14) that the sequence {∥uk+1 − u∗∥2D + 1

β ∥λ
k+1 − λ∗∥2 +

β∥yk+1 − y∗∥2} is strictly monotonically decreasing and limk→∞(∥uk+1 − uk∥2D + β∥xk+1 − yk∥2) = 0, and
thus the convergence can be directly established.

Next we give an upper bound for the residual ∥F (wk+1)∥.

Lemma 2.6. Let w∗ = (x∗, y∗, λ∗) ∈ Ω∗, and let {wk} be generated by the scheme (1.6). Suppose that sequence
{Tk} is bounded. Then, there exists a constant µ > 0 such that for all k ≥ 0, we have

∥F (wk+1)∥ ≤ µ
(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
. (2.17)

Proof. From (2.5) and (2.2)-(2.4), we get

∥F (wk+1)∥ =

∥∥∥∥∥∥
f ′(xk+1)− λk+1)

g′(yk+1) + λk+1

xk+1 − yk+1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
β(yk − yk+1)− Tk(x

k+1 − xk)

−S(yk+1 − yk)

(xk+1 − yk) + (yk − yk+1)

∥∥∥∥∥∥
≤ ∥Tk∥∥xk+1 − xk∥+ (1 + β + ∥S∥)∥yk+1 − yk∥+ ∥xk+1 − yk∥
≤ ck(∥xk+1 − xk∥+ ∥yk+1 − yk∥+ ∥xk+1 − yk∥),

where ck = max{∥Tk∥, 1 + β + ∥S∥, 1}. Since {Tk} is bounded, then it follows from the above inequality that
there exists a constant µ > 0 such that

∥F (wk+1)∥ ≤ µ
(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
.

6

Now, we begin to investigate the convergence of VMSP-ADMM. First, we assume some conditions for se-
quence {Tk} (i.e., {Dk}) that should be obeyed to guarantee the convergence.

Condition 2.1. For the sequence {Tk} generated by the framework (1.6), there exist T ≽ 0 and a non-negative
sequence {γk} such that

1 T ≼ Tk+1 ≼ (1 + γk)Tk, ∀k ≥ 0,

2
∞∑
0
γk < ∞.

From the definition of {Dk}, it follows that the sequence {Dk} also satisfy D ≼ Dk+1 ≼ (1 + γk)Dk for all

k, where D =

(
T 0

0 S

)
. We define two constants Cs and Cp as follows:

Cs : =
∞∑
k=0

γk and Cp : =
∞∏
k=0

(1 + γk). (2.18)

From the assumption
∑∞

0 γk < ∞ and γk ≥ 0, it follows that 0 ≤ Cs < ∞ and 1 ≤ Cp < ∞. We can easily get

T ≼ Tk ≼ CpT0, ∀k ≥ 0,

which means that the sequences {Tk} and {Dk} are bounded.
For convenience, we denote the following matrix:

Gk =

 Tk 0 0

0 S + βI 0

0 0 1
β I

 and Ḡ =

 T 0 0

0 S + βI 0

0 0 1
β I

 . (2.19)

Obviously, Gk ≽ Ḡ ≽ 0 since T ≽ 0, S ≽ 0 and β > 0.

Now we give the main theorem of this section.

Theorem 2.7. Let w∗ = (x∗, y∗, λ∗) ∈ Ω∗, {wk} be generated by (1.6) and let {Tk} be a sequence satisfying
Condition 2.1. Then the sequence {wk} converges to a point w∗ ∈ Ω∗.

Proof. First we show that the sequence {wk} is bounded.
It is trivial to know form (2.13) in Lemma 2.4 that limk→∞

(
∥uk+1 − uk∥2Dk

+ β∥xk+1 − yk∥2
)
= 0, which

indicates that
lim
k→∞

∥xk+1 − yk∥ = 0. (2.20)

Besides, it is straightforward to see from (2.13) that ∥wk+1 − w∗∥2Gk
is bounded where Gk is defined as (2.19). It

shows that
∥xk+1 − x∗∥2Tk

, ∥yk+1 − y∗∥2S+βI , ∥λk+1 − λ∗∥2

are all bounded. Obviously, we claim that {λk} is bounded, and that {yk} is bounded as S + βI ≻ 0. Note that
x∗ = y∗ and ∥xk+1 − x∗∥ = ∥xk+1 − yk + yk − y∗∥ ≤ ∥xk+1 − yk∥ + ∥yk − y∗∥. It then follows from (2.20)
that ∥xk+1 − x∗∥ is bounded, and hence {xk} is also bounded. Therefore, the sequence {wk} is bounded.

