Path-monotonic Upward Drawings of Plane Graphs *

Seok-Hee Hong ${ }^{1}$ and Hiroshi Nagamochi ${ }^{2}$
${ }^{1}$ University of Sydney, Australia
seokhee.hong@sydney.edu.au
${ }^{2}$ Kyoto University, Japan
nag@amp.i.kyoto-u.ac.jp

Abstract

In this paper, we introduce a new problem of finding an upward drawing of a given plane graph γ with a set \mathcal{P} of paths so that each path in the set is drawn as a poly-line that is monotone in the y-coordinate. We present a sufficient condition for an instance (γ, \mathcal{P}) to admit such an upward drawing. Our results imply that every 1-plane graph admits an upward drawing.

1 Introduction

Upward planar drawings of digraphs are well studied problem in Graph Drawing [3]. In an upward planar drawing of a directed graph, no two edges cross and each edge is a curve monotonically increasing in the vertical direction. It was shown that an upward planar graph (i.e., a graph that admits an upward planar drawing) is a subgraph of a planar st-graph and admits a straight-line upward planar drawing [4, 12], although some digraphs may require exponential area [3]. Testing upward planarity of a digraph is NP-complete [10]; a polynomial-time algorithm is available for an embedded triconnected digraph [2].

Upward embeddings and orientations of undirected planar graphs were studied [6]. Computing bimodal and acyclic orientations of mixed graphs (i.e., graphs with undirected and directed edges) is known as NP-complete [13], and upward planarity testing for embedded mixed graph is NP-hard [5]. Upward planarity can be tested in cubic time for mixed outerplane graphs, and linear-time for special classes of mixed plane triangulations [8].

A monotone drawing is a straight-line drawing such that for every pair of vertices there exists a path that monotonically increases with respect to some direction. In an upward drawing, each directed path is monotone, and such paths are monotone with respect to the same (vertical) line, while in a monotone drawing, each monotone path is monotone with respect to a different line in general. Algorithms for constructing planar monotone drawings of trees and biconnected planar graphs are presented [1].

[^0]In this paper, we introduce a new problem of finding an upward drawing of a given plane graph γ together with a set \mathcal{P} of paths so that each path in the set is drawn as a poly-line that is monotone in the y-coordinate. Let $\gamma=(V, E, F)$ be a plane graph and D be an upward drawing of γ. We call D monotonic to a path P of (V, E) if D is upward in the y-coordinate and the drawing induced by path P is y-monotone. We call D monotonic to a set of paths \mathcal{P} if D is monotonic to each path in \mathcal{P}. More specifically, we initiate the following problem.

Path-monotonic Upward Drawing

Input: A connected plane graph γ, a set \mathcal{P} of paths of length at least 2 and two outer vertices s and t.
Output: An (s, t)-upward drawing of γ that is monotonic to \mathcal{P}.
We present a sufficient condition for an instance (γ, \mathcal{P}) to admit an (s, t) upward drawing of γ that is monotonic to \mathcal{P} for any two outer vertices $s, t \notin$ $V_{\text {inl }}(\mathcal{P})$ (Theorem 1). Then we apply the result to a problem of finding an upward drawing of a non-planar embedding of a graph (Theorem 2), and prove that every 1-plane graph (i.e., a graph embedded with at most one crossing per edge) admits an (s, t)-upward poly-line drawing (Corollary 1). Note that there is a 1-plane graph that admits no straight-line drawing [16], and there is a 2-plane graph with three edges that admits no upward drawing.

Figure $1(\mathrm{a})$ shows an instance (γ, \mathcal{P}) with $\mathcal{P}=\left\{P_{1}=\left(v_{6}, u_{1}, v_{2}\right), P_{2}=\right.$ $\left(v_{1}, u_{1}, v_{5}\right), P_{3}=\left(v_{3}, u_{2}, v_{4}\right), P_{4}=\left(v_{3}, u_{3}, u_{4}, v_{9}\right), P_{5}=\left(v_{11}, u_{5}, u_{4}, v_{8}\right), P_{6}=$ $\left.\left(v_{10}, u_{5}, u_{3}, v_{7}\right), P_{7}=\left(v_{10}, u_{6}, u_{4}, v_{7}\right), P_{8}=\left(v_{12}, u_{7}, v_{14}\right), P_{9}=\left(v_{10}, u_{7}, v_{13}\right)\right\}$. Figure 1(b) shows an (s, t)-upward drawing monotonic to \mathcal{P} such that each path is drawn as a poly-line monotone in the y-coordinate for $s=v_{5}$ and $t=v_{8}$.

Fig. 1. (a) plane graph γ with a path set \mathcal{P} and a cycle set \mathcal{C}, where the edges in paths in \mathcal{P} (resp., cycles \mathcal{C}) are depicted with black thick lines (resp., gray thick lines), and the vertices in $V_{\text {inl }}$ (resp., $V_{\text {end }}$ and $V \backslash V_{\text {inl }} \cup V_{\text {end }}$) are depicted with white circles (resp., gray circles and white squares); (b) $\left(s=v_{5}, t=v_{8}\right)$-upward poly-line drawing monotonic to \mathcal{P}.

