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Abstract

In the present paper, we consider a graph mining problem of enumerating what

we call connectors. Suppose that we are given a data set (G, I, σ) that consists of a

graph G = (V,E), an item set I, and a function σ : V → 2I . For X ⊆ V , we define

Aσ(X) ≜
∩

v∈X σ(v). Note that, for X,Y ⊆ V , X ⊆ Y implies that Aσ(X) ⊇ Aσ(Y ). A

vertex subset X is called a connector if (i) the subgraph G[X] induced from G by X is

connected; and (ii) for any v ∈ V \X, G[X∪{v}] is disconnected or Aσ(X∪{v}) ⊊ Aσ(X).

To enumerate all connectors, we propose a novel algorithm named COOMA (components

overlaid mining algorithm). Interestingly, COOMA is a total-polynomial time algorithm,

i.e., the running time is polynomially bounded with respect to the input and output size.

We show the efficiency of COOMA in comparison with COPINE [Sese et al., 2010], a

depth-first-search based algorithm.

1 Introduction

Many existing data are stored in the form of a graph [5]. In graph data, a vertex is often

associated with a set of items or attributes. For example, in a social network, each vertex

corresponds to a user and two users are joined by an edge if they are friends. A user may

be associated with products that he or she has purchased so far. In a genetic network, each

vertex may correspond to an SNP (single nucleotide polymorphism), and two SNPs are joined

by an edge if they have significant relationship in some context. An SNP may be associated

with patients who possess it [18].

We consider a graph mining problem as follows. Suppose that we are given a tuple (G, I, σ)

of a graph G = (V,E), an item set I = {i1, . . . , iq}, and a function σ : V → 2I . For each

vertex v ∈ V , the subset σ(v) represents the set of items with which v is associated. For

X ⊆ V , we denote by Aσ(X) the set of items common to σ(v) for all vertices v ∈ X, i.e.,

Aσ(X) ≜
∩

v∈X σ(v). For X,Y ⊆ V , X ⊆ Y implies that Aσ(X) ⊇ Aσ(Y ). A vertex subset

X is called a connector if the following conditions hold:

(i) the subgraph G[X] induced from G by X is connected; and
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Figure 1: An instance (G, I, σ)

Table 1: All connectors X and their item sets Aσ(X) of the instance given by Figure 1

X Aσ(X)

{v1, . . . , v9} ∅
{v1, v2, v6, v9} {i1}
{v2, v3, v7, v8, v9} {i2}
{v3, v5, v6, v7, v9} {i3}

{v4} {i1, i2}
{v2, v9} {i1, i2}
{v6, v9} {i1, i3}
{v3} {i2, i3}
{v7} {i1, i2, i3}
{v9} {i1, i2, i3}

(ii) adding any vertex v ∈ V \ X to X loses the connectivity of the subgraph or decreases

the common item set, i.e., G[X ∪ {v}] is disconnected or Aσ(X ∪ {v}) ⊊ Aσ(X).

We illustrate an instance (G, I, σ) in Figure 1. For this instance, we show in Table 1 all

connectors, along with their item sets. A connector X is nontrivial if Aσ(X) ̸= ∅, and it is

trivial otherwise. When X is a trivial connector, X is a vertex set of a connected component

of G.

In the context of social networks, a nontrivial connector X may represent a maximal subset

of users such that any two of them are connected by a sequence of individuals in the set who

are pairwise friends, and that all of them have purchased the products in Aσ(X). It should

be meaningful to obtain connectors in terms of marketing. For example, we may recommend

a product i in Aσ(X) to a user u who is not in X but has a friend in X, expecting that u may

like i and thus buy it.

We consider the problem of enumerating all connectors for a given instance (G, I, σ). This

problem was first introduced for biological networks and an algorithm named COPINE was

proposed [16, 17]. Recently, Okuno [11] and Okuno et al. [13, 12] studied parallelization of

COPINE.

We claim that there should be room for exploring better algorithms. COPINE is a straight-

forward algorithm in some sense. Based on gSpan [21], the algorithm traverses a search tree
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in a depth-first manner. For enumeration problems, however, several algorithmic frameworks

have been invented so far; e.g., reverse search [1], BDD/ZDD [9], and dynamic program-

ming [2]. These frameworks have been applied to various enumeration problems [4, 10, 20].

COPINE is not the only algorithmic solution to our problem. We may develop other enumer-

ation algorithms, aiming at a better graph mining tool for practitioners.

With this in mind, we propose a novel enumeration algorithm named COOMA, which

stands for a components overlaid mining algorithm. The highlight of COOMA is that the

running time is total-polynomial, i.e., polynomially bounded with respect to the input and

output size.

The paper is organized as follows. In Section 2, we introduce notation and terminologies

and provide essential properties of connectors. In Section 3, we propose the algorithm COOMA

and its extended version ExtCOOMA, along with time complexity analyses. In Section 4,

we discuss a generalization of the connector enumeration algorithm and how COOMA and

COPINE work for the generalized problem. In Section 5, we make empirical comparison of

the three algorithms, COOMA, ExtCOOMA and COPINE, in terms of computation time

and memory consumption. Finally we give concluding remark in Section 6.

2 Preliminaries

2.1 Graphs

In the present paper, a graph stands for a simple undirected graph. The vertex set (resp.,

edge set) of a graph H is denoted by V (H) (resp., E(H)).

