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ABSTRACT
In this paper, we propose a stabilized sequential quadratic programming (SQP)
method for optimization problems in function spaces. A form of the problem consid-
ered in this paper can widely formulate many types of applications, such as obstacle
problems, optimal control problems, and so on. Moreover, the proposed method is
based on the existing stabilized SQP method and can find a point satisfying the
Karush-Kuhn-Tucker (KKT) or asymptotic KKT conditions. One of the remark-
able points is that we prove its global convergence to such a point under some as-
sumptions without any constraint qualifications. In addition, we guarantee that an
arbitrary accumulation point generated by the proposed method satisfies the KKT
conditions under several additional assumptions. Finally, we report some numerical
experiments to examine the effectiveness of the proposed method.
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1. Introduction

In this paper, we consider the following optimization problem:

Minimize
x∈X

f(x)

subject to g(x) = 0, hj(x) ≥ 0 (j = 1, . . . ,m),
(1)

where X, Y , and Zj (j = 1, . . . ,m) are real Banach spaces, W is a real Hilbert space
such that X is densely and continuously embedded in W , and f : W → R, g : W → Y ,
and hj : W → Zj (j = 1, . . . ,m). In addition, we suppose that Zj is densely and
continuously embedded in L2(Ωj) for each j ∈ {1, . . . ,m}, where Ωj ⊂ RMj is a
measure space. Note that the order on Zj is induced by the natural order on L2(Ωj).
The detailed setting of (1) is provided in Section 2.

Optimization problems in function spaces arise from a lot of fields, and there are
many types of them, such as obstacle problems, optimal control problems, and so on.
For these problems, many optimization methods have been proposed so far [3, 5, 6, 8–
11, 17–19, 22–27, 29, 31, 34, 35, 37, 38, 41, 42, 44]. However, a large number of these

CONTACT Yuya Yamakawa. Email: yuya@i.kyoto-u.ac.jp



existing methods are designed to solve problems possessing particular structures. In
other words, these structures can be regarded as a restriction for such existing methods.
For example, objective functionals considered in [5, 9–11, 18, 24, 25, 27, 29, 31, 37, 41]
are quadratic ones, inequality constraints seen in [11, 18, 24, 25, 27, 34, 35, 37, 38, 41,
42] are the box type, and so forth.

In the field of finite dimensional optimization, there are a lot of methods for solving
optimization problems [13, 21, 33]. The purpose of such existing methods is basically
to obtain a Karush-Kuhn-Tucker (KKT) point which satisfies the KKT conditions.
Although the KKT conditions are known as first-order necessary optimality condi-
tions, they do not necessarily hold unless some kind of constraint qualification (CQ) is
satisfied. In the early 2000s, sequential optimality conditions were introduced for finite
dimensional nonlinear programming problems [28, 32]. The conditions are known as
genuine optimality conditions because they always hold at local optima without CQs.
For finite dimensional problems, several researchers have developed methods to find
points satisfying such conditions so far [1, 2, 39, 40]. Recently, Kanzow, Steck, and
Wachsmuth [23] have extended the sequential optimality conditions of finite dimen-
sional problems into infinite ones. The extended one is called asymptotic KKT (AKKT)
conditions. In [23], an augmented Lagrangian method has also been proposed, and it is
designed to compute AKKT points which satisfy the AKKT conditions. Furthermore,
Börgens, Kanzow, and Steck [8] have improved the previous augmented Lagrangian
method so that it can be applied to more general optimization problems. To the best
of the author’s knowledge, the augmented Lagrangian method is the only way to find
AKKT points of infinite dimensional problems. However, this method uses first-order
information to update the Lagrange multipliers, that is to say, it has only the lin-
early convergence property. Moreover, in the case where highly accurate solutions are
required, the augmented Lagrangian method may not be appropriate.

The purpose of this paper is to propose a stabilized sequential quadratic program-
ming (SQP) method for optimization problems in function spaces and to prove its
global convergence property under some mild assumptions without any CQs. Although
some existing SQP-type methods [3, 17, 18, 22, 26, 35, 41, 44] have been developed for
optimization problems in function spaces, the proposed method can be distinguished
from them in view of the following two points:

(i) The proposed method can solve optimization problem (1), which allows to for-
mulate many kinds of problems in function spaces including degenerate ones.
As previously mentioned, most of the existing methods are designed to solve
optimization problems possessing specific structures, and hence this fact is an
advantage over the existing ones.

(ii) A sequence generated by the proposed method converges globally to a point
that satisfies the KKT or AKKT conditions. If a certain CQ holds, then its arbi-
trary accumulation point satisfies the KKT conditions. Therefore, the proposed
method also has a standard convergence property seen in a large number of the
existing methods. However, convergence to an AKKT point is not seen in the
existing SQP-type methods for optimization problems in function spaces, that
is, the convergence result of the current paper is the first of its kind.

This paper is organized as follows. In Section 2, we first describe the detailed setting
of problem (1). Secondly, we introduce optimality conditions for (1). In Section 3, we
explain the stabilized SQP method and give its formal statement. Section 4 shows the
global convergence of the proposed method. Section 5 provides some concrete applica-
tions of (1) and reports numerical results obtained by applying the proposed method
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to those applications. Finally, some concluding remarks are presented in Section 6.
In the following, we define some mathematical notation. The set of positive integers

is denoted by N. Let X and Y be real Banach spaces. The norm on X is represented
by ‖ · ‖X . Let L(X ,Y) be the normed space of bounded linear operators from X to Y.
We use ‖ · ‖X→Y to denote the norm on L(X ,Y). Moreover, we define X ∗ := L(X ,R).
For ϕ ∈ L(X ,Y), its adjoint operator is denoted by ϕ∗ ∈ L(Y∗,X ∗). The closed ball
in X with radius r > 0 is defined by BX (r) := {x ∈ X ; ‖x‖X ≤ r}. Let 〈·, ·〉X ∗,X
be the associated dual pairing. If X is a Hilbert space, then its inner product is
denoted by (·, ·)X , and its norm is defined by ‖ · ‖X :=

√
(·, ·)X . If X ⊂ Y holds and

the canonical injection IX ,Y from X into Y is continuous, then we write X ↪→ Y.
Furthermore, we will omit the canonical injection IX ,Y if X ↪→ Y is clear. Let Z :=

X × Y be the product space. The norm on Z is defined by ‖z‖Z := (‖x‖2X + ‖y‖2Y)
1

2

for z = (x, y) ∈ Z. We identify Z∗ with X ∗ × Y∗. The dual pairing between Z∗

and Z is defined by 〈ϕ, z〉Z∗,Z := 〈φ, x〉X ∗,X + 〈ψ, y〉Y∗,Y for ϕ = (φ, ψ) ∈ Z∗ and
z = (x, y) ∈ Z. If X and Y are Hilbert spaces, then the inner product on Z is defined
by (z1, z2)Z := (x1, x2)X + (y1, y2)Y for z1 = (x1, y1) ∈ Z and z2 = (x2, y2) ∈ Z.
Let F : X → Y be Fréchet differentiable at x ∈ X . The Fréchet derivative of F is
represented by F ′. If X is a product space such that X = X1 × · · · × Xn with n ≥ 2,
then x ∈ X is expressed as x = (x1, . . . , xn) ∈ X1 × · · · × Xn, and we denote by Fxi

the partial Fréchet derivative of F with respect to xi ∈ Xi, and denote by Fxixj
the

partial Fréchet derivative of Fxi
with respect to xj ∈ Xj . We use →, ⇀, and ⇀∗ to

indicate strong, weak, and weak∗ convergence, respectively. For a ∈ Rp and b ∈ Rp,
we denote by a · b the inner product of a and b defined as a · b := a⊤b, where >
means transpose. For c ∈ Rp, the Euclidean norm of c is represented by |c| :=

√
c · c.

Let F : S → Rn be a function, where S ⊂ Rn. Moreover, let F1, . . . , Fn be functions
from S to R such that F (t) := (F1(t), . . . , Fn(t)) for t ∈ S. The positive part of F is
denoted by [F ]+, i.e., [F ]+(t) := ([F1(t)]+, . . . , [Fn(t)]+) for t ∈ S, where the positive
part of r ∈ R is also denoted by [r]+ := max{r, 0}. If S is an open set and F is
differentiable at t ∈ S, we use ∇F (t) to represent the transposition of its Jacobian at
t, that is, ∇F (t) := [∇F1(t) · · ·∇Fm(t)]. Note that if m = 1, then ∇F (t) means the
gradient of F at t. For a closed convex set C in a Hilbert space, we write PC for the
metric projector over C. Let T be a set included in a topological space. The interior
and closure of T are denoted by int(T ) and T̄ , respectively. We use 1T to denote the
characteristic function of T . We represent card(T ) as the cardinality of T . We write
u ≲ v if there exists a universal constant c > 0 such that u ≤ cv.

2. Preliminaries

First, we provide the detailed setting associated with problem (1). Secondly, we define
several optimality conditions.

2.1. Problem setting

Throughout this paper, we use the following notation:

Vj := L2(Ωj) (j = 1, . . . ,m), V := V1 × · · · × Vm,
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where Ωj ⊂ RMj is a bounded open domain with a Lipschitz boundary ∂Ωj for all
j ∈ {1, . . . ,m}. For ϕ ∈ Vj and φ ∈ Vj , the inequality ϕ ≥ φ means ϕ(τ) ≥ φ(τ) almost
everywhere (a.e.) τ ∈ Ωj . For ϕ0 = (ϕ1, . . . , ϕm) ∈ V and φ0 = (φ1, . . . , φm) ∈ V , the
inequality ϕ0 ≥ φ0 indicates ϕj ≥ φj for all j ∈ {1, . . . ,m}. We suppose that the real
Banach spaces X, Y , and Zj (j = 1, . . . ,m) satisfy the following assumptions:

• X is densely and continuously embedded in W ;
• Y is densely and continuously embedded in some Hilbert space U ;
• Z1, . . . , Zm are densely and continuously embedded in V1, . . . , Vm, respectively.

We define Z := Z1 × · · · × Zm. The above setting yields

X ↪→W ∼=W ∗ ↪→ X∗, Y ↪→ U ∼= U∗ ↪→ Y ∗, Z ↪→ V ∼= V ∗ ↪→ Z∗.

Let Ij : Zj → Vj be the canonical injection from Zj to Vj . We define KVj
and KZj

by

KVj
:= {ϕ ∈ Vj ;ϕ ≥ 0}, KZj

:= {ϕ ∈ Zj ; Ij(ϕ) ∈ KVj
},

respectively. We also define KV := KV1
× · · · × KVm

and KZ := KZ1
× · · · × KZm

.
For ϕ ∈ Zj and φ ∈ Zj , the inequality ϕ ≥ φ is often used to indicate ϕ − φ ∈ KZj

.
Similarly, for ϕ0 ∈ Z and φ0 ∈ Z, the inequality ϕ0 ≥ φ0 means ϕ0 − φ0 ∈ KZ . Let
h : X → Z be a functional defined by

h(x) := (h1(x), . . . , hm(x)).

In addition to the above setting, no CQ is required for problem (1) as stated in
Section 1.

The above setting enables us to represent many mathematical optimization models
in function spaces, such as obstacle problems and elliptic control problems, as prob-
lem (1). In Section 5, we provide several concrete applications.

2.2. Optimality conditions

This section gives definitions of several first-order optimality conditions and CQs for
problem (1). In these definitions, the differentiability of the functionals included in (1)
is required, and hence we suppose that f , g, and h are continuously Fréchet differen-
tiable on X. In addition, we denote the Lagrangian L : X × Y ∗ × Z∗ → R by

L(x, y, z) := f(x)− 〈y, g(x)〉Y ∗,Y − 〈z, h(x)〉Z∗,Z ,

and we denote the dual cone of KZ by

K+
Z := {z ∈ Z∗; 〈z, ζ〉Z∗,Z ≥ 0 ∀ζ ∈ KZ}.

In the following, we define the KKT conditions for problem (1).

Definition 1. If x ∈ X is a feasible point of problem (1), and there exists (y, z) ∈
Y ∗ ×K+

Z such that

Lx(x, y, z) = 0, 〈z, h(x)〉Z∗,Z = 0,
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then we say that (x, y, z) satisfies the Karush-Kuhn-Tucker (KKT) conditions.

We call x a KKT point if there exists (y, z) such that (x, y, z) satisfies the KKT
conditions. As it is well known, the KKT conditions are necessary for optimality and
do not make sense without some CQ. In this paper, we introduce the Robinson CQ
and its extension.

Definition 2. If x ∈ X is a feasible point of problem (1) and satisfies

0 ∈ int

([
g(x)
h(x)

]
+

[
g′(x)
h′(x)

]
X −

[
{0}
KZ

])
,

then we say that the Robinson constraint qualification (RCQ) holds at x. If x ∈ X,
which is not necessarily a feasible point of problem (1), satisfies the above condition,
then we say that the extended Robinson constraint qualification (ERCQ) holds at x.

