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Abstract The enumeration of graphs with a certain specified structure is

one of the classical problems in graph theory, and has a variety of applica-

tions including the enumeration of chemical compounds. When we enumer-

ate“labeled” graphs, two “labeled” graphs are allowed to be isomorphic, i.e.,

they are the same “unlabeled” graph where labels on vertices are ignored.

Contrary to this, enumerating “unlabeled” graphs means that no two gen-

erated graphs are allowed to be isomorphic. Most efficient algorithms for

enumerating labeled graphs or unlabeled graphs have been designed based

on the branch method, which usually uses a polynomial space and generates

a graph one after another obeying a fixed but unseen order of graphs. Dy-

namic programming is another algorithm design technique based on which

a given problem is decomposed into subproblems in a different way from the

branch method. In this paper, we study how to design enumeration algo-

rithms based on dynamic programming, taking the problem of enumerating

“unlabeled” rooted trees as the first target of this object.

The ranking problem asks us to identify the rank k of a given rooted tree in

a certain specified total order over all trees. Contrary to this, the unranking

problem is the inverse of the ranking problem, which, given integers n and k,

asks us to construct the k-th rooted tree with n vertices over a specified total

order on all trees. We introduce a total order over all “unlabeled” rooted

trees so that we can design both ranking and unranking algorithms based
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on dynamic programming. Each of our ranking and unranking algorithms

runs in polynomial time of n, which is independent of the number of all

rooted trees with n vertices.

In order to design an enumeration/ranking/unranking algorithm, we use a

mapping from ordered trees to sequences and a mapping from rooted trees

to ordered trees. By these two mappings, rooted trees can be represented

as sequences. We define a total order over all rooted trees to be the lex-

icographical ascending order over the corresponding sequences. Based on

this total order over rooted trees, we show that every rooted tree can be

represented as a sequence that consists of the number of vertices and the

rank of subtrees connected to the root. From the observation, we treat the

ranking/unranking problems as problems on certain types of sequences.

1 Introduction

The enumeration of graphs with a restricted structure is a classical problem in graph

theory. Roughly speaking, we can divide the problem settings of enumeration for graphs

into two types; the enumeration for labeled graphs and the enumeration for unlabeled

graphs. A labeled graph is a graph such that each vertex has a unique label. Given a

fixed set of vertex labels, the enumeration problem for labeled graphs is to generate all

labeled graphs which is distinguishable from each other by the label of vertices or edge

connectivity. Prüfer [15] showed a one-to-one mapping between all labeled trees with

n vertices and the set {(s1, s2, . . . , sn−2) | 1 ≤ si ≤ n} of integer sequences with length

n − 2. This implies that the number of all labeled trees with n vertices is nn−2, and

the problem to enumerate all labeled trees is equivalent to the problem to enumerate

all integer sequences in {(s1, s2, . . . , sn−2) | 1 ≤ si ≤ n}. On the other hand, the

enumeration problem for unlabeled graphs is to generate all non-isomorphic graphs,

which means we ignore the label of vertices, and we distinguish by edge connectivity.

Note that, depending on the definition of the isomorphism for graphs, the output of

the enumeration problem is different. For instance, in the case of the enumeration for

unlabeled trees, we should be careful about unrooted trees, rooted trees, and ordered

trees.

We show an example of enumeration for all labeled trees, ordered trees, rooted trees,

and unrooted trees with 4 vertices in Figure 1. Figure 1 (a) shows all labeled trees with

4 vertices but most of them are omitted due to space limitations. For each tree, we

put the Prüfer code of the labeled tree. Given a labeled tree, its Prüfer code can be

constructed as follows. We choose a leaf with the smallest label, and the first entry

of Prüfer code is the label of neighbor of the selected leaf. Then we eliminate the leaf

from the tree, and we continue the same process while the current graph has more than
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Figure 1: (a) All labeled trees with 4 vertices (omitted); (b) All ordered trees with 4

vertices; (c) All rooted trees with 4 vertices; and (d) All unrooted trees with 4 vertices.

2 vertices. On the other hand, given a Prüfer code with length n− 2, we can construct

the structure of corresponding labeled tree as follows. Let S = {1, 2, . . . , n}, let P be

a Prüfer code, and let SP denote the set of integers in P . For the smallest integer i

in S \ SP and the first entry j of P , we add an edge ij, and we eliminate i from S

and the first entry of P . We continue the same process until P will be empty. Finally

S will contain exactly two integers, and we add an edge between two vertices whose

label are in S. Figure 1 (b) shows all ordered trees with 4 vertices. An ordered tree

has a special vertex called “root” and the left-to-right order for children (Definition is

given in Section 3.2). There are 5 ordered tree with 4 vertices. Figure 1 (c) shows all

rooted trees with 4 vertices. A Rooted tree is a tree with a fixed root vertex. There

are 4 rooted trees with 4 vertices. Figure 1 (d) shows all unrooted trees with 4 vertices.

There are 2 unrooted trees with 4 vertices.

The enumeration of chemical graphs is an applications of graph enumeration and

an important problem which has a long history, and has been widely applied in drug

design [5] and structure elucidation [11]. Chemical compounds can be represented

as labeled multigraphs whose vertices correspond to atoms and edges correspond to

chemical bonds. Then, enumerating chemical compounds can be seen as the problem

of enumerating restricted graphs, which is one of the most fundamental problems in
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graph theory, and has numerous other applications in fields such as machine learning.

Molgen [3] is considered to be one of the best available enumeration tools for chem-

ical compounds. OMG [14] is a recent open source program for enumerating chemical

compounds. The algorithms of these enumeration tools for chemical compounds are

not the most efficient because they treat general graph structures. Recently, stud-

ies have focused on designing efficient algorithms for enumerating restricted chemical

compounds. One such tool is Enumol21, which can efficiently enumerate chemical com-

pounds with tree-like structure, and the research leading to its development [6, 7, 16]

has been identified as a new trend in chemoinformatics [18].

Alkanes are acyclic chemical compounds that only consist of hydrogen and carbon

atoms, and single bonds between them. An alkane isomer can be represented as a tree

with maximum degree at most four. Aringhieri et al. [2] designed an algorithm for

enumerating all alkane isomers. The algorithm can generate each alkane isomer with n

carbon atoms in O(n4) time. Algorithms to generate trees with n vertices in general are

available in the literature [4, 13, 19]. For applications to chemical graph enumeration,

all vertices in a tree have small degrees, since atoms have a determined valence. Hence

we are interested in developing an algorithm to enumerate trees with bounded degree.

Amani and Nowzari-Dalini [1] developed an algorithm to enumerate all degree-

bounded ordered trees in a specific order in constant time on average per tree, but

this algorithm enumerates topologically identical trees multiple times since they differ

as ordered trees. However, in addition, they propose polynomial time algorithms for

the related ranking and unranking problems. The ranking problem is to determine the

rank of a given ordered tree in the specific order. On the other hand, the unranking

problem is the inverse problem of ranking, that is, given a positive integer k, generate

the k-th ordered tree according to the order. The unranking algorithm and enumeration

algorithm provides a partial enumeration, and we can obtain any ordered tree following

in practical time even if the number of vertices is sufficient large.

Zhuang and Nagamochi [20] gave a branch and bound based algorithm to generate

all degree-bounded unrooted trees with n vertices and diameter at least d. This algo-

rithm can generate all trees in constant time per tree and O(n) space in total. This

algorithm is based on the technique called family tree. We define a parent-child relation-

ship between enumeration targets, then we obtain a family tree such that the vertices

correspond to enumeration targets, and the edges shows the parent-child relationship.

By traversing the family tree, we can generate all enumeration targets without repe-

titions. However, it cannot give the total number of enumeration targets or directly

obtain an arbitrary tree without generating all of them. It is tough to estimate the

running time of the algorithm since we do not have the information about the total

number of enumeration targets. In addition, for sufficiently large n, the algorithm gen-

1A demo available online at http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol2/
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erates some outputs, but we cannot obtain the structure which will be generated the

last of the algorithm in practical time.

In this paper, we focus on enumeration for rooted trees on n vertices with the max-

imum degree constraint, and we propose a dynamic programming based enumeration

algorithm. Note that the maximum possible degree in a tree with n vertices is n − 1,

and hence the assumption on the degree bound can be eliminated by setting the degree

bound to be n− 1.

We introduce a mapping from ordered trees to sequences and a mapping from rooted

trees to ordered trees. By these two mapping, rooted trees can be represented as

sequences. We define an order for rooted trees to be the lexicographical ascending

order of the corresponding sequences. Based on the order for rooted trees, we show that

a rooted tree can be represented as the number of vertices and the rank of subtrees

connected to the root. From these observation, we propose a 2-Phase enumeration

algorithm for rooted trees. The first phase counts the number of rooted trees by dynamic

programming. In the second phase, by using the counting information, the algorithm

generates the predecessor tree one by one following the prescribed tree ordering.

In addition, by using the counting information obtained in Phase 1, we develop a

polynomial time ranking/unranking algorithm. The ranking problem is to determine

the rank of a given rooted tree in the tree ordering. Conversely, the unranking problem

is to generate the k-th rooted tree following the order. The unranking algorithm and

the sequential enumeration algorithm provide a partial enumeration, and we can obtain

any consecutive part of rooted trees in practical time even if the number of vertices is

sufficient large. Moreover, our enumeration algorithm can be easily parallelized by the

partial enumeration.

The remaining of the thesis is organized as follows. In Section 2, we define some sets

of integer sequences, and we show ranking/unranking algorithm for the sets. In addi-

tion, we propose an algorithm to generate the predecessor/successor sequence. These al-

gorithm are used as a subroutine in our algorithms for enumeration/ranking/unranking

for trees. Section 3 introduces the definition and notions of graphs that are used fur-

ther, and we give a definition of a tree ordering. In Section 3, we also discuss a dynamic

programing based counting algorithm for degree-bounded trees. Our enumeration al-

gorithm for degree-bounded trees with n vertices is presented in Section 4 with O(n)

time per tree. For trees with n vertices and the maximum degree bound ∆, after

O(n2∆2) time dynamic programming based counting algorithm, the ranking algorithm

is designed in Section 5 with O(min{n∆2, n2}) time complexity, and the unranking al-

gorithms is proposed in Section 6 with O(min{n2∆2 log∆, n3 log∆}) time complexity.

In order to examine the practical performance of our enumeration algorithm, we imple-

mented our sequential enumeration, and we show two experimental results about tree

enumeration in Section 7. In section 8, we present our conclusions and future works.
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2 Sequences

In this section, we introduce the definitions and notations for sequences, and we define

some sets of integer sequences. For a set of integer sequences, we will discuss an algo-

rithm to generate the predecessor/successor of a given sequence, and we will propose a

ranking/unranking algorithm. In section 2.1, we mention the sets of integer sequences

representing combination with/without repetitions. We show a bijection preserving

lexicographical order between a set of integer sequences representing combination with

repetitions and a set of integer sequences representing combination without repetitions.

Based on this property, we propose a ranking/unranking algorithm for a set of inte-

ger sequences representing combination with repetitions by using the algorithm for a

set of integer sequences representing combination without repetitions. In section 2.2,

we introduce the upper bounded sequences which is equivalent to a concatenation of

sequences representing combination with repetition. For a set of upper bounded se-

quences, we propose an algorithm to generate the lexicographic predecessor/successor

of a given upper bounded sequence. In addition, we propose an algorithm for rank-

ing/unranking of a given upper bounded sequences by using the ranking/unranking

for a set of integer sequences representing combination with repetitions. Finally, in

section 2.3, we introduce positive descending sequence, and we show an algorithm to

construct the lexicographic predecessor in a set of positive descending sequences.

Let Z denote the set of all integers. Given two integers a, b ∈ Z, let [a, b] denote

the set {x ∈ Z | a ≤ x ≤ b}. For a set M , let |M | denote the number of elements in

M . For an integer sequence S, let |S| denote the length of S, let max(S) denote the

maximum entry of S, and let sum(S) denote the sum of all entries in S.

Let S be a set of integer sequences, and let σ be a total order over S. Let rankS,σ :

S → [1, |S|] denote the function such that rankS,σ(S1) < rankS,σ(S2) if S1 precedes S2

in the order σ. We say that a sequence S ∈ S with rankS,σ(S) = k is the k-th sequence

in S, or the rank of such a sequence S is k. Given a sequence S in S and a total

order σ over S, the ranking problem is to construct rankS,σ(S). On the other hand, the

unranking problem is the inverse problem of ranking, that is, given a positive integer

k ∈ [1, |S|], generate the k-th sequence S in S.
Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym) be sequences in S. We say that

X is lexicographically smaller than Y , and denote this by X ≺ Y , if there exists an

integer k ∈ [1,min{n,m}] such that for all i ∈ [1, k], xi = yi, and either k = n < m,

or, k < min{n,m} and xk+1 < yk+1. We also say that X is lexicographically greater

than Y if Y ≺ X. We define the lexicographical ascending order σlex to be the total

order such that σlex(X) ≺ σlex(Y ) if X ≺ Y holds. We call the reverse order of σlex the

lexicographical descending order. Moreover, we define the co-lexicographical ascending

order σcolex to be the total order such that σcolex(X) ≺ σcolex(Y ) if (xn, . . . , x2, x1) ≺
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(ym, . . . , y2, y1) holds. Let S be a set of integer sequences, and let X be a sequence in S.
We say that X is lexicographically minimum (resp., lexicographically maximum) in S if

rankS,σlex
(X) = 1 (resp., rankS,σlex

(X) = |S|). Let min(S) (resp., max(S)) denote the

lexicographically minimum (resp., maximum) sequence in S. For a sequence Y ∈ S,
we say that Y is the lexicographic predecessor (resp., lexicographic successor) of X, if

rankS,σlex
(Y ) = rankS,σlex

(X) − 1 (resp., rankS,σlex
(Y ) = rankS,σlex

(X) + 1) holds. Let

S1 and S2 be sets of integer sequences, and let f be a bijection from S1 to S2. Let f
−1

denote the inverse function of f . We say that f preserves the lexicographical order if

for sequences S1, S2 ∈ S1, f(S1) ≺ f(S2) holds if and only if S1 ≺ S2.

2.1 Combination Sequences

For two positive integers n ≥ 1 and m ≥ n, let C(n,m) denote the set {(c1, c2, . . . , cn) |
m > c1 > c2 > · · · > cn ≥ 0} of integer sequences. The set C(n,m) is known as a

representation of combinations without repetitions of n out of m elements, and it holds

that |C(n,m)| =
(
n
m

)
.

For two positive integers n ≥ 1 and m ≥ n, and a sequence C = (c1, c2, . . . , cn) ∈
C(n,m), it holds that rankC(n,m),σlex

(C) =
∑n

i=1

(
ci

n−i+1

)
+ 1, where

(
ci

n−i+1

)
is defined to

be 0 if ci < n − i + 1. This result is observed in the book by Knuth [9]. Hence we

immediately obtain the following lemma.

Lemma 1. Let n ≥ 1 and m ≥ n be two positive integers, and let C = (c1, c2, . . . , cn) be

a sequence in C(n,m). Then it holds that rankC(n,m),σlex
(C) =

∑n
i=1

(
ci

n−i+1

)
+ 1, which

can be obtained in O(n2) time.

Proof. For each i ∈ [1, n], the value
(

ci
n−i+1

)
can be obtained in O(n − i + 1) time.

Therefore the calculation of
∑n

i=1

(
ci

n−i+1

)
+ 1 can be done in O(

∑n
i=1(n − i + 1)) =

O(
∑n

i=1 i) = O(n2) time.

Shimizu et al. [17] showed that for the set C(n,m) and an integer k ∈ [1, |C(n,m)|],
there exists a total order σ (resp., σ′) such that the k-th sequence in C(n,m) according

to the order can be generated in O(n logm) (resp., O(n3n+3)) time. In the following

paper, a total order of integer sequences is fixed to the lexicographical ascending order

σlex. For the sake of simplicity, let rankS(S) denote rankS,σlex
(S). We introduce naive

unranking algorithms for the set C(n,m) following the lexicographical ascending order.

Lemma 2. Let n ≥ 1, m ≥ n, and k ∈ [1, |C(n,m)|] be three positive integers, and

let C = (c1, c2, . . . , cn) be the k-th sequence in C(n,m) following the lexicographical

ascending order. Let c be an integer with
∑c−1

i=n−1

(
i

n−1

)
< k ≤

∑c
i=n−1

(
i

n−1

)
, and let

(c′2, . . . , c
′
n) be the (k −

∑c−1
i=n−1

(
i

n−1

)
)-th sequence in C(n − 1, c). Then it holds that

c1 = c, ci = c′i for i = 2, 3, . . . , n, which can be obtained in O(n2 logm) time.
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Proof. For an integer c, the number of sequences in C(n,m) whose first entry is at

most c is
∑c

i=n−1

(
i

n−1

)
. From the definition of the lexicographical ascending order,

if an integer c satisfies
∑c−1

i=n−1

(
i

n−1

)
< k ≤

∑c
i=n−1

(
i

n−1

)
, then the first entry c1

of the k-th sequence C(n,m) is c. For two sequences S = (s1, s2 . . . , sn) and S ′ =

(s′1, s
′
2, . . . , s

′
m) with s1 = s′1, it holds that (s2, s3, . . . , sn) ≺ (s′2, . . . , s

′
m) if and only if

S ≺ S ′. Therefore the sequence (c2, . . . , cn) must be the (k−
∑c−1

i=n−1

(
i

n−1

)
)-th sequence

in the set {(c2, . . . , cn) | c > c1 > c2 > · · · > cn ≥ 0} = C(n− 1, c) of integer sequences.