Let G = (V,E) be a graph with a vertex set V and an edge set E. For a vertex v ∈ V ,

let NG(v) denote the set {u ∈ V : uv ∈ E} of neighbors of v in G. The degree of v is defined

to be |NG(v)|, and we denote by ∆ the maximum degree over V , i.e., ∆ ≜ maxv∈V |NG(v)|.
Let X be a subset of V , and F be a subset of E. Define X[F ] to be the set of vertices x ∈ X

such that x is an end-vertex of an edge in F , F [X] to be the set of edges e = uv ∈ F with

u, v ∈ X, and G[X] (resp., G[X,F ]) to be the subgraph (X,E[X]) (resp., (X[F ], F [X])). A

vertex subset Z of a graph H is called a component of H if H[Z] is connected and H[Z ∪{v}]
is not connected for any vertex v ∈ V (H) \Z. Let C(X) (resp., C(X,F )) denote the family of

all components of the graph G[X] (resp., G[X,F ]).

For the example in Figure 1, let us take X = {v1, v2, v3, v6, v9}. Then E[X], the edge set

of G[X], is {v1v2, v2v3, v2v6, v2v9, v3v6, v6v9}. For an edge set F = {v2v6, v2v9, v5v9}, we have

X[F ] = {v2, v6, v9} and F [X] = {v2v6, v2v9}. The subgraph G[X,F ] has just one component.

2.2 Connectors

Assume that we are given an instance (G, I, σ) that consists of a graph G = (V,E), an item

set I = {i1, . . . , iq} and a function σ : V → 2I , where q = |I| denotes the total number of

items.

We consider the problem of enumerating all connectors for the given instance. It is easy

to enumerate trivial connectors; we only have to compute connected components of G by

a conventional graph search algorithm (e.g., depth-first search) and to output those whose

common item sets are empty. Hereafter we concentrate only on nontrivial connectors. We
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denote by M the family of all nontrivial connectors for the given instance. The problem is

summarized as the CE (connector enumeration) problem as follows.� �
Problem CE

Input: An instance (G, I, σ) that consists of a graph G = (V,E), an item set I and a

function σ : V → 2I .

Output: The familyM of nontrivial connectors for (G, I, σ).� �
For an item i ∈ I, we define V⟨i⟩ as the set of vertices that have the item i, and E⟨i⟩ as the

set of edges such that both of the endpoints have the item i;

V⟨i⟩ ≜ {v ∈ V : i ∈ σ(v)}, E⟨i⟩ ≜ {uv ∈ E : i ∈ σ(u) ∩ σ(v)}.

ForM′ ⊆M, we represent by ∥M′∥ the sum of |X| over X ∈M′.

We present three lemmas that describe essential properties of connectors.

Lemma 1 Given an instance (G, I, σ), let i ∈ I be an item. Then any connected component

in the subgraph G[V⟨i⟩] is a connector.

Proof: Let X be a connected component of G[V⟨i⟩]. For each vertex v ∈ V \X, if i ∈ σ(v),

then G[X ∪ {v}] is not connected from the definition of a connected component. If i ̸∈ σ(v),

then we have i ∈ Aσ(X) \ σ(v) and thus Aσ(X ∪ {v}) ⊊ Aσ(X). 2

We call a connected component in G[V⟨i⟩] a base connector . Let B denote the union of all

base connectors, i.e., B =
∪

i∈I C(V⟨i⟩). In Figure 1,

C(V⟨i1⟩) = {{v1, v2, v6, v9}, {v4}, {v7}},
C(V⟨i2⟩) = {{v2, v3, v7, v8, v9}, {v4}}, C(V⟨i3⟩) = {{v3, v5, v6, v7, v9}},

and B is the union of these three families.

Lemma 2 Let X1, X2 ∈M be two nontrivial connectors for a given instance (G, I, σ). Then

it holds that C(X1 ∩X2) ⊆M.

Proof: Let Y be a set in C(X1 ∩X2, E). The subgraph G[Y ] is connected, but G[Y ∪{v}] is
not connected for any vertex v ∈ (X1∩X2)\Y . Let v be a vertex such that v ∈ V \ (X1∩X2).

It suffices to show that G[Y ∪ {v}] is not connected or Aσ(Y ) \ σ(v) ̸= ∅. Since Xi ∈ M,

i = 1, 2, G[Xi ∪ {v}] is not connected or Aσ(Xi) \ σ(v) ̸= ∅. Hence we see that G[Y ∪ {v}] is
also not connected or Aσ(Y ) \ σ(v) ⊇ Aσ(Xi) \ σ(v) ̸= ∅ for i = 1 or 2, as required. 2

Lemma 3 Given an instance (G, I, σ), let Y ∈ M \ B be a non-base connector, i ∈ Aσ(Y )

be an item that belongs to the common item set Aσ(Y ), and C ∈ C(V⟨i⟩) be a base connector.

If Y ⊆ C, then there exists a connector X ∈M such that Y ⊊ X and Y ∈ C(X ∩ C).
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Proof: Because Y ⊆ C, it holds that Aσ(Y ) ⊇ Aσ(C). If Aσ(Y ) = Aσ(C), then Y = C ∈ B
would hold, which contradicts Y ̸∈ B. Then we have Aσ(Y ) ⊋ Aσ(C) and there is an item

j ∈ Aσ(Y ) \Aσ(C). There is a base connector C ′ ∈ C(V⟨j⟩) such that Y ⊊ C ′. Moreover, Y is

contained in a component of the graph G[C ′ ∩ C]. This means thatM contains a connector

X with X ⊋ Y such that Y is contained in a component of the graph G[X ∩ C]. We choose

X as a minimal subset among all such connectors. Let Z denote the component of the graph

G[X ∩ C] that contains Y , where Z ∈ M by Lemma 2. If Z ̸= Y , then Y ∈ G[Z ∩ C],

contradicting the choice of X. Hence Z = Y and the connector X satisfies the lemma. 2

Definition 1 LetM′ ⊆M and B′ ⊆ B. We callM′ self-contained with respect to B′ if (a)

B′ ⊆M′, and (b) for every (X,C) ∈M′ × B′, it holds that C(X ∩ C) ⊆M′.