2 Preliminaries

Graphs In this paper, a graph stands for an undirected multiple graph without self-loops. A graph with no multiple edges is called simple. Given a graph $G=$ (V, E), the vertex and edge sets are denoted by $V(G)$ and $E(G)$, respectively.

A path P that visits vertices $v_{1}, v_{2}, \ldots, v_{k+1}$ in this order is denoted by $P=\left(v_{1}, v_{2}, \ldots, v_{k+1}\right)$, where vertices v_{1} and v_{k+1} are called the end-vertices. Paths and cycles are simple unless otherwise stated. A path with end-vertices $u, v \in V$ is called a u, v-path. A u, v-path that is a subpath of a path P is called the sub-u, v-path of P. Denote the set of end-vertices (resp., internal vertices) of all paths in a set \mathcal{P} of paths by $V_{\text {end }}(\mathcal{P})$ (resp., $V_{\text {inl }}(\mathcal{P})$), which is written as $V_{\text {end }}(P)$ (resp., $V_{\text {inl }}(P)$) for $\mathcal{P}=\{P\}$.

Let G be a graph with a vertex set V with $n=|V|$ and an edge set E. Let $N_{G}(v)$ denote the set of neighbors of a vertex v in G. Let X be a subset of V. Let $G[X]$ denote the subgraph of G induced by the vertices in X. We denote by $N_{G}(X)$ the set of neighbors of X; i.e., $N_{G}(X)=\cup_{v \in X} N_{G}(v) \backslash X$. A connected component H of G may be denoted with the vertex subset $V(H)$ for simplicity.

For two distinct vertices $a, b \in V$, a bijection $\rho: V \rightarrow\{1,2, \ldots, n\}$ is called an st-numbering if $\rho(a)=1, \rho(b)=n$, and each vertex $v \in V \backslash\{a, b\}$ has a neighbor $v^{\prime} \in N_{G}(v)$ with $\rho\left(v^{\prime}\right)<\rho(v)$ and a neighbor $v^{\prime \prime} \in N_{G}(v)$ with $\rho(v)<\rho\left(v^{\prime \prime}\right)$. It is possible to find an st-numbering of a given graph with designated vertices a and b (if one exists) in linear time using depth-first search [7, 15]. A biconnected graph admits an st-numbering for any specified vertices a and b.
Digraphs Let $G=(V, E)$ be a digraph. The indegree (resp., outdegree) of a vertex $v \in V$ in G is defined to be the number of edges whose head is v (resp., whose tail is v). A source (resp., sink) is defined to be a vertex of indegree (resp., outdegree) 0 . When G has no directed cycle, it is called acyclic. A digraph with n vertices is acyclic if and only if it admits a topological ordering, i.e., a bijection $\tau: V \rightarrow\{1,2, \ldots, n\}$ such that $\tau(u)<\tau(v)$ for any directed edge (u, v).

We define an orientation of a graph $G=(V, E)$ to be a digraph $\widetilde{G}=(V, \widetilde{E})$ obtained from the graph by replacing each edge $u v$ in G with one of the directed edge (u, v) or (v, u). A bipolar orientation (or st-orientation) of a graph is defined to be an acyclic digraph with a single source s and a single $\operatorname{sink} t[9,14]$, where we call such a bipolar orientation an (s, t)-orientation. A graph has a bipolar orientation if and only if it admits an st-numbering. Figure 1(b) illustrates an (s, t)-orientation for $s=v_{5}$ and $t=v_{8}$.

Lemma 1. For any vertices s and $\underset{\sim}{t}$ in a biconnected graph G possibly with multiple edges, an (s, t)-orientation \widetilde{G} of G can be constructed in linear time.

We call an orientation \widetilde{G} of G compatible to a set \mathcal{P} of paths in G if each path in \mathcal{P} is directed from one end-vertex to the other in \widetilde{G}. The orientation in Figure 1(b) is compatible to the path set \mathcal{P}.
Embeddings An embedding Γ of a graph (or a digraph) $G=(V, E)$ is a representation of G (possibly with multiple edges) in the plane, where each
vertex in V is a point and each edge $e \in E$ is a curve (a Jordan arc) between the points representing its endvertices. We say that two edges cross if they have a point in common, called a crossing, other than their endpoints.

To avoid pathological cases, standard non-degeneracy conditions apply: (i) no edge contains any vertex other than its endpoints; (ii) no edge crosses itself; (iii) no two edges meet tangentially; and (iv) two edges cross at most one point, and two crossing edges share no end-vertex (where two edges may share the two end-vertices). In this paper, we allow three or more edges to share the same crossing. An edge that does not cross any other edge is called crossing-free.

Let Γ be an embedding of a graph (or digraph) $G=(V, E)$. We call Γ a poly-line drawing if each edge $e \in E$ is drawn as a sequence of line segments. The point where two consecutive line segments meet is called a bend. We call a poly-line drawing a straight-line drawing if it has no bend.

We call a curve in the $x y$-plane y-monotone if the y-coordinate of the points in the curve increases from one end of the curve to the other. We call Γ an upward drawing if (i) there is a direction d to be defined as the y-coordinate such that the curve for each edge $e \in E$ is y-monotone; and (ii) when G is a digraph, the head of e has a larger y-coordinate than that of the tail of e.