The first entry of the k-th sequence of C(n,m) can be obtained in O(n logm) time

by using binary search. Hence we get that the total time complexity is O(n2 logm).

For positive integers n ≥ 1 and m ≥ 1, let R(n,m) denote the set {(r1, r2, . . . , rn) |
m > r1 ≥ r2 ≥ · · · ≥ rn ≥ 0} of integer sequences. The set R(n,m) is known

as a representation of combinations with repetitions of n out of m elements. For a

sequence R = (r1, r2, . . . , rn) in R(n,m), and the function f(R) = (c1, c2, . . . , cn) such

that ci = ri + n − i, the sequence f(R) belongs to C(n,m + n − 1). Such a function

f is a bijection between R(n,m) and C(n,m + n − 1). In addition, for two sequences

R1, R2 ∈ R(n,m), we get that f(R1) ≺ f(R2) if and only if R1 ≺ R2. Therefore by

Lemmas 1 and 2, we have the following lemma.

Lemma 3. Let n ≥ 1 and m ≥ 1 be two positive integers.

(i) The rank of a sequence R ∈ R(n,m) can be obtained in O(n2) time.

(ii) For an integer k ∈ [1, |R(n,m)|], the k-th sequence in R(n,m) can be obtained in

O(n2 log(n+m)) time.

Proof. For positive integers n and m, and a sequence R = (r1, r2, . . . , rn) in R(n,m),

we define a function f(R) = (c1, c2, . . . , cn) such that ci = ri+n− i. From the definition

of R(n,m), since we have m > r1 ≥ r2 ≥ · · · ≥ rn ≥ 0, we obtain m + n − 1 > c1 >

c2 > · · · > cn ≥ 0. Hence the sequence f(R) belongs to C(n,m + n − 1). Conversely,

for a sequence C ′ = (c′1, c
′
2, . . . , c

′
n) ∈ C(n,m+ n− 1), the sequence R′ = (r′1, r

′
2, . . . , r

′
n)

such that r′i = c′i − n + i belongs to R(n,m). In addition, the function f is injective.

Therefore the function f is a bijection between R(n,m) and C(n,m+n− 1). Moreover

for two sequence R1, R2 ∈ R(n,m), we get that f(R1) ≺ f(R2) if and only if R1 ≺ R2.

Hence the bijection f preserves the lexicographical order.

Let R be a sequence R(n,m). The rank of the sequence R is equal to the rank

of f(R) in C(n,m + n − 1). We can obtain the sequence f(R) in O(n) time, and by

Lemma 1, the rank of f(R) can be obtained in O(n2) time. Hence the rank of R can

be obtained in O(n2) time.

Let C denote the k-th sequence in C(n,m + n− 1). Since the function f preserves

the lexicographical order, f−1(C) is the k-th sequence in R(n,m). From Lemma 2,
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the k-th sequence C of C(n,m + n − 1) can be obtained in O(n2 log(n +m)) time. In

addition, given the sequence C, f−1(C) can be constructed in O(n) time. Therefore

the k-th sequence of R(n,m) can be obtained in O(n2 log(n+m)) time.

2.2 Upper Bounded Sequences

Given a positive integer sequence K = (k1, k2, . . . , kn) with length n ≥ 1, we say that an

integer sequence S = (s1, s2, . . . , sn) is upper bounded by K if it holds that 0 ≤ si < ki
for each 1 ≤ i ≤ n, and sj ≥ sj+1 for each 1 ≤ j ≤ n − 1 with kj = kj+1. Let

S(K) denote the set of all sequences upper bounded by K. Given a positive integer

sequenceK and a sequence S ∈ S(K), we devise a method to generate the lexicographic

predecessor of S in S(K).

Lemma 4. Let K = (k1, k2, . . . , kn) be a positive integer sequence with length n ≥ 1,

and let S = (s1, s2, . . . , sn) be a sequence in S(K). Then:

(i) If si = 0 for all i ∈ [1, n], then S = min(S(K)); and

(ii) If si ̸= 0 for some i ∈ [1, n], for the largest index p such that sp ≥ 1 and the

largest index q such that kp = kp+1 = · · · = kq, the lexicographic predecessor of S

in S(K) is given as S ′ = (s1, s2, . . . , sp−1, s
′
p, s

′
p+1, . . . , s

′
n) such that s′i = sp − 1,

p ≤ i ≤ q and s′i = ki − 1, q < i ≤ n.

Proof. (i) We prove that the sequence S∗ = (0, 0, . . . , 0) with length n is min(S(K)).

Clearly, S∗ belongs to S(K), and for each entry, 0 is the minimum possible value

in S(K). Hence there exists no lexicographic predecessor of S∗, and we have S∗ =

min(S(K)).

(ii) We prove that if S ̸= min(S(K)), then the sequence S ′ is the lexicographic

predecessor of S. Clearly, we have S ′ ∈ S(K) and S ′ ≺ S. Suppose that there exists

a sequence X = (x1, x2, . . . , xn) in S(K) such that S ′ ≺ X ≺ S. For each 1 ≤ i < p,

it holds that xi = si. First we assume that xp = sp holds. In this case, from the

assumption of p, we have si = 0, p < i ≤ n. This, however, contradicts that X ≺ S

since xi ≥ 0, p < i ≤ n, and we obtain xp ̸= sp. Next we assume that xp = sp − 1

holds. From the definition of upper bounded, we have xi ≤ sq − 1, p < i ≤ q and

xi ≤ ki − 1, q < i ≤ n. This, however, contradicts that S ′ ≺ X, and we obtain

xp ̸= sp − 1. Therefore we see that there exists no sequence X such that S ′ ≺ X ≺ S,

and the sequence S ′ is the lexicographic predecessor of S in S(K).

We show an algorithm based on Lemma 4 to generate the lexicographic predecessor

of a given upper bounded sequence if one exists. Let K = (k1, k2, . . . , kn) be a positive

integer sequence, and let S = (s1, s2, . . . , sn) be a sequence in S(K). First we find the

largest index p such that sp ≥ 1. If there exists no such p, then each entry of S is 0,
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that is, S = min(S(K)). If S ̸= minS(K), then we find the greatest index q such that

kp = kp+1 = · · · = kq, and by Lemma 4, we construct the lexicographic predecessor of

S in S(K). A description of the algorithm is shown in Algorithm 1.

Algorithm 1 Generate the lexicographic predecessor of an upper bounded sequence

Input: An integer sequence K = (k1, k2, . . . , kn) and an upper bounded sequence S =

(s1, s2, . . . , sn) ∈ S(K).

Output: If S has no lexicographic precedessor in S(K), then a message, “S is mini-

mum,” otherwise the lexicographic predecessor of S in S(K).

1: if si = 0 for all 1 ≤ i ≤ n then

2: output message “S is minimum”

3: else

4: p := the largest index such that sp > 0;

5: q := the largest index such that kp = kp+1 = · · · = kq;

6: s′i := sp − 1 for each p ≤ i ≤ q;

7: s′i := ki − 1 for all q < i ≤ n;

8: output (s1, s2, . . . , sq−1, s
′
p, . . . , s

′
n)

9: end if

Theorem 1. Let K be a positive integer sequence with length n ≥ 1, and let S be an

upper bounded sequence in S(K). Then testing whether S is lexicographically minimum

sequence in S(K) or not can be done in O(n) time, and the lexicographic predecessor

of S in S(K) if one exists can be constructed in O(n) time and O(n) space.

Proof. In order to determine whether S = min(S(K)) or not, we examine whether

si = 0 or not for all 1 ≤ i ≤ n. This can be done in O(n) time.

Two integers p and q of Lemma 4 can be obtained in O(n) time. Since the sequence

S ′ = (s1, s2, . . . , sp−1, s
′
p, . . . , s

′
n) such that s′i = sp − 1, p ≤ i ≤ q, and s′i = ki − 1,

q < i ≤ n can be obtained by O(n) arithmetic operations. Hence the lexicographic

predecessor of S in S(K) can be obtained in O(n) time. The space complexity is O(n)

since we only store the values of two sequences K and S with length n.

Next given a positive integer sequence K and a sequence S ∈ S(K), we devise a

method to generate the lexicographic successor of S in S(K).

Lemma 5. Let K = (k1, k2, . . . , kn) be a positive integer sequence with length n ≥ 1,

and let S = (s1, s2, . . . , sn) be a sequence in S(K). Then:

(i) If si = ki − 1 for each i ∈ [1, n], then S = max(S(K)); and

10



(ii) If si ̸= ki − 1 for some i ∈ [1, n], for the largest index p such that sp < kp − 1 and

the smallest index q such that kq = kq+1 = · · · = kp and sq = sq+1 = · · · = sp, then

the lexicographic successor of S in S(K) is given as S ′ = (s1, s2, . . . , sq−1, sq +

1, 0, . . . , 0).

Proof. First we prove that the sequence S∗ = (k1− 1, k2− 1, . . . , kn− 1) is max(S(K)).

Clearly, the sequence S∗ belongs to S(K), and for each entry i, ki − 1 is the maximum

possible value in S(K). Hence there exists no lexicographic successor of S∗, and we

have S∗ = max(S(K)).

Next we prove that if S ̸= max(S(K)), then the lexicographic successor of S is S ′.

Since either sq−1 > sq or kq−1 ̸= kq−1 holds, we have S ′ ∈ S(K), and S ≺ S ′ holds.

Suppose that there exists a sequence X = (x1, x2, . . . , xn) such that S ≺ X ≺ S ′. For

each 1 ≤ i < q, it holds that xi = si.

First we assume that xq = sq. From the assumption of p and q, we have si = sq,

q ≤ i ≤ p and si = ki − 1, p < i ≤ n. From the definition of upper bounded,

xi ≤ xq = sq, q ≤ i ≤ p and xi ≤ ki − 1, p < i ≤ n hold. This, however, contradicts

that S ≺ X, and we obtain xp ̸= sp. Next we assume that xq = sq +1. We have xi ≥ 0

for each q < i ≤ n. This, however, contradicts that X ≺ S ′, and we obtain xq ̸= sq +1.

Consequently, we conclude that there exists no sequence X such that S ≺ X ≺ S ′,

and the sequence S ′ is the lexicographic successor of S in S(K).

We show an algorithm based on Lemma 5 to generate the lexicographic successor

of a given upper bounded sequence. Let K = (k1, k2, . . . , kn) be a positive integer

sequence, and let S = (s1, s2, . . . , sn) be a sequence in S(K). First we find the largest

index p such that sp < kp − 1. If there exists no such p, then si = ki − 1 for i ∈ [1, n],

that is, S = max(S(K)). We assume that S ̸= max(S(K)). We find the smallest

index q such that kq = kq+1 = · · · = kp and sq = sq+1 = · · · = sp, and by Lemma 5,

we construct the successor of S in S(K). A description of the algorithm is shown in

Algorithm 2.

Theorem 2. Let K be a positive integer sequence with length n ≥ 1, and let S be an

upper bounded sequence in S(K). Then testing whether S is lexicographically maximum

sequence in S(K) or not can be done in O(n) time, and the lexicographic successor of

S in S(K) if one exists can be obtained in O(n) time and O(n) space.

Proof. Clearly, for each 1 ≤ i ≤ n, the i-th elements of max(S(K)) is ki − 1. Hence in

order to determine whether S = max(S(K)) or not, we examine whether si = ki − 1 or

not for each 1 ≤ i ≤ n. This can be done in O(n) time.

Two integers p and q of Lemma 5 can be constructed in O(n) time. Since the

sequence S ′ = (s1, s2, . . . , sq−1, sq + 1, 0, 0, . . . , 0) can be obtained by O(n) arithmetic

operations, we conclude that the lexicographic successor of S in S(K) can be obtained

11



Algorithm 2 Generate the lexicographic successor of an upper bounded sequence

Input: An integer sequence K = (k1, k2, . . . , kn) and an upper bounded sequence S =

(s1, s2, . . . , sn) ∈ S(K).

Output: If S has no lexicographic successor in S(K), then a message, “S is maximum,”

otherwise the lexicographic successor of S in S(K).

1: if si = ki − 1 for all 1 ≤ i ≤ n then

2: output message “S is maximum”

3: else

4: p := the largest index such that sp < kp − 1;

5: q := the smallest index such that kq = kq+1 = · · · = kp and sq = sq+1 = · · · = sp;

6: output (s1, s2, . . . , sq−1, sq + 1, 0, 0, . . . , 0)

7: end if

in O(n) time. The space complexity is O(n) since we only store the values of two

sequences K and S with length n.

Next we mention ranking and unranking for upper bounded sequences in lexico-

graphical ascending order. Without loss of generality, we can regard an upper bounded

sequence as a concatenation of some sequences representing a combination with repeti-

tion. Given two sequences A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bm), let A⊗B denote

the sequence (a1, a2, . . . , an, b1, b2, . . . , bm), called the concatenation of A and B. Given

two sets A and B of sequences, let A ⊗ B denote the sets {A ⊗ B | A ∈ A, B ∈ B}
of |A| · |B| sequences. Given n sequences indexed as Si, i = 1, . . . , n, let

∏k
i=j Si,

1 ≤ j ≤ k ≤ n denote the sequence Sj ⊗ Sj+1 ⊗ · · · ⊗ Sk. Given n sets of sequences,

indexed as Si, i = 1, . . . , n, let
∏j

i=j Si, 1 ≤ j ≤ k ≤ n denote the set Sj⊗Sj+1⊗· · ·⊗Sk

of |Sj| · |Sj+1| · · · |Sk| sequences.
Given two positive integers n andm, the uniform sequence I(n,m) with length n and

valuem is defined to be the sequence (m,m, . . . ,m) of length n. LetK = (k1, k2, . . . , kn)

be an integer sequence with length n ≥ 1. We define the uniform decomposition of K

to be a minimum number of uniform sequences Ii = I(ni,mi), i = 1, 2, . . . , ℓ such that∏ℓ
i=1 Ii = K, and define its length to be ℓ. From the definition of R(n,m) and S(K),

we see that
∏ℓ

i=1R(ni,mi) = S(K). This can be explained as follows.

For i ∈ [1, ℓ], let Si = (si,1, si,2, . . . , si,ni
) be a sequence in R(ni,mi) indexed by i.

From the definition of R(ni,mi), we have ki = mi > si,1 ≥ si,2 ≥ · · · si,n ≥ 0, and the

sequence S = (s1, s2, . . . , sn) =
∏ℓ

i=1 Si with length n =
∑ℓ

i=1 ni belongs to S(K) since

0 ≤ sj < kj, 1 ≤ j ≤ n, and sj ≥ sj+1 with kj = kj+1, 1 ≤ j ≤ n − 1. On the other

hand, let S be a sequence in S(K). From the definition of S(K), for ℓ sequences indexed

as Si = (si,1, si,2, . . . , si,ni
), 1 ≤ i ≤ ℓ such that the length of Si is ni, 1 ≤ i ≤ ℓ, and∏ℓ

i=1 Si = S, we have 0 ≤ si,j < mi = ki, 1 ≤ j ≤ ni and si,j ≥ si,j+1, 1 ≤ j ≤ ni − 1,
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and Si belongs to R(ni,mi). As a result, the set
∏ℓ

i=1R(ni,mi) is equivalent to S(K).

Therefore we have the following lemma.

Lemma 6. Let K be a positive integer sequence K with length n ≥ 1, and let I(ni,mi),

1 ≤ i ≤ ℓ denote the uniform decomposition of K with length ℓ. Then it holds that

S(K) =
∏ℓ

i=1 R(ni,mi).

We introduce a lemma about the concatenation sequences in order to develop algo-

rithms of ranking/unranking for upper bounded sequences. Given two sets of integer

sequences A and B, if all sequences in A (resp., B) have the common length, then for

sequences A, A′ ∈ A and B, B′ ∈ B, it holds that A′ ⊗B′ ≺ A⊗B if and only if either

(i) A′ ≺ A or (ii) A′ = A, B′ ≺ B. Note that this property does not hold without the

common length condition. Suppose that A = {(1, 2), (1, 2, 3)} and B = {(1, 2), (5, 4)}.
It holds that (1, 2, 3) ⊗ (1, 3) ≺ (1, 2) ⊗ (5, 4), but neither (i) (1, 2, 3) ≺ (1, 2) nor

(ii) (1, 2, 3) = (1, 2), (1, 3) ≺ (5, 4) holds. From this observation, for sets of common

length sequences, we have the following lemma.

Lemma 7. (i) Let A and B be sets of integer sequences whose length are common

for each set, and let A and B be sequences in A and B, respectively. Then it holds

that rankA⊗B(A⊗B) = (rankA(A)− 1) · |B|+ rankB(B).

(ii) Let ℓ ≥ 1 be an integer, for each i ∈ [1, ℓ], let Si be a set of integer sequences,

whose length are common for each set, and let Si be a sequence in Si. Then it

holds that rank∏ℓ
i=1 Si

(
∏ℓ

i=1 Si) =
∑ℓ

i=1((rankSi
(Si)− 1) ·

∏ℓ
j=i+1 |Si|) + 1.