Next we show that any cluster point of the sequence {wk} is an optimal solution of (1.2).
Condition 2.1 implies that

0 ≼ Gk+1 ≼ (1 + γk)Gk,

and thus
∥wk+1 − w∗∥2Gk+1

≤ (1 + γk)∥wk+1 − w∗∥2Gk
. (2.21)

7

Using (2.19) and (2.13) in Lemma 2.4, we get

∥wk+1 − w∗∥2Gk
≤ ∥wk − w∗∥2Gk

− (∥uk+1 − uk∥2Dk
+ β∥xk+1 − yk∥2). (2.22)

Combine the inequality (2.21) with (2.22), we have that

∥wk+1 − w∗∥2Gk+1
≤ (1 + γk)∥wk − w∗∥2Gk

− (1 + γk)c1
(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)

≤ (1 + γk)∥wk − w∗∥2Gk
− c1

(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
. (2.23)

where c1 = min{1, β}.
It then follows from (2.23) that we have for all k,

∥wk+1 − w∗∥2Ḡ ≤ ∥wk+1 − w∗∥2Gk+1

≤ (1 + γk)∥wk − w∗∥2Gk

...

≤

(
k∏

k=0

(1 + γk)

)
∥w0 − w∗∥2G0

≤ Cp∥w0 − w∗∥2G0
. (2.24)

From (2.23) and (2.24), we have

c1
(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
≤ ∥wk − w∗∥2Gk

− ∥wk+1 − w∗∥2Gk+1
+ γk∥wk − w∗∥2Gk

≤ ∥wk − w∗∥2Gk
− ∥wk+1 − w∗∥2Gk+1

+ γkCp∥w0 − w∗∥2G0
.

Then for all k, we obtain

∞∑
k=0

c1
(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
≤ ∥w0 − w∗∥2G0

− ∥wk+1 − w∗∥2Gk+1
+

(∞∑
k=0

γk

)
Cp∥w0 − w∗∥2G0

≤ (1 + CsCp)∥w0 − w∗∥2G0

< ∞.

Therefore, we have
lim
k→∞

(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
= 0.

It follows from Lemma 2.6 that
lim
k→∞

∥F (wk+1)∥ = 0.

We know that the sequence {wk} is bounded, so that it has at least one cluster point in Ω. Let w∞ ∈ Ω be a cluster
point of {wk}, and let {wkj} be a subsequence of {wk} that converges to point w∞. Since ∂f and ∂g are upper
semi-continuous, we can also get

∥F (w∞)∥ = lim
j→∞

∥F (wkj)∥ = 0,

which shows w∞ ∈ Ω∗.
For any given ϵ > 0 and wkj → w∞, it follows that there exists positive integers q and 1 ≤ δ < ∞ such that

∥wkq − w∞∥Gkq
<

ϵ

δ
and

 ∞∏
i=kq

(1 + γi)

1/2

< δ. (2.25)

8

Therefore, it follows from (2.24) and (2.25) that for any k ≥ kq ,

∥wk − w∞∥Gk
≤

k−1∏
i=kq

(1 + γi)

1/2

∥wkq − w∞∥Gkq

≤

 ∞∏
i=kq

(1 + γi)

1/2

∥wkq − w∞∥Gkq
< ϵ.

Therefore the whole sequence {wk} converges to w∞.

3 VMSP-ADMM with BFGS and its Convergence analysis
In this section, we first propose the updating of Tk via BFGS update and show a key property on Tk for the

convergence. Then we establish the global convergence of the method as a corollary of the convergence results in
Section 2.

3.1 Construction of the regularized matrix Tk via the BFGS update

As discussed in Introduction, we propose to construct Tk as Tk = Bk −M , where M = ∇2
xxLβ(x, y, λ). We

want Tk to be positive semidefinite for global convergence as shown in the previous section. Moreover we want
Bk to be as close to M as possible for rapid convergence. To this end, we propose to generate Bk by BFGS with
respect to M .