For two vertices $s, t \in V$, we call Γ an (s, t)-upward drawing if Γ is upward in the y-coordinate and the y-coordinate of s (resp., t) in Γ is uniquely minimum (resp., maximum) among the y-coordinates of vertices in Γ. Figure 1(b) shows an example of an (s, t)-upward poly-line drawing with $s=v_{5}$ and $t=v_{8}$.
Plane Graphs An embedding of a graph G with no crossing is called a plane graph and is denoted by a tuple (V, E, F) of a set V of vertices, a set E of edges and a set F of faces. We call a plane graph pseudo-simple if it has no pair of multiple edges e and e^{\prime} such that the cycle formed by e and e^{\prime} encloses no vertex.

Let $\gamma=(V, E, F)$ be a plane graph. We say that two paths P and P^{\prime} in γ intersect if they are edge-disjoint and share a common internal vertex w, and the edges $u w$ and $w v$ in P and $u^{\prime} w$ and $w v^{\prime}$ in P^{\prime} incident to w appear alternately around w (i.e., in one of the orderings $u, u^{\prime}, v, v^{\prime}$ and $u, v^{\prime}, v, u^{\prime}$).

Let C be a cycle in γ. Define $V_{\text {enc }}(C ; \gamma), E_{\text {enc }}(C ; \gamma)$ and $F_{\text {enc }}(C ; \gamma)$ to be the sets of vertices $v \in V \backslash V(C)$, edges $e \in E \backslash E(C)$ and inner faces $f \in F$ that are enclosed by C. The interior subgraph $\gamma[C]_{\mathrm{enc}}$ induced from γ by C is defined to be the plane graph $\left(V(C) \cup V_{\text {enc }}(C ; \gamma), E(C) \cup E_{\text {enc }}(C ; \gamma), F_{\text {enc }}(C ; \gamma) \cup\right.$ $\left\{f_{C}\right\}$), where f_{C} denotes the new outer face whose facial cycle is C. The exterior subgraph induced from γ by C is defined to be the plane graph $\left(V \backslash V_{\text {enc }}(C ; \gamma), E \backslash\right.$ $\left.E_{\text {enc }}(C ; \gamma), F \cup\left\{f_{C}\right\} \backslash F_{\text {enc }}(C ; \gamma)\right)$, where f_{C} denotes the new inner face whose facial cycle is C. Note that when γ is biconnected, the graph $\gamma[C]_{\text {enc }}$ remains biconnected, since every two vertices $u, v \in V \backslash V_{\text {enc }}(C ; \gamma)$ have two internally disjoint paths without using edges in $E_{\text {enc }}(C ; \gamma)$.

We say that two cycles C and C^{\prime} in γ intersect if $F_{\mathrm{enc}}(C ; \gamma) \backslash F_{\mathrm{enc}}\left(C^{\prime} ; \gamma\right) \neq$ $\emptyset \neq F_{\text {enc }}\left(C^{\prime} ; \gamma\right) \backslash F_{\text {enc }}(C ; \gamma)$. Let \mathcal{C} be a set of cycles in γ. We call \mathcal{C} inclusive if no two cycles in \mathcal{C} intersect. When \mathcal{C} is inclusive, the inclusion-forest of \mathcal{C} is defined to be a forest $\mathcal{I}=(\mathcal{C}, \mathcal{E})$ of a disjoint union of rooted trees such that (i) the cycles in \mathcal{C} are regarded as the vertices of \mathcal{I}; and (ii) a cycle C is an ancestor
of a cycle C^{\prime} in \mathcal{I} if and only if $F_{\text {enc }}\left(C^{\prime} ; \gamma\right) \subseteq F_{\text {enc }}(C ; \gamma)$. Let $\mathcal{I}(\mathcal{C})$ denote the inclusion-forest of \mathcal{C}.

An st-planar graph is defined to be a bipolar orientation of a plane graph for which both the source and the sink of the orientation are on the outer face of the graph. A directed acyclic graph G has an upward planar drawing if and only if G is a subgraph of an st-planar graph [4, 12]. Every st-planar graph can have a dominance drawing [3], in which for every two vertices u and v there exists a path from u to v if and only if both coordinates of u are smaller than the corresponding coordinates of v. Hence the following result is known.

Lemma 2. [3] (i) Every simple st-planar graph admits an upward straight-line drawing;
(ii) Every st-planar graph with multiple edges admits an upward poly-line drawing, where each multiple edge has at most one bend; and
(iii) Such a drawing in (i) and (ii) can be constructed in linear time.

We see that (ii) follows from (i) by subdividing each multiple directed edge (u, v) into a directed path (u, w, v) with a new vertex w to obtain a simple $s t$-planar graph. Figure 1(b) illustrates an example of an st-planar graph.

3 Path-monotonic Upward Drawing

When a plane graph γ has a pair of multiple edges e and e^{\prime} that encloses no vertex in the interior, we can ignore one of these edges (say e^{\prime}) to find an upward drawing of γ, because we can draw e^{\prime} along the drawing of e in any upward drawing of the resulting plane graph. In what follows, we assume that a given plane graph is pseudo-simple.