Proof. (i) Let A and A′ (resp., B and B′) be sequences in A (resp., B). Since the length
of A and A′ (resp., B and B′) are the same, from the definition of the lexicographical

order, the sequence A′⊗B′ ≺ A⊗B if and only if either A′ ≺ A or A′ = A and B′ ≺ B

holds. The number of sequences A′⊗B′ ∈ A⊗B such that A′ ≺ A is (rankA(A)−1)·|B|.
In addition, the number of sequences A′ ⊗B′ ∈ A⊗B such that A′ = A and B′ ≺ B is

rankB(B)− 1. Hence we have rankA⊗B(A⊗B) = (rankA(A)− 1) · |B|+ rankB(B) since

the rank is the number of smaller sequences plus one.

(ii) By Lemma 7-(i), for an integer j ∈ [1, ℓ], we have rank∏ℓ
i=j Si

(
∏ℓ

i=j Si) =

(rankSj
(Sj)− 1) · |

∏ℓ
i=j+1 Si|+ rank∏ℓ

i=j+1 Si
(
∏ℓ

i=j+1 Si). Hence we have

rank∏ℓ
i=1 Si

(
ℓ∏

i=1

Si) = (rankS1(S1)− 1) · |
ℓ∏

i=2

Si|+ rank∏ℓ
i=2 Si

(
ℓ∏

i=2

Si)

=
ℓ−1∑
i=1

((rankSi
(Si)− 1) ·

ℓ∏
j=i+1

|Si|) + rankSℓ
(Sℓ)
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=
ℓ−1∑
i=1

((rankSi
(Si)− 1) ·

ℓ∏
j=i+1

|Si|) + (rankSℓ
(Sℓ)− 1)

ℓ∏
j=ℓ+1

|Si|) + 1

=
ℓ∑

i=1

((rankSi
(Si)− 1) ·

ℓ∏
j=i+1

|Si|) + 1.

We devise a ranking algorithm for upper bounded sequences. Based on Lemmas 6

and 7-(ii), given a positive integer sequence K and a sequence S ∈ S(K), we can obtain

the rank of S in S(K) by the following lemma.

Lemma 8. Let K be a positive integer sequence with length n ≥ 1, and let S be a

sequence in S(K). Let I1, I2, . . . , Iℓ denote the uniform decomposition of K, let ni

(resp., mi) denote the length (resp., value) of Ii for each i ∈ [1, ℓ], and let Si denote the

subsequence of S such that |Si| = ni and
∏ℓ

i=1 Si = S. Then it holds that rankS(K)(S) =∑ℓ
i=1((rankR(ni,mi)(Si)− 1) ·

∏ℓ
j=i+1 |R(nj,mj)|) + 1.

Proof. From Lemma 6, Si belongs to R(ni,mi) for each i ∈ [1, ℓ]. By Lemma 7-(ii),

rankS(K)(S) is
∑ℓ

i=1((rankR(ni,mi)(Si)− 1) ·
∏ℓ

j=i+1 |R(nj,mj)|) + 1.

Based on Lemma 8, we show an algorithm to obtain the rank of a given upper

bounded sequence. Let K be a positive integer sequence, and let S be a sequence in

S(K). First we find the uniform decomposition I1, I2, . . . , Iℓ of K with length ℓ. Let ni

(resp., mi) denote the length (resp., value) of the Ii for each i ∈ [1, ℓ], and we construct

the subsequence Si of S corresponding to Ii, 1 ≤ i ≤ ℓ. If we have the rank of Si

in R(ni,mi) and
∏ℓ

j=i |R(nj,mj)| for each i ∈ [1, ℓ], then, by Lemma 8, we obtain

the rank of S in S(K). By Lemma 3, the rank of Si can be obtained in R(ni,mi) in

O(n2
i ) time. Since we have

∏ℓ
j=i |R(nj,mj)| =

∏ℓ
j=i+1 |R(nj,mj)| ·

(
mi+ni−1

ni

)
, for each

i ∈ [1, ℓ],
∏ℓ

j=i+1 |R(nj,mj)| can be obtained in O(ni) time. We show a description of

the algorithm in Algorithm 3.

Theorem 3. Let K be a positive integer sequence with length n ≥ 1, let S be a sequence

in S(K), let I1, I2, . . . , Iℓ denote the uniform decomposition of K with length ℓ, and let

ni (resp., mi) denote the length (resp., value) of Ii for each i ∈ [1, ℓ]. Then rankS(K)(S)

can be obtained in O(
∑ℓ

i=1 n
2
i ) time.

Proof. We divide S into Si, 1 ≤ i ≤ ℓ such that |Si| = ni and
∏ℓ

i=1 Si = S. From

Lemma 3, for each i ∈ [1, ℓ], rankR(ni,mi)(Si) can be obtained in O(n2
i ) time. Given

the value of
∏ℓ

j=i+1 |R(nj,mj)|, the value of
∏ℓ

j=i |R(nj,mj)| can be obtained in O(ni)

time. Hence the calculation of
∑ℓ

i=1((rankR(ni,mi)(Si)− 1) ·
∏ℓ

j=i+1 |R(nj,mj)|) + 1 of

Lemma 8 can be done in O(
∑ℓ

i=1(ni + n2
i )) = O(

∑ℓ
i=1 n

2
i ) time. Therefore the rank of

S in S(K) can be obtained in O(
∑ℓ

i=1 n
2
i ) time.
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Algorithm 3 Ranking for Upper Bounded Sequences

Input: A positive integer sequence K, a sequence S in S(K).

Output: rankS(K)(S).

1: r := 1; x := 1;

2: (I1, I2, . . . , Iℓ) := the uniform decomposition of K;

3: ni := the length of Ii for each i ∈ [1, ℓ];

4: mi := the value of Ii for each i ∈ [1, ℓ];

5: Si := the subsequence of S corresponding to Ii for each i ∈ [1, ℓ];

6: for i := ℓ, ℓ− 1, . . . , 1 do

7: r := r + (rankR(ni,mi)(Si)− 1) · x
8: x := x ·

(
mi+ni−1

ni

)
9: end for;

10: output r

Next we discuss the unranking problem for upper bounded sequences. From Lem-

mas 6 and 7-(ii), we have the following lemma.

Lemma 9. Let K be a positive integer sequence with length n ≥ 1, let I1, I2, . . . , Iℓ
denote the uniform decomposition of K, and let ni (resp., mi) denote the length (resp.,

value) of Ii for each i ∈ [1, ℓ]. Let k be an integer in [1, |S(K)|], for 1 ≤ i ≤ ℓ, let ki
and k′

i denote integers such that k0 = k − 1 and k′
i

∏ℓ
j=i |R(nj,mj)| + ki = ki−1 with

ki <
∏ℓ

j=i |R(nj,mj)| for i ∈ [1, ℓ]. Let Si indexed by i denote the (k′
i + 1)-th sequence

in R(ni,mi) for each i ∈ [1, ℓ]. Then it holds that the k-th sequence in S(K) in the

lexicographical ascending order is
∏ℓ

i=1 Si.

Proof. From Lemma 6, S(K) is equivalent to
∏ℓ

i=1R(ni,mi). Hence
∏ℓ

i=1 Si belongs

to S(K). In addition, from Lemma 7-(ii), we have

rankS(K)(
ℓ∏

i=1

Si) =
ℓ∑

i=1

((rankR(ni,mi)(Si)− 1) ·
ℓ∏

j=i+1

|R(nj,mj)|) + 1.

=
ℓ∑

i=1

(k′
i

ℓ∏
j=i+1

|R(nj,mj)|) + 1 =
ℓ−1∑
i=1

(k′
i

ℓ∏
j=i+1

|R(nj,mj)|) + kℓ + 1

=
ℓ−2∑
i=1

(k′
i

ℓ∏
j=i+1

|R(nj,mj)|) + k′
ℓ−1

ℓ∏
j=ℓ

|R(nj,mj)|+ kℓ + 1

=
ℓ−2∑
i=1

(k′
i

ℓ∏
j=i+1

|R(nj,mj)|) + kℓ−1 + 1 = · · · = k0 + 1 = k.
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Based on Lemma 9, we propose an algorithm to generate the k-th sequence in S(K)

in the lexicographical ascending order. Let K be a positive integer sequence, and let k

be an integer in [1, |S(K)|]. First we find the uniform decomposition I1, I2, . . . , Iℓ of K.

We assume that the value and length of Ii is ni and mi for each i ∈ [1, ℓ]. We calculate∏ℓ
j=i |R(nj,mj)| for each i ∈ [1, ℓ], and we construct the integers ki and k′

i in Lemma 9.

Then we generate the (k′
i + 1)-th sequence Si in R(nj,mj) for each i ∈ [1, ℓ], and we

construct the concatenation sequence
∏ℓ

i=1 Si. A description of the algorithm is shown

in Algorithm 4. In this algorithm, the variable x[i] stores the value
∏ℓ

j=i |R(nj,mj)|
for each i ∈ [1, ℓ].

Algorithm 4 Unranking for Upper Bounded Sequences

Input: A positive integer sequence K and an integer k ∈ [1, |S(K)|].
Output: The k-th sequence in S(K) following the lexicographical ascending order.

1: (I1, I2, . . . , Iℓ) := the uniform decomposition of K;

2: x[ℓ+ 1] := 1;

3: for each i := ℓ, ℓ− 1, . . . , 2 do

4: ni := the length of Ii;

5: mi := the value of Ii;

6: x[i] := x[i+ 1] ·
(
mi+ni−1

ni

)
;

7: end for;

8: k∗ := k − 1;

9: for i := 1, 2, . . . , ℓ do

10: k′ := ⌊(k∗ − 1)/x[i+ 1]⌋;
11: Si := (k′ + 1)-th sequence of R(ni,mi);

12: k∗ := k∗ − k′ · x[i+ 1]

13: end for;

14: output
∏ℓ

i=1 Si

Theorem 4. Let K be a positive integer sequence with length n ≥ 1, let k be an

integer in [1, |S(K)|], let I1, I2, . . . , Iℓ denote the uniform decomposition of K, and let

ni (resp., mi) denote the length (resp., value) of Ii for each i ∈ [1, ℓ]. Then the k-

th sequence in S(K) following the lexicographical ascending order can be obtained in

O(
∑ℓ

i=1 n
2
i log(ni +mi)) time.

Proof. Given the value
∏ℓ

j=i+1 |R(nj,mj)|, the value
∏ℓ

j=i |R(nj,mj)| can be obtained

in O(ni) time. Therefore we obtain all k′
i in Lemma 9 in O(

∑ℓ
i=1 ni) time. From

Lemma 3, for each i ∈ [1, ℓ], given an integer ki ∈ [1, |R(ni,mi)|], the ki-th sequence

in R(ni,mi) following the lexicographical ascending order in O(n2
i log(ni +mi)) time.

Hence by Lemma 9, the k-th sequence in S(K) can be constructed inO(
∑ℓ

i=1 n
2
i log(ni+

mi)) time.
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2.3 Positive Descending Sequence

For an integer sequence S = (s1, s2, . . . , sn), we say that S is a positive descending

sequence with length n if it holds that s1 ≥ s2 ≥ · · · ≥ sn > 0. LetD(n, d) denote the set

of all positive descending sequences such that any sequence S ∈ D(n, d) satisfies |S| ≤ n

and sum(S) = d, and we define D(n, d,m) ≜ {S ∈ D(n, d) | max(S) = m}. Given a

sequence S ∈ D(n, d), we examine how to generate the lexicographic predecessor of S

in D(n, d). In order to obtain the lexicographic predecessor of a given sequence, we

introduce a useful lemma.

Lemma 10. Let n ≥ 1 and d ≥ n be two positive integers, and let S = (s1, s2, . . . , sℓ)

be a sequence with the length ℓ in D(n, d).

(i) Let m be an integer with d/n ≤ m ≤ d. Then a sequence S is lexicographically

maximum in D(n, d,m) if and only if ℓ = ⌈d/m⌉, s1 = s2 = · · · = sℓ−1 = m, and

sℓ = d− (ℓ− 1)m.

(ii) A sequence S is lexicographically minimum in D(n, d) if and only if ℓ = n and

s1 − sn ≤ 1, i.e., for q = d − n⌊d/n⌋, s1 = s2 = · · · = sq = ⌈d/n⌉ and sq+1 =

sq+2 = · · · = sn = ⌊d/n⌋.

(iii) Assume that ℓ < n or s1 − sℓ ≥ 2. Let k denote the largest index such that

sk ≥ 2 if ℓ < n, otherwise sk − sn ≥ 2. Then the lexicographic predecessor of

S in D(n, d) is given by the concatenation of the sequences (s1, s2, . . . , sk−1) and

max(D(n− k + 1,
∑

k≤i≤n si, sk − 1)).

Proof. (i) We show that such a sequence S is the lexicographically maximum in

D(n, d,m). Since S is a descending sequence, and it holds that sum(S) = d and

max(S) = m, such a sequence S is in D(n, d,m). Assume that there exists a sequence

X = (x1, x2, . . . , xℓ′) in D(n, d,m) such that S ≺ X holds. Suppose that ℓ′ > ℓ and

xi = si for each i ∈ [1, ℓ]. From the definition of the positive descending sequence,

we have sum(X) >
∑ℓ

i=1 xi = sum(S) = d. This contradicts that sum(X) = d, and

we see that there exists an integer k ≤ min{ℓ, ℓ′} such that xk > sk and xi = si for

all 1 ≤ i < k. If sk = m holds, then xk > m must hold. However, this contradicts

that max(X) = m, and we have sk ̸= m. If k = ℓ hold, then from the assumption, we

have xk > sk. This, however, contradicts that sum(X) = d, and there exists no integer

k such that xk > sk and xi = si for all 1 ≤ i < k, and there exists no sequence X

such that S ≺ X in D(n, d,m). Therefore we conclude that such a sequence S is the

lexicographically maximum in D(n, d,m).

(ii) First we show that a sequence S = (s1, s2, . . . , sn) inD(n, d) such that s1−sn ≤ 1

is uniquely determined. Suppose that the first k elements of S are s and the others

are s − 1. Since sum(S) = ks + (n − k)(s − 1) = d = n⌊d/n⌋ + q holds, we obtain
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s − ⌊d/n⌋ − 1 = (q − s)/n. Since s and ⌊d/n⌋ are integer, (q − s)/n must be integer.

However, we have 0 ≤ q < n and 1 ≤ s ≤ n. If q = 0 holds, then we obtain k = n and

s = d/n = ⌈d/n⌉. Otherwise, k = q and s = ⌊d/n⌋ + 1 = ⌈d/n⌉ holds. Therefore such

a sequence S is obtained.

Suppose that there exists a sequence X = (x1, x2, . . . , xℓ′) in D(n, d) such that

X ≺ S holds. There exists an integer k such that xk < sk and xi = si for all 1 ≤
i < k. In order to satisfy sum(X) = d, there exists an element xj > sj for an integer

j ∈ [k + 1, ℓ′]. However, we obtain xk < xj since it holds that xk ≤ sk − 1 < sj + 1 ≤
xj. This contradicts that X is a descending sequence, and we conclude that S is the

lexicographically minimum sequence in D(n, d).

(iii) Let S ′ be the sequence obtained by concatenation of (s1, s2, . . . , sk−1) and

max(D(n− k + 1,
∑

k≤i≤n si, sk − 1)). Clearly, S ′ ∈ D(n, d) and S ′ ≺ S holds. Assume

that there exists a sequence X = (x1, x2, . . . , xℓ′) ∈ D(n, d,m) such that S ′ ≺ X ≺ S

holds. For each 1 ≤ i < k, we have s′i = xi = si. In addition, xk = sk or xk = sk − 1

holds. Let Sk, S
′
k and Xk denote the subsequence from k-th to the end of the sequence

S, S ′, and X, respectively.

Suppose that xk = sk. The subsequence Xk must be in D(n− k + 1,
∑

k≤i≤n si, sk).

Since Sk is the lexicographically minimum in D(n−k+1,
∑

k≤i≤n si, sk), this, however,

contradicts that X ≺ S, and we have xk ̸= sk.

Next suppose that xk−1 = sk−1 − 1. The subsequence Xk must be in D(n −
k + 1,

∑
k≤i≤n si, sk − 1). Since S ′

k is the lexicographically maximum in D(n − k +

1,
∑

k≤i≤n si, sk − 1), this, however, contradicts that S ′ ≺ X, and we have xk−1 ̸=
sk−1 − 1.

As a result, there exists no sequence X ∈ D(n, d) such that S ′ ≺ X ≺ S holds, and

S ′ is the predecessor of S in D(n, d).

Based on Lemma 10, in Algorithm 5, we show an algorithm to find the lexicographic

predecessor of a given sequence in D(n, d), if one exists. Let S be a given sequence

in D(n, d). In this algorithm, first, we check whether S = min(D(n, d)) or not by

Lemma 10-(ii). If S ̸= min(D(n, d)), then, by Lemma 10-(i) and (iii), we construct the

lexicographic predecessor of S in D(n, d).

Theorem 5. Let n ≥ 1 and d ≥ n be two integers, and let S be a positive descending

sequence in D(n, d). Then testing whether S is lexicographically minimum in D(n, d)

or not can be done in O(1) time, and the lexicographic predecessor of S in D(n, d) if

one exists can be obtained in O(n) time and O(n) space.

Proof. From Lemma 10-(ii), in order to determine S = min(D(n, d)), we only examine

whether both ℓ = n and s1 − sℓ ≤ 1 hold or not. This can be done in O(1) time.

The index k of Lemma 10-(iii) can be found in O(n) time. In addition, the lexico-

graphically maximum sequence in D(n, d) can be obtained in O(n) time by Lemma 10-
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Algorithm 5 Generating the predecessor of S ∈ D(n, d)

Input: Two positive integer n ≥ 1 and d ≥ n, and a positive descending sequence

S = (s1, s2, . . . , sℓ) ∈ D(n, d).