For the instance in Figure 1, M′ = {{v1, v2, v6, v9}, {v3, v5, v6, v7, v9}, {v6, v9}} is self-

contained with respect to C(V⟨i1⟩)∪C(V⟨i3⟩). On the other hand,M′ = {{v2, v3, v7, v8, v9}, {v6, v9}}
is not self-contained with respect to any I ′ ⊆ I because the intersection {v9} of the two sets

inM′ is not inM′.

Lemma 4 Given an instance (G, I, σ), let M′ ⊆ M be a subfamily of connectors. If M′ is

self-contained with respect to B, thenM′ =M.

Proof: From the definition of self-containment,M′ contains the whole set B of base connec-

tors. BecauseM′ ⊆ M, we show that the equality holds. To derive a contradiction, assume

that there is a set Y ∈ M \M′, where we choose Y as a maximal subset among all such

connectors. Let i ∈ Aσ(Y ) be an item and denote by C the component in C(V⟨i⟩) that contains

Y . It holds that C ⊋ Y since Y ̸∈ M′ ⊇ B ⊇ C(V⟨i⟩). By Lemma 3, there is a connector

X ∈ M with X ⊋ Y such that Y ∈ C(X ∩ C). Because Y is a maximal subset inM\M′,

we have X ∈ M′. This, however, means Y ∈ C(X ∩ C,E) \ M′, contradicting that M′ is

self-contained with respect to B. 2

3 Two Algorithms for the Connector Enumeration Prob-

lem

In this section, we propose two algorithms for the CE problem. The first is COOMA, which

is presented in Section 3.1. The other is ExtCOOMA, an extension of COOMA, which we

present in Section 3.2. The time complexities of both algorithms are polynomially bounded

with respect to the input and output size.

3.1 Algorithm COOMA

Overview. The following lemma suggests the direction of the algorithm COOMA.

Lemma 5 Given an instance (G, I, σ), let M′ ⊆ M, I ′ ⊊ I, and i ∈ I \ I ′. We denote

B′ =
∪

i′∈I′ C(V⟨i′⟩). IfM′ is self-contained with respect to B′, then N =M′ ∪M′′ ∪ C(V⟨i⟩) is

self-contained with respect to B′ ∪ C(V⟨i⟩), whereM′′ is defined as

M′′ =
∪

X∈M′

C(X ∩ V⟨i⟩). (1)
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Proof: Observe that C(V⟨i⟩) ⊆ N holds, and that, for every i′ ∈ I ′, C(V⟨i′⟩) ⊆ M′ ⊆ N
holds. We show that C(X ∩ C) ⊆ N holds for every pair (X,C) ∈ N × (B′ ∪ C(V⟨i⟩)). We

observe the following four cases:

(i) X ∈M′ and C ∈ B′;

(ii) X ∈M′ and C ∈ C(V⟨i⟩);

(iii) X ∈M′′ ∪ C(V⟨i⟩) and C ∈ C(V⟨i⟩); and

(iv) X ∈M′′ ∪ C(V⟨i⟩) and C ∈ B′.

(i) The inclusion C(X ∩ C) ⊆ M′ ⊆ N holds by the assumption that M′ is self-contained

with respect to B′. (ii) From the definition ofM′′, that is (1), we have C(X ∩ C) ⊆ C(X ∩
V⟨i⟩) ⊆ M′′ ⊆ N . (iii) Recall that C(V⟨i⟩) is a collection of connected components. Because

i ∈ Aσ(X), there is only one component CX ∈ C(V⟨i⟩) with CX ⊇ X. If C = CX , then we have

C(X ∩ C) = {CX} ⊆ C(V⟨i⟩) ⊆ N . Otherwise, we have X ∩ C = ∅. (iv) If X ∈ C(V⟨i⟩), then

the discussion is reduced to the case (ii), by interchanging X and C. Otherwise, there are a

base connector CX ∈ C(V⟨i⟩) with CX ⊇ X and a connector Y ∈M′ such that X ∈ C(Y ∩CX).

We have C(Y ∩ C) ⊆M′, and also have C(Y ∩ C ∩ CX) ⊆M′′ by (ii). Then it holds that

N ⊇M′′ ⊇ C(Y ∩ C ∩ CX) = C(Y ∩ CX ∩ C) =
∪

X′∈C(Y ∩CX)

C(X ′ ∩ C) ⊇ C(X ∩ C).