In this paper, we present a sufficient condition for an instance (γ, \mathcal{P}) to admit an (s, t)-upward straight-line drawing of γ that is monotonic to \mathcal{P} for any two outer vertices $s, t \notin V_{\text {inl }}(\mathcal{P})$.

Let γ be a connected plane graph. We say that two paths P and P^{\prime} in γ are 1 -independent if (i) they intersect at a common internal vertex and have no other common vertex; or (ii) they have no common vertex that is an internal vertex of one of them (where they may share at most two vertices that are end-vertices to both paths). We call a set \mathcal{P} of paths 1 -independent if any two paths in \mathcal{P} are 1 -independent. We prove the following main result.

Theorem 1. For a pseudo-simple connected plane graph $\gamma=(G=(V, E), F)$ and a 1-independent set \mathcal{P} of paths of length at least 2 in γ, let V_{inl} denote the set of internal vertices in paths in $\mathcal{P}, G\left[V_{\mathrm{inl}}\right]$ denote the subgraph of G induced by V_{inl}. Assume that γ has no pair of a path $P \in \mathcal{P}$ and a cycle K with $\mid V(K) \backslash$ $V_{\mathrm{inl}} \mid \leq 1$ such that K encloses an end-vertex of P and the internal vertices of P and the vertices in $V(K) \cap V_{\mathrm{inl}}$ belong to the same component of $G\left[V_{\mathrm{inl}}\right]$.

Then any pair of outer vertices $s, t \notin V_{\mathrm{inl}}$ admits an (s, t)-upward drawing D monotonic to \mathcal{P}, where D can be chosen as a straight-line drawing if γ is simple. Such a drawing D can be constructed in linear time.

We assume that the boundary of γ forms a cycle C^{o} such that $V\left(C^{o}\right) \cap V_{\text {inl }}=$ \emptyset; if necessary, add two new outer edges $e_{s, t}$ and $e_{s, t}^{\prime}$ joining the two outer vertices s and t to form a new outer facial cycle C^{o} of length 2 (see Appendix 2 for other method that is independent of choice of vertices s and t). In what follows, we assume that the boundary of a given connected planar graph γ forms a cycle.

We prove Theorem 1 by showing that every instance satisfying the condition of the theorem admits an (s, t)-orientation compatible to \mathcal{P}, which implies that the instance admits an (s, t)-upward straight-line (resp., poly-line) drawing monotonic to \mathcal{P} by Lemma 2 . To prove the existence of such an (s, t)-orientation compatible to \mathcal{P}, we show Theorem 1 is reduced to the following restricted case.

Lemma 3. For a pseudo-simple connected plane graph $\gamma=(G=(V, E), F)$ and a 1-independent set \mathcal{P} of paths of length at least 2 in γ, let V_{inl} denote the set of internal vertices in paths in $\mathcal{P},\left\{V_{i} \subseteq V_{\text {inl }} \mid i=1,2, \ldots, p\right\}$ denote the set of components in $G\left[V_{\mathrm{inl}}\right]$ and $\left\{\mathcal{P}_{i} \mid i=1,2, \ldots, p\right\}$ denote the partition of \mathcal{P} such that $V_{\mathrm{inl}}\left(\mathcal{P}_{i}\right) \subseteq V_{i}$. Assume that γ contains an inclusive set $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of edge-disjoint cycles such that, for each $i=1,2, \ldots, p, V_{i} \subseteq V_{\mathrm{enc}}(C ; \gamma)$ and $V_{\text {end }}\left(\mathcal{P}_{i}\right) \subseteq V\left(C_{i}\right) \subseteq V \backslash V_{\text {inl }}$.

Then any pair of outer vertices $s, t \notin V_{\mathrm{inl}}$ admits an (s, t)-orientation $\widetilde{\gamma}$ of γ compatible to \mathcal{P}. Such an orientation $\widetilde{\gamma}$ can be constructed in linear time.

The instance in Figure 1(a) has three components $V_{1}=\left\{u_{1}, u_{2}\right\}, V_{2}=$ $\left\{u_{3}, u_{4}, u_{5}, u_{6}\right\}$ and $V_{3}=\left\{u_{7}\right\}$ in $G\left[V_{\mathrm{inl}}\right]$. The instance admits a cycle set $\mathcal{C}=\left\{C_{1}=\left(v_{1}, v_{2}, w_{4}, v_{3}, v_{4}, v_{5}, v_{6}\right), C_{2}=\left(v_{3}, v_{7}, v_{8}, v_{9}, w_{5}, v_{10}, v_{11}, w_{6}\right), C_{3}=\right.$ $\left.\left(v_{10}, v_{12}, v_{13}, v_{14}\right)\right\}$, which satisfies the condition of Lemma 3. Figure 1(b) illustrates an (s, t)-orientation $\widetilde{\gamma}$ of γ in Figure 1(a) that is compatible to \mathcal{P}.

We prove in Section 5 that a given instance of Theorem 1 can be augmented to a plane graph so that the condition of Lemma 3 is satisfied.