It follows from [7, Theorem 3.9] that for each local optimum x ∈ X, the set {(y, z) ∈
Y ∗ × K+

Z ; (x, y, z) satisfies the KKT conditions} is nonempty, convex, bounded, and
weakly∗ compact in Y ∗ ×Z∗ under the RCQ. Hence, the KKT conditions make sense
under the RCQ. Note that the RCQ requires that the point x is feasible. In contrast, the
ERCQ is not restricted to feasible points. Such an extension is also seen in [8, 12, 14].
The ERCQ plays a crucial role in the global convergence analysis given in Section 4.

Next, we define the AKKT conditions which are first-order necessary optimality
conditions. Note that they are an extension of [23, Definition 5.2] because the original
definition has no equality constraint. In the following definition, we assume that the
mapping ϕ ∈ Z 7→ [ϕ]+ ∈ Z is well-defined and continuous on Z.

Definition 3. If x ∈ X is a feasible point of problem (1), and there exist sequences
{xk} ⊂ X, {yk} ⊂ Y ∗, and {zk} ⊂ K+

Z such that

lim
k→∞

‖xk − x‖X = 0, lim
k→∞

‖Lx(xk, yk, zk)‖X∗ = 0, lim
k→∞
〈zk, [h(xk)]+〉Z∗,Z = 0,

then we say that x satisfies the asymptotic Karush-Kuhn-Tucker (AKKT) conditions.

We call x an AKKT point if x satisfies the AKKT conditions. Moreover, we call
{(xk, yk, zk)} which appears in Definition 3 an AKKT sequence corresponding to x.
The next theorem states that the AKKT conditions are satisfied at each local optimum
whether or not CQs hold. We omit the proof because it can be shown in a similar way
to the proof of [23, Theorem 5.5].

Theorem 1. Suppose that X is reflexive. Suppose also that f , g, and h are contin-
uously Fréchet differentiable on X and that f , ‖g(·)‖U , and ‖[−h(·)]+‖V are weakly
lower semicontinuous on X. If x ∈ X is a local minimum of problem (1), then it
satisfies the AKKT conditions of (1).

The following proposition provides sufficient conditions under which an AKKT point
is a KKT point.

Proposition 1. Assume that f , g, and h are continuously Fréchet differentiable on X,
and ϕ ∈ Z 7→ [ϕ]+ ∈ Z is well-defined and continuous on Z. Assume also that Y and
Z are separable. Let x ∈ X be an AKKT point of problem (1) and let {(xk, yk, zk)} ⊂
X × Y ∗ × Z∗ be an AKKT sequence corresponding to x. If the RCQ holds at x, then
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there exist y ∈ Y ∗, z ∈ Z∗, and M ⊂ N such that yk ⇀
∗ y and zk ⇀

∗ z as k → ∞,
k ∈M, and (x, y, z) satisfies the KKT conditions of (1).

Proof. To begin with, we show that {yk} ⊂ Y ∗ and {zk} ⊂ Z∗ are weak∗ sequentially
compact. Let U := Y × Z and S(x) := {(u, v) ∈ U ;∃x ∈ X, ∃z ∈ KZ , u = g(x) +
g′(x)x, v = h(x) + h′(x)x − z}. Now, the RCQ holds at x, and hence there exists
r > 0 such that BU (r) := {w ∈ U ; ‖w‖U ≤ r} ⊂ S(x). Let s ∈ Y and t ∈ Z be
arbitrary elements such that ‖s‖Y ≤ 1 and ‖t‖Z ≤ 1. We define u := r

2s, v := r
2 t, and

w := (u, v) ∈ U . Note that ‖w‖U ≤
√
2
2 r, namely, w ∈ BU (r) ⊂ S(x). This fact and the

feasibility of x imply that there exist x ∈ X and z ∈ KZ such that

u = g′(x)x, v = h(x) + h′(x)x− z. (2)

Since {(xk, yk, zk)} is an AKKT sequence corresponding to x, we have ‖xk−x‖X → 0
as k → ∞. Then, the continuity of f ′, g′, h′, and h means that there exist c > 1 and
m ∈ N such that, for all k ≥ m,

‖f ′(xk)‖X∗ ≤ δr(c− 1)

4
, ‖g′(x)− g′(xk)‖X→Y ≤

δr

8
, (3)

‖h′(x)− h′(xk)‖X→Z ≤
δr

16
, ‖h(x)− h(xk)‖Z ≤

r

16
, (4)

where δ := 1/max{‖x‖X , 1}. On the other hand, both {‖Lx(xk, yk, zk)‖X∗} and
{〈zk, [h(xk)]+〉Z∗,Z} converge to zero, and hence there exists n ∈ N such that for
all k ≥ n,

‖Lx(xk, yk, zk)‖X∗ ≤ δr

8
, |〈zk, [h(xk)]+〉Z∗,Z | ≤

r

8
. (5)

Let k be an arbitrary integer with k > k := max{m,n}. Notice that h(xk) = [h(xk)]+−
[−h(xk)]+, zk ∈ K+

Z , 0 ≤ 〈zk, z〉Z∗,Z , and 0 ≤ 〈zk, [−h(xk)]+〉Z∗,Z . By using (2)–(5),
we obtain

〈yk, u〉Y ∗,Y + 〈zk, v〉Z∗,Z

= 〈yk, (g′(x)− g′(xk))x〉Y ∗,Y − 〈zk, z〉Z∗,Z + 〈zk, (h′(x)− h′(xk))x〉Z∗,Z

+ 〈zk, h(x)− h(xk)〉Z∗,Z + 〈zk, [h(xk)]+ − [−h(xk)]+〉Z∗,Z

+ 〈f ′(xk), x〉X∗,X − 〈Lx(xk, yk, zk), x〉X∗,X

≤ ‖g′(x)− g′(xk)‖X→Y ‖x‖X‖yk‖Y ∗ + ‖h′(x)− h′(xk)‖X→Z‖x‖X‖zk‖Z∗

+ ‖h(x)− h(xk)‖Z‖zk‖Z∗ + |〈zk, [h(xk)]+〉Z∗,Z |
+ ‖f ′(xk)‖X∗‖x‖X + ‖Lx(xk, yk, zk)‖X∗‖x‖X

≤ r

4
max{‖yk‖Y ∗ , ‖zk‖Z∗}+ r

4
c.

(6)

Multiplying both sides of (6) by 2
r and exploiting s = 2

ru and t = 2
rv yield 〈yk, s〉Y ∗,Y +

〈zk, t〉Z∗,Z ≤ 1
2 max{‖yk‖Y ∗ , ‖zk‖Z∗}+ 1

2c. Since s ∈ Y and t ∈ Z are arbitrary elements
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satisfying ‖s‖Y ≤ 1 and ‖t‖Z ≤ 1,

‖yk‖Y ∗ + ‖zk‖Z∗ = sup
∥s∥Y ≤1

〈yk, s〉Y ∗,Y + sup
∥t∥Z≤1

〈zk, t〉Z∗,Z

≤ 1

2
max{‖yk‖Y ∗ , ‖zk‖Z∗}+ 1

2
c.

(7)

Meanwhile, it is clear that max{‖yk‖Y ∗ , ‖zk‖Z∗} ≤ ‖yk‖Y ∗ + ‖zk‖Z∗ . This fact and (7)
lead to max{‖yk‖Y ∗ , ‖zk‖Z∗} ≤ c, namely, ‖yk‖Y ∗ ≤ c and ‖zk‖Z∗ ≤ c for k > k. Obvi-
ously, ‖yk‖Y ∗ ≤ max{‖y1‖Y ∗ , . . . , ‖yk‖Y ∗} and ‖zk‖Z∗ ≤ max{‖z1‖Z∗ , . . . , ‖zk‖Z∗} for
k ≤ k, and therefore {yk} and {zk} are bounded in Y ∗ and Z∗, respectively. Now we
recall that Y and Z are separable. By these facts and the boundedness of {yk} ⊂ Y ∗

and {zk} ⊂ Z∗, there exist y ∈ Y ∗, z ∈ Z∗, andM⊂ N such that

w∗ − lim
k→∞,k∈M

yk = y, w∗− lim
k→∞,k∈M

zk = z. (8)

From now on, we prove the assertion of this proposition by exploiting the above
result. It is sufficient to show that z ∈ K+

Z , Lx(x, y, z) = 0, and 〈z, h(x)〉Z∗,Z = 0
because x is feasible to (1). Note that {zk} ⊂ K+

Z because {(xk, yk, zk)} ⊂ X×Y ∗×Z∗

is an AKKT sequence corresponding to x. It then follows from the second equality
of (8) that

〈z, ζ〉Z∗,Z = lim
k→∞,k∈M

〈zk, ζ〉Z∗,Z ≥ 0 ∀ζ ∈ KZ .

Thus, we can verify z ∈ K+
Z . Now, let ξ ∈ X and k ∈M be arbitrary. Then we have

|〈Lx(x, y, z), ξ〉X∗,X |
≤ ‖Lx(xk, yk, zk)‖X∗‖ξ‖X + ‖f ′(xk)− f ′(x)‖X∗‖ξ‖X

+ ‖g′(xk)− g′(x)‖X→Y ‖ξ‖X‖yk‖Y ∗ + |〈yk − y, g′(x)ξ〉Y ∗,Y |
+ ‖h′(xk)− h′(x)‖X→Z‖ξ‖X‖zk‖Z∗ + |〈zk − z, h′(x)ξ〉Z∗,Z |.

(9)

Moreover, we obtain

|〈z, h(x)〉Z∗,Z | = |〈z, [h(x)]+〉Z∗,Z |
≤ |〈zk, [h(xk)]+〉Z∗,Z |+ |〈z − zk, [h(x)]+〉Z∗,Z |

+ ‖zk‖Z∗‖[h(x)]+ − [h(xk)]+‖Z ,
(10)

where the first equality follows from the feasibility of x. We recall that ‖xk − x‖X →
0, ‖Lx(xk, yk, zk)‖X∗ → 0, and 〈zk, [h(xk)]+〉Z∗,Z → 0 as k → ∞, k ∈ M. Then,
using (8)–(10), and the continuity of f ′, g′, h′, and [h(·)]+ derives Lx(x, y, z) = 0 and
〈z, h(x)〉Z∗,Z = 0. Therefore, the assertion is proven.

3. A stabilized SQP method

In this section, we provide a stabilized SQP method for problem (1). The proposed
method consists of three main steps: computing a search direction, updating a current
point, and updating Lagrange multipliers and some parameters. Before describing
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formal statement of the proposed method, we explain the three steps. Note that the
proposed method generates two kinds of Lagrange multiplier sequences {(yk, zk)} and
{(yk, zk)}. Throughout this section, the functionals f , g, and h are assumed to be
twice continuously Fréchet differentiable on W .

3.1. Computing a search direction

Let (x, y, z) ∈ X×U ×V be a given point. In the proposed method, we solve a certain
subproblem to determine a search direction. To give the subproblem, we begin by
considering the following:

Minimize
(ξ,η,ζ)∈W

(f ′(x), ξ)W +
1

2
(Hξ, ξ)W +

σ

2
‖η‖2U +

σ

2
‖ζ‖2V

subject to g(x) + g′(x)ξ + σ(η − y) = 0,

h(x) + h′(x)ξ + σ(ζ − z) ≥ 0,

(11)

where W := W × U × V , and H ∈ L(W,W ) represents Lxx(x, y, z) or its approxima-
tion, and σ > 0 is a penalty parameter. Problem (11) is derived from the stabilized
subproblem used in the existing stabilized SQP methods for finite dimensional opti-
mization problems [15, 16, 43]. By using the relation η = y− 1

σ (g(x)+ g′(x)ξ), we can
reformulate problem (11) as follows:

Minimize
(ξ,ζ)∈V

(f ′(x)− g′(x)∗s, ξ)W +
1

2
(Mξ, ξ)W +

σ

2
‖ζ‖2V

subject to h′(x)ξ + σ(ζ − t) ≥ 0,

(12)

where V :=W×V ,M := H+ 1
σg

′(x)∗g′(x), s := y− 1
σg(x) ∈ U , and t := z− 1

σh(x) ∈ V .
In the proposed method, we adopt (12) as a subproblem. Let B : W ×W → R be a
bilinear form defined by B(ξ1, ξ2) := (Mξ1, ξ2)W for ξ1, ξ2 ∈ X. The next proposition
ensures that problem (12) has the unique optimal solution under some appropriate
assumptions. Its proof is given in Appendix A.

Proposition 2. Suppose that the bilinear form B is coercive, that is, there exists
`B > 0 such that B(ξ, ξ) ≥ `B‖ξ‖2W for all ξ ∈W . Then, problem (12) has the unique
optimum (ξ∗, ζ∗) ∈ V. Moreover, there exists λ∗ ∈ V such that (ξ∗, ζ∗, λ∗) satisfies the
KKT conditions of (12).

From now on, we give an explanation related to a search direction p. In the following
argument, the bilinear form B is assumed to be coercive. Proposition 2 guarantees that
problem (12) has the unique optimum (ξ∗, ζ∗). Although many of the existing SQP
methods adopt ξ∗ as a search direction, it is difficult to obtain such an exact optimum
from practical aspects. Therefore, we consider solving problem (12) inexactly. In other
words, we adopt a search direction from an appropriate neighborhood of ξ∗. To explain
how to determine the search direction, we define a merit functional F : W → R by

F (x; y, z, σ) := f(x) +
1

2σ
‖σy − g(x)‖2U +

1

2σ
‖[σz − h(x)]+‖2V .