Thus we may consider the BFGS update with a given s ∈ Rn and l = Ms. Note that s⊤l > 0 when s ̸= 0.
Since BFGS usually constructs the inverse of Bk, let

Hk = B−1
k .

Using Hk, we can easily solve subproblem (1.6a).
Now we briefly sketch BFGS and Limited memory BFGS. Let sk = xk+1 − xk, lk = Msk. Then BFGS

recursion for Bk+1 and Hk+1 are given as

BBFGS
k+1 = Bk +

lkl
⊤
k

l⊤k sk
− Bksks

⊤
k B

⊤
k

s⊤k Bksk

HBFGS
k+1 =

(
I − skl

⊤
k

s⊤k lk

)
Hk

(
I − lks

⊤
k

s⊤k lk

)
+

sks
⊤
k

s⊤k lk
. (3.1)

Since s⊤k lk > 0, BBFGS
k+1 and HBFGS

k+1 are positive definite whenever Bk,Hk ≻ 0. Moreover

lk = BBFGS
k+1 sk and sk = HBFGS

k+1 lk.

BFGS requires only matrix-vector multiplications which brings the computational cost at each iteration to
O(n2) where n is the number of variables. If the number of variables is very large, even O(n2) per iteration is too
expensive, both in terms of CPU time and sometimes also in terms of memory usage (a large matrix must be kept
in memory at all times).

A less computationally intensive method when n is large is the limited memory BFGS method (L-BFGS),
see [9, 13]. Instead of updating and storing the entire approximated inverse Hessian matrix, the L-BFGS method
uses the last h iteration and uses only this input information. It means, we only need to store sk, sk−1, ..., sk−h−1

and lk, lk−1, ..., lk−h−1 to compute the update. The first h iterations, BFGS and L-BFGS generate the same result
(assuming the initial setting for the two are identical). The updating in L-BFGS brings the computational cost
down to O(hn) per iteration. If h ≪ n, this is effectively the same as O(n).

9

3.2 Property of Bk via the BFGS update

Throughout this subsection, let Hk = (Bk)
−1. For the global convergence we need Tk = Bk −M ≽ 0, that

is Bk ≽ M where M = ∇2
xxLβ(x, y, λ). Note that Bk ≽ M is equivalent to Hk ≼ M−1. We will show that

Hk ≼ M−1 for all k when the initial matrix H0 satisfies

H0 ≼ M−1.

We first show a technical lemma on s and l.

Lemma 3.1. Let s ∈ Rn such that s ̸= 0. Moreover let l = Ms and Φ = {z ∈ Rn | ⟨s, z⟩ = 0}. Then for any
v ∈ Rn, there exist c ∈ R and z ∈ Φ such that v = cl + z.

Proof. Let v ∈ Rn. Then there exist c1, c2 ∈ R and z1, z2 ∈ Φ such that v = c1s + z1 and l = c2s + z2. Since
s⊤l > 0, c2 ̸= 0. Thus s = 1

c2
l − 1

c2
z2. Substituting it into v = c1s+ z1 yields

v = c1

(
1

c2
l − 1

c2
z2
)
+ z1 =

c1
c2

l + z1 − c1
c2

z2.

Let c = c1
c2

and z = z1 − c1
c2
z2. Then z ∈ Φ and v = cl + z.

Recall the BFGS recursion (3.1) is rewritten as

Hnext =

(
I − sl⊤

s⊤l

)
H

(
l − ls⊤

s⊤l

)
+

ss⊤

s⊤l
, (3.2)

where H is the proximal matrix for the current step and Hnext is the new matrix generated via BFGS update with
s and l for the next iteration. Moreover we have

Hnextl = s = M−1l. (3.3)

The following theorem will play a key role in proving the convergence for our method.

Theorem 3.2. Let s ∈ Rn such that s ̸= 0, and let l = Ms. If H ≼ M−1, then Hnext ≼ M−1.