4 Bipolar Orientation on Plane Graphs

This section presents several properties on bipolar orientations in plane graphs, which will be the basis to our proof of Lemma 3.

Let $g: V \rightarrow \mathbb{R}$ be a vertex-weight function in a graph $G=(V, E)$, where \mathbb{R} denote the set of real numbers. We say that g is bipolar (or (a, b)-bipolar) to a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G if (i) $g(u) \neq g(v)$ for the end-vertices u and v of each edge $e=u v \in E^{\prime}$; (ii) V^{\prime} contains a vertex pair (a, b) such that $g(a)<g(v)<g(b)$ for all vertices $v \in V^{\prime} \backslash\{a, b\}$; and (iii) each vertex $v \in V^{\prime} \backslash\{a, b\}$ has a neighbor $u \in N_{G^{\prime}}(v)$ with $g(u)<g(v)$ and a neighbor $w \in N_{G^{\prime}}(v)$ with $g(v)<g(w)$.

Observe that an (a, b)-bipolar function g to a graph G is essentially equivalent to an st-numbering of G in the sense that it admits an st-numbering $\sigma: V(G) \rightarrow$ $\{1,2, \ldots,|V(G)|\}$ of G such that $\sigma(a)=1, \sigma(b)=|V(G)|$ and $\sigma(u)<\sigma(v)$ holds for any pair of vertices $u, v \in V$ with $g(u)<g(v)$. We observe that any bipolar function in a plane graph is bipolar to every cycle in the next lemma.

Fig. 2. (a) mesh graph $\eta_{2}=\left(C_{2}, \mathrm{P}_{2}\right)$ induced from the instance γ in Figure 1(a) with cycle C_{2}; an instance satisfying the condition of Lemma 3: (b) $\left(s_{2}=v_{11}, t_{2}=v_{8}\right)$ orientation $\widetilde{\sigma\left(\mu_{2}\right)}$ of the split mesh graph $\sigma\left(\mu_{2}\right)$; (c) sun augmentation γ^{*}.

Lemma 4. For a biconnected graph $G=(V, E)$, let $g: V \rightarrow \mathbb{R}$ be a function (s, t)-bipolar to G. If G admits a plane graph $\gamma=(V, E, F)$, then the boundary of each face $f \in F$ forms a cycle C_{f} and g is bipolar to C_{f}.
The next lemma states that a bipolar orientation of a plane graph can be obtained from bipolar orientations of the interior and exterior subgraphs of a cycle.
Lemma 5. For a biconnected plane graph $\gamma=(V, E, F)$ and a cycle C of the graph (V, E), let $\gamma_{C}\left(\right.$ resp., $\left.\gamma_{\bar{C}}\right)$ denote the interior (resp., exterior) subgraph of γ by C. For two outer vertices s and t of γ, let $\widetilde{\gamma_{C}}$ be an (s, t)-orientation of γ_{C}. Then the orientation \widetilde{C} restricted from $\widetilde{\gamma_{C}}$ to C is an (a, b)-orientation of C for some $a, b \in V(C)$, and for any (a, b)-orientation $\widetilde{\gamma_{\bar{C}}}$ of $\gamma_{\bar{C}}$, the orientation $\widetilde{\gamma}$ of γ obtained by combining $\widetilde{\gamma_{C}}$ and $\widetilde{\gamma_{\bar{C}}}$ is an (s, t)-orientation of γ.

We now examine a special type of instances of Lemma 3.
Mesh Graph A mesh graph is defined to be a pair $\mu=(\gamma, \mathcal{P})$ of a biconnected plane graph $\gamma=(V, E, F)$ and a 1-independent set \mathcal{P} of paths in the graph (V, E) such that (i) γ consists of an outer facial cycle C and the paths in \mathcal{P}; and (ii) each path $P \in \mathcal{P}$ ends with vertices in C and has no internal vertex from C, where $V=V(C) \cup \bigcup_{P \in \mathcal{P}} V(P)$ and $E=E(C) \cup \bigcup_{P \in \mathcal{P}} E(P)$. We may denote a mesh graph (γ, \mathcal{P}) with an outer facial cycle C by $\mu=(C, \mathcal{P})$. Figure 2(a) illustrates an example of a mesh graph.

Let $\mu=(\gamma=(V, E, F), \mathcal{P})$ be a mesh graph with an outer facial cycle C. To find an orientation of μ compatible to \mathcal{P}, we treat each u, v-path $P \in \mathcal{P}$ as a single edge $e_{P}=u v$, which we call the split edge of P. The split mesh graph is defined to be the graph $\sigma(\mu)$ obtained from μ by replacing each path $P \in \mathcal{P}$ with the split edge e_{P}; i.e., $\sigma(\mu)=\left(V(C), E(C) \cup\left\{e_{P} \mid P \in \mathcal{P}\right\}\right)$.

Let $\widetilde{\sigma(\mu)}$ be an orientation of the split mesh graph $\sigma(\mu)$. We say that $\widetilde{\sigma(\mu)}$ induces an orientation $\widetilde{\mu}$ of μ if each u, v-path $P \in \mathcal{P}$ is directed from u to v in $\widetilde{\mu}$ when e_{P} is a directed edge (u, v) in $\widetilde{\sigma(\mu)}$. Clearly $\widetilde{\mu}$ is compatible to \mathcal{P}. Figure 2(b) illustrates an (s, t)-orientation of the split mesh graph.