Note that the functional F is the augmented Lagrangian. For the details, see [23]. It
follows from [4, Corollary 12.31] that the functional F is Fréchet differentiable on W ,
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and its Fréchet derivative at x ∈W is given by

F ′(x; y, z, σ) = f ′(x)− g′(x)∗
(
y − 1

σ
g(x)

)
− h′(x)∗

[
z − 1

σ
h(x)

]
+

. (13)

The functional F has the following property related to problem (12). The proof is
given in Appendix A.

Proposition 3. Suppose that the bilinear form B is coercive, that is, there exists
`B > 0 such that B(ξ, ξ) ≥ `B‖ξ‖2W for every ξ ∈ W . Then, F ′(x; y, z, σ) = 0 if and
only if (0, [t]+) ∈ V is the unique optimum of problem (12).

Proposition 2 ensures the existence of a Lagrange multiplier λ∗ such that (ξ∗, ζ∗, λ∗)

satisfies the KKT conditions of problem (12). Let (ξ̃, ζ̃, λ̃) ∈ X ×V ×V be an element
of a neighborhood of (ξ∗, ζ∗, λ∗) ∈ W × V × V , where we note that the existence of

ξ̃ ∈ X is ensured by the fact that X is dense in W . If a pair (ξ̃, λ̃) satisfies

(F ′(x; y, z, σ), ξ̃)W ≤ −c(Mξ̃, ξ̃)W − cσ‖λ̃− [t]+‖2V , (14)

‖Mξ̃ + f ′(x)− g′(x)∗s− h′(x)∗λ̃‖W ≤ |(F ′(x; y, z, σ), ξ̃)W |, (15)

then we set p := ξ̃ ∈ X as a search direction and set ỹ := y − 1
σ (g(x) + g′(x)ξ̃) ∈ U

and z̃ := [λ̃]+ ∈ V as trial Lagrange multipliers, where c ∈ (0, 1) is a parameter which
indicates how exactly we solve problem (12). The closer c is to 1, the more exactly

(ξ̃, ζ̃) solves problem (12). We are able to show that there exists (ξ̃, λ̃) satisfying (14)
and (15). For its proof, see Proposition 4 given in Section 3.5. Note that the proposed
method does not determine the Lagrange multiplier pair (y, z) immediately. After we
compute the trial Lagrange multiplier pair (ỹ, z̃) described above, we check how much
the optimality conditions are improved. Based on this check, we decide whether or not
to set (ỹ, z̃) to be (y, z). The details are explained in Section 3.3.

3.2. Updating a primal iterate

In what follows, a subscript k is used to denote a current iteration. This section pro-
vides a detailed explanation regarding an updating rule of a current point xk ∈ X.
To begin with, let us consider a computational process for finding the search direc-
tion pk ∈ X described in Section 3.1. Although the proposed method approximately
solves subproblem (12) to obtain pk, it is possible that the generated Lagrange multi-
plier sequence diverges as iterations progress because problem (1) does not necessarily
satisfy some CQ. If we generate a search direction sequence by solving (12) with
such a sequence, it might be unstable for its computational process. Hence, the pro-
posed method generates two kinds of Lagrange multiplier sequences. The first one is
a main Lagrange multiplier sequence, where its boundedness is not ensured as stated
above. The other one is a sub-Lagrange multiplier sequence that is generated to be
bounded and is used in order to stably compute the search direction sequence. In
the following, the first and second sequences are denoted by {(yk, zk)} ⊂ U × V and
{(yk, zk)} ⊂ U × V , respectively. Furthermore, σk denotes the penalty parameter, Hk

represents the Hessian of the Lagrangian or its approximation, and Mk, sk, and tk are
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defined as

Mk := Hk +
1

σk
g′(xk)

∗g′(xk),

sk := yk −
1

σk
g(xk),

tk := zk −
1

σk
h(xk),

(16)

respectively.
Now we recall that the search direction pk is an approximate solution of subprob-

lem (12) with x := xk, σ := σk, M := Mk, s := sk, and t := tk. Note also that
(F ′(xk; yk, zk, σk), pk)W ≤ 0 by (14). We consider updating a primal iterate xk ∈ X so
that the value of the merit functional F decreases along the search direction pk ∈ X.
For this purpose, we exploit a backtracking line-search to determine a step size αk > 0.
This line-search computes the step size as αk := βℓk , where β ∈ (0, 1) and `k is the
smallest nonnegative integer satisfying

F (xk + βℓkpk; yk, zk, σk) ≤ F (xk; yk, zk, σk) + εβℓk∆k, (17)

∆k := max{(F ′(xk; yk, zk, σk), pk)W ,−ρ‖pk‖2W }, (18)

where ε ∈ (0, 1) and ρ ∈ (0, 1). Notice that if |(F ′(xk; yk, zk, σk), pk)W | is a large value,
then the second term −ρ‖pk‖2W in (18) helps us to adopt an early iteration of the
line-search. After computing the step size, we set xk+1 := xk + αkpk.

3.3. Updating Lagrange multipliers and some parameters

We explain details of an updating procedure regarding Lagrange multipliers and some
parameters. This procedure is based on that of Gill and Robinson [15]. We denote
ỹk+1 and z̃k+1 as the trial Lagrange multipliers described in Section 3.1 and call
(xk+1, ỹk+1, z̃k+1) a trial point. Moreover, we introduce the following functionals:

Φ(x, y, z) := ‖g(x)‖Y + ‖[−h(x)]+‖Z
+ κ‖Lx(x, y, z)‖X∗ + κ|〈z, h(x)〉Z∗,Z |,

Ψ(x, y, z) := κ‖g(x)‖Y + κ‖[−h(x)]+‖Z
+ ‖Lx(x, y, z)‖X∗ + |〈z, h(x)〉Z∗,Z |,

(19)

where κ ∈ (0, 1) is a weight parameter. It is clear that (x, y, z) satisfies the KKT
conditions of (1) if and only if Φ(x, y, z) = Ψ(x, y, z) = 0.

Roughly speaking, the procedure updates two kinds of the Lagrange multipliers
(yk, zk) and (yk, zk), and the parameters φk, ψk, and γk only if at least one of the
following statements is satisfied:

(i) {(xk, ỹk, z̃k)} tends to converge to a point satisfying the KKT conditions of (1);
(ii) {xk} tends to converge to a stationary point of F .

Otherwise, it does not update the Lagrange multipliers (yk, zk) and (yk, zk), and the
parameters φk, ψk, and γk. Based on this concept, we present an updating procedure
as Algorithm 1.
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Algorithm 1 Updating procedure for Lagrange multipliers and parameters

Require: Set C ⊂ U and D ⊂ V , where C is bounded and convex, and D is de-
fined by D := {z ∈ V ; 0 ≤ z ≤ zmax} with a constant number zmax > 0. Give
xk+1, ỹk+1, z̃k+1, yk, zk, yk, zk, σk, φk, ψk, and γk.

1: if Φ(xk+1, ỹk+1, z̃k+1) ≤ 1
2φk, ỹk+1 ∈ C, and z̃k+1 ∈ D, then

2: Set . Step 1

yk+1 := ỹk+1, zk+1 := z̃k+1, yk+1 := ỹk+1, zk+1 := z̃k+1,

φk+1 :=
1
2φk, ψk+1 := ψk, γk+1 := γk.

3: else if Ψ(xk+1, ỹk+1, z̃k+1) ≤ 1
2ψk, ỹk+1 ∈ C, and z̃k+1 ∈ D, then

4: Set . Step 2

yk+1 := ỹk+1, zk+1 := z̃k+1, yk+1 := ỹk+1, zk+1 := z̃k+1,

φk+1 := φk, ψk+1 :=
1
2ψk, γk+1 := γk.

5: else if ‖F ′(xk+1; yk, zk, σk)‖W ≤ γk, then
6: Set . Step 3

yk+1 := yk − 1
σk
g(xk+1), zk+1 := [zk − 1

σk
h(xk+1)]+,

yk+1 := PC(yk − 1
σk
g(xk+1)), zk+1 := PD(zk − 1

σk
h(xk+1)),

φk+1 := φk, ψk+1 := ψk, γk+1 :=
1
2γk.

7: else
8: Set . Step 4

yk+1 := yk, zk+1 := zk, yk+1 := yk, zk+1 := zk,

φk+1 := φk, ψk+1 := ψk, γk+1 := γk.

9: end if
10: return (yk+1, zk+1, yk+1, zk+1, φk+1, ψk+1, γk+1).

In Steps 1 and 2 of Algorithm 1, we check whether or not statement (i) holds. Note
that statement (i) implies that {Φ(xk, ỹk, z̃k)} or {Ψ(xk, ỹk, z̃k)} converges to zero,
and {ỹk} and {z̃k} are bounded. These facts motivate us to adopt the if-statements of
Steps 1 and 2. In this case, the trial point (xk+1, ỹk+1, z̃k+1) has a good tendency, and
hence we set (yk+1, zk+1) := (ỹk+1, z̃k+1) and (yk+1, zk+1) := (ỹk+1, z̃k+1). Moreover,
we decrease φk or ψk to get a better point in the next iteration.

Step 3 checks whether or not statement (ii) holds. Recall that we can regard F as
the augmented Lagrangian. In other words, this step tries to solve the subproblem of
augmented Lagrangian methods:

Minimize
x∈W

F (x; yk, zk, σk). (20)

Hence, we update the main Lagrange multiplier sequence {(yk, zk)} like them, that is,
we set (yk+1, zk+1) := (yk − 1

σk
g(xk+1), [zk − 1

σk
h(xk+1)]+). On the other hand, this
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case has a possibility that the sub-Lagrange multipliers sequence {(yk, zk)} diverges as
iterations progress. Therefore, we adopt the updating rule with the safeguard to guar-
antee the boundedness, i.e., (yk+1, zk+1) := (PC(yk− 1

σk
g(xk+1)), PD(zk− 1

σk
h(xk+1))).

Moreover, we decrease γk in order to obtain a more accurate stationary point of F .
Step 4 means that there is no tendency of statements (i) and (ii). As stated above,

Algorithm 1 does not update two types of the Lagrange multipliers (yk, zk) and (yk, zk),
and the parameters φk, ψk, and γk. In the global convergence analysis provided in
Section 4, we can show that there does not occur a situation that Algorithm 1 performs
Step 4 infinitely many times.

Since problem (1) does not have to satisfy any kind of CQs, there is a possibility that
the proposed method cannot obtain any KKT points. Even so, the proposed method is
designed so that it can obtain a stationary point of the merit functional F . Moreover,
this design leads to a convergence property to AKKT points. Step 3 is devised for
this purpose. As stated above, this step solves problem (20) which can be regarded
as the subproblem of the augmented Lagrangian method. Therefore, it is reasonable
to design an updating rule of the penalty parameter σk in a manner similar to the
augmented Lagrangian method, namely, the following rule is adopted:

σk+1 :=

{
min{12σk, r(xk, yk, zk)

3

2 } if ‖F ′(xk+1; yk, zk, σk)‖W ≤ γk,
σk otherwise.

(21)

The term r(xk, yk, zk)
3

2 in (21) helps us to achieve fast local convergence. This term is
also used in that of [15].

Remark 1. Recall that the ordinary SQP methods simultaneously update the Lagrange
multipliers when determining the search direction. If the Lagrange multipliers are up-
dated in Step 1 or 2 of Algorithm 1, they are set as the trial Lagrange multipliers
that have already been obtained in the previous step to determine the search direction.
Namely, there is no essential delay in updating the Lagrange multipliers in this case
because the updating order of the primal iterate and Lagrange multipliers is the same
as the ordinary SQP methods. Meanwhile, Step 3 is based on the updating rule of the
existing AL methods as described above. Hence, there is a possibility that the Lagrange
multipliers are updated after the new primal iterate has been calculated as seen in the
existing AL methods, such as [23, Algorithm 3.1]. However, the delay in updating them
plays an important role in the global convergence regarding the AKKT points.

3.4. Formal statement of a stabilized SQP method

By summarizing the description in the above sections, we propose a stabilized SQP
method for problem (1) as Algorithm 2.

Remark 2. In Algorithm 2, the calculations of Lines 2–5 can be omitted when
F ′(xk; yk, zk, σk) = 0. This is motivated by Proposition 3, which ensures that
(0, [zk − 1

σk
h(xk)]+) ∈ V is the unique optimal solution of problem (12) if and only

if F ′(xk; yk, zk, σk) = 0. In this case, we set pk := 0, ỹk+1 := yk − 1
σk
g(xk), and

z̃k+1 := [zk − 1
σk
h(xk)]+ and can proceed to Step 2 without performing Lines 2–5 for

saving their computational cost.
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Algorithm 2

Require: Select β ∈ (0, 1), ε ∈ (0, 1), ρ ∈ (0, 1), and κ ∈ (0, 1). Take a monotonically
non-decreasing sequence {ck} ⊂ (0, 1). Choose (x0, y0, z0) ∈ X × U × V such that
y0 ∈ C and z0 ∈ D, where C ⊂ U and D ⊂ V are used in Algorithm 1. Set
y0 := y0, z0 := z0, σ0 > 0, φ0 > 0, ψ0 > 0, γ0 > 0, and k := 0.