Proof. Let v be an arbitrary nonzero vector in Rn. Let Ω = {z ∈ Rn | ⟨s, z⟩ = 0}. From Lemma 3.1 there exist
c ∈ R and z ∈ Ω such that v = cl + z. It then follows from (3.3) and the definition of z that

v⊤Hnextv = (cl + z)⊤Hnext(cl + z)

= c2l⊤s+ 2cs⊤z + z⊤Hnextz

= c2l⊤s+ z⊤Hnextz

= c2l⊤M−1l + z⊤Hnextz.

We now consider the last term of the right-hand side of the last equation. Since z ∈ Ω, we have

z⊤
(
sl⊤

s⊤l
H

ls⊤

s⊤l

)
z = 0,

z⊤
(
sl⊤

s⊤l
H

)
z = 0

and

z⊤
(
ss⊤

s⊤l

)
z = 0.

10

It then follows from (3.2) that

z⊤Hnextz = z⊤z − 2z⊤
(
sl⊤

s⊤l
H

)
z + z⊤

(
sl⊤

s⊤l
H

ls⊤

s⊤l

)
z +

z⊤ss⊤z

s⊤l
= z⊤Hz.

Moreover equation (3.3) implies
l⊤M−1z = s⊤z = 0.

Consequently we have

v⊤Hnextv = c2l⊤M−1l + z⊤Hz

≤ c2l⊤M−1l + z⊤M−1z

= (cl + z)⊤M−1(cl + z)− 2cl⊤M−1z

= v⊤M−1v,

where the inequality follows from the assumption. Since v is arbitrary, we have Hnext ≼ M−1.

This theorem shows that if H0 ≼ M−1, then Hk ≼ M−1, and hence Tk ≽ 0.

3.3 Convergence of the proposed method with BFGS

Based on the description of the BFGS (or L-BFGS) update, we first give our algorithm (ADM-BFGS) in detail.

Algorithm 1: Variable metric semi-proximal ADMM with the BFGS update (ADM-BFGS)

Input : size (m,n), data matrix A, initial point (x0, y0, λ0), penalty parameter β, maxIter;
initial matrix H0 ≼ M−1, constant k̄ ∈ [1,∞], stopping criterion ϵ.

Output:
approximative solution (xk, yk, λk)

1 initialization;
2 while k < maxIter or not convergence do
3 if k ≤ k̄ then
4 update Hk via BFGS (or L-BFGS) with the initial matrix H0;
5 else
6 Hk = Hk−1;
7 end
8 update the xk+1 by solving the x−subproblem: xk+1 = xk +Hk

(
λk + βyk +A⊤b−Mxk

)
;

9 update the yk+1 by solving the y−subproblem:

yk+1 = argminy

{
g(y)− ⟨λk, xk+1 − y⟩+ β

2 ∥x
k+1 − y∥2 + 1

2∥y − yk∥2S
}
;

10 update the augmented lagrangian parameter: λk+1 = λk − β(xk+1 − yk+1).

11 end

Now we will give the convergence of ADM-BFGS.

Theorem 3.3. Suppose that there exists a constant k̄, 0 < k̄ ≤ ∞, Bk updating by the BFGS procedure stopped
at k̄ and the sequence {Tk} and {γk} satisfy the Condition 2.1. Let w∗ = (x∗, y∗, λ∗) ∈ Ω∗, {wk} be generated
by the Algorithm 1. Then the sequence {wk} converges.

Proof. The convergence directly follows from Theorem 2.7.

11

Note that the updating of Bk stopped at certain finite k̄, that is

Bk+1 = Bk, Tk+1 = Tk for all k ≥ k̄,

i.e., γk = 0 when k ≥ k̄. Thus, it is reasonable to say that the sequence {Tk} generated by the Algorithm 1 and
some existing {γk} satisfy the Condition 2.1.

4 Numerical results
In this section, we demonstrate the potential efficiency of our method by some numerical experiments. We

consider the Lasso problem

min
x∈Rn

1

2
∥Ax− b∥22 + τ∥x∥1, τ > 0, (4.1)

where

• A ∈ Rm×n is the given data matrix,

• x ∈ Rn is the vector of feature coefficients to be estimated,

• b ∈ Rm is the observation vector and τ ∈ R is the regularization parameter,

• m is the number of the data points, and n is the number of features.