The next lemma states that an (s, t)-orientation of a mesh graph compatible to \mathcal{P} can be obtained by computing an (s, t)-orientation of the split mesh graph.

Lemma 6. For a mesh graph μ and an (s, t)-orientation $\widetilde{\sigma(\mu)}$ of the split mesh graph $\sigma(\mu)$, the orientation $\widetilde{\mu}$ of μ induced by $\widetilde{\sigma(\mu)}$ is an (s, t)-orientation of μ.

5 Coating and Confiner

To prove that Theorem 1 implies Lemma 3, this section gives a characterization of a plane graph that can be augmented to a plane graph such that specified vertices are contained in some cycles. Let $\gamma=(G=(V, E), F)$ be a plane graph.

We call an inclusive set $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of edge-disjoint cycles in γ a coating of a family $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ of subsets of V if for each $i=$ $1,2, \ldots, p, V\left(C_{i}\right) \cap X=\emptyset$ and $V_{\text {enc }}\left(C_{i} ; \gamma\right) \supseteq X_{i}$. We say that a coating $\mathcal{C}=$ $\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of \mathcal{X} covers a given family $\left\{Y_{1}, Y_{2}, \ldots, Y_{p}\right\}$ of vertices if $V\left(C_{i}\right) \supseteq$ Y_{i} for each $i=1,2, \ldots, p$.

For disjoint subsets $S, T \subseteq V$ in γ such that the subgraph $G[S]$ induced by S is connected, we call a cycle K of G an (S, T)-confiner if $|V(K) \backslash S| \leq 1$ and the interior vertex set $V_{\text {enc }}(K ; \gamma)$ of K contains some vertex $t \in T$.

A plane augmentation of a plane graph $\gamma=(V, E, F)$ is defined to be a plane embedding $\gamma^{*}=\left(V^{*}, E^{*}, F^{*}\right)$ of a supergraph $\left(V^{*}, E^{*}\right)$ of (V, E) such that the embedding obtained from γ^{*} by removing the additional vertices in $V^{*} \backslash V$ and edges in $E^{*} \backslash E$ is equal to the original embedding γ.
Sun Augmentation Let $\gamma=(V, E, F)$ be a pseudo-simple connected plane graph such that the outer boundary is a cycle. We introduce sun augmentation, a method of augmenting γ into a pseudo-simple biconnected plane graph by adding new vertices and edges in the interior of some inner faces of γ.

For an inner face $f \in F$, let $W_{f}=\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ denote the sequence of vertices that appear along the boundary in the clockwise order, where $p \geq 3$ since γ is pseudo-simple. For each inner face $f \in F$,
(i) create a new cycle $C_{f}^{*}=\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{p}^{\prime}\right)$ with p new vertices $v_{i}^{\prime}, i=1,2, \ldots, p$ in the interior of f so that the facial cycle of f encloses C_{f}^{*}; and
(ii) join each vertex $v_{i}, i=1,2, \ldots, p$ with v_{i}^{\prime} and v_{i+1}^{\prime} with new edges $e_{i}^{\prime}=v_{i} v_{i}^{\prime}$ and $e_{i}^{\prime \prime}=v_{i} v_{i+1}^{\prime}$, where we regard v_{p+1}^{\prime} as v_{1}^{\prime}; We call the new face whose set consists of the p new edges $e_{i}^{\prime}, i=1,2, \ldots, p$ a core face and call a vertex along a core face a core vertex.

Figure 2(c) illustrates how the sun augmentation γ^{*} is constructed.
The next lemma characterizes when a plane graph with two vertex subsets X and Y can be augmented such that a set of cycles contains vertices in Y without visiting any vertex in X.

Lemma 7. For a pseudo-simple connected plane graph $\gamma=(G=(V, E), F)$ such that the boundary forms a cycle C^{o} and a subset $X \subseteq V \backslash V\left(C^{o}\right)$, let $\left\{X_{i} \subseteq\right.$
$X \mid i=1,2, \ldots, p\}$ denote the set of components in $G[X]$ and $Y_{i} \subseteq N_{G}\left(X_{i}\right)$, $i=1,2, \ldots, p$ be subsets of V, where possibly $Y_{i} \cap Y_{j} \neq \emptyset$ for some $i \neq j$.

Then γ contains no $\left(X_{i}, Y_{i}\right)$-confiner for any $i=1,2, \ldots, p$ if and only if the sun augmentation $\gamma^{*}=\left(V^{*}, E^{*}, F^{*}\right)$ of γ contains a coating \mathcal{C} of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ that covers $\left\{Y_{1}, Y_{2}, \ldots, Y_{p}\right\}$.

Moreover the following can be computed in linear time: (i) Testing whether γ contains an $\left(X_{i}, Y_{i}\right)$-confiner for some $i=1,2, \ldots, p$; and (ii) Finding a coating \mathcal{C} of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ that covers $\left\{Y_{1}, Y_{2}, \ldots, Y_{p}\right\}$ in γ^{*} when γ contains no (X_{i}, Y_{i})-confiner for any $i=1,2, \ldots, p$.