1: repeat
2: Set Hk so that ((Hk +

1
σk
g′(xk)

∗g′(xk))·, ·)W is coercive. . Step 1
3: Set (x, σ,M, s, t, c) as follows:

x := xk, σ := σk, M := Hk +
1
σk
g′(xk)

∗g′(xk),

s := yk − 1
σk
g(xk), t := zk − 1

σk
h(xk), c := ck.

4: Obtain (ξ̃, λ̃) ∈ X × V satisfying (14) and (15) by solving (12).
5: Set (pk, ỹk+1, z̃k+1) as follows:

pk := ξ̃, ỹk+1 := y − 1
σ (g(x) + g′(x)ξ̃), z̃k+1 := [λ̃]+.

6: Compute the smallest nonnegative integer `k such that (17) holds.
7: Set xk+1 as follows: . Step 2

xk+1 := xk + βℓkpk.

8: Set (yk+1, zk+1, yk+1, zk+1, φk+1, ψk+1, γk+1) by Algorithm 1. . Step 3
9: Set σk+1 by (21).

10: Set k ← k + 1.
11: until (xk, yk, zk) satisfies some stopping criterion.

3.5. Well-definedness of Algorithm 2

In this section, we prove that Step 1 of Algorithm 2 is well defined, that is, we show
the following proposition.

Proposition 4. If F ′(x; y, z, σ) 6= 0, then there exists (ξ̃, λ̃) ∈ X × V such that
conditions (14) and (15) hold.

To prove the above proposition, we begin by defining some sequences. Recall that X
is dense in W and Proposition 2 holds. Let {(ξj , ζj , λj)} ⊂ X ×V ×V be an arbitrary
sequence such that ‖ξj − ξ∗‖W → 0, ‖ζj − ζ∗‖V → 0, and ‖λj − λ∗‖V → 0 as j →∞,
where (ξ∗, ζ∗, λ∗) ∈W×V ×V satisfies the following KKT conditions for problem (12):

Mξ∗ + f ′(x)− g′(x)∗s− h′(x)∗λ∗ = 0, σ(ζ∗ − λ∗) = 0,

h′(x)ξ∗ + σ(ζ∗ − t) ≥ 0, λ∗ ≥ 0, (h′(x)ξ∗ + σ(ζ∗ − t), λ∗)V = 0.
(22)

In addition, we define a sequence {(ηj , θj , ωj)} ⊂ W × V × V concerning a violation
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error for (22) by

ηj :=Mξj + f ′(x)− g′(x)∗s− h′(x)∗λj , (23)

θj := σ(ζj − λj), (24)

ωj := h′(x)ξj + σ(ζj − t) (25)

for each j ∈ N ∪ {0}. From these definitions and (22), the sequences {(ξj , ζj , λj)} and
{(ηj , θj , ωj)} satisfy the following conditions:

lim
j→∞

‖ξj − ξ∗‖W = 0, lim
j→∞

‖ζj − ζ∗‖V = 0, lim
j→∞

‖λj − λ∗‖V = 0,

lim
j→∞

‖ηj‖W = 0, lim
j→∞

‖θj‖V = 0, lim
j→∞

‖ωj − ω∗‖V = 0,

lim
j→∞

(ωj , λj)V = 0, ζ∗ ≥ 0, λ∗ ≥ 0, ω∗ ≥ 0.

(26)

Moreover, we often use

Rj := (ηj , ξj)W + (ωj , λj − [t]+)V

+ σ(λj − [t]+, t− [t]+)V − (λj − [t]+, θj)V
(27)

for each j ∈ N ∪ {0}. Before proving Proposition 4, we prepare two lemmas below.

Lemma 1. Assume that Rj ≤ (1 − c)((Mξj , ξj)W + σ‖λj − [t]+‖2V ) holds. Then, the
pair (ξj , λj) satisfies that (F ′(x; y, z, σ), ξj)W ≤ −c(Mξj , ξj)W − cσ‖λj − [t]+‖2V .

Proof. Using (13) and (23) yields

(F ′(x; y, z, σ), ξj)W = −(Mξj , ξj)W + (ηj , ξj)W + (λj − [t]+, h
′(x)ξj)V . (28)

Meanwhile, we have from (25) that

(λj − [t]+, h
′(x)ξj)V = (λj − [t]+, ωj)V + σ(λj − [t]+, t− [t]+)V

+ σ(λj − [t]+, [t]+ − ζj)V .
(29)

Since σ(λj − [t]+, [t]+− ζj)V = −σ‖λj − [t]+‖2V − (λj − [t]+, θj)V by (24), substituting
this equality into (29) derives

(λj − [t]+, h
′(x)ξj)V = (ωj , λj − [t]+)V + σ(λj − [t]+, t− [t]+)V

− (λj − [t]+, θj)V − σ‖λj − [t]+‖2V .
(30)

Now, we obtain (F ′(x; y, z, σ), ξj)W = −(Mξj , ξj)W − σ‖λj − [t]+‖2V + Rj from (27),
(28), and (30). It then follows from Rj ≤ (1− c)((Mξj , ξj)W +σ‖λj − [t]+‖2V ) that the
desired inequality holds.

By exploiting Lemma 1, we prove that F ′(x; y, z, σ) 6= 0 is a sufficient condition under
which ξj is a descent direction of F for sufficiently large j ∈ N.

Lemma 2. If F ′(x; y, z, σ) 6= 0, then the following statements hold:

(i) There exists ε > 0 such that for every j ∈ N, the pair (ξj , λj) satisfies that
ε ≤ (Mξj , ξj)W + σ‖λj − [t]+‖2V ;
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(ii) there exists m̃ ∈ N such that for every j ≥ m̃, the pair (ξj , λj) satisfies that
(F ′(x; y, z, σ), ξj)W ≤ −c(Mξj , ξj)W − cσ‖λj − [t]+‖2V .

Proof. First, we prove item (i) by contradiction. Assume that there exists M ⊂ N
such that limj→∞,j∈M((Mξj , ξj)W + σ‖λj − [t]+‖2V ) = 0. Hence, the coerciveness of
B and (26) imply that ξ∗ = 0 and λ∗ = [t]+. It then follows from (26), (23), and
(13) that 0 = limj→∞,j∈M ηj =Mξ∗ + f ′(x)− g′(x)∗s− h′(x)∗λ∗ = F ′(x; y, z, σ). This
contradicts F ′(x; y, z, σ) 6= 0.

Next, we show item (ii). Note that (26) holds. We see that (ω∗, [t]+)V ≥ 0 by ω∗ ≥ 0.
Since [·]+ : V → KV is a projection mapping, we also have (λ∗ − [t]+, t − [t]+)V ≤ 0
from λ∗ ≥ 0. These facts and (27) yield that

R∗ := lim
j→∞

Rj = −(ω∗, [t]+)V + σ(λ∗ − [t]+, t− [t]+)V ≤ 0. (31)

Hence, there exists m̃ ∈ N such that |Rj − R∗| ≤ (1 − c)ε for all j ≥ m̃, where ε is
a positive number described in item (i). It then follows from item (i) and (31) that
Rj ≤ R∗ + (1 − c)ε ≤ (1 − c)((Mξj , ξj)W + σ‖λj − [t]+‖2V ) for all j ≥ m̃. Therefore,
Lemma 1 derives the desired result.

In what follows, we prove Proposition 4 by using Lemma 2.

Proof of Proposition 4. From items (i) and (ii) of Lemma 2, there exist ε > 0 and
m̃ ∈ N such that cε ≤ c(Mξj , ξj)W + cσ‖λj − [t]+‖2V ≤ −(F ′(x; y, z, σ), ξj)W for all
j ≥ m̃, and hence

cε ≤ |(F ′(x; y, z, σ), ξj)W | ∀j ≥ m̃. (32)

Since ‖ηj‖W → 0 (j →∞) from (26), there exists ñ ∈ N such that ‖ηj‖W ≤ cε for all
j ≥ ñ. This fact, (23), and (32) yield that

‖Mξj + f ′(x)− g′(x)∗s− h′(x)∗λj‖W ≤ |(F ′(x; y, z, σ), ξj)W | ∀j ≥ j̃,

where j̃ := max{m̃, ñ}. If we identify (ξ̃, λ̃) as (ξj̃ , λj̃), then item (ii) of Lemma 2 and

the above inequality ensure that the pair (ξ̃, λ̃) satisfies (14) and (15).

4. Global convergence of Algorithm 2

In what follows, we prove the global convergence of Algorithm 2. To begin with, we
make several assumptions and define some notation used throughout this section.

Assumption 1.

(A1) f , g, and h are twice continuously Fréchet differentiable on W ;
(A2) ϕ ∈ Z 7→ [ϕ]+ ∈ Z is well-defined and continuous on Z;
(A3) there exists ν > 0 such that for u ∈W , v ∈W , and k ∈ N ∪ {0},

1
ν ‖u‖

2
W ≤ ((Hk +

1
σk
g′(xk)

∗g′(xk))u, u)W , (Hku, v)W ≤ ν‖u‖W ‖v‖W .

Furthermore, we suppose that Algorithm 2 generates an infinite set of iterations.
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Now, we recall that Mk, sk, and tk are defined by (16). For simplicity, let ηk be
defined by

ηk :=Mkpk + f ′(xk)− g′(xk)∗sk − h′(xk)∗λk, (33)

where λk is defined as λk := λ̃, and we notice that λ̃ is generated in Step 1 of Algo-
rithm 2. From Step 1, it is clear that

(F ′(xk; yk, zk, σk), pk)W ≤ −ck(Mkpk, pk)W − ckσk‖λk − [tk]+‖2V , (34)

‖ηk‖W ≤ |(F ′(xk; yk, zk, σk), pk)W |. (35)

Because Step 3 of Algorithm 2 is divided into Steps 1–4 of Algorithm 1, we call
them Steps 3.1–3.4, respectively. For the convergence analysis, we divide N∪ {0} into
three mutually disjoint sets I, J , and K defined by

I := {k ∈ N ∪ {0}; yk, zk, yk, zk, φk, ψk, and γk are updated by Step 3.1 or 3.2},
J := {k ∈ N ∪ {0}; yk, zk, yk, zk, φk, ψk, and γk are updated by Step 3.3},
K := {k ∈ N ∪ {0}; yk, zk, yk, zk, φk, ψk, and γk are updated by Step 3.4},

respectively.
Throughout this section, C andD denote the sets that appear in Algorithms 1 and 2,

that is to say, C is the bounded convex set in U , and D is the set represented by
D = {z ∈ V ; 0 ≤ z ≤ zmax}, where zmax > 0 is a constant number.

The next lemma provides some properties regarding the sequences {yk}, {zk}, {φk},
{ψk}, {γk}, and {σk}.

Lemma 3. The following statements hold:

(i) If card(I) =∞, then φk → 0 or ψk → 0 as k →∞;
(ii) if card(J ) =∞, then γk → 0 and σk → 0 as k →∞;
(iii) {yk} and {zk} are bounded sequences included in C and D, respectively.

Proof. To begin with, we prove item (i). If k ∈ I, then φk+1 = 1
2φk or ψk+1 = 1

2ψk
from Steps 3.1 and 3.2. If k ∈ J ∪ K, then φk+1 = φk and ψk+1 = ψk from Steps 3.3
and 3.4. Considering these facts and card(I) =∞ yields φk → 0 or ψk → 0 as k →∞.

Next, we show item (ii). Let k ∈ J . From the updating rule of Algorithm 1, we see
γk+1 = 1

2γk and ‖F ′(xk+1; yk, zk, σk)‖W ≤ γk. The second inequality and (21) imply

σk+1 ≤ 1
2σk. Since {γk} and {σk} are non-increasing, it then follows from card(J ) =∞

that γk → 0 and σk → 0 as k →∞.
We finally provide a proof of item (iii). Since C ⊂ U and D ⊂ V are bounded sets,

it is sufficient to show that yk ∈ C and zk ∈ D for all k ∈ N ∪ {0}. We prove this
assertion by mathematical induction. If k = 0, then y0 ∈ C and z0 ∈ D. Now, assume
that k ∈ N ∪ {0}, yk ∈ C, and zk ∈ D. Note that k + 1 ∈ I ∪ J ∪ K = N. It then
follows from Steps 3.1–3.4 that yk+1 ∈ C and zk+1 ∈ D. Therefore, we arrive at the
desired result.

From now on, we focus on a situation with card(I) < ∞, card(J ) < ∞, and
card(K) =∞. The next lemma shows some properties under this situation.