2

Using Lemma 5, we can enumerate all the nontrivial connectors inM as follows. First, we

compute C(Vi) for all i ∈ I by using a conventional graph search. We choose an arbitrary item

i1 ∈ I, and letM′ ← C(Vi1) and I ′ ← {i1}. Obviously, thisM′ is self-contained with respect

to
∪

i′∈I′ C(V⟨i′⟩) = C(Vi1). Then we enlarge the familyM′ so thatM′ is self-contained with

respect to
∪

i′∈I′∪{i} C(V⟨i′⟩), where the item i is arbitrarily chosen from I \ I ′. Specifically,

we compute the family M′′ of (1) and append M′′ and C(V⟨i⟩) to M′. The obtained M′

is self-contained with respect to
∪

i′∈I′∪{i} C(V⟨i′⟩) by Lemma 5. Updating I ′ ← I ′ ∪ {i}, we
repeat this process as long as I ′ ⊊ I. Finally, when I ′ = I,M′ is self-contained with respect

to B. By Lemma 4, thisM′ is equivalent toM.

The algorithm is summarized as COOMA in Algorithm 1. In the description, any set

union is taken without creating duplication.

Theorem 1 Given an instance (G, I, σ), the algorithm COOMA (Algorithm 1) outputs the

familyM correctly.

Implementation. We store the graph G = (V,E) by the conventional adjacency list, and

the item set σ(v) of a vertex v ∈ V by a q-dimensional binary vector (q = |I|).
The algorithm retains the familyM′ of generated connectors. We realizeM′ by making

use of a radix tree (a.k.a., patricia trie) [14, 6, 15]. Originally, radix tree is a data structure

that is used to retain a set of strings, where a string is a sequence of characters. We assign

integral ids to the vertices and use a radix tree to retain connectors, regarding a vertex id as

a character, and a connector as a string.

6



Algorithm 1 COOMA

Input: An instance (G, I, σ)

Output: The setM of nontrivial connectors of (G, I, σ)

1: Compute C(V⟨i⟩) for i ∈ I;

2: Choose an item i1 ∈ I;

3: M′ ← C(V⟨i1⟩);

4: I ′ ← {i1};
5: while I ′ ⊊ I do

6: M′′ ← ∅;
7: Choose an item i ∈ I \ I ′;
8: for each X ∈M′ do

9: Compute C(X ∩ V⟨i⟩);

10: M′′ ←M′′ ∪ C(X ∩ V⟨i⟩)

11: end for;

12: M′ ←M′ ∪M′′ ∪ C(V⟨i⟩);

13: I ′ ← I ′ ∪ {i}
14: end while;

15: OutputM′ asM

Let bmax be the maximum size of a base connector, i.e., bmax = max{|B| : i ∈ I, B ∈
C(V⟨i⟩)}. Note that any connector X satisfies |X| ≤ bmax. We realizeM′ by a set of bmax radix

trees, denoted by R1, . . . , Rbmax . Each Rb is used to retain connectors of size b.

A radix tree is represented by a rooted tree, and each leaf corresponds to a connector.

During the algorithm, every time we obtain a connector X with b = |X|, we need to decide

whether X belongs to Rb or not, and insert X to Rb if not. The operation can be done in

O(b) time. We add the following mechanisms to the radix trees.

• We connect all leaves in Rb by means of a linked list.

• When we insert X to Rb as a new connector, we label the new leaf with the item as

follows;

(line 3) The leaf is labeled with the item i1.

(lines 10 and 12) The leaf is labeled with i, the item chosen in the current iteration.

On the other hand, when X already belongs to Rb, there exists a leaf that corresponds

to X. In this case, we overwrite the leaf label in the above way.

Time complexity. Next we analyze the time complexity of COOMA. The following oper-

ations have nontrivial time complexity analyses:

(a) Scan all connectors X ∈M′ (line 8).

(b) Search components of C(X ∩ V⟨i⟩) (line 9).

(c) Add each connector Y ∈ C(X ∩ V⟨i⟩) toM′′ without creating duplication (line 10).

(d) AppendM′′ and C(V⟨i⟩) toM′ (line 12).
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For (a), all leaves of the radix trees can be scanned in O(|M′|) time because we connect

the leaves of each Rb by a linked list.

We maintainM′′ implicitly in the radix trees, making use of the leaf label. Recall that a

leaf of a radix tree corresponds to a connector, and that the leaf label retains the item of the

latest iteration in which the connector is generated by the graph search. Hence, while we scan

X ∈ M′ in line 8, if the leaf for X is labeled with the current item i, we ignore it because it

is not a member ofM′ \M′′.

The search in (b) can be done in O(∆|X|) time as follows; When the currrent item i is

chosen at line 7, we construct the subgraph Gi ≜ (V⟨i⟩, E). For each X ∈ M′, we extract

connected components in (X ∩V⟨i⟩, E) by executing a restricted graph search on Gi such that

only v ∈ X and the edges incident to v are searched.

For (c), we decide whether each connector Y ∈ C(X ∩ V⟨i⟩) belongs to the radix tree Rb′

(b′ = |Y |) or not. If yes, we overwrite the leaf label as i, and otherwise, we insert Y to Rb′

and label the leaf with i. This can be done in O(|X|) time.

For (d), we already store all the connectors ofM′′ in the radix trees. We only have to add

each Y ∈ C(V⟨i⟩) to the radix trees, which can be done in the same way as (c). This takes

O(
∥∥C(V⟨i⟩)

∥∥) time.

Theorem 2 The running time of algorithm COOMA (Algorithm 1) is O(∆|I| ∥M∥).

Proof: An iteration of the while-loop from line 5 to 14 takes O(∆ ∥M′∥) time, where M′

is the set upon completion of line 12. This is repeated |I| times and clearly we have ∥M′∥ ≤
∥M∥. 2

3.2 Algorithm ExtCOOMA

In this subsection, we consider an extension of COOMA. For B1, . . . ,Br ⊆ B, the collection

C = {B1, . . . ,Br} is called a cover of B if
∪r

p=1 Bp = B.