We show how the assumption in Lemma 3 is derived from the assumption of Theorem 1 using Lemma 7. Let $\left\{V_{i} \subseteq V_{\mathrm{inl}} \mid i=1,2, \ldots, p\right\}$ denote the set of components in $G\left[V_{\text {inl }}\right]$ and $\mathcal{P}_{i}, i=1,2, \ldots, p$ denote the partition of \mathcal{P} such that $V_{\text {inl }}\left(\mathcal{P}_{i}\right) \subseteq V_{i}$. We apply Lemma 7 to the plane graph γ in Theorem 1 by setting $X:=V_{\mathrm{inl}}, X_{i}:=V_{i}$ and $Y_{i}:=V_{\text {end }}\left(\mathcal{P}_{i}\right), i=1,2, \ldots, p$. Note that $X \subseteq V \backslash V\left(C^{o}\right)$. We show from the assumption in Theorem 1 that γ has no (X_{i}, Y_{i})-confiner for any $i=1,2, \ldots, p$.

To derive a contradiction, assume that γ has an $\left(X_{i}, Y_{i}\right)$-confiner K for some $i \in\{1,2, \ldots, p\}$, where $V_{\text {enc }}(K ; \gamma)$ of K contains an end-vertex $y \in Y_{i}=V_{\text {end }}\left(\mathcal{P}_{i}\right)$ of some path $P \in \mathcal{P}_{i}$. Since $|K| \geq 2$ and $\left|K \backslash X_{i}\right| \leq 1, K$ contains a vertex $v \in K \cap X_{i}$. Now vertex v and the internal vertices of P belong to the same component $G\left[X_{i}\right]=G\left[V_{i}\right]$ of $G[X]$ in γ. This contradicts the assumption in Theorem 1. Hence the condition of Lemma 7 holds and the sun augmentation γ^{*} of γ admits a coating $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of $\left\{X_{i}=V_{i} \mid i=1,2, \ldots, p\right\}$ that covers $\left\{Y_{i}=V_{\text {end }}\left(\mathcal{P}_{i}\right) \mid i=1,2, \ldots, p\right\}$. We see that such a set \mathcal{C} of cycles satisfies the condition of Lemma 3.

6 Algorithmic Proof

This section presents an algorithmic proof to Lemma 3.
For a pseudo-simple biconnected plane graph $\gamma=(V, E, F)$ and a 1-independent set \mathcal{P} of paths of length at least 2 , we are given a partition $\left\{\mathcal{P}_{i} \mid i=1,2, \ldots, p\right\}$ of \mathcal{P} and an inclusive set $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of edge-disjoint cycles that satisfy the condition of Lemma 3. For the instance $(\gamma, \mathcal{P}, \mathcal{C})$ in Figure 1(a), we obtain $\mathcal{P}_{1}=\left\{P_{1}, P_{2}, P_{3}\right\}, \mathcal{P}_{2}=\left\{P_{4}, P_{5}, P_{6}, P_{7}\right\}, \mathcal{P}_{3}=\left\{P_{8}, P_{9}\right\}$ and $\mathcal{C}=\left\{C_{1}=\right.$ $\left.\left(v_{1}, v_{2}, w_{4}, v_{3}, v_{4}, v_{5}, v_{6}\right), C_{2}=\left(v_{3}, v_{7}, v_{8}, v_{9}, w_{5}, v_{10}, v_{11}, w_{6}\right), C_{3}=\left(v_{10}, v_{12}, v_{13}, v_{14}\right)\right\}$.

Let $\mathcal{I}=(\mathcal{C}, \mathcal{E})$ denote the inclusion-forest of \mathcal{C}, and $\operatorname{Ch}(C)$ denote the set of child cycles C^{\prime} of each cycle $C \in \mathcal{C}$ in \mathcal{I}, where the cycle C is called the parent cycle of each cycle $C^{\prime} \in \operatorname{Ch}(C)$. We call a cycle $C \in \mathcal{C}$ that has no parent cycle a root cycle in \mathcal{C}, and let $\mathcal{C}_{\text {rt }}$ denote the set of root cycles in \mathcal{C}. For a notational simplicity, we assume that the indexing of $C_{1}, C_{2}, \ldots, C_{p}$ satisfies $i<j$ when C_{i} is the parent cycle of C_{j}.

Based on the inclusion-forest \mathcal{I}, we first decompose the entire plane graph γ into plane subgraphs $\gamma_{i}, i=0,1, \ldots, p$ as follows. Define γ_{0} to be the plane graph $\gamma-\cup_{C \in \mathcal{C}_{\mathrm{rt}}}\left(V_{\mathrm{enc}}(C ; \gamma) \cup E_{\text {enc }}(C ; \gamma)\right)$ obtained from γ by removing the vertices
and edges in the interior of root cycles $C \in \mathcal{C}_{\mathrm{rt}}$. For each $i=1,2, \ldots, p$, define γ_{i} to be the plane graph $\gamma\left[C_{i}\right]_{\text {enc }}-\cup_{C \in \operatorname{Ch}\left(C_{i}\right)}\left(V_{\text {enc }}(C ; \gamma) \cup E_{\text {enc }}(C ; \gamma)\right)$ obtained from the interior subgraph $\gamma\left[C_{i}\right]_{\text {enc }}$ by removing the vertices and edges in the interior of child cycles C of C_{i}.