Lemma 4. Suppose that (A1) and (A3) of Assumption 1 are satisfied, and {xk}
converges to x∗ in X. If card(I) < ∞, card(J ) < ∞, and card(K) = ∞, then the
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following statements hold:

(i) There exist k̂ ∈ N, ŷ ∈ U , ẑ ∈ V , σ̂ ∈ R, and γ̂ ∈ R such that k ∈ K, yk = ŷ,

zk = ẑ, σk = σ̂, and γk = γ̂ for all k ≥ k̂;
(ii) {pk}k≥k̂ is bounded in W ;

(iii) lim infk→∞ |∆k| > 0.

Proof. We prove item (i). Since card(I) < ∞, card(J ) < ∞, and card(K) = ∞ are

satisfied, there exists k̂ ∈ N such that k ∈ K for all k ≥ k̂. This fact means that Step 4
of Algorithm 1 is performed for all k ≥ k̂, and hence we obtain yk = ŷ, zk = ẑ, and

γk = γ̂ for all k ≥ k̂, where ŷ := y
k̂
, ẑ := z

k̂
, and γ̂ := γ

k̂
. Furthermore, it follows

from (21) that σk = σ̂ for all k ≥ k̂, where σ̂ := σ
k̂
.

Next, we show item (ii). In the following, note that Y ↪→ U ↪→ Y ∗ and Z ↪→ V ↪→ Z∗

are often used. Suppose that k ≥ k̂, namely, item (i) holds. Notice that {ck} ⊂ (0, 1)
is a monotonically non-decreasing sequence, that is, c0 ≤ ck < 1 for all k ∈ N. Then,
we have from (A3) of Assumption 1 and (34) that

c0
ν
‖pk‖2W + c0σ̂‖λk − [tk]+‖2V ≤ |(F ′(xk; ŷ, ẑ, σ̂), pk)W |. (36)

Exploiting (13), sk ∈ U , and tk ∈ V yields

|(F ′(xk; ŷ, ẑ, σ̂), pk)W |
≤ |(f ′(xk), pk)W |+ |〈sk, g′(xk)pk〉Y ∗,Y |+ |〈[tk]+, h′(xk)pk〉Z∗,Z |
≤ |(f ′(xk), pk)W |+ ‖sk‖Y ∗‖g′(xk)pk‖Y + ‖[tk]+‖Z∗‖h′(xk)pk‖Z
≲

(
‖f ′(xk)‖W + ‖sk‖U‖g′(xk)‖W→Y + ‖tk‖V ‖h′(xk)‖W→Z

)
‖pk‖W ,

(37)

where (37) is derived from ‖sk‖Y ∗ ≲ ‖sk‖U and ‖[tk]+‖Z∗ ≲ ‖[tk]+‖V ≤ ‖tk‖V . It
follows from (36) and (37) that

‖pk‖W ≲ ‖f ′(xk)‖W + ‖sk‖U‖g′(xk)‖W→Y + ‖tk‖V ‖h′(xk)‖W→Z . (38)

Meanwhile, using sk = ŷ − 1
σ̂g(xk) and tk = ẑ − 1

σ̂h(xk) implies

‖sk‖U ≲ ‖sk‖Y ≤ ‖ŷ‖Y +
1

σ̂
‖g(xk)‖Y , ‖tk‖V ≲ ‖tk‖Z ≤ ‖ẑ‖Z +

1

σ̂
‖h(xk)‖Z . (39)

By X ↪→ W , the sequential compactness of {xk} ⊂ X, and (A1) of Assumption 1,
there exists R > 0 satisfying

max
{
‖f ′(xk)‖W , ‖g(xk)‖Y , ‖g′(xk)‖W→Y , ‖h(xk)‖Z , ‖h′(xk)‖W→Z

}
≤ R <∞. (40)

We have from (38)–(40) that {pk}k≥k̂ is bounded in W .

Finally, to show (iii), we begin by verifying lim infk→∞ |(F ′(xk; ŷ, ẑ, σ̂), pk)W | > 0.
Assume to the contrary that there existsM⊂ N such that

lim
k→∞,k∈M

|(F ′(xk; ŷ, ẑ, σ̂), pk)W | = 0. (41)
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Combining (35), (36), and (41) gives

lim
k→∞,k∈M

‖ηk‖W = 0, lim
k→∞,k∈M

‖pk‖W = 0, lim
k→∞,k∈M

‖λk − [tk]+‖V = 0. (42)

Let k be an arbitrary positive integer satisfying k ≥ k̂. Since ‖F ′(xk; ŷ, ẑ, σ̂)‖W =
sup{|(F ′(xk; ŷ, ẑ, σ̂), u)W |; ‖u‖W ≤ 1} <∞, there exists uk ∈W such that ‖uk‖W ≤ 1
and ‖F ′(xk; ŷ, ẑ, σ̂)‖W < |(F ′(xk; ŷ, ẑ, σ̂), uk)W | + 1

k . Meanwhile, using (13) and (33)

yields F ′(xk; ŷ, ẑ, σ̂) = −(Hk +
1
σ̂g

′(xk)
∗g′(xk))pk + ηk + h′(xk)

∗(λk − [tk]+). By these
facts and (A3) of Assumption 1, we obtain

‖F ′(xk; ŷ, ẑ, σ̂)‖W < |(Hkpk, uk)W |+
1

σ̂
|(g′(xk)pk, g′(xk)uk)U |

+ |(ηk, uk)W |+ |(λk − [tk]+, h
′(xk)uk)V |+

1

k

≤ ν‖pk‖W +
1

σ̂
‖g′(xk)pk‖U‖g′(xk)uk‖U

+ ‖ηk‖W + ‖λk − [tk]+‖V ‖h′(xk)uk‖V +
1

k

≲
(
ν +

1

σ̂
sup
k∈N
‖g′(xk)‖2W→Y

)
‖pk‖W

+ ‖ηk‖W + ‖λk − [tk]+‖V sup
k∈N
‖h′(xk)‖W→Z +

1

k
,

(43)

where the last inequality is derived from ‖g′(xk)pk‖U ≲ ‖g′(xk)pk‖Y ≤
‖g′(xk)‖W→Y ‖pk‖W , ‖g′(xk)uk‖U ≲ ‖g′(xk)uk‖Y ≤ ‖g′(xk)‖W→Y , and ‖h′(xk)uk‖V ≲
‖h′(xk)uk‖Z ≤ ‖h′(xk)‖W→Z . It follows from (40), (42), and (43) that
‖F ′(xk; ŷ, ẑ, σ̂)‖W → 0 as k →∞, k ∈M. Hence, there exists k ∈ N such that

‖F ′(xk+1; ŷ, ẑ, σ̂)‖W ≤ γ̂, k ≥ k̂. (44)

On the other hand, item (i) shows k ∈ K, which means that the if-statement regard-
ing Step 3.3 (Line 5 of Algorithm 1) is false, that is to say, ‖F ′(xk+1; ŷ, ẑ, σ̂)‖W > γ̂.
Since this result contradicts (44), we get lim infk→∞ |(F ′(xk; ŷ, ẑ, σ̂), pk)W | > 0. Next,
we verify lim infk→∞ ‖pk‖W > 0. We also assume to the contrary that there ex-
ists N ⊂ N such that ‖pk‖W → 0 as k → ∞, k ∈ N . This assumption de-
rives |(F ′(xk; ŷ, ẑ, σ̂), pk)W | → 0 as k → ∞, k ∈ N . Therefore, we can prove
this case in a similar way to the above proof after (41). As a result, we have
lim infk→∞ |(F ′(xk; ŷ, ẑ, σ̂), pk)W | > 0 and lim infk→∞ ‖pk‖W > 0. These results
and (18) guarantee lim infk→∞ |∆k| > 0.

The following lemma guarantees that Algorithm 2 does not generate an infinite set
of iterations satisfying card(I) < ∞, card(J ) < ∞, and card(K) = ∞, namely, there
exist infinitely many iterations included in I ∪ J .

Lemma 5. Suppose that (A1) and (A3) of Assumption 1 are satisfied, and {xk}
converges to x∗ in X. Then, there does not occur a situation such that card(I) <∞,
card(J ) <∞, and card(K) =∞.

Proof. We prove the assertion by contradiction. Assume that card(I) <∞, card(J ) <
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∞, and card(K) =∞. By item (i) of Lemma 4, there exist k̂ ∈ N, ŷ ∈ U , ẑ ∈ V , σ̂ ∈ R,
and γ̂ ∈ R such that k ∈ K, yk = ŷ, zk = ẑ, σk = σ̂, and γk = γ̂ for all k ≥ k̂. In

what follows, we suppose that k ≥ k̂. We can easily see that (F ′(xk; ŷ, ẑ, σ̂), pk)W ≤ 0
from (34), and hence (18) guarantees ∆k ≤ 0. It then follows from (17) that

0 ≤ −εβℓk∆k ≤ F (xk; ŷ, ẑ, σ̂)− F (xk+1; ŷ, ẑ, σ̂). (45)

The boundedness of {F (xk; ŷ, ẑ, σ̂)}k≥k̂ is ensured by X ↪→ W , the sequential com-

pactness of {xk} ⊂ X, and (A1) of Assumption 1. Moreover, {F (xk; ŷ, ẑ, σ̂)}k≥k̂ is

non-increasing. Combination of these facts and (45) implies limk→∞ βℓk∆k = 0. There-
fore, there are two cases: lim infk→∞ βℓk > 0; lim infk→∞ βℓk = 0. The former case
derives limk→∞∆k = 0. We further consider the latter case in the following. Since
lim infk→∞ βℓk = 0, there existsM⊂ N such that limk→∞,k∈M `k =∞. For simplicity,

we denote δk := βℓk−1(> 0). Let F̂ : R→ R be defined by F̂ (δ) := F (xk + δpk; ŷ, ẑ, σ̂).

Then, note that F̂ ′(δ) = (F ′(xk + δpk; ŷ, ẑ, σ̂), pk)W . Without loss of generality, we
can assume that `k ≥ 1 for all k ∈ M because limk→∞,k∈M `k = ∞. Recall that

`k is the smallest positive integer such that F̂ (βℓk) ≤ F̂ (0) + εβℓk∆k. Since `k − 1

does not satisfy this inequality, we obtain F̂ (0) + εδk∆k < F̂ (δk). It then follows

from F̂ ′(0) = (F ′(xk; ŷ, ẑ, σ̂), pk)W ≤ max{(F ′(xk; ŷ, ẑ, σ̂), pk)W ,−ρ‖pk‖2W } = ∆k that

(ε− 1)∆k <
1
δk
(F̂ (δk)− F̂ (0))− F̂ ′(0). The mean value theorem ensures the existence

of ϑk ∈ (0, 1) satisfying 1
δk
(F̂ (δk)− F̂ (0)) = F̂ ′(ϑkδk), and hence we then have

0 ≤ (ε− 1)∆k < (F ′(xk + ϑkδkpk; ŷ, ẑ, σ̂)− F ′(xk; ŷ, ẑ, σ̂), pk)W , (46)

where the first inequality follows from ε ∈ (0, 1) and ∆k ≤ 0. The boundedness of
{pk}k≥k̂ is guaranteed by (ii) of Lemma 4. Moreover, limk→∞,k∈M δk = 0 because

δk = βℓk−1, β ∈ (0, 1), and limk→∞,k∈M `k = ∞. These facts yield ‖(xk + ϑkδkpk) −
x∗‖W ≤ ‖xk−x∗‖W +ϑkδk‖pk‖W ≲ ‖xk−x∗‖X +ϑkδk‖pk‖W → 0 as k →∞, k ∈M.
Then, the continuity of F ′ : W → W and (46) derive limk→∞,k∈M∆k = 0. Therefore,
we obtain lim infk→∞ |∆k| = 0. However, this result contradicts (iii) of Lemma 4.

By exploiting the above lemmas, we provide some properties that play an important
role in main convergence results.

Proposition 5. Suppose that (A1) and (A2) of Assumption 1 hold, and {xk} con-
verges to x∗ in X. If card(I) =∞, then there exist y∗ ∈ U , z∗ ∈ V , andM⊂ N such
that yk ⇀ y∗ in U and zk ⇀ z∗ in V as k → ∞, k ∈ M, and (x∗, y∗, z∗) satisfies the
KKT conditions of (1).

Proof. Let P := {k ∈ N; k−1 ∈ I}. It is clear that card(P) =∞ by card(I) =∞. Note
that {xk} ⊂ X converges to x∗ in W because X ↪→ W . Note also that {yk}k∈P ⊂ U
and {zk}k∈P ⊂ V are bounded because {yk}k∈P = {yk}k∈P ⊂ C and {zk}k∈P =
{zk}k∈P ⊂ D from Steps 3.1 and 3.2 and item (iii) of Lemma 3. Hence, there exist
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M⊂ P, y∗ ∈ U , and z∗ ∈ V such that

lim
k→∞,k∈M

xk = x∗ (W ),

lim
k→∞,k∈M

yk = y∗ (U–weak),

lim
k→∞,k∈M

zk = z∗ (V –weak).