Output: If S has a lexicographic predecessor in D(n, d), then the lexicographic prede-

cessor of S; otherwise a message, “S is minimum.”

1: if ℓ < n then

2: k := the largest index such that sk ≥ 2;

3: (s′k, s
′
k+1, . . . , s

′
ℓ′) := max(D(n− k + 1,

∑
k≤i≤n si, sk − 1));

4: output (s1, s2, . . . , sk−1, s
′
k, . . . , s

′
ℓ′)

5: else if ℓ = n, s1 − sℓ ≥ 2 then

6: k := the largest index such that sk − sℓ ≥ 2;

7: (s′k, s
′
k+1, . . . , s

′
ℓ′) := max(D(n− k + 1,

∑
k≤i≤n si, sk − 1));

8: output (s1, s2, . . . , sk−1, s
′
k, . . . , s

′
ℓ′)

9: else

10: output message “S is minimum”

11: end if

(i). Therefore the time complexity to generate the lexicographic predecessor of a positive

descending sequence in D(n, d) is O(n). The space complexity is O(n) because we only

store the values of one sequence with length n.
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3 Preliminaries

In this section, we introduce the definitions and notions of graphs that are used further,

including a dynamic programming based counting algorithm for degree-bounded rooted

trees. In subsection 3.2, we propose a vertex ordering for ordered trees, and we introduce

two mappings: one is a mapping from ordered trees to sequences based on the vertex

ordering; the other is a mapping from degree-bounded rooted trees to ordered trees.

After that, we define a order for degree-bounded rooted trees to be the lexicographic

ascending order of corresponding sequence. In subsection 3.3, we design an dynamic

programming based algorithm for counting degree-bounded rooted trees.

3.1 Graphs

A graph is defined to be an ordered pair of a finite set of vertices and a finite set of

edges. In this paper, an edge is represented as an unordered pair of distinct vertices.

Let G be a graph. The vertex set of G is denoted by V (G), and the edge set of G is

denoted by E(G). An edge e ∈ E(G) incident with vertices vi and vj is denoted by

e = vivj. The degree deg(v) of a vertex v ∈ V (G) is defined to be the number of edges

incident to v in G. The maximum degree of G is defined to be the largest degree in G.

For a vertex r in G, let (G, r) denote the graph G rooted at the vertex r.

For two graphs G and G′, we say that G and G′ are isomorphic if there exists a

bijection ϕ : V (G) → V (G′) with for all vertex pairs u and v of G, uv ∈ E(G) if and

only if ϕ(u)ϕ(v) ∈ E(G′). Such a bijection ϕ is called an isomorphism from G to G′.

We also introduce an isomorphism between rooted graphs. For two rooted graphs (G, r)

and (G′, r′), we say that G and G′ are rooted isomorphic if there exists an isomorphism

ϕ from G to G′ such that ϕ(r) = r′.

Let us call a labeled graph G with n vertices a graph with a basic label if V (G) =

{1, 2, . . . , n} and each edge is given as a pair of i and j for the end-vertices i and j of

the edge. For a labeled graph G and a vertex v ∈ V (G), let lab(v) denote the label of

the vertex v.

A path of length k is defined to be a non-empty graph G such that V (G) =

{v1, v2, . . . , vk} and E(G) = {vivi+1 | i = 1, 2, . . . , k − 1}. A cycle is defined to be

a graph obtained by adding the edge v1vk to a path of length k. A graph G is called

connected if there exists a path from u to v for any two vertices u, v ∈ V (G).

A tree (unrooted tree) is defined to be an acyclic connected graph. For a tree T and

any two vertices u, v ∈ V (T ), let PT (u, v) denote the unique path from u to v in T .

A tree T = (G, r) with a fixed root r ∈ V (G) is called a rooted tree. From Jordan’s

theorem [8], any unrooted tree T on n vertices has either such a vertex or an edge,

the removal of which leaves no connected component with more than ⌊(n − 1)/2⌋ or

n/2 vertices respectively. Such a vertex is called a unicentroid, and such an edge a
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bicentroid. Hence we can always treat any unrooted tree as a rooted tree.

Let T = (G, r) be a rooted tree. The parent of v ∈ V (T )− {r} is defined to be the

vertex adjacent to v in PT (r, v), and the ancestors of v ∈ V (T )−{r} are defined to be

the vertices in PT (r, v). Note that the parent and the ancestors of the root r are not

defined. For two vertices u and v in T , if v is the parent of u, then we call u a child of

v, and if v is an ancestor of u, then we call u a descendant of v. If u and v are children

of the same vertex, then we say that u and v are siblings. For a vertex v ∈ V (T ), the

subtree T (v) is defined to be the tree rooted at the vertex v formed by v and all its

descendants in T . For a child v of the root in T , we call the subtree T (v) a root-subtree

in T .

3.2 Ordering of Trees

An ordered tree T = (G, r, π) is defined to be a rooted tree (G, r) with a left-to-right

ordering π specified for the children of each vertex. Let T = (G, r, π) be an ordered

tree. For a vertex v ∈ V (T ), let T (v) denote the ordered subtree of T that consists of

v and all descendants of v, preserving the order for the children of each vertex. For an

integer i ∈ [1, deg(r)], let Ti denote the i-th root subtree of T following the left-to-right

ordering π.

For an ordered tree, we mention three vertex orderings, Depth First Search Pre-

order (DFS Pre-order), Breadth First Search Pre-order (BFS Pre-order), and Siblings

First Depth First Search (Siblings First DFS). The DFS Pre-order starts from the root

and visits vertices from the left to the right, and we give the index of vertices following

this order. The BFS Pre-order starts from the root and visits vertices from closest to

the root following the left-to-right ordering. We say that the reverse order of the DFS

Pre-order (resp., BFS Pre-order) is the DFS Post-order (resp., BFS Post-order). In

this paper, in order to utilize the counting information about degree-bounded rooted

trees, we propose a vertex ordering for ordered trees. Given an ordered tree, we traverse

the ordered tree by the depth first search that starts from the root and visits vertices

from the left to the right, but we give an index for each of the children of the current

vertex in left-to-right order before visiting next vertex. We call such a vertex labelling

the Siblings First DFS.

Figure 2 shows an example of the DFS-Post order, BFS-Post order, and Siblings

First DFS for an ordered tree. Figure 2 (a) shows an ordered tree T = (G, r, π). The

arrows shows the left-to-right ordering π for children of T . In Figure 2 (b), the vertices

of T are indexed by the DFS Pre-order. In Figure 2 (c), the vertices of T are indexed

by the BFS Pre-order. In Figure 2 (d), the vertices of T are indexed by the Siblings

First DFS.

Let T = (G, r, π) be an ordered tree with n vertices. For the vertices vi, 1 ≤ i ≤ n

indexed by the Siblings First DFS ordering of T , we define the descendant representation
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Figure 2: An example of indexing for an ordered tree: (a) An ordered tree; (b) DFS

Pre-order; (c) BFS Pre-order; and (d) Siblings First DFS.

LD(T ) of T to be the sequence

LD(T ) ≜ (|V (T (v1))|, |V (T (v2))|, . . . , |V (T (vn))|).

Lemma 11. Let D be the descendant representation of an ordered tree with n ver-

tices. Then the structure of the ordered tree can be constructed from its descendant

representation D in O(n) time.

Proof. Let (d1, d2, . . . , dn) be the descendant representation of an ordered tree T =

(G, r, π). The first entry d1 of the descendant representation shows the number of

vertices in the ordered tree T , and for an integer i ∈ [2, n] such that
∑i

j=2 dj = n− 1,

the number i−1 shows the degree of the root, and for each j ∈ [1, i−1], we see that the

number of j-th root-subtree in the left-to-right ordering contains dj+1 vertices. Note

that such an integer i uniquely exists since for j ∈ [2, deg(r) + 1], dj is the number of

vertices in a root-subtree, and
∑deg(r)+1

j=2 dj is the number of vertices in T except for the

root, that is n− 1. Hence we obtain the degree of the root of T in O(deg(r)) time.
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The subsequence obtained from (2+deg(r))-th entry to (2+deg(r)+d2−1)-th entries

of the descendant sequence show the number of descendant of vertices in the first root-

subtree of T . We see that the concatenation of d2 and (d2+deg(r), d2+deg(r)+1, . . . , d2+deg(r)+d2−1)

is the descendant representation of the first root-subtree T1 of T . Similarly, the next

d3−1 entries show the number of descendant of vertices in the 2nd root-subtree T2 of T ,

and the concatenation of d3 and the next d3−1 entries is the descendant representation

of the 2nd root-subtree T2 of T .

In the same manner, the descendant representation of each root-subtree can be

obtained. We apply similar identification for each root-subtree recursively, and the

structure of the ordered tree T can be obtained. Identification of the descendant rep-

resentation of the root-subtrees can be done in O(deg(r)) time. The time complexity

to construct the structure of ordered tree T recursively is O(
∑

v∈V (T ) deg(v)). Since we

have
∑

v∈V (T ) deg(v) = 2|E(T )| = 2(n − 1), the structure of the ordered tree can be

constructed in O(n) time.

Figure 3 shows an example of construction for an ordered tree from its descendant

representation. Figure 3 (a) shows an ordered tree T = (G, r, π) and its descendant

representation LD(T ). Figure 3 (b) shows the first step to construct the structure of

T from LD(T ). Since the first entry of LD(T ) is 12, we see that T has 12 vertices.

Next we identify the degree of the root r. Since the sum of second and third entry of

LD(T ) are 7 + 4 = 11 = 12 − 1, we see that the degree of the root is 2. In addition,

since the subsequence from 4-th to 9-th entries of LD(T ) corresponding the vertices in

V (T1), we have LD(T1) = (7, 2, 4, 1, 1, 1, 1). Similarly, we have LD(T2) = (4, 3, 1, 1). In

the same manner, we construct the structure of each root-subtree from its descendant

representation. Figure 3 (c) show the next step to construct the structure of T , and

Figure 3 (d) show the final step to construct the structure of T .

Let T = (G, r) be a rooted tree. There may be more than one ordered tree T ′ =

(G′, r′, π′) that are rooted isomorphic to T . An ordered tree T ∗ = (G∗, r∗, π∗) is called

the canonical tree of T if G∗ is a labeled graph satisfying the following two conditions:

(i) for the i-th vertex vi following the Siblings First DFS in T ∗, lab(vi) = i; and

(ii) the descendant representation LD(T
∗) is the lexicographically maximum among all

ordered trees T ′ = (G′, r′, π′) that are rooted isomorphic to T .

For a rooted tree T = (G, r), we define the canonical representation LD(T ) to be

the descendant representation of the canonical tree of T . Note that two rooted trees

T = (G, r) and T ′ = (G′, r′) are rooted isomorphic if and only if LD(T ) = LD(T
′).

Figure 4 (a) shows an ordered tree T = (G, r, π) indexed by Siblings First DFS and

its descendant representation LD(T ), and Figure 4 (b) shows the canonical tree T ∗ of

the rooted tree (G, r) and its descendant representation LD(T
∗).
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Figure 3: An example of constructing the structure of an ordered tree from its descen-

dant representation: (a) An ordered tree T and its descendant representation; (b) First

step of constructing the structure of T ; (c) Second step of constructing the structure of

T ; and (d) Final step of constructing the structure of T .

Now we introduce a set of degree-bounded rooted trees and we define the order of

trees in the set. For two positive integers n ≥ 1 and ∆ ≥ 2, we define the set G∆(n) of

degree-bounded rooted trees to be the set of canonical trees of all rooted trees with n

vertices satisfying:

(i) the degree of the root is at most ∆− 1;

(ii) the degree of vertex except for the root is at most ∆; and

(iii) no two different canonical trees in G∆(n) are rooted isomorphic.

We let g∆(n) ≜ |G∆(n)| for n ≥ 1 and ∆ ≥ 2. Note that, if the maximum degree of

a tree is at most 1, such a tree is either a single vertex or two vertices with one edge.
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Figure 4: (a) An ordered tree T = (G, r, π) indexed by the Siblings First DFS; and (b)

The canonical tree T ∗ = (G∗, r∗, π∗) of (G, r) indexed by the Siblings First DFS.

Hence we assume that n ≥ 1 and ∆ ≥ 2.

For two positive integers n ≥ 1 and ∆ ≥ 2, the tree ordering σdes in G∆(n) is

defined to be the lexicographical ascending order of its canonical representation, i.e.,

for two canonical trees T = (G, r, π) and T ′ = (G′, r′, π′) in G∆(n), σdes(T ) ≺ σdes(T
′)

if σlex(LD(T )) ≺ σlex(LD(T
′)) holds. For two positive integers n ≥ 1 and ∆ ≥ 2, let

rank∆,n : G∆(n) → [1, g∆(n)|] denote the function such that for two canonical trees T

and T ′ in G∆(n), rank∆,n(T ) < rank∆,n(T
′) if σdes(T ) ≺ σdes(T

′) holds. We say that

a canonical tree T ∈ G∆(n) with rank∆,n(T ) = k is the k-th tree in G∆(n), or the

rank of such a canoincal tree T is k in G∆(n). For a canonical tree T ∈ G∆(n) with

rank∆,n(T ) = k > 1, we say that a canonical tree T ′ ∈ G∆(n) is the predecessor tree

of T if rank∆,n(T
′) = k − 1. It immediately follows that T and T ′ in G∆(n) are rooted

isomorphic if and only if rank∆,n(T ) = rank∆,n(T
′).

For two integers n ≥ 1 and ∆ ≥ 2, let T be a canonical tree in G∆(n). We know

that for each v ∈ V (T ), the subtree T (v) is in G∆(|V (T (v))|). Hence for an integer

∆ ≥ 2, we define the function rank∆ to be rank∆(T ) ≜ rank∆,|V (T )|(T ). For a canonical

tree T ∈ G∆(n), we define the descendant sequence DS(T ) and rank sequence RS(T )

as follows:

(i) DS(T ) ≜ (|V (T1)|, |V (T2)|, . . . , |V (Tdeg(r))|); and

(ii) RS(T ) ≜ (rank∆(T1), rank∆(T2), . . . , rank∆(Tdeg(r))).

We show an example of the descendant sequence and the rank sequence of a canonical

tree in Figure 5. Figure 5 (a) (resp., (b)) shows the canonical trees in G4(3) (resp., G4(4))

following the tree ordering σdes. Figure 5 (c) shows a rooted tree T = (G, r) with 12

vertices whose maximum degree at most 4, and Figure 5 (d) shows the canonical tree T ∗

of T . From Figure 5 (b), we see that the first root-subtree T ∗
1 of T ∗ has 4 vertices and
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DS(T) = (4, 4, 3), RS(T) = (3, 1, 2)
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Figure 5: An example of a descendant sequence and a rank sequence of a rooted tree:

(a) rooted trees in G4(3); (b) rooted trees in G4(4); (c) a rooted tree T = (G, r) with 12

vertices whose maximum degree at most 4; and (d) the canonical tree of T indexed by

the Siblings First DFS.

T ∗
1 is the 3rd tree in G4(4). Similarly, from Figures 5 (a) and (b), we have |V (T ∗

2 )| = 4,

rank∆(T
∗
2 ) = 1, |V (T ∗

3 )| = 3 and rank∆(T
∗
3 ) = 2. Therefore we have the descendant

sequence DS(T ∗) = (4, 4, 3), and the rank sequence RS(T ∗) = (3, 1, 2).

The pair of the descendant sequence and the rank sequence of a given tree can serve

as a unique representation of a tree. Hence we have the following lemma.

Lemma 12. Let n ≥ 1 and ∆ ≥ 2 be two positive integers, and let T = (G, r, π) and

T ′ = (G′, r′, π′) be two canonical trees in G∆(n). Then LD(T ) ≺ LD(T
′) holds if and

only if either (i) DS(T ) ≺ DS(T ′), or (ii) DS(T ) = DS(T ′) and RS(T ) ≺ RS(T ′).

Proof. From the definition of the descendant representation, the first entry of both

LD(T ) and LD(T
′) is n, and the next deg(r) (resp., deg(r′)) entries of LD(T ) (resp.,

LD(T
′)) are the descendant sequence DS(T ) (resp., DS(T ′)).

First we show the necessity. Suppose that LD(T ) ≺ LD(T
′) holds. For an integer

i ∈ [1, n], let xi (resp., x′
i) denote the i-th entry of LD(T ) (resp., LD(T

′)). Let k

denote the smallest integer such that xk < x′
k. Since the first entry of both LD(T ) and

LD(T
′) is n, we have k ≥ 2. If k ≤ 1 + deg(r) holds, then we have DS(T ) ≺ DS(T ′).

Suppose that k > 1 + deg(r). In this case, the descendant sequences of T and T ′ are

equivalent. This implies that deg(r) = deg(r′) and for each i ∈ [1, deg(r)], it holds that

|V (Ti)| = |V (T ′
i )|. Let vk (resp., v′k) denote the k-th vertex of T (resp., T ′) following
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the Siblings First DFS ordering. For an integer i such that vk ∈ V (Ti), since xk < x′
k

holds, we have LD(Ti) ≺ LD(T
′
i ), and we obtain rank∆(Ti) < rank∆(T

′
i ) and RS(T ) ≺

RS(T ′). Therefore if LD(T ) ≺ LD(T
′) holds, then either (i) DS(T ) ≺ DS(T ′), or (ii)

DS(T ) = DS(T ′) and RS(T ) ≺ RS(T ′) holds.