Definition 2 Given an instance (G, I, σ), let C be a cover of B. We call C a base cover of

B if, for every Bp ∈ C, any two base connectors X,Y ∈ Bp (X ̸= Y ) satisfy X ∩ Y = ∅.

Obviously, CI = {C(V⟨i1⟩), . . . , C(V⟨iq⟩)} is a base cover of B. The following lemma is a gener-

alization of Lemma 5, suggesting us to use a “good” base cover instead of CI .

Lemma 6 Given an instance (G, I, σ), letM′ ⊆M, C = {B1, . . . ,Br} be a base cover of B,
C′ ⊊ C, and Bp ∈ C \ C′. We denote B′ =

∪
Bp′∈C′ Bp′, Vp =

∪
C∈Bp

C and Ep =
∪

C∈Bp
E[C].

If M′ is self-contained with respect to B′, then N = M′ ∪ M′′ ∪ Bp is self-contained with

respect to B′ ∪ Bp, whereM′′ is defined as;

M′′ =
∪

X∈M′

{C(X ∩ C) : C ∈ C(Vp, Ep)}. (2)

Note that each component in the subgraph G[Vp, Ep] is a base connector in Bp that consists

of more than one vertex. In (2), the set in the right-hand side represents the set of connectors

that are obtained by “overlaying” X on G[Vp, Ep].

Proof: Observe that B′ ∪ Bp ⊆ N holds. We show that C(X ∩ C) ⊆ N holds for every pair

(X,C) ∈ N × (B′ ∪ Bp). We observe the following four cases:
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(i) X ∈M′ and C ∈ B′;

(ii) X ∈M′ and C ∈ Bp;

(iii) X ∈M′′ ∪ Bp and C ∈ Bp; and

(iv) X ∈M′′ ∪ Bp and C ∈ B′.

(i) The inclusion C(X ∩ C) ⊆ M′ ⊆ N holds by the assumption that M′ is self-contained

with respect to B′. (ii) From (2), we have C(X ∩ C) ⊆ M′′ ⊆ N . (iii) Because C(Vp, Ep) is

a collection of connected components in G[Vp, Ep], there is only one base connector CX ∈ Bp
such that CX ⊇ X. If C = CX , then we have C(X ∩ C) = {CX} ⊆ Bp ⊆ N . Otherwise,

we have X ∩ C = ∅. (iv) If X ∈ Bp, then the discussion is reduced to the case (ii), by

interchanging X and C. Otherwise (i.e., if X ∈M′′ \Bp), there are a base connector CX ∈ Bp
with CX ⊇ X and a connector Y ∈M′ such that X ∈ C(Y ∩CX). We have C(Y ∩C) ⊆M′,

and also have C(Y ∩ C ∩ CX) ⊆M′′ by (ii). Then it holds that

N ⊇M′′ ⊇ C(Y ∩ C ∩ CX) = C(Y ∩ CX ∩ C) =
∪

X′∈C(Y ∩CX)

C(X ′ ∩ C) ⊇ C(X ∩ C).

2

Lemma 5 is a special case of Lemma 6 such that CI is given as the input base cover C.
As we did for Lemma 5, we can enumerate all the nontrivial connectors by using Lemma 6.

First, we determine a base cover C = {B1, . . . ,Br} of B somehow. We will discuss how to

determine C later. We letM′ ← B1. Obviously, thisM′ is self-contained with respect to B1.
Then for p = 2, . . . , r, we enlarge M′ so that it is self-contained with respect to

∪p
p′=1 Bp′ .

That is, we compute the family M′′ of (2), and append M′′ and Bp to M′. The obtained

M′ is self-contained with respect to
∪p

p′=1 Bp′ by Lemma 6. Upon completion of the iteration,

we have M′ that is self-contained with respect to
∪r

p=1 Bp = B; it is equivalent to M, by

Lemma 4.

We summarize this algorithm as ExtCOOMA (an extended version of COOMA) in Al-

gorithm 2. Recall that the running time of COOMA is O(∆q ∥M∥), where q = |I| is the

number of iterations. Similarly, we can bound the running time of ExtCOOMA by using

r = |C|.

Theorem 3 The algorithm ExtCOOMA (Algorithm 2) outputs the family M correctly in

O(∆r ∥M∥) time.

How to determine C. Because the time complexity of ExtCOOMA is O(∆r ∥M∥),
where r = |C|, it is natural to consider constructing as small a base cover C as possible.

Unfortunately, it is NP-hard to obtain a smallest C.

Theorem 4 Given a set B of base connectors, it is NP-hard to construct a smallest base

cover of B.

Proof: The proof is given by reduction from the vertex coloring problem, a well-known NP-

hard problem. For a graph G = (V,E), a vertex subset S ⊆ V is an independent set if no

9



Algorithm 2 ExtCOOMA

Input: An instance (G, I, σ) with a set B of base connectors and a base cover C =

{B1, . . . ,Br} of B
Output: The setM of nontrivial connectors

1: M′ ← B1;
2: for each p ∈ {2, . . . , r} do
3: M′′ ← ∅;
4: Vp ←

∪
C∈Bp

C;

5: Ep ←
∪

C∈Bp
E[C];

6: for each X ∈M′ do

7: Compute {C(X ∩ C) : C ∈ C(Vp, Ep)};
8: M′′ ←M′′ ∪ {C(X ∩ C) : C ∈ C(Vp, Ep)}
9: end for;

10: M′ ←M′ ∪M′′ ∪ Bp
11: end for;

12: OutputM′ asM

two vertices in S are adjacent. For an integer k, G is k-colorable if the vertex set V can be

partitioned into k independent sets. Given a graph G and an integer k, it is NP-complete to

decide whether G is k-colorable [3]. The vertex coloring problem asks for the smallest k such

that G is k-colorable.