(47)

From Steps 3.1 and 3.2, we can verify Φ(xk, yk, zk) = Φ(xk, ỹk, z̃k) ≤ 1
2φk−1 = φk or

Ψ(xk, yk, zk) = Ψ(xk, ỹk, z̃k) ≤ 1
2ψk−1 = ψk for k ∈ M. These results and item (i)

of Lemma 3 derive Φ(xk, yk, zk) → 0 or Ψ(xk, yk, zk) → 0 as k → ∞, k ∈ M, and
therefore (19), (47), (A1), and (A2) imply

‖g(x∗)‖Y = lim
k→∞,k∈M

‖g(xk)‖Y = 0, (48)

‖[−h(x∗)]+‖Z = lim
k→∞,k∈M

‖[−h(xk)]+‖Z = 0, (49)

lim
k→∞,k∈M

‖Lx(xk, yk, zk)‖X∗ = 0, (50)

lim
k→∞,k∈M

|〈zk, h(xk)〉Z∗,Z | = 0. (51)

Now recall that X ↪→ W ↪→ X∗, Y ↪→ U ↪→ Y ∗, and Z ↪→ V ↪→ Z∗. Let x ∈ X and
k ∈M be arbitrary. We then obtain

|〈Lx(x∗, y∗, z∗), x〉X∗,X |
≤ |〈Lx(xk, yk, zk), x〉X∗,X |+ |(Lx(x∗, y∗, z∗)− Lx(xk, yk, zk), x)W |
≲ ‖Lx(xk, yk, zk)‖X∗‖x‖X + ‖f ′(xk)− f ′(x∗)‖W ‖x‖W
+ ‖g′(xk)− g′(x∗)‖W→Y ‖x‖W ‖yk‖U + |(yk − y∗, g′(x∗)x)U |
+ ‖h′(xk)− h′(x∗)‖W→Z‖x‖W ‖zk‖V + |(zk − z∗, h′(x∗)x)V |

(52)

and

|〈z∗, h(x∗)〉Z∗,Z |
≤ |(zk, h(xk))V |+ |(z∗ − zk, h(x∗))V |+ |(zk, h(x∗)− h(xk))V |
≲ |〈zk, h(xk)〉Z∗,Z |+ |(z∗ − zk, h(x∗))V |+ ‖zk‖V ‖h(x∗)− h(xk)‖Z .

(53)

Exploiting (47), (50)–(53), and (A1) yields

Lx(x∗, y∗, z∗) = 0, 〈z∗, h(x∗)〉Z∗,Z = 0. (54)

In the following, we show z∗ ∈ K+
Z . Note that Z ↪→ V ↪→ Z∗. Let ϕ ∈ KZ be arbitrary,

namely, ϕ ≥ 0. Meanwhile, recall that zk ≥ 0 for k ∈ M because {zk} ⊂ D. These
facts lead to (zk, ϕ)V ≥ 0 for k ∈M. Since {zk}k∈M ⊂ KV converges weakly to z∗ ∈ V
from (47), we have 〈z∗, ϕ〉Z∗,Z = (z∗, ϕ)V = limk→∞,k∈M(zk, ϕ)V ≥ 0, i.e., z∗ ∈ K+

Z .
This result, (48), (49), and (54) mean that x∗ is a KKT point of (1).

Proposition 6. Suppose that Assumption 1 holds. Suppose also that {xk} converges
to x∗ in X, and x∗ is feasible to (1). If card(I) < ∞, then x∗ is an AKKT point
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of (1), and there exists N ⊂ N such that {(xk, yk, zk)}k∈N is an AKKT sequence
corresponding to x∗.

Proof. Lemma 5 ensures that card(J ) = ∞ because of card(I) < ∞. Now, we define
Q := {k ∈ N; k − 1 ∈ J }. Notice that card(Q) =∞ by card(J ) =∞ and that

{yk} ⊂ Y ∗, {zk} ⊂ K+
Z . (55)

If k ∈ Q, then ‖F ′(xk; yk−1, zk−1, σk−1)‖W ≤ γk−1 for k ∈ Q because k−1 ∈ J . These
facts, W ↪→ X∗, and (13) derive

lim
k→∞,k∈Q

‖Lx(xk, yk, zk)‖X∗ = lim
k→∞,k∈Q

‖F ′(xk; yk−1, zk−1, σk−1)‖X∗ = 0. (56)

In the rest of the proof, we show that there exists N ⊂ Q such that

lim
k→∞,k∈N

〈zk, [h(xk)]+〉Z∗,Z = 0. (57)

From now, we use the following notation:

h(x∗) = (h
(1)
∗ , . . . , h

(m)
∗ ), h(xk) = (h

(1)
k , . . . , h

(m)
k ),

zk = (z
(1)
k , . . . , z

(m)
k ), zk = (z

(1)
k , . . . , z

(m)
k ).

For each j ∈ {1, . . . ,m}, we denote

{h(j)∗ > 0} = {τ ∈ Ωj ;h
(j)
∗ (τ) > 0}, {h(j)∗ ≤ 0} = {τ ∈ Ωj ;h

(j)
∗ (τ) ≤ 0},

{h(j)k > 0} = {τ ∈ Ωj ;h
(j)
k (τ) > 0}, {h(j)k ≤ 0} = {τ ∈ Ωj ;h

(j)
k (τ) ≤ 0}.

Let j ∈ {1, . . . ,m} be an arbitrary integer. Since ‖xk−x∗‖W ≲ ‖xk−x∗‖X → 0 (k →
∞, k ∈ Q) because X ↪→ W , (A1) of Assumption 1 and Z ↪→ V guarantee that

h
(j)
k → h

(j)
∗ (k → ∞, k ∈ Q) in Vj = L2(Ωj), and hence there exist Qj ⊂ Q and

h̃(j) ∈ L2(Ωj) such that

|h(j)k | ≤ h̃
(j) ∀k ∈ Qj , (58)

lim
k→∞,k∈Qj

h
(j)
k = h

(j)
∗ a.e. in Ωj . (59)

Let ĥ(j) := zmaxh̃
(j) ∈ L1(Ωj) and let k ∈ N ∪ {0} be an arbitrary integer, where we

notice that h̃(j) ∈ L2(Ωj) ⊂ L1(Ωj). By item (iii) of Lemma 3, we know z
(j)
k ≤ zmax.

This fact and (58) imply |z(j)k [h
(j)
k ]+| = [z

(j)
k−1 −

1
σk−1

h
(j)
k ]+h

(j)
k ≤ zmaxh̃

(j) = ĥ(j) in

{h(j)k > 0}. Moreover, it is clear that |z(j)k [h
(j)
k ]+| = 0 ≤ zmaxh̃

(j) = ĥ(j) in {h(j)k ≤ 0}.
These results and Ωj = {h(j)k > 0} ∪ {h(j)k ≤ 0} ensure that

ĥ(j) ∈ L1(Ωj), |z(j)k [h
(j)
k ]+| ≤ ĥ(j) ∀k ∈ N ∪ {0}. (60)
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Now, note that the following conditions are sufficient ones for (57):

lim
k→∞,k∈Qj

z
(j)
k [h

(j)
k ]+ = 0 a.e. in {h(j)∗ > 0}, (61)

lim
k→∞,k∈Qj

z
(j)
k [h

(j)
k ]+ = 0 a.e. in {h(j)∗ ≤ 0}. (62)

Indeed, if (61) and (62) hold, then limk→∞,k∈Qj
z
(j)
k [h

(j)
k ]+ = 0 a.e. in Ωj because

Ωj = {h(j)∗ > 0} ∪ {h(j)∗ ≤ 0}. Then, letting N := ∩mj=1Qj and combining (60) with
Lebesgue’s dominated convergence theorem derive

lim
k→∞,k∈N

〈zk, [h(xk)]+〉Z∗,Z =

m∑
j=1

∫
Ωj

(
lim

k→∞,k∈N
z
(j)
k (τ)[h

(j)
k (τ)]+

)
dτ = 0,

that is, (57) holds. Therefore, we prove that (61) and (62) are satisfied. In the following,
the Lebesgue measure on Ωj is represented as µj .

Now, we show (61). Since (61) clearly holds when µj({h(j)∗ > 0}) = 0, we suppose

that µj({h(j)∗ > 0}) > 0. Let us define Ej ⊂ {h(j)∗ > 0} by

Ej :=

{
τ ; {h(j)k (τ)}k∈Qj

6→ h
(j)
∗ (τ) or sup

k∈N

{
z
(j)
k (τ)

}
> zmax

}
.

We get µj(Ej) = 0 from item (iii) of Lemma 3 and (59). Notice that {h(j)∗ > 0}\Ej 6= ∅
because µj({h(j)∗ > 0}) > 0. We arbitrarily take τ ∈ {h(j)∗ > 0}\Ej . Then, it can be

easily seen that limk→∞,k∈Qj
h
(j)
k (τ) = h

(j)
∗ (τ) and supk∈N{z

(j)
k (τ)} ≤ zmax. Moreover,

item (ii) of Lemma 3 ensures limk→∞,k∈Qj
σk = 0. Hence, there exists nj ∈ N such that

1
2h

(j)
∗ (τ) ≤ h

(j)
k (τ) and σk−1 ≤ 1

2zmax
h
(j)
∗ (τ) for k ∈ {k ∈ Qj ; k ≥ nj}. These results

guarantee that

z
(j)
k (τ)[h

(j)
k (τ)]+ =

[
z
(j)
k−1(τ)−

1

σk−1
h
(j)
k (τ)

]
+

[h
(j)
k (τ)]+

≤
[
zmax −

1

2σk−1
h
(j)
∗ (τ)

]
+

[h
(j)
k (τ)]+

=
zmax

σk−1

[
σk−1 −

1

2zmax
h
(j)
∗ (τ)

]
+

[h
(j)
k (τ)]+ = 0

for all k ∈ {k ∈ Qj ; k ≥ nj}. To sum up, there exists Ej ⊂ {h(j)∗ > 0} such that

µj(Ej) = 0 and limk→∞,k∈Qj
z
(j)
k (τ)[h

(j)
k (τ)]+ = 0 for any τ ∈ {h(j)∗ > 0}\Ej , namely,

(61) is satisfied.

Next, we prove (62). If µj({h(j)∗ ≤ 0}) = 0, then (62) is readily obtained, and hence

we assume that µj({h(j)∗ ≤ 0}) > 0. It follows from (59) that limk→∞,k∈Qj
[h

(j)
k ]+ =

[h
(j)
∗ ]+ = 0 a.e. in {h(j)∗ ≤ 0}, that is to say, there exists Fj ⊂ {h(j)∗ ≤ 0} such that

22



µj(Fj) = 0 and

lim
k→∞,k∈Qj

[h
(j)
k (τ)]+ = 0 ∀τ ∈ {h(j)∗ ≤ 0}\Fj . (63)

Note that {hj∗ ≤ 0}\Fj 6= ∅ from µj({h(j)∗ ≤ 0}) > 0. Let τ ∈ {h(j)∗ ≤ 0}\Fj and k ∈ Qj
be arbitrary. We have two possible cases: h

(j)
k (τ) > 0; h

(j)
k (τ) ≤ 0. In the first case,

we obtain |z(j)k (τ)[h
(j)
k (τ)]+| = [z

(j)
k−1(τ) −

1
σk−1

h
(j)
k (τ)]+[h

(j)
k (τ)]+ ≤ zmax[h

(j)
k (τ)]+. In

the second case, the same inequality is verified as follows: |z(j)k (τ)[h
(j)
k (τ)]+| = 0 ≤

zmax[h
(j)
k (τ)]+. These two cases imply |z(j)k (τ)[h

(j)
k (τ)]+| ≤ zmax[h

(j)
k (τ)]+. Taking the

limit in both of this inequality and using (63) yield limk→∞,k∈Qj
z
(j)
k (τ)[h

(j)
k (τ)]+ = 0.

As a result, we can verify the existence of Fj ⊂ {h(j)∗ ≤ 0} which satisfies µj(Fj) = 0

and limk→∞,k∈Qj
z
(j)
k (τ)[h

(j)
k (τ)]+ = 0 for all τ ∈ {h(j)∗ ≤ 0}\Fj , that is, (62) holds.

Therefore, we have from (55)–(57) that {(xk, yk, zk)}k∈N is an AKKT sequence
corresponding to x∗.

Proposition 7. Suppose that Assumption 1 is satisfied. If {xk} converges to x∗ in X,
then x∗ is a stationary point of min{J(x) := 1

2‖g(x)‖
2
U + 1

2‖[−h(x)]+‖
2
V ;x ∈ X}, that

is, it satisfies J ′(x∗) = g′(x∗)
∗g(x∗) − h′(x∗)∗[−h(x∗)]+ = 0. Moreover, if x∗ satisfies

the ERCQ, then it is feasible to (1).