Next we show the sufficiency. Since we have |V (T )| = |V (T ′)| = n, if DS(T ) ≺
DS(T ′), then LD(T ) ≺ LD(T

′) holds. Suppose that DS(T ) = DS(T ′) and RS(T ) ≺
RS(T ′) holds. Then, following the assumption that DS(T ) = DS(T ′), it holds that

deg(r) = deg(r′) and |V (Ti)| = |V (T ′
i )|, 1 ≤ i ≤ deg(r), and there exists an integer k

such that for all 1 ≤ i < k, rank∆(Ti) = rank∆(T
′
i ) and rank∆(Tk) < rank∆(T

′
k). Since

the lexicographical order does not change when entries of equal values are removed

from or added to each of the sequences with the same position, we delete the first

(1 + deg(r) +
∑k−1

i=1 (|V (Ti)| − 1)) entries of LD(T ) and LD(T
′), respectively, and then,

we insert |V (Tk)| (= |V (T ′
k)|) as the first entry of the modified LD(T ) and LD(T

′). The

first |V (Tk)| of the obtained sequences shows the descendant representation of the k-th

root-subtree LD(Tk) and LD(T
′
k), respectively. From rank∆(Tk) < rank∆(T

′
k), we have

LD(Tk) ≺ LD(T
′
k). Since we have been only erasing and adding equivalent entries, it

holds that LD(T ) ≺ LD(T
′).

As a result, LD(T ) ≺ LD(T
′) holds if and only if either (i) DS(T ) ≺ DS(T ′), or (ii)

DS(T ) = DS(T ′) and RS(T ) ≺ RS(T ′).

We mention the two relations about sequences: the relation between descendant se-

quences and positive descending sequences; and the relation between the rank sequences

and the upper bounded sequences. We have the following lemma.

Lemma 13. Let n ≥ 1 and ∆ ≥ 2 be two positive integers, and let T = (G, r, π) be

a canonical tree in G∆(n). Let (n1, n2, . . . , ndeg(r)) be the descendant sequence DS(T ), let

(r1, r2, . . . , rdeg(r)) be the rank sequence RS(T ), and let K be the sequence (g∆(n1), g∆(n2), . . . , g∆(ndeg(r))).

Then it holds that DS(T ) ∈ D(∆− 1, n− 1) and (r1− 1, r2− 1, . . . , rdeg(r)− 1) ∈ S(K).

Proof. First we show DS(T ) ∈ D(∆− 1, n− 1). The descendant sequence DS(T ) is a

positive integer sequence with length deg(r) ≤ ∆− 1, and it holds that sum(DS(T )) =

n− 1 since the number of vertices in all root-subtrees are the number of vertices in T

except for the root. Suppose that the descendant sequence DS(T ) is not a descending

sequence. Then there exists two integers i ∈ [1, deg(r)] and j ∈ [i + 1, deg(r)] such

that |V (Ti)| < |V (Tj)|. In this case, for the ordered tree T ′ = (G, r, π′) obtained by

flipping the i-th and j-th root-subtrees of T , we have LD(T
′) ≺ LD(T ). This, however,

contradicts that T is the canonical tree of (G, r), and it holds that the descendant

sequence is a descending sequence. As a result, the descendant sequence DS(T ) can be

regarded as a sequence in the positive descending sequence D(∆− 1, n− 1).

Next we prove that (r1 − 1, r2 − 1, . . . , rdeg(r) − 1) ∈ S(K). For two integers i and

j with 1 ≤ i < j ≤ deg(r), if |V (Ti)| = |V (Tj)| holds, then we have rank∆(Ti) <
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rank∆(Tj). Note that this property comes from the definition of the canonical tree.

Suppose that, for some 1 ≤ i < j ≤ deg(r), if rank∆(Ti) < rank∆(Tj) with |V (Ti)| =
|V (Tj)| holds, then the ordered tree obtained by flipping i-th and j-th root-subtree of

T has greater descendant representation than T . This contradicts that T is canonical

tree of (G, r). As a result, for the rank sequence (r1, r2, . . . , rdeg(r)) of T , it holds that

1 ≤ ri ≤ g∆(ni), 1 ≤ i ≤ deg(r), and rj ≥ rj+1, 1 ≤ j ≤ n−1 with kj = kj+1. Therefore

the sequence (r1 − 1, r2 − 1, . . . , rdeg(r) − 1) is an upper bounded sequence in S(K).

For simplicity, in order to treat rank sequences as upper bounded sequence, we

redefine each entry of the rank sequence to be rank minus one. For a canonical tree T

in G∆(n), let (v1, v2, . . . , vn) denote the Siblings First DFS ordering of T , we define the

rank representation LR(T ) of T to be

LR(T ) ≜ (rank∆(T (v1)), rank∆(T (v2)), . . . , rank∆(T (vn))).

Note that in order to reconstruct the structure of tree from the rank representation, we

need some additional information since we do not have the number of vertices in each

subtree.

3.3 Counting Degree-Bounded Rooted Trees

In this subsection, we devise an algorithm to obtain the number of degree-bounded

rooted trees g∆(n) based on dynamic programming. We investigate some recursive

relationships that hold for the number of trees in the family G∆(n). For any rooted

tree T ∈ G∆(n) and a vertex v ∈ V (T ), the subtree T (v) is in G∆(|V (T (v))|). For four
integers n ≥ 1, ∆ ≥ 2, m ∈ [0, n−1], and d ∈ [0,min{∆, n−1}], let G∆(n,m, d) denote

the set of rooted trees with n vertices such that the maximum degree of the tree is at

most ∆, the maximum number of vertices in a root-subtree is at most m, and the degree

of the root is at most d. Let g∆(n,m, d) denote the number of trees in G∆(n,m, d). We

immediately get that, for all n ≥ 1, it holds that G∆(n) = G∆(n, n − 1,∆ − 1) by the

definition of G∆(n) and G∆(n,m, d).

For positive integers n and m, let Cr(n,m) ≜
(
n+m−1

m

)
denote the number of com-

binations with repetitions of m out of n elements. We give the following observation

that follows from the definition of g∆(n,m, d).

Lemma 14. Let n ≥ 1, ∆ ≥ 2, m ∈ [0, n − 1], and d ∈ [0,min{∆, n − 1}] be four

ineters. Then:

(i) g∆(n,m, d) = 0 for n > md+ 1;

(ii) g∆(1, 0, 0) = 1;

(iii) g∆(m) = g∆(m,m− 1,∆− 1);

(iv) for an integer ℓ ≥ 1, Cr(g∆(m), ℓ) = Cr(g∆(m), ℓ− 1) · (g∆(m) + ℓ− 1)/ℓ; and
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(v)

g∆(n,m, d) = g∆(n,m− 1, d) +
∑

max{1,n+(1−m)d−1}≤ℓ,
ℓ≤min{d,⌊(n−1)/m⌋}

Cr(g∆(m), ℓ) · g∆(n−mℓ,m− 1, d− ℓ).

Proof. (i) For any tree in G∆(n,m, d), the number of vertices is at most md + 1. If

n > md+ 1 holds, then G∆(n,m, d) = ∅ holds.

(ii) Clearly, G∆(1, 0, 0) consists of one tree with a single vertex.

(iii) Immediate from G∆(n) = G∆(n, n− 1,∆− 1).

(iv) For any positive integers n ≥ 1 and m ≥ 1, it holds that Cr(n,m) = Cr(n,m− 1) ·
(n+m− 1)/m.

(v) We consider the number of trees in G∆(n,m, d) such that there are ℓ root-subtrees

with exactly m vertices. Note that such ℓ is at most min{d, ⌊(n − 1)/m⌋}. If ℓ = 0,

then the number of such trees is g∆(n,m − 1, d). For ℓ ≥ 1, the number of choices

of ℓ such subtrees is equal to Cr(g∆(m), ℓ) since there are g∆(m) different candidates

for each subtree. The remaining part obtained after eliminating the ℓ subtrees must

be a rooted tree on n − mℓ vertices such that each root-subtree has at most m − 1

vertices, and the degree of the root is at most d− ℓ. The number of such trees is equal

to g∆(n−mℓ,m− 1, d− ℓ). Hence the number of trees in G∆(n,m, d) such that there

are ℓ root-subtrees with exactly m vertices is Cr(g∆(m), ℓ) · g∆(n −mℓ,m − 1, d − ℓ).

From (i), if n −mℓ > (m − 1)(d − ℓ) + 1 holds, then there are no such trees, and we

have g∆(n−mℓ,m− 1, d− ℓ) = 0. As a result, we obtain

g∆(n,m, d) = g∆(n,m− 1, d) +
∑

max{1,n+(1−m)d−1}≤ℓ,
ℓ≤min{d,⌊(n−1)/m⌋}

Cr(g∆(m), ℓ) · g∆(n−mℓ,m− 1, d− ℓ).

From Lemma 14, we propose an algorithm based on dynamic programming for

counting g∆(n,m, d). Let n ≥ 1, ∆ ≥ 2, m ∈ [0, n − 1], and d ∈ [0,min{∆, n − 1}] be
four integers. For three integers 1 ≤ i ≤ n, 1 ≤ j ≤ min{m, i − 1}, and k < ⌈i/j⌉, we
have g∆(i, j, k) = 0 from Lemma 14-(i). Hence it is enough to calculate only g∆(i, j, k),

1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i−1}, and ⌈i/j⌉ ≤ k ≤ min{∆, i−1}. From Lemma 14-(ii),

we initialize g∆[1, 0, 0] by 1. For three integers 1 ≤ i ≤ n, 1 ≤ j ≤ min{m, i− 1}, and
⌈i/j⌉ ≤ k ≤ min{∆, i− 1}, we calculate g∆(i, j, k) by Lemma 14-(v). From Lemma 14-

(iii), we have g∆(m) = g∆(m,m− 1,∆− 1), and from Lemma 14-(iv), given the value

Cr(g∆(m), ℓ−1), we can obtain Cr(g∆(m), ℓ) in constant time. Therefore we obtain the

value g∆(i, j, k) in O(k) time.

A description of the algorithm is shown in Algorithm 6. In this algorithm, g∆[i, j, k]

stores the values of g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i − 1}, and ⌈i/j⌉ ≤ k ≤
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min{∆, i−1}, and the variable r contains the value Cr(g∆(m), ℓ). From Lemma 14 and

Algorithm 6, we have the following Theorem.

Algorithm 6 DP based counting algorithm for degree-bounded rooted trees

Input: Three integers n ≥ 1, ∆ ≥ 2, and m ∈ [0, n− 1].

Output: g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i− 1}, and ⌈i/j⌉ ≤ k ≤ min{∆, i− 1}.
1: g∆[1, 0, 0] := 1;

2: for i := 2, 3, . . . , n do

3: for j := 1, . . . ,min{m, i− 1} do

4: for k := ⌈i/j⌉, . . . ,min{∆, i− 1} do

5: g∆[i, j, k] := 0; r := 1;

6: for ℓ := max{1, n+ (1−m)d− 1}, . . . ,min{k, ⌊(i− 1)/j⌋} do

7: r := r · (g∆[j, j − 1,∆− 1] + ℓ− 1)/ℓ;

8: i′ := i− jℓ; j′ := min{j − 1, i′ − 1}; k′ := min{k − ℓ, i′ − 1};
9: g∆[i, j, k] := g∆[i, j, k] + r · g∆[i′, j′, k′]

10: end for;

11: if i− 1 ≤ (j − 1)k then

12: g∆[i, j, k] := g∆[i, j, k] + g∆[i, j − 1, k]

13: end if

14: end for

15: end for

16: end for;

17: output g∆[i, j, k], 1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i−1}, and ⌈i/j⌉ ≤ k ≤ min{∆, i−1}

Theorem 6. Let n ≥ 1, ∆ ≥ 2, and m ∈ [0, n − 1] be three integers. Then the set of

numbers g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i− 1}, and ⌈i/j⌉ ≤ k ≤ min{∆, i− 1}
can be obtained in O(nm∆2) time and O(nm∆) space.

Proof. Lemma 14 gives us a recursive structure of g∆(i, j, k). These values can be

computed by using dynamic programming and storing a table of size O(nm∆) for

storing the values of g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i − 1}, and ⌈i/j⌉ ≤ k ≤
min{∆, i− 1}. In the case of Lemma 14-(i) and (ii), we can obtain the value g∆(i, j, k)

in O(1) time. For Lemma 14-(iii), (iv), and (v), computing the entry g∆(i, j, k) can be

done in O(k) time since given the value Cr(g∆(m), ℓ − 1), we can obtain Cr(g∆(m), ℓ)

in constant time. Therefore the set of numbers g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤
min{m, i− 1}, and ⌈i/j⌉ ≤ k ≤ min{∆, i− 1} can be obtained in O(nm∆2) time and

O(nm∆) space.
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4 Enumerating Degree-Bounded Trees

In this section, we discuss a sequential enumeration algorithm for degree-bounded

rooted/unrooted trees. In subsection 4.1, we propose an algorithm to enumerate all

degree-bounded trees in G∆(n) following the lexicographical ascending order of descen-

dant representation σdes. Given a degree-bounded rooted tree T in G∆(n), we generate

the predecessor tree by updating root-subtrees of T . In subsection 4.2, we introduce a

problem setting for enumerating rooted trees which restricts the degree of the root and

the number of vertices in a root-subtree. We will show that the enumeration of this

problem setting can be done by using the sequential algorithm for G∆(n). Based on

this observation, we propose an algorithm to enumerate all degree-bounded unrooted

trees.

4.1 Enumeration for Degree-Bounded Rooted Trees

We enumerate all rooted trees in G∆(n) by generating the predecessor tree one by one

following the lexicographical ascending order of descendant representation σdes. Given

the descendant sequence and the rank sequence of a given tree in G∆(n), we examine

how to generate the descendant sequence and the rank sequence of the predecessor tree

of the given tree.

Lemma 15. Let n ≥ 1 and ∆ ≥ 2 be two positive integers, and let T = (G, r, π) be a

canonical tree in G∆(n). Let (n1, n2, . . . , ndeg(r)) denote the descendant sequence of T ,

and let K denote the sequence (g∆(n1), g∆(n2), . . . , g∆(ndeg(r))). Then:

(i) The path Pn with length n rooted at one of its endpoints has the lexicographically

maximum canonical representation among G∆(n), and it holds that LD(Pn) =

(n, n− 1, . . . , 1) and LR(Pn) = (g∆(n)− 1, g∆(n− 1)− 1, . . . , g∆(1)− 1).

(ii) If DS(T ) = min(D(∆− 1, n− 1)) and RS(T ) = min(S(K)) holds, then T has no

predecessor.

(iii) For the predecessor tree T ′ = (G′, r′, π′) of T in G∆(n), it holds that either

(a) DS(T ′) = DS(T ), and RS(T ′) is the lexicographic predecessor of RS(T ) in

S(K); or

(b) DS(T ′) is the lexicographic predecessor of DS(T ) in D(∆ − 1, n − 1), and

RS(T ′) = max(S(K)).

(iv) Testing whether T has a predecessor tree or not can be done in O(∆) time, and

the descendant sequence and the rank sequence of the predecessor tree of T if one

exists can be obtained in O(∆) time and O(∆) space.
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Proof. (i) For all rooted trees in G∆(n), let T be the canonical tree with the maximum

canonical representation among G∆(n). The lexicographically maximum descendant

sequence among all canonical trees in G∆(n) is (n − 1). This implies that T has only

one root-subtree with n − 1 vertices. We apply this argument recursively, and we see

that T is a path with length n rooted at one of its endpoints. Therefore we obtain

LD(T ) = (n, n− 1, . . . , 1) and LR(T ) = (g∆(n)− 1, g∆(n− 1)− 1, . . . , g∆(1)− 1).

(ii) From Lemma 12, there exists no canonical trees T ′ ∈ G∆(n) such that LD(T
′) ≺

LD(T ).

(iii) Immediate from Lemmas 12 and 13.

(iv) From Lemma 15-(ii), in order to determine whether T has a predecessor tree or

not, we examine whether DS(T ) = min(D(∆ − 1, n − 1)) and RS(T ) = min(S(K))

hold or not. From Theorem 1 and Theorem 5, this can be done in O(∆) time.

From Theorem 5, the predecessor sequence of DS(T ) in D(∆−1, n−1) if one exists

can be calculated in O(∆) time and O(∆) space. From Theorem 1, the lexicographic

predecessor of RS(T ) in S(K) if one exists can be obtained in O(∆) time and O(∆)

space. In addition, max(S(K)) is (g∆(n1)− 1, g∆(n2)− 1, . . . , g∆(ndeg(r))− 1), and this

can be obtained in O(∆) time. Therefore from Lemma 15-(iii), the descendant sequence

and the rank sequence of the predecessor tree of T can be obtained in O(∆) time and

O(∆) space.

Now we devise an algorithm to construct the predecessor tree T ′ of a given canon-

ical tree T in G∆(n) by updating root-subtrees of T if necessary. An overview of our

algorithm as follows. If DS(T ) = min(D(∆−1, n−1)) and RS(T ) = min(S(K)) holds,

then by Lemma 15-(ii), we see that T has no predecessor tree in G∆(n). Otherwise, we

construct the descendant sequence and the rank sequence of the predecessor tree T ′ of

T by Lemma 15-(iii). Based on these sequences, we modify the root-subtrees of T if

the number of vertices in the root-subtree or the rank will change. Note that, if both

descendant sequence of T and T ′ are the same, and the rank of i-th root subtree of T

and T ′ are also equivalent, then we see that the i-th root subtree of T and T ′ are rooted

isomorphic, and there is no need to update the i-th root subtree in order to construct

T ′.