By introducing an auxiliary variable y ∈ Rn, we reformulate the problem (4.1) as

min
x∈Rn, y∈Rn

1

2
∥Ax− b∥22 + τ∥y∥1, s.t. x− y = 0. (4.2)

The stopping criterion used same as in [1] for all the numerical experiments is that the primal and dual residuals
must be small, i.e.,

∥rk∥2 ≤ ϵprik and ∥σk∥2 ≤ ϵdualk , (4.3)

where rk = xk−yk is the primal residual and σk = −β(yk−yk−1) is the dual residual at the iteration k; ϵpri > 0

and ϵdual > 0 are feasibility tolerances for the primal and dual feasibility conditions, respectively. These tolerances
can be chosen using an absolute and relative criterion from the suggestion in [1], such as

ϵprik =
√
nϵabs + ϵrelmax{∥xk∥2, ∥ − yk∥2},

ϵdualk =
√
nϵabs + ϵrel∥λk∥2,

where ϵabs > 0 is an absolute tolerance and ϵrel > 0 is a relative tolerance. The choice of stopping criterion
depends on the scale of the variable values.

In our implementation, we always choose S = 0 and β = 1. Starting from x0 = y0 = 0 and λ0 = 0, with some
suitably chosen proximal matrix T (Tk). We will test several data under different proximal terms and stopping
criterions.

4.1 Test I: Comparison among three different methods

In the subsection, we test some random data for matrix A using four different methods: classical ADMM [6,
7](ADM-OPT), proximal ADMM including semi-proximal ADMM in [5] denoted as ADM-SPRO, and indefinite
proximal ADMM based on [12] named as ADM-IPRO; and ADMM with BFGS (ADM-BFGS). ADM-OPT solves
the original subproblem (1.4a) exactly using (A⊤A + βI)−1. Note that (A⊤A + βI)−1 is calculated only once,
but it may not be available for large scale problems. First we test with the proximal terms chosen as following:

12

1. SPRO: An semi-definite proximal matrix T as

T = ξI − βI −ATA, with ξ = 1.01 ∗ λmax

(
βI +ATA

)
.

2. IPRO: An indefinite proximal matrix T as

T = ξI − βI −ATA, with ξ = λmax

(
βI +ATA

)
.

3. BFGS: An semidefinite proximal matrix sequence Tk with P−1
k generated by BFGS (3.1), the initial matrix

B0 = γI, γ = 1.01 ∗ λmax(βI +A⊤A).

Now we are at the stage of conducting numerical simulations with different selections of data matrix A and
different sparsity density. Given n, m = n/2 and a p−sparse vector x̄ ∈ Rn (p is the number of nonzero elements
in x over n). The stopping criterions are chosen as ϵabs = 10−4, ϵrel = 10−3.

• Test 1. sparsity density p = 0.1, with A is drawn from random and then all columns of A are normalized.
Matlab codes for generating data are given as

xbar = sprandn(n,1,p); A = randn(m,n);
A = A*spdiags(1./sqrt(sum(A.ˆ2))’,0,n,n); % normalize columns
b = A*xbar + sqrt(0.001)*randn(m,1);
mu = 0.1* norm(A’*b, ’inf’).

• Test 2. sparsity density p = 0.1 with the same sparsity density matrix A under an N(0, 1) distribution;

A = sprandn(m,n,p); % N(0,1) with the density p

• Test 3. sparsity density p = 0.5 with the same sparsity density matrix A under an N(0, 1) distribution.
Other settings are same with above tests.

We have solved 10 problems in each test. Table 1 shows the average of iterative steps and the time of classical
ADMM, proximal ADMM and ADMM with BFGS.

Table 1: Comparison on iteration steps and CPU time (seconds) among the three methods

Dim ADM-OPT ADM-SPRO ADM-IPRO ADM-BFGS
m n Iter. Time Iter. Time Iter. Time Iter. Time Total Time-H

Test 1 1000 2000 19.0 0.21 63.2 0.84 63.3 0.74 39.5 5.06 4.31
Test 2 1000 2000 1486.4 5.83 2406.1 2.97 2461.8 2.87 1491.0 177.49 168.70
Test 3 1000 2000 5079.7 31.03 12189.3 56.77 12128.5 56.45 5094.7 603.99 562.56