Proof. If card(I) =∞ occurs, then Proposition 5 implies that x∗ is a KKT point of (1).
The fact means that x∗ is a global optimum of min{J(x);x ∈ X}, namely, it satisfies
the stationary condition. We consider the case where card(I) < ∞. It then follows
from Lemma 5 that card(J ) = ∞. Let us define Q := {k ∈ N; k − 1 ∈ J }. Notice
that card(Q) = ∞ by card(J ) = ∞ and that ‖F ′(xk; yk−1, zk−1, σk−1)‖W ≤ γk−1 for
k ∈ Q. Now, items (ii) and (iii) of Lemma 3 guarantee that γk → 0 and σk → 0 as
k →∞, k ∈ Q, and {yk} ⊂ U and {zk} ⊂ V are bounded, respectively. We have from
(13) that σk−1F

′(xk; yk−1, zk−1, σk−1) = σk−1f
′(xk) − g′(xk)

∗(σk−1yk−1 − g(xk)) −
h′(xk)

∗[σk−1zk−1 − h(xk)]+. Since {xk} converges to x∗ in W because X ↪→ W , the
above facts, (A1), and (A2) yield

‖J ′(x∗)‖W = lim
k→∞,k∈Q

σk−1‖F ′(xk; yk−1, zk−1, σk−1)‖W = 0. (64)

This shows that the former assertion holds.
To prove the latter part, we suppose that the ERCQ holds at x∗. Since x∗ satisfies

the ERCQ, there exist ξ̂ ∈ X and ζ̂ ∈ KZ such that 0 = g(x∗) + g′(x∗)ξ̂ and 0 =

h(x∗) + h′(x∗)ξ̂ − ζ̂, i.e.,

−g′(x∗)ξ̂ = g(x∗), (65)

ζ̂ = h′(x∗)ξ̂ + h(x∗). (66)

In what follows, we represent h(x∗) and ζ̂ as

h(x∗) = (h
(1)
∗ , . . . , h

(m)
∗ ), ζ̂ = (ζ̂(1), . . . , ζ̂(m)),
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respectively. From ζ̂ ∈ KZ , it is clear that 0 ≥ −ζ̂(j) for all j ∈ {1, . . . ,m}. Hence,
we get 0 ≥ −

∑m
j=1

∫
Ωj
[−h(j)∗ (τ)]+ζ̂

(j)(τ)dτ = −([−h(x∗)]+, ζ̂)V . This inequality and

equality (66) yield

0 ≥ −([−h(x∗)]+, h′(x∗)ξ̂)V +

m∑
j=1

∫
Ωj

[−h(j)∗ (τ)]+(−h(j)∗ (τ))dτ

= −〈h′(x∗)∗[−h(x∗)]+, ξ̂〉X∗,X + ‖[−h(x∗)]+‖2V ,

(67)

where the equality of (67) is derived from [−h(j)∗ (τ)]+(−h(j)∗ (τ)) = |[−h(j)∗ (τ)]+|2 for
j ∈ {1, . . . ,m}. Meanwhile, we recall that J ′(x∗) = g′(x∗)

∗g(x∗) − h′(x∗)∗[−h(x∗)]+.
It then follows from (64) and (65) that

−〈h′(x∗)∗[−h(x∗)]+, ξ̂〉X∗,X = (g(x∗),−g′(x∗)ξ̂)U = ‖g(x∗)‖2U . (68)

Combining (67) and (68) means 0 ≥ ‖g(x∗)‖2U+‖[−h(x∗)]+‖2V . Therefore, we conclude
that x∗ is a feasible point.

Propositions 5 and 6 derive the following theorems associated with the global con-
vergence of Algorithm 2.

Theorem 2. Suppose that Assumption 1 holds. Let {(xk, yk, zk)} ⊂ X × U × V be
an infinite sequence generated by Algorithm 2. Then, any feasible accumulation point
x∗ ∈ X of {xk} satisfies at least one of the following two statements:

(i) There exist y∗ ∈ U , z∗ ∈ V , and M ⊂ N such that yk ⇀ y∗ in U and zk ⇀ z∗
in V as k →∞, k ∈M, and (x∗, y∗, z∗) satisfies the KKT conditions of (1);

(ii) x∗ is an AKKT point of (1) and there exists N ⊂ N such that {(xk, yk, zk)}k∈N
is an AKKT sequence corresponding to x∗.

Proof. Without loss of generality, we can assume that {xk} converges to x∗ in X.
There is a possibility that card(I) =∞ or card(I) <∞. If the first case occurs, then
Proposition 5 ensures that statement (i) is satisfied. On the other hand, it follows from
Proposition 6 that the second case means statement (ii).

Theorem 3. Suppose that Assumption 1 holds. Suppose also that Y and Z are separa-
ble. Let {(xk, yk, zk)} ⊂ X×U×V be an infinite sequence generated by Algorithm 2. If
any accumulation point x∗ ∈ X of {xk} satisfies the ERCQ, then there exist y∗ ∈ Y ∗,
z∗ ∈ Z∗, and N ⊂ N such that yk ⇀

∗ y∗ in Y ∗ and zk ⇀
∗ z∗ in Z∗ as k →∞, k ∈ N ,

and (x∗, y∗, z∗) satisfies the KKT conditions of (1).

Proof. Assume without loss of generality that {xk} converges to x∗ in X. Since x∗
satisfies the ERCQ, Proposition 7 ensures that x∗ is feasible to (1), and hence the
RCQ holds at x∗. Note that f , g, and h are continuously Fréchet differentiable on
X from (A1) and X ↪→ W ↪→ X∗. Note also that U ↪→ Y ∗ and V ↪→ Z∗. It then
follows from Theorem 2 that x∗ is an AKKT point and there existsM⊂ N such that
{(xk, yk, zk)}k∈M ⊂ X × Y ∗ × Z∗ is an AKKT sequence corresponding to x∗ because
every KKT point is also an AKKT point. Since Y and Z are separable and the RCQ
holds at x∗, Proposition 1 implies that {yk}k∈M and {zk}k∈M have respectively weakly

24



convergent subsequences {yk}k∈N and {zk}k∈N such that yk ⇀
∗ y∗ in Y

∗ and zk ⇀
∗ z∗

in Z∗ as k →∞, k ∈ N , and (x∗, y∗, z∗) satisfies the KKT conditions of (1).

Remark 3. Theorem 2 guarantees that the sequence {xk} generated by Algorithm 2
globally converges to a point that satisfies the KKT or AKKT conditions. Such a
property is not found in the existing SQP-type methods for optimization problems in
function spaces.

Remark 4. As mentioned in Theorem 2, there is a possibility that Algorithm 2 finds
an infeasible point of problem (1). This property can be also seen in the existing aug-
mented Lagrangian method proposed in [23]. However, Proposition 7 also ensures that
the infeasible point certainly satisfies the stationary condition of min{J(x);x ∈ X}.
This fact indicates that Algorithm 2 tends to find a feasible point of (1). It would be
rare for Algorithm 2 to find an infeasible point because there are indeed no such cases
in numerical experiments provided in Section 5.

Remark 5. In Theorems 2 and 3, we suppose that the generated sequence {xk} con-
verges to some accumulation point x∗ ∈ X. Actually, the same assumption can be
also seen in the global convergence analysis of the existing literature [23]. However, it
is difficult to verify whether the assumption is satisfied or not before running Algo-
rithm 2. In future research, it is worthwhile providing some sufficient conditions for
the assumption or proving the global convergence under a weaker assumption that {xk}
weakly converges to x∗.

5. Applications and numerical experiments

In this section, we provide some applications related to problem (1) and apply Algo-
rithm 2 to them. The details of those applications are found in the existing papers
and textbooks, such as [8, 9, 20, 23, 30, 31, 36, 38].

Example 1 We consider an obstacle problem:

Minimize
u

∫
Ω

|∇u|2dτ

subject to u ≥ ψ in Ω,

(69)

where the set Ω ⊂ Rn is a bounded and open domain with a Lipschitz boundary and
the function ψ ∈ H1

0 (Ω) is given. In this case, we regard f and h as

f(x) :=

∫
Ω

|∇u|2dτ, h(x) := u− ψ,

respectively. Furthermore, we consider X, Z, and W as

X := H1
0 (Ω), Z := H1

0 (Ω), W := H1
0 (Ω),

respectively.
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Example 2 As a standard application in the optimal control, we provide an elliptic
control problem:

Minimize
y,u

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to A(y) + ϕ(·, y(·)) = au in Ω, y = 0 on ∂Ω,

y ≥ yc in Ω, ua ≤ u ≤ ub in Ω.

(70)

Here, the set Ω ⊂ Rn is a bounded and open domain with a Lipschitz boundary ∂Ω,
the parameter α is positive, the functions yd ∈ L2(Ω), a ∈ L∞(Ω), ua ∈ L∞(Ω),
ub ∈ L∞(Ω), and yc ∈ C(Ω̄) are given, the operator A is defined as

A(y) := −div(M∇y) = −
n∑
i=1

n∑
j=1

∂

∂τj

(
Mij

∂

∂τi
y

)
(71)

for y ∈ H1
0 (Ω), the matrix-valued function M : Ω → Rd×d satisfies that M(τ) =

[Mij(τ)] ∈ Rd×d is symmetric for all τ ∈ Ω, Mij ∈ C0,1(Ω̄) for each i, j ∈ {1, . . . , d},
and there exists δ > 0 such that ξ⊤M(τ)ξ ≥ δ|ξ|2 for τ ∈ Ω and ξ ∈ Rd. Moreover,
the function ϕ : Ω×R→ R is bounded and measurable with respect to τ ∈ Ω for each
fixed θ ∈ R, is continuous and monotonically increasing with respect to θ ∈ R for a.e.
τ ∈ Ω, and satisfies the following two conditions:

(i) There exists K > 0 such that |ϕ(τ, 0)| ≤ K for a.e. τ ∈ Ω;
(ii) for each M > 0, there exists LM > 0 such that |ϕ(τ, θ) − ϕ(τ, ϑ)| ≤ LM |θ − ϑ|

for a.e. τ ∈ Ω and all θ, ϑ ∈ [−M,M ].

It follows from [36, Theorem 4.7] that for each control u, the state equation has
the unique solution y = G(u) ∈ H1

0 (Ω) ∩ C(Ω̄). This example can be expressed as
problem (1) by the following setting: The functionals f , g, and h are respectively
regarded as

f(x) := 1
2‖y − yd‖

2
L2(Ω) +

α
2 ‖u‖

2
L2(Ω),

g(x) := A(y) + ϕ(·, y(·))− au,
h(x) := (y − yc, u− ua, ub − u),

and the function spaces X, Y , Z, W , and U are respectively set to

X := Y × L2(Ω), Y := L2(Ω), Z := C(Ω̄)× L2(Ω)× L2(Ω),

W := L2(Ω)× L2(Ω), U := L2(Ω).

Here Y := {y ∈ H1
0 (Ω)∩C(Ω̄);B(y) ∈ L2(Ω)} is a Banach space equipped with a norm

‖y‖Y := ‖y‖H1
0 (Ω) + ‖y‖C(Ω̄) + ‖B(y)‖L2(Ω) for y ∈ Y, where the operator B is defined

as B(y) := A(y)+ϕ(·, y(·)), and the completeness of Y is proven in Appendix B. Note
that the RCQ does not hold for all feasible points of problem (70) due to the box
constraint ua ≤ u ≤ ub.

Example 3 We also give an optimal control problem with a control complementarity
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constraint:

Minimize
y,u,v

1

2
‖y − yd‖2L2(Ω) +

α1

2
‖u‖2L2(Ω) +

α2

2
‖v‖2L2(Ω)

+
β

2
‖u‖2H1(Ω) +

β

2
‖v‖2H1(Ω)

subject to A(y) + ay = bu+ cv in Ω, y = 0 on ∂Ω,

(u, v)L2(Ω) = 0, u ≥ 0 in Ω, v ≥ 0 in Ω,

(72)

where the set Ω ⊂ Rn is a bounded and open domain with a Lipschitz boundary ∂Ω,
the parameters α1, α2, and β are positive, the functions yd ∈ L2(Ω), a ∈ L∞(Ω),
b ∈ L∞(Ω), c ∈ L∞(Ω) are given, and the operator A is the same one defined by (71).
As described in Example 2, it is clear that a solution of the state equation satisfies
y = G(u, v) ∈ H1

0 (Ω) ∩ C(Ω̄). To represent problem (72) as the proposed model, we
should define the functionals f , g, and h by

f(x) := 1
2‖y − yd‖

2
L2(Ω) +

α1

2 ‖u‖
2
L2(Ω) +

α2

2 ‖v‖
2
L2(Ω)

+β
2 ‖u‖

2
H1(Ω) +

β
2 ‖v‖

2
H1(Ω),

g(x) := (A(y) + ay − bu− cv, (u, v)L2(Ω)),

h(x) := (u, v),

respectively, and adopt the following function spaces:

X := Z ×H1(Ω)×H1(Ω), Y := L2(Ω)× R, Z := L2(Ω)× L2(Ω),

W := L2(Ω)× L2(Ω)× L2(Ω), U := L2(Ω)× R,

where Z := {y ∈ H1
0 (Ω) ∩ C(Ω̄);A(y) ∈ L2(Ω)} is a Banach space equipped with a

norm ‖y‖Z := ‖y‖H1
0 (Ω) + ‖y‖C(Ω̄) + ‖A(y)‖L2(Ω) for y ∈ Z, and the completeness of

Z can be shown in a manner similar to Appendix B. Notice that all feasible points
of problem (72) do not satisfy the RCQ because of the complementarity constraint
(u, v)L2(Ω) = 0.

In the following, we report some numerical experiments to confirm the practical
validity of Algorithm 2. Throughout the experiments, test problems given later were
approximated as finite dimensional ones by discretizing them, and those approximate
problems were solved. The program was written in MATLAB R2020b.