The reduction is given as follows; for each v ∈ V , construct a set Bv = {e ∈ E :

e is incident to v}. Let us define B =
∪

v∈V {Bv}. Observe that Bv ∩ Bu = ∅ holds iff v

and u are not adjacent. Then one sees that there is a base cover C with |C| = k iff G is

k-colorable. 2

To obtain a small C, we could apply heuristic algorithms that are invented for the vertex

coloring problem [8].

Here, we propose constructing C based on another idea, motivated by our preliminary

experiments. Let C = {B1, . . . ,Br}. See Algorithm 2. For integers p, p′ such that 1 ≤ p <

p′ ≤ r, base connectors in Bp are taken as X in line 6 more frequently than those in Bp′ .
Because the graph search in line 7 takes O(∆|X|) time, we desire that base connectors in Bp
are small.

Based on this observation, to construct B1, we include as many base connectors as possible

so that the base connectors are mutually disjoint. Because this is the set packing problem,

a well-known NP-hard problem [3], we employ a minimum-cardinality greedy method. The

subsequent Bp, p = 2, 3, . . . , are constructed by applying the greedy method to the remaining

base connectors, and we are done when all base connectors are included in the collection. In

the experiments in Section 5.2, we will show the effectiveness of this method that constructs

C.

4 Discussion

In this section, we discuss three topics concerning the CE problem and our algorithms: a gen-

eralization of the CE problem (Section 4.1), problem reduction (Section 4.2), and comparison

10



of COOMA with COPINE, an existing algorithm, in terms of how they behave in a search

tree (Section 4.3).

4.1 Generalization of the CE Problem

The number of connectors is exponentially large in general, but most of them could be ignored

or useless in some applications. In the context of social networks, the cardinality |X| of a
connector X represents how many users belong to the connector, and |Aσ(X)| represents how
many items users in X have in common. A practitioner may like to focus on connectors that

have enough values for these two measures. Let θV and θI be positive integers. Using these as

thresholds on the connector size and the size of the common item set, respectively, we define

the subsetM(θV , θI) of connectors to be;

M(θV , θI) = {X ∈M : |X| ≥ θV , |Aσ(X)| ≥ θI}.

We summarize the GenCE (generalized CE) problem as follows.� �
Problem GenCE

Input: An instance (G, I, σ) that consists of a graph G = (V,E), an item set I and a

function σ : V → 2I , and thresholds θV , θI ∈ Z+.

Output: The familyM(θV , θI) of nontrivial connectors for (G, I, σ).� �
Obviously, the CE problem is a special case of the GenCE problem such that θV = θI = 1.

4.2 Problem Reduction

The GenCE problem is solved by enumerating all the connectors inM, and then by dropping

X fromM such that X /∈M(θV , θI). To perform the enumeration efficiently, we may reduce

the given instance by preprocessing. Here we introduce some of such techniques.

Reduction 1 If a base connector X ∈ C(V⟨i⟩) of an item i satisfies |X| < θV , then we can

drop the item i from any vertex v ∈ X (i.e., σ(v)← σ(v) \ {i}).

This is possible because, for any subset X ′ ⊆ X, |X ′| < |X| < θV holds.

Reduction 2 Any vertex v ∈ V with |σ(v)| < θI can be removed from G.

This is possible becauseM(θV , θI) remains unchanged after v is removed fromG. Analogously,

we can remove an edge uv with |Aσ({u, v})| < θI .

Reduction 3 Any edge uv ∈ E with |Aσ({u, v})| < θI can be removed from G.

For any edge uv with σ(u) = σ(v), it holds that |X ∩ {u, v}| = 0 or 2 for any connector

X. This leads to the following reduction.

Reduction 4 We can contract any edge uv ∈ E with σ(u) = σ(v) to obtain a smaller graph.

Note that Reduction 4 can be applied to a leaf edge uv ∈ E with σ(u) = σ(v).

11
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Figure 2: The search tree of COPINE for the example of Figure 1

4.3 Behavior in Search Tree

An existing algorithm COPINE traverses a search tree in a depth-first manner. In Figure 2,

we show the search tree for the instance of Figure 1. In the search tree, each node except the

root is associated with a vertex in G, and accordingly, it is also associated with a subset of

vertices such that the subset consists of vertices on the path from the root to the node. The

black nodes represent base connectors in B, whereas the gray nodes represent connectors in

M\B. COPINE identifies whether the vertex subset X of the visited node is a connector or

not, and outputs X if it is so. It has a mechanism for pruning the tree, by which redundant

search is avoided. For example, if G[X] is disconnected, then COPINE skips the search of the

descendants of the current node.

COOMA enumerates connectors in a completely different way. The nodes indicated by a

rectangle, that is {v1, v2, v6, v9}, {v4}, {v7} ∈ C[V⟨i1⟩] ⊆ B, represent the connectors inM′ as of

line 3 in Algorithm 1. In the while-loop from line 5 to 14, for i = i2, the connectors indicated

by a rounded rectangle, that is {v2, v9} ∈ M \ B and {v2, v3, v7, v8, v9} ∈ C[V⟨i2⟩] ⊆ B, are
added toM′. For i = i3 in the next iteration, the connectors indicated by a pentagon, that

is {v3}, {v6, v9}, {v9} ∈ M \ B and{v3, v5, v6, v7, v9} ∈ C[V⟨i3⟩] ⊆ B, are added toM′.