“Time-H” for ADM-BFGS in the above table means the time (seconds) to compute the approximation matrix
Hk of the inverse of Hessian matrix. From the above results, it is obviously to see that the classical ADMM admits
the fastest method to catch the objective function value both at iterative steps and CPU times, while the ADMM
with BFGS is better than the proximal ADMM at the iterations but spends much time to compute the Hk. When the
data matrix A is ill condition or it is impossible to compute the inverse of Hessian matrix of augmented Lagrangian
function, it is meaningful to use the Hk so that it can get the optimization result as the almost same iterative steps
as the classical ADMM. Another problem is that BFGS needs more memory to save the Hk, thus we next will
consider to use the L-BFGS to construct the Hk. The memory size can be chosen as some certain m.

13

4.2 Test II: ADMM with Limited memory BFGS

In the following implementation, we test how the ADMM with limited memory BFGS (ADM-LBFGS) works.
From the above results in Table 1, we know that ADM-BFGS can get the solution as the same iteration steps as
classical ADMM, thus it works better when A is very large and ill condition which means it is difficult to compute
the inverse of Hessian matrix of augmented lagrangian function. Also, it should work better than normal proximal
ADMM when we chose some general proximal terms for the proximal ADMM not like the choices in subsection
4.1.

We chose the semidefinite proximal matrix T as

T = ξI − βI −ATA, with ξ = κ ∗
(
λmax(A

⊤A) + β
)
. (4.4)

The initial semidefinite proximal matrix generated by Limited memory BFGS chosen as

B0 = γI, γ = κ ∗
(
λmax(A

⊤A) + β
)
. (4.5)

Note that H0 = 1
γ I . The L-BFGS can save a lot of storage memory during the updated proceeds. We test

these problems with the time only for algorithms(without objective function calculation). Fix Hk
0 = H0 for every

updating of L-BFGS matrix.
We use different “memory” for the L-BFGS update: h = 10, 20, 30, namely ADM-L10, ADM-L20, ADM-

L30 respectively. Thus the comparison is among the classical ADMM, proximal ADMM and these proposed three
types of ADM-LBFGS.

For the detail of this experiment, we set κ = 1.01 in above (4.4) and (4.5). The matrix A under the N(0, 1)

distribution with different sizes: A ∈ R1000×3000, A ∈ R2000×3000, A ∈ R3000×3000. The sparsity p for matrix A

and vector x̄ is chosen as p = 0.1, 0.5 and p = 0.1, 0.2 for A ∈ R5000×5000. Also we set the stopping criterions as
ϵabs = 10−4, and ϵrel = 10−2. The maximum iterations are set to be 20000 in all experiments.

The results of iteration steps and CPU time (seconds) are averaged over 10 random trials showed on Table 2.

Table 2: Comparison among classical ADM solution, proximal solution and ADM with L-BFGS

Dim ADM-OPT ADM-SPRO ADM-L10 ADM-L20 ADM-L30
m n p Iter. Time Iter. Time Iter. Time Iter. Time Iter. Time

1000 3000 0.1 915.3 2.16 1972.3 1.11 953.8 0.86 941.3 1.06 953.0 1.30
1000 3000 0.5 2881.1 13.20 9031.1 25.83 3257.5 10.84 3036.9 10.88 3111.2 11.83
2000 3000 0.1 1335.7 10.33 2175.1 2.79 1337.9 2.39 1338.4 2.84 1338.7 3.15
2000 3000 0.5 4703.7 57.59 10293.5 61.93 4723.0 30.42 4727.6 31.50 4727.1 32.48
3000 3000 0.1 1724.3 22.48 2185.0 4.82 1725.3 4.68 1724.5 5.07 1725.3 5.47
3000 3000 0.5 6439.0 83.10 6491.2 56.94 − − 6441.3 59.41 6440.7 60.41
5000 5000 0.1 2886.5 110.20 3478.8 24.91 2886.9 22.46 2887.0 24.06 2886.9 27.14
5000 5000 0.2 5119.1 200.10 5957.5 80.87 5159.6 72.28 5119.8 72.82 5119.1 77.70

‘−′ means that the method cannot get the optimal solution within 20000 steps.

In order to see the iterations comparison among these methods clearly, we also plot the histogram of iterations
with respect to size and sparsity of matrix A with algorithms ADM-OPT, ADM-SPRO and ADM-L20 in Figure 1.