Suppose that all entries of RS(T ) are zero but DS(T ) ̸= min(D(∆ − 1, n − 1))

holds. In this case, the descendant sequence (n′
1, n

′
2, . . . , n

′
ℓ′) of the predecessor tree

is the lexicographic predecessor of DS(T ) in D(∆ − 1, n − 1), and the rank sequence

(r1, r2, . . . , rℓ) of the predecessor tree satisfies ri = g∆(n
′
i) − 1, 1 ≤ i ≤ ℓ. From

Lemma 15-(i), for each i ∈ [1, ℓ′], the i-th root-subtree of the predecessor tree is a path

with length n′
i rooted at one of its endpoints. Since the descendant representation and

the rank representation of the path are trivial, we obtain the descendant representation

and the rank representation of the predecessor tree of T .
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Suppose that there exists a non-zero entry in RS(T ), then we have DS(T ) =

DS(T ′), and RS(T ) is the lexicographic predecessor of RS(T ) of the upper bounded

sequences. We update each root-subtree of T as follows. Let (n′
1, n

′
2, . . . , n

′
deg(r′)) denote

the descendant sequence of T ′, and let (r1, r2, . . . , rdeg(r)) (resp., (r
′
1, r

′
2, . . . , r

′
deg(r′))) de-

note the rank sequence of T (resp., T ′). From Lemmas 5 and 15, for each i ∈ [1, deg(r′)],

r′i is the following four possible values: (i) r′i = g∆(n
′
i)−1, (ii) r′i = r′i−1, (iii) r

′
i = ri−1,

or (iv) r′i = ri. For case (i), from Lemma 15-(i), the i-th root-subtree T ′
i of T

′ is the path

with length n′
i rooted at one of its endpoints, and we have LD(T

′
i ) = (n′

i, n
′
i − 1, . . . , 1)

and LR(T ) = (g∆(n
′
i) − 1, g∆(n

′
i − 1) − 1, . . . , g∆(1) − 1). In case (ii) r′i = r′i−1, the

i-th and (i − 1)-th root-subtrees of T ′ are rooted isomorphic. Hence the update for

i-th root-subtree can be done by copying the (i − 1)-th root-subtree in T ′. In case

(iii) r′i = ri − 1, this update can be done by generating the predecessor tree of Ti. This

update will be repeated recursively for each of the root-subtrees. In case (iv) r′i = ri,

we see that the i-th root-subtree of T and T ′ are rooted isomorphic, and there is no

need to update the i-th root-subtree.

We show a description of the algorithm to generate the predecessor tree of a given

tree in G∆(n) if one exists in Algorithm 7, and we have the following theorem.

Theorem 7. Let n ≥ 1 and ∆ ≥ 2 be two positive integers, and let LD and LR

be the descendant representation and the rank representation of a canonical tree T =

(G, r, π) ∈ G∆(n). Assume that the values of g∆(i), 1 ≤ i ≤ n are already obtained.

Then testing whether T has a predecessor tree or not can be done in O(∆) time, and

the descendant representation and the rank representation of the predecessor tree of T

in G∆(n) if one exists can be generated in O(n) time and O(n) space.

Proof. From the descendant representation and the rank representation, the descendant

sequence DS(T ) and the rank sequence RS(T ) can be obtained in O(∆) time since

DS(T ) and RS(T ) are the subsequence of LD and LR from 2nd entry to (1+deg(r))-th

entry, respectively. From Lemma 15-(iv), testing whether T has a predecessor tree or

not can be done in O(∆).

Suppose that T has a predecessor tree in G∆(n). From Lemma 15-(iv), the descen-

dant sequence and the rank sequence of the predecessor tree of T can be constructed

in O(∆) time.

We estimate the time complexity of updating the root-subtrees for each cases. Let

T ′ = (G′, r′, π′) be the predecessor tree of T in G∆(n). For 1 ≤ i ≤ deg(r′), let ni (resp.,

ri) denote the i-th entry of the descendant sequence (resp., rank sequence) of T ′. The

first case is ri = g∆(ni) − 1. In this case, the corresponding subtree is the path with

length ni. This modification can be done inO(ni) time. In the second case ri = ri−1, the

i-th root-subtree will be the same as the (i−1)-th root-subtree in T ′. This modification

can be done in O(ni) time by copying the left subtree. In the last case, we construct
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Algorithm 7 Generate the predecessor of a degree-bounded rooted tree in G∆(n)

Input: Two positive integers n ≥ 1 and ∆ ≥ 2, the values of g∆(i), 1 ≤ i ≤ n, the

descendant representation LD(T ), and the rank representation LR(T ) of a canonical

tree T in G∆(n) rooted at a vertex r.

Output: The descendant representation LD(T
′) and the rank representation LR(T

′)

of the predecessor tree T ′ of T in G∆(n), if T has no predecessor tree in G∆(n), then

the output is a message, “T is minimum.”

1: k := the first entry of LR(T );

2: (n1, n2, . . . , ndeg(r)) := DS(T ) obtained from LD(T );

3: (r1, r2, . . . , rdeg(r)) := RS(T ) obtained from LR(T );

4: if ri = 0 for all 1 ≤ i ≤ deg(r) then

5: if DS(T ) = min(D(∆− 1, n− 1)) then

6: output “T is minimum”

7: else

8: (n′
1, n

′
2, . . . , n

′
ℓ) := the lexicographic predecessor of DS(T )

in D(∆− 1, n− 1);

9: LD[i] := (n′
i − 1, n′

i − 2, . . . , 1) for 1 ≤ i ≤ ℓ;

10: LR[i] := (g∆(n
′
i − 1)− 1, g∆(n

′
i − 2)− 1, . . . , g∆(1)− 1) for 1 ≤ i ≤ ℓ;

11: LD[T
′] := (n, n′

1, . . . , n
′
ℓ, LD[1], LD[2], . . . , LD[ℓ]);

12: LR[T
′] := (k − 1, t′1, . . . , t

′
ℓ, LR[1], LR[2], . . . , LR[ℓ]);

13: output LD[T
′] and LR[T

′] as LD(T
′) and LR(T

′), respectively.

14: end if

15: else /* K = (g∆(n1), g∆(n2), . . . , g∆(ndeg(r))) */

16: (r′1, r
′
2, . . . , r

′
deg(r)) := the lexicographic predecessor of RS(T ) in S(K);

17: for i := 1, 2, . . . , deg(r) do

18: if i > 1 and ni = ni−1 and r′i = r′i−1 then

/* i-th root-subtree is rooted isomorphic to the left root-subtree */

19: LD[i] := LD[i− 1]; LR[i] := LR[i− 1]

20: else if r′i = g∆(ni)− 1 then

/* i-th root-subtree is the path of length n′
i */

21: LD[i] := (n′
i − 1, n′

i − 2, . . . , 1);

22: LR[i] := (g∆(n
′
i − 1)− 1, g∆(n

′
i − 2)− 1, . . . , g∆(1)− 1)

23: else if r′i = ri − 1 then

/* i-th root-subtree is the predecessor tree in G∆(ni) */

24: LD[i], LR[i] := Algorithm7(ni,∆, g∆, LD(Ti), LR(Ti));

25: Delete the first entry of LD[i] and LR[i]

26: end if

27: end for;

28: LD[T
′] := (n, n1, . . . , ndeg(r), LD[1], LD[2], . . . , LD[deg(r)]);

29: LR[T
′] := (k − 1, r′1, . . . , r

′
deg(r), LR[1], LR[2], . . . , LR[deg(r)]);

30: output LD[T
′] and LR[T

′] as LD(T
′) and LR(T

′), respectively

31: end if
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the predecessor tree of the root-subtree, and the update should be repeated recursively.

However, this operation will repeat at most the number of vertices of the subtree. As

a result, the update for each subtree can be done in O(ni) time. Since we have ∆ < n

and
∑deg(r′)

i=1 ni = n − 1, the descendant representation and the rank representation of

the predecessor tree of T in G∆(n) can be obtained in O(∆ + ∆ +
∑deg(r′)

i=1 ni) = O(n)

time.

Since it is sufficient to store only the values of g∆(i), 0 ≤ i ≤ n of n elements,

the descendant representation, and the rank representation, the space complexity is

O(n).

4.2 Enumerating Degree Bounded Unrooted Trees

Based on the proposed algorithm for the sequential enumeration of degree-bounded

rooted trees, we devise an algorithm for another problem setting for enumerating rooted

trees, which restricts the degree of the root and the number of vertices in a root-subtree.

For four positive integers n ≥ 1, ∆ ≥ 2, d ≤ ∆, and m < n, let G∆(n, d,m) denote a

maximal set of rooted trees with n vertices satisfying:

(i) the maximum degree is at most ∆;

(ii) the degree of the root is at most d;

(iii) the number of vertices in a root-subtree is at most m; and

(iv) no two graphs in F∆(n, d,m) are rooted isomorphic.

Note that a root-subtree T ′ of T ∈ G∆(n, d,m) is in G∆(|V (T )|). The enumeration

for G∆(n, d,m) can be done as follows. In a similar way as in the case of G∆(n), for

a rooted tree T ∈ G∆(n, d,m), the number of vertices in each root-subtree of T can

be represented as a sequence in D(d, n − 1,m) since the number of root-subtree is

bounded by d, the number of vertices in all root-subtree is n − 1, and the number

of vertices in a root-subtree is bounded by m. For the sequence (n1, n2, . . . , nℓ) in

D(d, n− 1,m), the sequence K = (g∆(n1), g∆(n2), . . . , g∆(nℓ)), and an upper bounded

sequence R = (r1, r2, . . . , rℓ) in S(K), for each 1 ≤ i ≤ ℓ, we construct the ri-th tree

Ti in G∆(ni), and we combine a root vertex and each Ti with an edge, then we obtain

a rooted tree T ∈ G∆(n, d,m). Therefore the enumeration for G∆(n, d,m) can be done

by the similar technique of the sequential enumeration for G∆(n).

From these observation, we propose an algorithm to enumerate all degree-bounded

unrooted trees. For positive integers n ≥ 1 and ∆ ≥ 2, let F∆(n) denote a maximal

set of unrooted trees with n vertices whose maximum degree is at most ∆ such that

no two graphs in F∆(n) are isomorphic. We devise an algorithm for enumerating

all unrooted trees in F∆(n) by using the prescribed problem setting. Let T be an
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unrooted tree in F∆(n). If T has a bicentroid, then we can regard T as an edge

with two canonical trees in G∆(n/2). Hence the enumeration of degree-bounded trees

with the bicentroid is equivalent to the enumeration of unordered pairs of canonical

trees in G∆(n/2). On the other hand, if T has the unicentroid, then the number of

vertices in the root-subtrees of T rooted at its centroid can be bounded by ⌊(n− 1)/2⌋.
Therefore the enumeration of degree-bounded trees with the unicentroid is equivalent

to the enumeration of G∆(n,∆, ⌊(n− 1)/2⌋).
We propose a two-phase scheme for enumerating all trees in F∆(n). A descrip-

tion of an algorithm is shonw in Algorithm 10. In the first phase, we pre-compute

the values of g∆(i), 0 ≤ i ≤ ⌊n/2⌋, according to Theorem 6. In the second phase, we

generate bicentroid-rooted trees and unicentroid-rooted trees, respectively. We show

an algorithm for enumeration all trees in F∆(n) rooted at their bicentroid and unicen-

troid separately. In the bicentroid case, first we construct two paths with n/2 vertices

rooted at one of its end-points, and we generate all unordered pairs of canonical trees

in G∆(n/2) by using the sequential enumeration for rooted trees. A description of the

algorithm is shown in Algorithm 8. In the unicentroid case, we enumerate all trees

in G∆(n,∆, ⌊(n− 1)/2⌋) sequentialy. A description of the algorithm is shown in Algo-

rithm 9. Finally we have Theorem 8, and from Theorems 6 and 8, we obtain Theorem 9.

Algorithm 8 Generate all trees in F∆(n) rooted at their bicentroid

Input: Two positive integers n ≥ 1 and ∆ ≥ 2, and the values of g∆(i), 1 ≤ i ≤ n.

Output: All trees in F∆(n) rooted at their bicentroid.

1: if n is even then

2: Initialize the rank sequence R = (r1, r2) := (g∆(n/2)− 1, g∆(n/2)− 1);

3: Initialize the previous rank sequence R′ = (r′1, r
′
2) := (−1,−1);

4: /*Let LD[1] and LD[2] be the path with length n/2 */

5: LD[1] := (n/2, n/2− 1, . . . , 1); LD[2] := LD[1];

6: LR[1] := (g∆(n/2)− 1, g∆(n/2− 1)− 1, . . . , g∆(1)− 1); LR[2] := LR[1];

7: /* K = (g∆(n/2), g∆(n/2)) */

8: while R ̸= min(S(K)) do

9: for each i := 1, 2 with ri ̸= r′i do

10: Update LD[i] and LR[i] to the ri-th tree in G∆(ni)

11: end for;

12: output (LD[1], LD[2]);

13: R′ := R; R:= the lexicographic predecessor sequence of R in S(K)

14: end while

15: end if
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Algorithm 9 Generate all trees in F∆(n) rooted at their unicentroid

Input: Two positive integers n ≥ 1 and ∆ ≥ 2, and the values of g∆(i), 1 ≤ i ≤ ⌊n/2⌋.
Output: All trees in F∆(n) rooted at their unicentroid.

1: D := max(D(∆, n− 1, ⌊(n− 1)/2⌋));
2: while D ̸= min(D(∆, n− 1, ⌊(n− 1)/2⌋)) do

/* D = (n1, n2, . . . , n|D|) */

/* K = (g∆(n1), g∆(n2), . . . , g∆(n|D|)) */

3: R = (r1, r2, . . . , r|D|) := max(S(K)));

4: R′ = (r′1, r
′
2, . . . , r

′
|D|) := (−1,−1, . . . ,−1);

5: while R ̸= min(S(K)) do

6: for each i := 1, 2, . . . , |D| with ri ̸= r′i do

7: LD[i] := the descendant representation of ri-th tree in G∆(ni);

8: Delete the first entry of LD[i]

9: end for;

10: LD := (n, n1, . . . , n|D|, LD[1], LD[2], . . . , LD[|D|]);
11: output LD;

12: R′ := R; R := the lexicographic predecessor sequence of R in S(K)

13: end while;

14: D′ := D;

15: D := the lexicographic predecessor sequence of D in D(∆, n− 1)

16: end while

Algorithm 10 Enumerate all trees in F∆(n)

Input: Two positive integers n ≥ 1 and ∆ ≥ 2.

Output: All trees in F∆(n).

1: /*Phase 1: Counting*/

2: S := {g∆(i) | 0 ≤ i ≤ ⌊n/2⌋} by Algorithm 6;

3: /*Phase 2: Enumeration*/

4: Algorithm8(n,∆, S); /* Enumeration for Trees with Bicentroid */

5: Algorithm9(n,∆, S) /* Enumeration for Trees with Unicentroid */

Theorem 8. Let n ≥ 1 and ∆ ≥ 2 be two positive integers. Assume that the values of

g∆(i), 1 ≤ i ≤ ⌊n/2⌋ are already obtained. Then all trees in F∆(n) can be generated in

O(n) time per tree and O(n) space.

Proof. We generate all trees with bicentroid and all trees with unicentroid in F∆(n),

respectively. In the bicentroid case, the descendant representation and the rank repre-

sentation of two paths with n/2 vertices rooted at one of its end-points can be obtained

in O(n) time by Lemma 15-(i). From Theorem 7, all unordered pairs of canonical trees
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in G∆(n/2) can be obtained in O(n) time per unordered pair by using the sequential

enumeration for rooted trees.

In the unicentroid case, we enumerate trees in G∆(n,∆, ⌊(n − 1)/2⌋) sequentialy.

Similarly, by Theorem 7, even if all root-subtrees are updated, all trees can be generated

in O(n) time per tree. As a result, all trees in F∆(n) can be generated in O(n) time

per tree.

The values of g∆(i), 1 ≤ i ≤ ⌊n/2⌋, contain ⌊n/2⌋ integers, and the amount of space

of the descendant representation and the rank representation of a tree with n vertices

is also bounded by n. Thus the space complexity is O(n).

Theorem 9. Given the number of vertices n ≥ 1 and the maximum degree bound ∆ ≥ 2,

after O(n2∆2) time pre-processing, all trees in F∆(n) can be enumerated in O(n) time

per tree and O(n2∆) space in total.
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5 Ranking for Degree Bounded Rooted Trees

In this section, for two positive integers n ≥ 1 and ∆ ≥ 2, given a rooted tree T = (G, r)

with n vertices such that the maximum degree of T is at most ∆, and the degree of root

is at most ∆− 1, we devise an algorithm to identify the rank of the canonical tree of T

in G∆(n). We design a bottom-up algorithm to calculate the rank of a given rooted tree.

Suppose that we can derive the rank of a tree from its descendant sequence and the

rank sequence. We apply the rank calculation in BFS Post-order, since the descendant

sequence and the rank sequence of the leaves are obvious. Note that, given the number

of vertices and the rank for each root-subtree of a rooted tree, the descendant sequence

and the rank sequence can be obtained by sorting.