For the GenCE problem, pruning strategies are possible for both algorithms. When θV > 1,

COOMA does not need to maintain connectors X such that |X| < θV . Specifically, we do not

need to retain radix trees R1, . . . , RθV −1. This is because Y ∈ C(X∩C) satisfies |Y | ≤ |X| < θV
for C ∈ B. We may regard that COOMA can prune nodes in low depths of the search tree.

On the other hand, when θI > 1, if COPINE visits a node such that the corresponding subset

X satisfies Aσ(X) < θI , then it can skip the search of descendants. This is because, for

connectors X,Y ∈ M, X ⊆ Y implies Aσ(X) ⊇ Aσ(Y ) and thus θI > |Aσ(X)| ≥ |Aσ(Y )|.
COPINE can prune nodes in high depths of the search tree.

5 Computational Experiments

We report some experimental results concerning COOMA in this section. First in Section 5.1,

because |M|, the total number of nontrivial connectors, has a great influence on the com-

putation time of an enumeration algorithm, we make an empirical investigation on |M| of a
random instance. In Section 5.2, we compare the three algorithms, COOMA, ExtCOOMA
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and COPINE, in terms of computation time, to demonstrate the efficiency of the former two

algorithms. We also study when ExtCOOMA is more effective than COOMA. Then in

Section 5.3, we discuss how much memory ExtCOOMA uses.

The experiments are done on a cygwin environment that is installed on a computer with

an Intel Xeon CPU E5-1660 v3 (3.00 GHz) and 64GB RAM. We implemented the algorithms

COOMA and ExtCOOMA in C++. For COPINE, we employ the source code (written in

C) that Dr. Okuno kindly provided to us [11, 12, 13]. We compile the source codes of the

algorithms by the gcc compiler (ver. 7.3.0) with -O2 option.

We treat random instances in the experiments. We generate a random instance as follows,

using four parameters, n, q, ρE and ρI , where n and q are positive integers and ρE, ρI ∈ [0, 1].

For the graph, we generate a random graph of the Erdös-Rényi model such that |V | = n and

an edge is drawn between any two vertices with probability ρE. We take the item set I with

|I| = q and associate a vertex with an item i ∈ I with probability ρI . Given an instance

(G, I, σ) that is generated in this way, we call |E|
(n2)

the edge density , and
∑

v∈V |σ(v)|
|V ||I| the item

density . The parameters ρE and ρI determine the expected values of the edge density and the

item density, and we call them the edge density parameter and the item density parameter ,

respectively.

We deal with the CE problem (i.e., θV = θI = 1) and apply Reductions 2 and 3 to reduce

a given instance.

5.1 Total Number of Nontrivial Connectors

We count |M| of a random instance. Fixing n = |V | = 100 and q = |I| = 20, we evaluate how

|M| changes with respect to ρI , where ρE is taken from {0.05, 0.10, 0.25}. We show the result

in Figure 3. In the figure, the horizontal axis indicates ρI , and the vertical axis indicates |M|
in a logarithmic scale. For each (n, q, ρE, ρI), we generate five random instances with different

random seeds.

As shown in the figure, |M| is generally increasing with respect to ρI , up to ρI = 0.95.

Because the vertical axis employs a logarithmic scale, we do not plot points for ρI = 0; it holds

that |M| = 0 when ρI = 0, i.e., no item is given to a vertex. The number |M| dramatically

decreases when ρI > 0.95. In particular, when ρI = 1, |M| equals to the number of connected

components of a graph because every vertex is given all items and thus Aσ(X) = I holds for

all vertex subsets X ⊆ V . Hence, if the graph is connected, then it holds that |M| = 1. We

also see that, given an item density parameter ρI , the larger the edge density parameter ρE
is, the larger |M| is likely to be.

It is expected that |M| becomes so large when the instance is “dense,” that is, the edge

density and/or the item density are large to some extent. It must be intractable to enumerate

connectors from an instance that is dense as well as large (i.e., having many vertices and/or

items).

However, many existing data are known to be “sparse” [7]. For example, the genetic

database provided by Dr. Jiexun Wang, a biostatistician from Khoo Teck Puat Hospital in

Singapore, is sparse in the sense of the item density. The database consists of 22 data sets,

one of which corresponds to a pair of autosome chromosomes of a human cell. Each data

set can be transformed into an instance of the CE problem such that the item density is

just around 0.05. The instances are so small that the numbers of vertices are from 50 to

300. In our preliminary experiments, we confirmed that the three algorithms (i.e., COOMA,
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Figure 3: Change of the number |M| of nontrivial connectors with respect to the item density

parameter ρI ; n = |V | = 100, q = |I| = 20, and ρE ∈ {0.05, 0.10, 0.25}

ExtCOOMA and COPINE) enumerate all nontrivial connectors within a couple of seconds.

Another example is the DBLP data set from [19], which consists of 108,030 vertices, 276,653

edges, and 23,285 items. This instance is huge, but is tractable as it is sparse; the edge density

is 4.7 × 10−5 and the item density is 5.9 × 10−4, which are much smaller than the values we

have used in the experiment. In fact, our ExtCOOMA enumerates 43,334,401 connectors in

about 40 minutes.