From the above results, we know that when the “memory” = 10, 20 or 30, ADM-LBFGS performs best and
stability enough. The normal proximal ADMM fast but takes much more iteration steps and the result precision
is worse than the other methods. The BFGS and L-BFGS algorithms both can reach the optimization result by
the same level iteration steps for the large scale problems. At the same time, the L-BFGS can save a lot of
time comparing with BFGS algorithm. Especially, if the data matrix A is very large and ill condition in the real
application, the classical ADMM cannot be used because the inverse of A⊤A information is necessary for the
classical method but not ADM-BFGS (or ADM-LBFGS).

14

Figure 1: Iterations with respect to size and sparsity of ADM-OPT, ADM-SPRO and ADM-L20

In the above experiments, we chosen κ = 1.01. This is unrealistic for some large scale applications where
the calculation of maximum eigenvalue is expensive. Next we will test the behaviour of ADM-LBFGS with
different parameters in H0, that is, κ = 1.01, 5.0, 10.0, 100 in above (4.4) and (4.5). For every κ, we will test
10 random trials. Other settings are as A ∈ R3000×3000 with the sparsity p = 0.1, the stopping criterions as
ϵabs = 10−4, ϵrel = 10−2.

Table 3: Different κ for proximal ADMM

ADM-SPRO ADM-L10 ADM-L20 ADM-L30
κ Iter. Time Iter. Time Iter. Time Iter. Time

1.01 2188.3 4.99 1735.2 4.71 1734.9 5.19 1735.2 5.52
5.0 4726.1 9.92 1700.5 4.61 1699.3 5.08 1698.7 5.49
10.0 6569.9 13.22 8964.7∗ 20.46 1685.0 4.96 1683.5 5.34
100 − − 1704.5 4.53 1684.8 4.91 1681.5 5.39
‘−′ means that the method cannot get the optimal solution within 20000 steps.

Remark 4.1. “*”: For this case, the ADM-L10 sometimes cannot stop within 20000 steps and we only average
the successful trials. In the above table, these 10 random trials results are 100% successful. The ADM-L10 is
not stability only when the κ = 10.00 while the ADM-L20 and ADM-L30 always work better. We can choose the
“memory” freely due to the size and sparsity of the different problems. The normal proximal ADMM performs
worse when the κ is big, especially, the κ = 100, the ADM-SPRO cannot stop within 20000 steps.

From all the above results we conclude that

1. Compare with the classical ADMM (ADM-OPT), the proposed method (ADM-L20) is suitable for dense
large scale problems;

2. Compare with the general proximal ADMM (ADM-SPRO), the proposed method is suitable when accurate
estimation of maximum eigenvalues is difficult/expensive or evaluating Ax is expensive.

4.3 Test III: Behaviors of ADM-LBFGS that stops updating of Hk for some different k̄

Theorem 3.3 says that the ADMM with BFGS converges when we stop the update of Hk for sufficiently large
k̄, that is, Hk = Hk̄ for k ≥ k̄. Therefore, we test the behavior of ADM-LBFGS with various k̄ when the Hk

15

stopped. We choose the k̄ as {100, 500, 1000, 1500, 2000,∞}. Note that “∞” means that we update Hk for all k.
The matrix A ∈ R3000×3000 chosen under an N(0, 1) distribution with sparsity density p = 0.1, all the

other initial information are same with the above Tests. The stopping criterion also uses the ϵabs = 10−4, ϵrel =

10−2. The parameter κ in proximal term is 1.01. The maximum iterations are set to be 20000 in the following
experiments.

For every random matrix A, we test the different memory ADM-LBFGS with different k̄ at the same time so
that the results are more reliable. The detail results of CPU time and iterations of different stopping k̄ averaged
over 10 random trials are provided in Table 4.