Given positive integers n ≥ 1 and ∆ ≥ 2, and a rooted tree T = (G, r) with n

vertices such that the maximum degree of T is at most ∆, and the degree of root is at

most ∆ − 1, the ranking problem is to determine the rank of the canonical tree of T

in G∆(n) in the lexicographical ascending order of descendant representation σdes. Now

we show how to obtain the rank of a tree from its descendant sequence and the rank

sequence.

For positive integers n ≥ 1 and ∆ ≥ 2, let T = (G, r) be a rooted tree with n vertices

such that the maximum degree of T is at most ∆, and the degree of root is at most ∆−1,

and let T ∗ be the canonical tree of T . For a canonical tree T ′ ∈ G∆(n), we say that T ′

is descendant sequence predecessor of T if DS(T ′) ≺ DS(T ∗) holds, and we say that

T ′ is rank sequence predecessor of T if DS(T ′) = DS(T ∗) and RS(T ′) ≺ RS(T ∗) hold.

Let D∆(T ) denote the set of all descendant sequence predecessors of T , and let R∆(T )

denote the set of all rank sequence predecessors of T . From the definition of the rank of

degree-bounded rooted tree, the rank of the canonical tree of T is |D∆(T )|+|R∆(T )|+1.

In subsection 5.1, we mention how to obtain the number of descendant sequence pre-

decessors, and in subsection 5.2, we devise how to obtain the number of rank sequence

predecessors.

5.1 The Number of Descendant Sequence Predecessors

In order to obtain the number of the descendant sequence predecessors, we show the

following lemma.

Lemma 16. Let n ≥ 1, ∆ ≥ 2, m ∈ [0, n−1] and d ∈ [0,min{∆, n−1}] be four integers,
and let T = (G, r) be a rooted tree such that its canonical tree is in G∆(n,m, d). Let

(n1, n2, . . . , ndeg(r)) denote the descendant sequence of T , and let ℓ ∈ [1, deg(r)] denote

the smallest integer such that nℓ > nℓ+1. Then the following recursive equation holds:

|{T ′ ∈ G∆(n,m, d) | DS(T ′) ≺ DS(T )}|
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= g∆(n, n1 − 1, d) +
ℓ−1∑
i=1

Cr(g∆(n1), i) · g∆(n− in1, n1 − 1, d− i)

+Cr(g∆(n1), ℓ) · |{T ′ ∈ G∆(n− ℓn1, n1 − 1, d− ℓ) | DS(T ′) ≺ (nℓ+1, . . . , ndeg(r))}|.

Proof. Let T ′ = (G′, r′, π′) be a canonical tree in G∆(n,m, d), and let (n′
1, n

′
2, . . . , n

′
deg(r′))

denote the descendant sequence of T ′. From Lemma 14, we have the following three

equations.

|{T ′ ∈ G∆(n,m, d) | n′
1 < n1}| = g∆(n, n1 − 1, d). (1)

|{T ′ ∈ G∆(n,m, d) | n′
1 = n1, (n

′
2, . . . , n

′
ℓ) ≺ (n2, . . . , nℓ)}|

=
ℓ−1∑
i=1

Cr(g∆(n1), i) · g∆(n− in1, n1 − 1, d− i). (2)

|{T ′ ∈ G∆(n,m, d) | (n′
1, . . . , n

′
ℓ) = (n1, . . . , nℓ), DS(T ′) ≺ DS(T )}|

= Cr(g∆(n1), ℓ) · |{T ′ ∈ G∆(n− ℓn1, n1 − 1, d− ℓ) | DS(T ′) ≺ (nℓ+1, . . . , ndeg(r))}|.
(3)

Therefore we have

|{T ′ ∈ G∆(n,m, d) | DS(T ′) ≺ DS(T )}|
= |{T ′ ∈ G∆(n,m, d) | n′

1 < n1}|
+|{T ′ ∈ G∆(n,m, d) | n′

1 = n1, (n
′
2, . . . , n

′
ℓ) ≺ (n2, . . . , nℓ)}|

+|{T ′ ∈ G∆(n,m, d) | (n′
1, . . . , n

′
ℓ) = (n1, . . . , nℓ), DS(T ′) ≺ DS(T )}|

= g∆(n, n1 − 1, d) +
ℓ−1∑
i=1

Cr(g∆(n1), i) · g∆(n− in1, n1 − 1, d− i)

+Cr(g∆(n1), ℓ) · |{T ′ ∈ G∆(n− ℓn1, n1 − 1, d− ℓ) | DS(T ′) ≺ (nℓ+1, . . . , ndeg(r))}|.

Based on Lemma 16, we propose an algorithm to obtain the number of the de-

scendant sequence predecessors of a given rooted tree. We assume that the numbers

g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤ m , and 0 ≤ k ≤ ∆ are given. For four inte-

gers n ≥ 1, ∆ ≥ 2, m ∈ [0, n − 1] and d ∈ [0,min{∆, n − 1}], let T = (G, r) be a

rooted tree such that its canonical tree is in G∆(n,m, d), and let (n1, n2, . . . , ndeg(r))

denote the descendant sequence of T . In order to obtain the number of the descen-

dant sequence predecessors of T , we calculate the terms in Lemma 16 one by one.

The number g∆(n, n1 − 1, d) in Equations 1 is given as input. We can find the small-

est integer ℓ such that nℓ > nℓ+1 in O(deg(r)) time, and we can obtain the number
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∑ℓ−1
i=1 Cr(g∆(n1), i) · g∆(n − in1, n1 − 1, d − i) in O(ℓ) time. Then we calculate the

number |{T ′ ∈ G∆(n − ℓn1, n1 − 1, d − ℓ) | DS(T ′) ≺ (nℓ+1, . . . , ndeg(r))}|, recursively.
Then we calculate the sum of them, and we have the number of descendant sequence

predecessors of T . We show a description of the algorithm to obtain the number of

the descendant sequence predecessors of a given tree in Algorithm 11, and we have the

following lemma.

Algorithm 11 Calculate the number of the descendant sequence predecessors

Input: Four integers n ≥ 1, ∆ ≥ 2, m ∈ [0, n − 1] and d ∈ [0,min{∆, n − 1}], a
descendant sequence DS(T ) = (n1, n2, . . . , ndeg(r)) of a rooted tree T = (G, r) such

that its canonical tree is in G∆(n,m, d), and the values of g∆(i, j, k), 1 ≤ i ≤ n,

0 ≤ j ≤ m , and 0 ≤ k ≤ ∆.

Output: The number of descendant sequence predecessors of T .

1: r := g∆(n, n1 − 1, d); /* Eq. (1) */

2: ℓ := the smallest integer such that nℓ > nℓ+1;

3: r := r +
∑ℓ−1

i=1 Cr(g∆(n1), i) · g∆(n− in1, n1 − 1, d− i); /* Eq. (2) */

4: if ℓ < deg(r) then

5: D := (nℓ+1, nℓ+2, . . . , ndeg(r));

6: r := r+Cr(g∆(n1), ℓ)·Algorithm11(n− ℓn1,∆, n1 − 1, d− ℓ,D, g∆);/* Eq. (3)

*/

7: end if ;

8: return r

Lemma 17. Let n ≥ 1, ∆ ≥ 2, m ∈ [0, n−1] and d ∈ [0,min{∆, n−1}] be four integers,
and let T be a rooted tree such that its canonical tree is in G∆(n,m, d). Assume that the

descendant sequence DS(T ) of T and the values of g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤ m,

and 0 ≤ k ≤ ∆ are given. Then the number of descendant predecessors of T can be

obtained in O(d) time.

Proof. Let f(d) denote the total time complexity to calculate the equation in Lemma 16.

Equations 1 and 2 of Lemma 16 can be calculated in O(1) and O(ℓ) time respectively.

Equation 3 of Lemma 16 can be calculated in f(d − ℓ) time. Consequently, for some

constant c1 and c2, we have f(d) = c1+ c2 · ℓ+ f(d− ℓ). We show f(d) can be bounded

by O(d) by induction. Assume that for any d′ < d, f(d′) = c · d′ holds with some

constant c with c1 + (c2 − c) · ℓ < 0. Then, we have

f(d) = c1 + c2 · ℓ+ f(d− ℓ)

= c1 + c2 · ℓ+ c · (d− ℓ)

= c1 + (c2 − c) · ℓ+ c · d
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< cd.

Therefore we have O(f(d)) = O(d).

5.2 The Number of Rank Sequence Predecessors

In this subsection, we devise a method to obtain the number of rank sequence prede-

cessors. Since the rank sequence can be regarded as an upper bounded sequence, the

problem to find the number of the rank sequence predecessors is equivalent to the rank-

ing of upper bounded sequences. Therefore from Theorem 3, we obtain the following

lemma.

Lemma 18. Let n ≥ 1 and ∆ ≥ 2 be two positive integers, and let T = (G, r) be a

rooted tree such that its canonical tree is in G∆(n). Assume that the descendant sequence

DS(T ) and the rank sequence RS(T ), and the values of g∆(i), 1 ≤ i ≤ n are given. Then

the number of rank sequence predecessors of T can be obtained in O(deg(r)2) time.

Proof. Let (n1, n2, . . . , ndeg(r)) denote the descendant sequence of T , and let K de-

note the sequence (g∆(n1), g∆(n2), . . . , g∆(ndeg(r))). Let I1, I2, . . . , Iℓ be the uniform

decomposition of K, and ℓi denote the length of Ii for each i ∈ [1, ℓ]. From Theo-

rem 3, the rank of the sequence RS(T ) in S(K) can be done in O(
∑ℓ

i=1 ℓ
2
i ). From

the property of uniform decomposition, we have
∑ℓ

i=1 ℓi = |DS(T )| = deg(r). Since∑ℓ
i=1 ℓ

2
i < (

∑ℓ
i=1 ℓi)

2 = deg(r)2 holds, the number of rank sequence predecessors of T

can be obtained in O(deg(r)2) time.

Now we give an algorithm to obtain the rank of a rooted tree in Algorithm 12. Let

n ≥ 1 and ∆ ≥ 2 be two positive integers, and let T be a rooted tree such that its

canonical tree is in G∆(n). The vertex v is traversed according to the BFS Post-order.

The descendant sequence and the rank sequence of the subtree T (v) can be obtained by

sorting the pair of (|V (T (v))|, rank∆(T (v))) for all subtrees rooted at a child of v. The

number of the descendant sequence predecessors and the rank sequence predecessors

can be found by Algorithms 11 and 3, and we obtain the rank of T (v) by adding

|D∆(T )| and |R∆(T )| + 1. In this algorithm, the variable rank[v] store the rank of

subtree T (v) in G∆(|V (T (v))|). As a result, we have the following theorem.

Theorem 10. Let n ≥ 1 and ∆ ≥ 2 be two positive integers, and let T = (G, r) be a

rooted tree such that its canonical tree is in G∆(n). Assume that the values of g∆(i, j, k),

1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i − 1}, and 0 ≤ k ≤ min{∆, i − 1} are given. Then the

rank of the canonical tree of T in G∆(n) can be obtained in O(min{n∆2, n2}) time.

Proof. For a vertex v in V (T ), given the number of descendant (resp., rank) for each

subtree rooted at a child of v, the descendant sequence and the rank sequence of the
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Algorithm 12 Ranking Algorithm of G∆(n)

Input: Two positive integers n ≥ 1 and ∆ ≥ 2, a rooted tree T = (G, r) such that

its canonical tree is in G∆(n), and the values of g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤
min{m, i− 1}, and 0 ≤ k ≤ min{∆, i− 1}.

Output: The rank of T in G∆(n).

1: for v ∈ V (T ) in BFS Post-order do

2: if v is a leaf of T then

3: rank[v] := 1

4: else

5: Calculate DS(T (v)) by sorting the number of vertices in all subtrees

rooted at a child of v;

6: Calculate RS(T (v)) by sorting the rank of all subtrees

rooted at a child of v;

7: d := Algorithm 11(n,∆, n− 1,∆− 1, DS(T (v)), g∆);

8: /* (n1, n2, . . . , nℓ) := DS(T (v));K := (g∆(n1), g∆(n2), . . . , g∆(nℓ)) */

9: r := Algorithm 3(K,RS(T (v)));

10: rank[v] := d+ r + 1

11: end if

12: end for;

13: output rank[r]

subtree T (v) can be obtained by sorting the pair of (|V (T (v))|, rank∆(T (v))) for all

subtrees rooted at a child of v. Hence the descendant sequence and rank sequence of

V (T ) can be obtained in O(deg(v) log deg(v)) time if the number of descendant and

the rank for each subtree rooted at a child of v are given. Since the descendant and the

rank of leaves is obvious, by Lemmas 17 and 18, for each v ∈ V (T ), the rank of subtree

T (v) can be identified in O(deg(v) log deg(v) + deg(v) + deg(v)2) = O(deg(v)2) by pro-

cessing the BFS Post-order. Therefore the rank of a tree in G∆(n) can be obtained

in O(
∑

v∈V (T ) deg(v)
2) = O(min{n∆2, n2}) time since we have

∑
v∈V (T ) deg(v)

2 ≤
(
∑

v∈V (T ) deg(r))
2 = (2(n− 1))2.

In order to identify the rank of a given rooted tree, we showed a bottom-up al-

gorithm in Algorithm 12. In this algorithm, we calculate the number of vertices and

the rank for all subtrees. This implies that the algorithm can identify the descendant

representation and the rank representation of the canonical tree of a given rooted tree

from the structure of the given rooted tree. Therefore we have the following corollary.

Corollary 1. Let n ≥ 1 and ∆ ≥ 2 be two positive integers, and let T = (G, r) be a

rooted tree with n vertices such that the maximum degree is at most ∆, and the degree

of r is at most ∆ − 1. Assume that the values of g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤
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min{m, i− 1}, and 0 ≤ k ≤ min{∆, i− 1} are given. Then the canonical tree of T can

be obtained in O(min{n∆2, n2}) time.
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6 Unranking for Degree Bounded Rooted Trees

In this section, for three positive integers n ≥ 1, ∆ ≥ 2, and k ∈ [1, g∆(n)], we devise

an algorithm to generate the k-th canonical tree in G∆(n) following the lexicographical

ascending order of descendant representation σdes. We say that the problem to generate

the k-th canonical tree in G∆(n) is unranking problem. In the ranking problem, we

proposed a bottom-up algorithm which calculats the rank of a tree from the descendant

sequence and the rank sequence. Conversely, in the unranking problem, we propose a

top-down algorithm, that is, we derive the descendant sequence and the rank sequence

from it’s rank. From the descendant sequence and the rank sequence, we know the rank

of each root-subtree. In order to obtain the whole structure of k-th canonical tree, we

apply the unranking algorithm to each subtree recursively.

In subsection 6.1, we explain how to find the descendant sequence of the k-th canon-

ical tree in G∆(n) from the integer k. Similarly, in subsection 6.2, we show how to obtain

the rank sequence of the k-th canonical tree in G∆(n) from the integer k.

6.1 Unranking for Descendant Sequence

For five integers n ≥ 1, ∆ ≥ 2, m ∈ [0, n − 1], d ∈ [0,min{∆, n − 1}], and k ∈
[1, g∆(n,m, d)], we devise an algorithm to identify the descendant sequence of the k-th

canonical tree in G∆(n,m, d) following the lexicographical ascending order of descendant

representation. From Lemma 16, we have the following Lemma.

Lemma 19. Let n ≥ 1, ∆ ≥ 2, m ∈ [0, n − 1] and d ∈ [0,min{∆, n − 1}] be four

integers, and let T be a canonical tree in G∆(n,m, d). Then:

(i) If g∆(n, j − 1, d) < rank∆(T ) ≤ g∆(n, j, d) holds, then the maximum root-subtree

has exactly j vertices;

(ii) If g∆(n, j − 1, d) +
∑ℓ−1

k=1Cr(g∆(j), k) · g∆(n − jk, j − 1, d − k) < rank∆(T ) ≤
g∆(n, j − 1, d) +

∑ℓ
k=1Cr(g∆(j), k) · g∆(n− jk, j − 1, d− k) holds, then the rooted

tree T has ℓ root-subtrees whose number of vertices is exactly j; and

(iii) If the maximum root-subtree of T has exactly j vertices, and T has ℓ root-subtrees

whose number of vertices is j, then let k = rank∆(T )−g∆(n, j−1, d)−
∑ℓ−1

k=1Cr(g∆(j), k)·
g∆(n− jk, j − 1, d− k), k′ = ⌊k/Cr(g∆(j), ℓ)⌋, let Tres be the rooted tree obtained

by removing all j-vertices subtrees in T , and the descendant sequence of Tres is

equal to the descendant sequence of the k′-th tree in G∆(n− jℓ, j − 1, d− ℓ).

Proof. (i) Given two canonical trees T and T ′ in G∆(n), if DS(T ) ≺ DS(T ′) holds,

then we have LD(T ) ≺ LD(T
′). Hence for any trees T ∈ G∆(n, j − 1, d) and a tree

T ′ ∈ G∆(n, j, d) \ G∆(n, j − 1, d), it holds that LD(T ) ≺ LD(T
′) since the first entry of
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DS(T ) is less than j and the first entry of DS(T ′) is j. Therefore g∆(n, j − 1, d) <

rank∆(T ) ≤ g∆(n, j, d) implies that the maximum root-subtree of T has exactly j

vertices.