Based on the fact that many existing data are sparse, we use small values for ρI in the

subsequent experiments.

5.2 Computation Time

We evaluate the computation times of the three algorithms (i.e., COOMA, ExtCOOMA

and COPINE) for random instances. For (n, q, ρE, ρI), we take n ∈ {100, . . . , 1200}, q ∈
{100, 200, 300}, ρE ∈ {0.10, 0.25, 0.50}, and ρI ∈ {0.05, 0.10, 0.15}. We generate five instances

with different random seeds for each (n, q, ρE, ρI).

We show the result in Figure 4. In the figure, the vertical axis indicates the computation

time, and the horizontal axis indicates ∆|I| ∥M∥; recall that the running time of COOMA

is O(∆|I| ∥M∥) (Theorem 2). The three symbols ◦ (ExtCOOMA), × (COOMA) and □
(COPINE) on the same vertical line show the computation time for the same instance.

COOMA and ExtCOOMA are much faster than COPINE when ∆|I| ∥M∥ is large

to some extent (e.g., ∆|I| ∥M∥ ≥ 0.5 × 1012). The computation time of COOMA and

ExtCOOMA increases almost linearly with respect to ∆|I| ∥M∥, whereas the computation

time of COPINE is more sensitive to the parameters; we see two major curves for COPINE.

The left one is for ρE = .25, and the right one is for ρE = .50. We also see that ExtCOOMA

is faster than COOMA although the difference is much smaller than the difference between

ExtCOOMA (and COOMA) and COPINE.

14



0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5

ExtCOOMA
COOMA
COPINE

Figure 4: Computation time of the three algorithms for random instances

Next, we analyze when ExtCOOMA is more effective than COOMA. In Figure 5, we show

how the size r = |C| of a base cover C = {B1, . . . ,Br} constructed by the heuristic method

of Section 3.2 changes with respect to the item density parameter ρI . In this experiment, we

fix n = |V | = 200 and q = |I| = 100, and the edge density parameter ρE is taken from 0.05,

0.10 and 0.25. As shown, we obtain a base cover that is significantly smaller than I when

ρI ≤ 0.20. When ρI > 0.20, the size |C| of an obtained base cover C is around 100 (= q).

This phenomenon is explained as follows; when ρI > 0.20, because the item density is rather

high, it is likely that C[V⟨i⟩] consists of exactly one base connector and thus there are q base

connectors, and that C∩C ′ ̸= ∅ holds for any two base connectors C ∈ C[V⟨i⟩] and C ′ ∈ C[V⟨i′⟩]

(i ̸= i′). Hence the method of Section 3.2 constructs C = {B1, . . . ,Br} just by sorting base

connectors C1, . . . , Cq in a nondecreasing order of the cardinality so that |C1| ≤ · · · ≤ |Cq|,
and by letting Bp = {Cp}, p = 1, . . . , r.

We show in Figure 6 the ratio of the computation time of ExtCOOMA over the compu-

tation time of COOMA. When ρI ≤ 0.20, i.e., when r is significantly smaller than q, the ratio

is below 1.0 in general which means that ExtCOOMA runs faster than COOMA. Interest-

ingly, when ρI > 0.20, although it holds that r is approximately equal to q, the ratio is from

0.7 to 0.8. This is supported by the observation in Section 3.2; in a family Bp with a small p,

we should include as many “small” base connectors as possible.

5.3 Memory Usage

Let us observe how much memory the algorithm ExtCOOMA consumes. For (n, q, ρE, ρI),

we take n ∈ {100, . . . , 1200}, q ∈ {100, 200, 300}, ρE ∈ {0.10, 0.25, 0.50}, and ρI ∈ {0.05, 0.10, 0.15}.
We generate five instances with different random seeds for each (n, q, ρE, ρI).

Figure 7 shows the amount of memory used by ExtCOOMA (All), along with the amount

of memory that is used to store the instance (Instance). The horizontal axis indicates ∥M∥,
the sum of |X| over X ∈ M, and the vertical axis indicates the amount of memory. The

amount of memory is evaluated by the VmSize value of the file /proc/self/status (i.e., the
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COOMA (n = |V | = 200, q = |I| = 100 and ρE ∈ {0.05, 0.10, 0.25}); When the computation

time of COOMA is smaller than 10−3 seconds, the ratio is set to zero.

amount of virtual memory used by the current process) in the cygwin environment.

As shown in the figure, the amount of memory needed to store the instance (Instance)

is much smaller than the whole amount of memory used by ExtCOOMA (All). The “All”

amount increases almost linearly with respect to ∥M∥. We see two “All” lines; the upper

one is for instances generated by ρE = 0.50 and the lower one is for instances generated by

ρE = 0.25. The reason why there are such lines is described as follows; the more the edge
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of memory that is used to store the instance

density is, the more the largest connector size bmax should be. As mentioned in Section 3.1, we

store bmax radix trees in our implementation. Hence, we need more radix trees for instances

generated by ρE = 0.50 than instances generated by ρE = 0.25. This should cause the two

lines in the figure.

6 Concluding Remark

We have proposed a novel algorithm COOMA for the connector enumeration problem. The

running time is polynomially bounded with respect to the input and output size. We have

shown the empirical efficiency in comparison with COPINE.

We will extend the problem to other graph models (e.g., hypergraphs, digraphs and vertex-

and/or edge-weighted cases) and consider various requirements (e.g., k-edge- and/or k-vertex-

connectivity, min/max degree and flow values or distance in weighted versions).
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