Table 4: Results for stopping at different k̄

ADM-L10 ADM-L20 ADM-L30
k̄ Iter. Time Iter. Time Iter. Time

100 2215.2 4.80 2188.1 4.71 2224.3 4.89
500 1825.9 4.27 1796.7 4.34 1795.4 4.49
800 1795.1 4.29 1786.6 4.47 1787.5 4.72
1000 1789.7 4.38 1785.6 4.63 1785.5 4.90
1500 1785.8 4.58 1784.9 4.96 1785.0 5.40
2000 1784.8 4.69 1784.5 5.13 1784.8 5.67
∞ 1784.6 4.68 1784.4 5.19 1784.7 5.65

From the above results, we can get that for all k̄, the ADM-LBFGS with different memory storage can catch
a solution within the maximum iteration. If the memory is 10 (smaller), it is better to update Hk more times like
choosing k̄ from 800 to 1000. And for the memory is 20 or 30 (larger), it is good enough to chose the k̄ from 500
to 800 in this case.

5 Conclusions
In this paper, we have proposed a special proximal ADMM where the proximal matrix derived from the BFGS

or Limited memory BFGS method. The convergence of such methods have also been established under some
certain conditions. Numerical results on several random problems with the large scale data are given to illustrate
the effectiveness of the proposed method.

We have not considered the general convex optimization problem. This is because Theorem 3.2 holds only
when the Hessian matrix of the augmented Lagrangian function, that is, M = ∇2

xxLβ(x, y, λ) is a constant matrix.
As a future work, we will consider more general problems by ADMM with BFGS update whose x-subproblems
become unconstrained quadratic programming problem as in this paper. Then we may apply Theorem 3.2 for
global convergence.

References
[1] S. BOYD, N. PARIKH, E. CHU, B. PELEATO, AND J. ECKSTEIN, Distributed optimization and statistical learning via

the alternating direction method of multipliers, Foundations and Trends R⃝ in Machine Learning, 3 (2011), pp. 1–122.

[2] W. DENG AND W. YIN, On the global and linear convergence of the generalized alternating direction method of multi-
pliers, tech. report, DTIC Document, 2012.

[3] J. DOUGLAS AND H. RACHFORD, On the numerical solution of heat conduction problems in two and three space vari-
ables, Transactions of the American mathematical Society, (1956), pp. 421–439.

[4] J. ECKSTEIN AND M. FUKUSHIMA, Some reformulations and applications of the alternating direction method of multi-
pliers, in Large scale optimization, Springer, 1994, pp. 115–134.

16

[5] M. FAZEL, T. K. PONG, D. SUN, AND P. TSENG, Hankel matrix rank minimization with applications to system identifi-
cation and realization, SIAM Journal on Matrix Analysis and Applications, 34 (2013), pp. 946–977.

[6] D. GABAY AND B. MERCIER, A dual algorithm for the solution of nonlinear variational problems via finite element
approximation, Computers & Mathematics with Applications, 2 (1976), pp. 17–40.

[7] R. GLOWINSKI AND A. MARROCO, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-
dualité d’une classe de problèmes de dirichlet non linéaires, ESAIM: Mathematical Modelling and Numerical Analysis-
Modélisation Mathématique et Analyse Numérique, 9 (1975), pp. 41–76.

[8] M. L. N. GONÇALVES, M. M. ALVES, AND J. G. MELO, Pointwise and ergodic convergence rates of a variable
metric proximal alternating direction method of multipliers, Journal of Optimization Theory and Applications, 177 (2018),
pp. 448–478.

[9] J. K. HALE AND S. M. V. LUNEL, Introduction to functional differential equations, vol. 99, Springer Science & Business
Media, 2013.

[10] B. HE, L.-Z. LIAO, D. HAN, AND H. YANG, A new inexact alternating directions method for monotone variational
inequalities, Mathematical Programming, 92 (2002), pp. 103–118.

[11] B. HE AND X. YUAN, On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method, SIAM
Journal on Numerical Analysis, 50 (2012), pp. 700–709.

[12] M. LI, D. SUN, AND K.-C. TOH, A majorized admm with indefinite proximal terms for linearly constrained convex
composite optimization, SIAM Journal on Optimization, 26 (2016), pp. 922–950.

[13] J. NOCEDAL, Updating quasi-newton matrices with limited storage, Mathematics of computation, 35 (1980), pp. 773–
782.

[14] R. TIBSHIRANI, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B
(Methodological), (1996), pp. 267–288.

[15] M. XU AND T. WU, A class of linearized proximal alternating direction methods, Journal of Optimization Theory and
Applications, 151 (2011), pp. 321–337.

17