(ii) From the equation 2 in Lemma 16, the number of canonical trees in G∆(n,m, d)

such that at most ℓ root-subtrees whose vertices are exactly j is
∑ℓ

k=1Cr(g∆(j), k) ·
g∆(n − jk, j − 1, d − k). Let T (resp., T ′) be a canonical tree in G∆(n,m, d) such

that there are k (resp., k′) root-subtrees whose vertices are exactly j respectively. If

k < k′ holds, then we have LD(T ) ≺ LD(T
′) since the first k (resp., k′) entries of the

descendant sequence of T (resp., T ′) is j, respectively.

From Lemma 19-(i), T has at least one exactly j vertices root-subtree since g∆(n, j−
1, d) < rank∆(T ) ≤ g∆(n, j, d) holds. Let T (resp., T ′) be a canonical tree in G∆(n, j, d)

and ℓ (resp., ℓ′) be the number of j vertices root-subtree on T (resp., T ′). If ℓ < ℓ′

holds, then we obtain DS(T ) ≺ DS(T ′) and LD(T ) ≺ LD(T
′) since the first ℓ (resp.,

ℓ′) entries of the descendant sequence of T (resp., T ′) is j.

From Lemma 14, the number of rooted trees such that the number of exactly j

vertices root-subtrees is ℓ is Cr(g∆(j), ℓ) · g∆(n− jk, j− 1, d− ℓ). Therefore if g∆(n, j−
1, d) +

∑ℓ−1
k=1Cr(g∆(j), k) · g∆(n − jk, j − 1, d − k) < rank∆(T ) ≤ g∆(n, j − 1, d) +∑ℓ

k=1 Cr(g∆(j), k) · g∆(n − jk, j − 1, d − k) holds, then T has ℓ root-subtrees whose

vertices are exactly j.

(iii) The number of vertices in Tres is n− jℓ and the degree of root must be at most

d− ℓ. In addition, each root-subtrees in Tres has at most j − 1 vertices. Therefore Tres

belongs to G∆(n−jℓ, j−1, d−ℓ). From Lemma 14, for each tree in G∆(n−jℓ, j−1, d−ℓ),

we obtain a rooted tree by adding ℓ repetitions of exactly j vertices root-subtrees. The

number of variation of attaching such ℓ root-subtrees is Cr(g∆(j), ℓ). Let T ′
res and T̂res

be canonical trees in G∆(n− jℓ, j − 1, d− ℓ) such that LD(T
′
res) ≺ LD(T̂res). The trees

T ′ and T̂ obtained by attached any ℓ repetitions of exactly j vertices subtree to T ′
res

and T̂res respectively satisfy LD(T
′) ≺ LD(T̂ ). Note that, if T ′

res and T̂res has the same

descendant sequence, then this may not hold. Consequently, k′ = ⌊k/Cr(g∆(j), ℓ)⌋
indicates the rank of a canonical tree in G∆(n − jℓ, j − 1, d − ℓ), which has the same

descendant sequence as Tres.

From Lemma 19, we show an algorithm to construct the descendant sequence of k-th

tree in G∆(n,m, d). First we find the maximum number j of vertices in a root-subtree by

Lemma 19-(i), then we find the number of repetitions of the root-subtrees with j vertices

by Lemma 19-(ii). After that, we find the descendant sequence D′ of the tree obtained

by deleting all root-subtrees with j vertices by Lemma 19-(iii). The concatenation of

the sequence (j, j, . . . , j) with length ℓ and D′ is the descendant sequence of k-th tree

in G∆(n,m, d). We show a description of the algorithm in Algorithm 13 and we have

the following lemma.
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Algorithm 13 Constraction of the Descendant Sequence of k-th canonical tree in

G∆(n,m, d)

Input: Five positive integers n ≥ 1, ∆ ≥ 2, m ∈ [0, n− 1], d ∈ [0,min{∆, n− 1}], and
1 ≤ k ≤ g∆(n,m, d), and the values of g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i−1},
and 0 ≤ k ≤ min{∆, i− 1}.

Output: The descendant sequence of the k-th canonical tree in g∆(n,m, d).

1: Calculate the maximum number j of vertices in a root-subtree by Lemma 19-(i);

2: Calculate the number ℓ of repetitions of the root-subtrees with j vertices by

Lemma 19-(ii);

3: k := k − g∆(n, j − 1, d)−
∑ℓ−1

i=1 Cr(g∆(j), i) · g∆(n− ji, j − 1, d− i);

4: k′ := ⌊k/Cr(g∆(j), ℓ)⌋;
5: D′ :=Algorithm 13(n− jℓ, j − 1, d− ℓ, k′, g∆);

6: /*I(ℓ, j) is the uniform sequence with length ℓ and value j */

7: output the concatenation sequence of I(ℓ, j) and D′

Lemma 20. Let n ≥ 1, ∆ ≥ 2, m ∈ [0, n − 1], d ∈ [0,min{∆, n − 1}], and k ∈
[1, g∆(n,m, d)] be five integers. Assume that the values of g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤
j ≤ min{m, i−1}, and 0 ≤ k ≤ min{∆, i−1} are given. Then the descendant sequence

of the k-th canonical tree in G∆(n,m, d) can be obtained in O(d log n) time.

Proof. From Lemma 19-(i), we find the maximum number j of vertices in a root-subtree

in k-th canonical tree by using binary search, and it can be done in O(log n) sincem < n

holds. From Lemma 19-(ii), the number of repetition of root-subtrees with j vertices

can be obtained in O(d) time. Let f(d) denote the time complexity of Algorithm 13.

We have f(d) = O(log n) +O(ℓ) + f(d− ℓ) = O(d log n).

6.2 Unranking for Rank Sequence

Given three positive integers n ≥ 1, ∆ ≥ 2, and k ∈ [1, g∆(n)], we derive the rank

sequence of the k-th canonical tree in G∆(n). From Lemma 20, we obtain the descendant

sequence (n1, n2, . . . , ndeg(r)) of the k-th canonical tree in G∆(n). For the sequence

K = (g∆(n1), g∆(n2), . . . , g∆(ndeg(r))), the rank sequence of the k-th canonical tree

T in G∆(n) is the (k − |D∆(T )|)-th upper bounded sequence in S(K). Hence the

rank sequence identification problem is equivalent to the unranking problem for upper

bounded sequences. By Algorithm 4, the rank sequence of k-th canonical tree can be

obtained.

Finally, we propose an algorithm for the unranking of G∆(n). Given three positive

integers n ≥ 1, ∆ ≥ 2, and k ∈ [1, g∆(n)], we find the descendant sequence of the k-th

canonical tree in G∆(n) by Lemma 19, then we find the rank sequence of the k-th tree

G∆(n) by unranking algorithm for upper bounded sequences. After that, we have the
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number of vertices and the rank of each root-subtree of the k-th canonical tree, and we

construct the structure of each root-subtree, recursively. We show a description of the

unranking algorithm for G∆(n) in Algorithm 14, and we have the following theorem.

Algorithm 14 Unranking Algorithm for G∆(n)

Input: Three positive integers n ≥ 1, ∆ ≥ 2, and k ∈ [1, g∆(n)], the values of

g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i− 1}, and 0 ≤ k ≤ min{∆, i− 1}.
Output: The descendant representation of k-th tree T in G∆(n).

1: Calculate the descendant sequence D = (n1, n2, . . . , nℓ) of k-th tree;

2: Calculate the rank sequence R = (r1, r2, . . . , rℓ) of k-th tree;

3: for i = 1, 2, . . . , ℓ do

4: ci :=Algorithm 14(ni,∆, ri, g∆);

5: Delete the first entry from ci
6: end for

7: return (n,D, c1, c2, . . . , cℓ)

Theorem 11. Let n ≥ 1, ∆ ≥ 2, and k ∈ [1, g∆(n)] be three positive integers. Assume

that the values of g∆(i, j, k), 1 ≤ i ≤ n, 0 ≤ j ≤ min{m, i − 1}, and 0 ≤ k ≤
min{∆, i − 1} are given. Then the k-th canonical tree in G∆(n) can be constructed in

O(min{n2∆2 log∆, n3 log∆}) time.

Proof. Let T be the k-th canonical tree in G∆(n) rooted at a vertex r. From Lemma 20,

the descendant sequence (n1, n2, . . . , ndeg(r)) of T can be obtained in O(deg(r) log n)

time from only the integer k.

Let K denote the sequence (g∆(n1), g∆(n2), . . . , g∆(ndeg(r))). From Lemma 13 and

the equation k = |D∆(T )|+|R∆(T )|+1, we see that the rank sequence of k-th canonical

tree in G∆(n) is the (k−|D∆(T )|)-th sequence in S(K). From Lemma 17, the number of

descendant predecessors |D∆(T )| of T can be obtained in O(deg(r)). The rank sequence

of T can be derived from the integer k by the unranking of S(K).

Let I1, I2, . . . , Iℓ denote the uniform decomposition ofK, and let ℓi (resp.,mi) denote

the length (resp., value) of Ii for each i ∈ [1, ℓ], respectively. Note that an ordered tree

with n vertices and the maximum degree at most ∆ can be uniquely represented by

a sequence with length n such that each entry is in [1,∆] (i.e. for an ordered tree, a

sequence obtained by arranging degree for each vertex in DFS-ordering can be a unique

representation of ordered trees, and if the maximum degree of the ordered tree can be

bounded by ∆, then each entry of the sequence is bounded by ∆.) As a result, the

number of rooted trees in g∆(ni) can be bounded by ∆ni , and we see that mi can be

bounded by ∆ni . Hence from Theorem 4, the rank sequence of k-th tree can be obtained

in O(
∑ℓ

i=1 ℓ
2
i log(ℓi +mi)) = O(n deg(r)2 log∆) time.
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In order to obtain whole structure of k-th canonical tree in G∆(n), we apply the

identification of the descendant sequence and the rank sequence for each root-subtrees,

recursively. From Lemma 20 and Theorem 4, for each v ∈ V (T ), the identification

of the descendant sequence and the rank sequence for each subtree can be done in

O(deg(v) log n + n deg(v)2 log∆). Since we have deg(v) ≤ ∆ and
∑

v∈V (T ) deg(v) =

2(n − 1), it holds that
∑

v∈V (T ) deg(v) log n = n log n and
∑

v∈V (T ) n deg(v)2 log∆ ≤
min{n2∆2 log∆, n3 log∆}. Hence we have

O(
∑

v∈V (T )

deg(v) log n+
∑

v∈V (T )

n deg(v)2 log deg(v))

= O(n log n+min{n2∆2 log∆, n3 log∆})
= O(min{n2∆2 log∆, n3 log∆}).

(4)

As a result, the unranking of G∆(n) can be done in O(min{n2∆2 log∆, n3 log∆}) time.
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7 Experimental Results

In order to examine the practical performance of our enumeration algorithm, we im-

plemented our sequential enumeration algorithm, and we evaluated the practical time

to enumerate all non-isomorphic unlabeled trees with/without the degree bound. Our

algorithm is implemented in the C++ language, and compiled using gcc version 4.8.4,

with -O3 optimization. All experiments were run on a PC with Intel(R) Xeon(R) CPU

E5-1660 v3 @ 3.00GHz and 32 GB memory.

First we conduct an experiment for enumerating all non-isomorphic unlabeled trees

without degree bound (∆ = n−1). We show the number of trees, the time for counting

phase, the time for enumerating phase, the total time, and the average time to generate

one tree in Table 1. We set the time limit to 600 seconds. If the computation time is

over 600 seconds, then we indicate by T.O. (for “time out”). From Table 1, we observe

that our implementation of the algorithm can generate all trees with up to 27 vertices

in 600 seconds. We see that the average time to generate one tree will be increasing

as the number of vertices increase. This result implies that the time complexity of this

algorithm is not constant time per tree.

There are two production programs Molgen [3] and Enumol to enumerate chemical

graphs. Both Molgen and Enumol can enumerate all alkanes with n carbons, that is,

the non-isomorphic unlabeled unrooted trees with n vertices and the maximum degree

at most 4. In order to confirm an advantage of computation time, we compare the

computation time to generate all trees in F4(n) by Molgen, Enumol, and our proposed

algorithm. The summary of the computation times is shown in Table 2. The time limit

is again set to be 600 seconds. From Table 2, Molgen can enumerate all alkanes up to 23

carbons, Enumol can generate all alkanes up to 27 carbons, and proposed algorithm can

enumerate all alkanes up to 30 carbons in 600 seconds. We observe that our algorithm

has the shortest running time. In addition, we observe that if the number of vertices is

even, then the time for generating the predecessor tree is in general slightly larger than

in the odd case. This can be attributed to the fact that if n is even, then some trees

have a bicentroid root, and the algorithm does some extra processing in this case.
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Table 1: Computation time for enumerating all trees on n vertices without a degree

bound.

n |Fn−1(n)|
counting enumerating

total time[s] average time[s]
time[s] time[s]

21 2144505 1.25× 10−4 0.68 0.68 3.19× 10−7

22 5623756 1.31× 10−4 2.05 2.05 3.64× 10−7

23 14828074 1.54× 10−4 5.52 5.52 3.72× 10−7

24 39299897 1.81× 10−4 16.28 16.28 4.14× 10−7

25 104636890 1.84× 10−4 44.78 44.78 4.28× 10−7

26 279793450 2.37× 10−4 129.84 129.84 4.64× 10−7

27 751065460 2.49× 10−4 356.25 356.25 4.74× 10−7

28 2023443032 2.94× 10−4 T.O.∗ T.O. T.O.
∗T.O. stands for “Time Out,” set to be 600 seconds in our experiments.

Table 2: Computation time for enumerating all trees on n vertices with maximum

degree bound ∆ = 4.

n |F4(n)| Molgen[s] Enumol[s]

Proposed

counting enumerating total average

time[s] time[s] time[s] time[s]

21 910726 44.69 0.73 0.85× 10−4 0.07 0.07 8.55× 10−8

22 2278658 110.51 1.99 0.67× 10−4 0.19 0.19 8.61× 10−8

23 5731580 281.35 4.91 0.88× 10−4 0.47 0.47 8.20× 10−8

24 14490245 T.O.∗ 13.28 0.81× 10−4 1.31 1.31 9.06× 10−8

25 36797588 T.O. 33.19 0.87× 10−4 3.38 3.38 9.19× 10−8

26 93839412 T.O. 91.07 0.97× 10−4 8.83 8.83 9.41× 10−8

27 240215803 T.O. 229.95 1.15× 10−4 21.48 21.48 8.94× 10−8

28 617105614 T.O. T.O. 1.07× 10−4 58.48 58.48 9.47× 10−8

29 1590507121 T.O. T.O. 1.52× 10−4 144.19 144.19 9.06× 10−8

30 4111846763 T.O. T.O. 1.52× 10−4 387.37 387.37 9.42× 10−8

31 10660307791 T.O. T.O. 1.72× 10−4 T.O. T.O. T.O.
∗T.O. stands for “Time Out,” set to be 600 seconds in our experiments.
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8 Conclusion

In this paper, we defined an order of trees and we designed a scheme for generating all

trees according to this order. This scheme consists of two phases, a counting phase and

an enumerating phase. The counting phase calculates the number of rooted trees with

n vertices such that the maximum degree bound is ∆ and the degree of the root vertex

is at most ∆ − 1 by dynamic programming. The enumerate phase generates all trees

according to the tree ordering by using the information from the counting phase. After

O(n2∆2) time pre-processing, the proposed algorithm can enumerate all non-rooted

isomorphic trees on n vertices whose maximum degree at most ∆ in O(n) time per tree

and O(n2∆) space in total.

In addition, we propose a ranking algorithm and an unranking algorithm. After

O(n2∆2) time pre-processing, our ranking algorithm can obtain the rank of a tree in

G∆(n) in O(min{n∆2, n2}) time, and our unranking algorithm can generate the tree of

any given rank in O(min{n2∆2 log∆, n3 log∆} time.

For the future work, the following three problems are open. First we are interested in

an enumeration algorithm with constant time per tree. There exists a family-tree based

algorithm for enumeration unlabeled trees in constant time per tree [20]. However,

we only proposed an algorithm for enumeration trees in O(n) time per tree. There

may exist an algorithm for enumeration trees in the lexicographical ascending order of

descendant representation in constant time per tree.

Second the time complexities of sequential enumeration, ranking and unranking de-

pend on the order of trees. For a tree order which is different from the lexicographical

ascending order of descendant representation, we construct algorithms for sequential

enumeration, ranking, and unranking of trees. Then the time complexity of the al-

gorithms following a different tree order may be different from the time complexity

of the algorithms we proposed. Therefore finding an order of trees to achieve better

time complexity for sequential enumeration, ranking, and unranking is one of the open

problems.

Third we would like to design a sequential enumeration, ranking, and unranking

algorithms for more general graphs. Enumeration of chemical compounds is one of

the applications of graph enumeration. We can represent a chemical compound as a

graph with the vertex color and the edge multiplicity. Hence the enumeration, ranking,

and unranking for trees with the vertex color and the multiple edges is an important

problem. In addition, we would like to generate graphs with cycles. For example, we

devise the enumeration for graphs with exactly one cycle. We regard a graph with one

cycle as a cycle and rooted trees connected to the cycle. If we obtain the rank of trees

connected to the cycle, then we can generate the graph by using unranking algorithm

for trees. Hence all we have to do is to enumerate all possible combination of the rank
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of trees connected to the cycle. This technique will be applied for not only graphs with

one cycle but also graphs consisting of a special structure and rooted trees connected

to the special structure. For instance, one of the special structures is a connected graph

with three cycles such that the degree of each vertex is at least 2. Therefore based

on our sequential enumeration and unranking, designing an algorithm for enumerating

more general graphs is one of the open problems.
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