We explain the setting of Algorithm 2. First of all, we give the stopping criteria used
in Step 1. From Theorem 2, there are two possible cases for the sequence {(xk, yk, zk)}
generated by Algorithm 2: (i) {xk} converges to a KKT point; (ii) {xk} converges to
an AKKT point. Case (i) means that there existsM⊂ N such that {r(xk, yk, zk)}k∈M
converges to zero, where r is defined by

r(xk, yk, zk) := max {|g(xk)|, |[−h(xk)]+|, |∇xL(xk, yk, zk)|, |zk · h(xk)|}

with ∇xL(xk, yk, zk) = ∇f(xk) − ∇g(xk)yk − ∇h(xk)zk. Moreover, case (ii) implies
that Algorithm 2 performs Step 3.3 (Step 3 of Algorithm 1) infinitely many times,
that is, there exists N ⊂ N such that {γk}k∈N converges to zero. By considering these
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facts, we adopted the following stopping conditions:

r(xk, yk, zk) ≤ 10−6, γk ≤ 10−6, or k = 100,

where a run was considered to have failed if k = 100. The parameters were set as
β := 0.5, ε := 10−4, ρ := 10−4, κ := 10−5, φ0 := 103, ψ0 := 103, γ0 := 10−3, and
σ0 := 10−3. The sets C and D were chosen as C := {y;−ymaxe ≤ y ≤ ymaxe} and
D := {z; 0 ≤ z ≤ zmaxe}, where ymax := 106, zmax := 106, and e denotes the all-ones
vector whose dimension is defined by the context. The initial point was selected as
(x0, y0, z0) := (0, 0, 0).

In the experiments, three test problems related to Examples 1–3 were solved. To
begin with, we give the following obstacle Bratu problem which is obtained by changing
the objective function of (69):

Minimize
u

∫
Ω

(
|∇u|2 − αe−u

)
dτ

subject to u ≥ ψ in Ω,

(73)

where Ω := (0, 1)2, α := 0.3, and ψ(τ1, τ2) := max{0.1−30(τ1−0.5)4−30(τ2−0.5)4, 0}.
Note that this problem is nonlinear and nonconvex.

Regarding Example 2, we consider the following optimal control problem with a
semilinear PDE constraint:

Minimize
y,u

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to −∆y + y3 = u in Ω, y = 0 on ∂Ω,

y ≥ yc in Ω,

(74)

where Ω := (0, 1)2, α := 0.002, yd(τ1, τ2) := −1, and yc(τ1, τ2) := −0.6 + 0.5min{τ1 +
τ2, 1+ τ1 − τ2, 1− τ1 + τ2, 2− τ1 − τ2}. This problem is also nonlinear and nonconvex.

Finally, we present the following problem associated with Example 3:

Minimize
y,u,v

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2H1(Ω) +

α

2
‖v‖2H1(Ω)

subject to −∆y + y = 1Ω1
u+ 1Ω2

v in Ω, y = 0 on ∂Ω,

(u, v)L2(Ω) = 0, u ≥ 0 in Ω, v ≥ 0 in Ω,

(75)

where Ω := (0, 1)2, Ω1 := {(τ1, τ2) ∈ Ω; τ2 < 0.25}, Ω2 := {(τ1, τ2) ∈ Ω; τ2 > 0.75},
α := 0.001, and yd(τ1, τ2) := cos(πτ1) cos(2πτ2). As stated in Example 3, it is known
that the RCQ does not hold at any feasible point of (75) because the complementarity
constraint exists.

Tables 1–3 indicate computational results that Algorithm 2 solved the three test
problems with the mesh size being changed. Note that x∗, y∗, and z∗ described in each
table denote the final iteration points of {xk}, {yk}, and {zk}, respectively. Moreover,
numerical results for problems (73)–(75) are shown in Figures 1–3, respectively. For
each mesh size, Algorithm 2 succeeded in solving all the problems, and its iteration
numbers seem to be nearly constant regardless of the mesh size. In addition, the values
of max{|y∗|, |z∗|} given in Table 3 indicate that the Lagrange multipliers {yk} and {zk}
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did not diverge even though problem (75) is degenerate. Therefore, the effectiveness
of Algorithm 2 was also shown for the degenerate problem.

Table 1. Performance of Algorithm 2 on problem (73)

mesh size iteration r(x∗, y∗, z∗) max{|y∗|, |z∗|}
2−4 3 3.7832e−07 1.2891e−01
2−5 3 1.0054e−07 6.1570e−02
2−6 3 4.3314e−08 3.2603e−02
2−7 3 6.8796e−07 1.6394e−02

Table 2. Performance of Algorithm 2 on problem (74)

mesh size iteration r(x∗, y∗, z∗) max{|y∗|, |z∗|}
2−4 3 4.1339e−08 1.8920e−01
2−5 3 5.7983e−07 1.8812e−01
2−6 3 1.4023e−07 1.8745e−01
2−7 3 5.9678e−07 1.8708e−01

Table 3. Performance of Algorithm 2 on problem (75)

mesh size iteration r(x∗, y∗, z∗) max{|y∗|, |z∗|}
2−4 13 6.4322e−07 8.2135e−01
2−5 12 5.2823e−07 1.1438e−00
2−6 11 7.0608e−07 7.5793e−01
2−7 13 8.8749e−07 5.0120e−01

6. Concluding remarks

In this paper, we have proposed Algorithm 2 for solving problem (1). Problem (1)
has a general form and does not need to satisfy any CQs. The setting allows us to
formulate many kinds of optimization problems in function spaces including degenerate
ones. Algorithm 2 produces a sequence converging to a point that satisfies the KKT
or AKKT conditions. We have proven that Algorithm 2 globally converges without
assuming any CQs. In the numerical experiments, we have confirmed that Algorithm 2
performs well for all the test problems, which include degenerate ones.

Acknowledgements

The author would like to thank the editor and referees for their valuable and construc-
tive comments.

Declarations

Conflict of interest The author declares no competing interests.

29



(a) Constraint function ψ (b) Solution u

Figure 1. Numerical results for problem (73) with the mesh size 2−7

(a) Constraint function yc (b) Optimal state y

(c) Optimal control u

Figure 2. Numerical results for problem (74) with the mesh size 2−7
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(a) Desired state yd (b) Optimal state y

(c) Optimal control u (d) Optimal control v

Figure 3. Numerical results for problem (75) with the mesh size 2−7
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Appendix A.

Proof of Proposition 2. Let us define F(v) := (f ′(x)−g′(x)∗s, ξ)W+ 1
2(Mξ, ξ)W+ σ

2 ‖ζ‖
2
V

and S := {(ξ, ζ) ∈ V;h′(x)ξ + σ(ζ − t) ≥ 0}. For each v := (ξ, ζ) ∈ S, we can
evaluate F(v) as follows: F(v) ≥ ℓB

2 (‖ξ‖W − 1
ℓB
‖f ′(x) − g′(x)∗s‖W )2 − 1

2ℓB
‖f ′(x) −

g′(x)∗s‖2W + σ
2 ‖ζ‖

2
V . Thus, the coerciveness of F is verified. In addition, we obtain

−∞ < inf{F(v); v ∈ S}, that is, there exists {vj} ⊂ S such that F(vj)→ inf{F(v); v ∈
S} as j → ∞. It then follows from the coerciveness of F that {vj} ⊂ V is bounded.
Meanwhile, W and V are Hilbert spaces, and hence so is V. By these facts, there exist
v∗ := (ξ∗, ζ∗) ∈ V and M ⊂ N such that vj ⇀ v∗ as j → ∞, j ∈ M. Since S is
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convex and strongly closed, it is weakly closed, i.e., v∗ ∈ S. Now, we can easily see
that F is weakly lower semicontinuous because it is proper convex. Hence, F (v∗) =
inf{F(v); v ∈ S}, which implies that v∗ = (ξ∗, ζ∗) is an optimum of problem (12). The
uniqueness of v∗ follows from the strict convexity of F .

Note that (ξ, ζ) 7→ h′(x)ξ+σζ is a surjective mapping from V to V . This fact means
that the RCQ holds at each feasible point of (12). Therefore, there exists λ∗ ∈ V such
that (ξ∗, ζ∗, λ∗) satisfies the KKT conditions of (12).

Proof of Proposition 3. Since the bilinear form B is coercive, Proposition 2 ensures
that problem (12) has the unique optimum (ξ∗, ζ∗) ∈ V to be also a KKT point of (12).
Therefore, it can be easily verified that

Mξ∗ + f ′(x)− g′(x)∗s− h′(x)∗ζ∗ = 0, (A.1)

(ζ∗, h
′(x)ξ∗ + σ(ζ∗ − t))V = 0, (A.2)

h′(x)ξ∗ + σ(ζ∗ − t) ≥ 0, ζ∗ ≥ 0. (A.3)

We have from (13), (A.1), and (A.2) that

(F ′(x; y, z, σ), ξ∗)W = −(Mξ∗, ξ∗)W + (ζ∗, h
′(x)ξ∗)V − ([t]+, h

′(x)ξ∗)V

= −(Mξ∗, ξ∗)W − σ(ζ∗, ζ∗ − t)V − ([t]+, h
′(x)ξ∗)V .

(A.4)

The first inequality of (A.3) and [t]+ ≥ 0 derive 0 ≤ ([t]+, h
′(x)ξ∗ + σ(ζ∗ − t))V , i.e.,

−([t]+, h′(x)ξ∗)V ≤ σ([t]+, ζ∗ − t)V = σ([t]+ − ζ∗, ζ∗ − t)V + σ(ζ∗, ζ∗ − t)V . (A.5)

The third term in the right-hand side of (A.4) can be evaluated by (A.5), and therefore
we obtain (F ′(x; y, z, σ), ξ∗)W ≤ −(Mξ∗, ξ∗)W − σ‖ζ∗ − [t]+‖2V + ([t]+ − ζ∗, [t]+ − t)V .
Since ζ∗ ≥ 0 from the second inequality of (A.3), the well-known property of the
projection [·]+ : V → KV guarantees that ([t]+ − ζ∗, [t]+ − t)V ≤ 0, namely,

(F ′(x; y, z, σ), ξ∗)W ≤ −(Mξ∗, ξ∗)W − σ‖ζ∗ − [t]+‖2V . (A.6)

Now, we suppose that F ′(x; y, z, σ) = 0. It follows from (A.6) and the coerciveness
of B that ξ∗ = 0 and ζ∗ = [t]+, and hence (0, [t]+) is the unique optimum of (12).
Conversely, we assume that (0, [t]+) is the unique optimum of (12), that is, ξ∗ = 0 and
ζ∗ = [t]+. Combining (13) and (A.1) yields F ′(x; y, z, σ) = 0.

Appendix B.

Proof of the completeness of (Y, ‖ · ‖Y). Let {yj} be a Cauchy sequence in Y. The
definition of the norm ‖ · ‖Y implies that {yj} and {B(yj)} are also Cauchy sequences
in H1

0 (Ω) ∩ C(Ω̄) and L2(Ω), respectively. Hence, there exist y ∈ H1
0 (Ω) ∩ C(Ω̄) and

z ∈ L2(Ω) such that

lim
j→∞

(
‖yj − y‖H1

0 (Ω) + ‖yj − y‖C(Ω̄)

)
= 0, lim

j→∞
‖B(yj)− z‖L2(Ω) = 0. (B.1)

Since {yj} is bounded in C(Ω̄), there exists M0 > 0 such that ‖yj‖C(Ω̄) ≤ M0 for all

j ∈ N∪ {0}. Let us define M := max{M0, ‖y‖C(Ω̄)} <∞, where notice that y ∈ C(Ω̄).
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We readily have

‖y‖L∞(Ω) ≤M, ‖yj‖L∞(Ω) ≤M ∀j ∈ N ∪ {0}. (B.2)

Recall that the function ϕ satisfies conditions (i) and (ii) mentioned in Example 2. It
then follows from (B.2) and [36, Lemma 4.11] that

‖ϕ(·, yj(·))− ϕ(·, y(·))‖L2(Ω) ≤ LM‖yj − y‖L2(Ω) ∀j ∈ N ∪ {0}. (B.3)

Now, exploiting H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) and (B.3) yields

‖B(y)− z‖H−1(Ω)

≤ ‖A(yj)−A(y)‖H−1(Ω) + ‖ϕ(·, yj(·))− ϕ(·, y(·))‖H−1(Ω) + ‖B(yj)− z‖H−1(Ω)

≲ ‖A(yj)−A(y)‖H−1(Ω) + ‖ϕ(·, yj(·))− ϕ(·, y(·))‖L2(Ω) + ‖B(yj)− z‖L2(Ω)

≤ ‖A(yj)−A(y)‖H−1(Ω) + LM‖yj − y‖H1
0 (Ω) + ‖B(yj)− z‖L2(Ω).

(B.4)

The continuity of A, (B.1), and (B.4) ensure that B(y) = z ∈ L2(Ω). Then, using
(B.1) again implies that the Cauchy sequence {yj} converges to y ∈ Y.
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