For each cycle $C_{i}, i=1,2, \ldots, p$, we consider the mesh graph $\mu_{i}=\left(C_{i}, \mathcal{P}_{i}\right)$, where μ_{i} is a plane subgraph of γ_{i}. For each inner face f of μ_{i}, we consider the interior subgraph $\gamma_{i}\left[C_{f}\right]_{\text {enc }}$ of the facial cycle C_{f} of f in γ_{i}, where we call an inner face f of μ_{i} trivial if C_{f} encloses nothing in γ_{i}; i.e., $V_{\text {enc }}\left(C_{f} ; \gamma_{i}\right) \cup E_{\text {enc }}\left(C_{f} ; \gamma_{i}\right)=\emptyset$. Let $F\left(\mu_{i}\right)$ denote the set of non-trivial inner faces f of μ_{i}.

We determine orientations of subgraphs γ_{i} by an induction on $i=0,1, \ldots, p$. For specified outer vertices $s, t \in V\left(C^{o}\right) \backslash V_{\text {inl }}$, compute an (s, t)-orientation $\widetilde{\gamma_{0}}$ of γ_{0} using Lemma 1 . Consider the plane subgraph γ_{i} with $i \geq 1$, where we assume that a bipolar orientation $\widetilde{\gamma}_{j}$ of γ_{j} has been obtained for all $j<i$. Let k denote the index of the parent cycle C_{k} of C_{i} or $k=0$ if C_{i} is a root cycle, where a bipolar orientation $\widetilde{\gamma_{k}}$ of γ_{k} has been obtained. In $\widetilde{\gamma_{k}}$, cycle C_{i} forms an inner facial cycle and the orientation restricted to the facial cycle C_{i} is a bipolar orientation, which is an $\left(s_{i}, t_{i}\right)$-orientation $\widetilde{C_{i}}$ for some vertices $s_{i}, t_{i} \in V\left(C_{i}\right)$ by Lemma 4. We determine an $\left(s_{i}, t_{i}\right)$-orientation of γ_{i} as follows:
Step (a) Compute an $\left(s_{i}, t_{i}\right)$-orientation $\widetilde{\mu}_{i}$ of the mesh graph $\mu_{i}=\left(C_{i}, \mathcal{P}_{i}\right)$;
Step (b) Extend the orientation $\widetilde{\mu}_{i}$ to the interior subgraph $\gamma_{i}\left[C_{f}\right]_{\text {enc }}$ of each non-trivial inner face $f \in F\left(\mu_{i}\right)$.
At Step (a), we compute an $\left(s_{i}, t_{i}\right)$-orientation $\widetilde{\sigma\left(\mu_{i}\right)}$ of the split mesh graph $\sigma\left(\mu_{i}\right)$ to obtain an $\left(s_{i}, t_{i}\right)$-orientation $\widetilde{\mu}_{i}$ using Lemma 6. For Step (b), we observe that orientation $\widetilde{\mu}_{i}$ is $\left(s_{f}, t_{f}\right)$-bipolar to the facial cycle C_{f} of f for some vertices $s_{f}, t_{f} \in V\left(C_{f}\right)$ by Lemma 4 . We compute an $\left(s_{f}, t_{f}\right)$-orientation $\gamma_{i} \widetilde{\left[C_{f}\right] \text { enc }}$ of the interior subgraph $\gamma_{i}\left[C_{f}\right]_{\text {enc }}$ induced from γ_{i} by C_{f} using Lemma 1. An $\left(s_{i}, t_{i}\right)$-orientation of γ_{i} is obtained from the $\left(s_{i}, t_{i}\right)$-orientation $\widetilde{\mu}_{i}$ and $\left(s_{f}, t_{f}\right)$ orientations $\gamma_{i} \widetilde{\left[C_{f}\right]}$ enc for all inner faces $f \in F\left(\mu_{i}\right)$.

We repeat the above procedure until $i=p$. Finally construct an orientation $\widetilde{\gamma}$ of γ by combining bipolar orientations $\widetilde{\gamma}_{i}$ of $\gamma_{i}, i=0,1, \ldots, p$. By Lemma $5, \widetilde{\gamma}$ is an (s, t)-orientation, which is compatible to \mathcal{P} by construction of $\widetilde{\gamma}$. This proves the correctness of our algorithm for computing an (s, t)-orientation $\widetilde{\gamma}$ compatible to \mathcal{P} (see XXXXX Algorithm ORIENT?? XXXXX in Appendix 7).

The inclusion-forest of an inclusive set \mathcal{C} of edge-disjoint cycles can be constructed in linear time [11]. Constructing all plane subgraphs γ_{i} and face sets $F\left(\mu_{i}\right), i=1,2, \ldots, p$ can be done in linear time, since we can find them such that each edge in γ is scanned a constant number of times. We see that a bipolar orientation of mesh graph μ_{i} or subgraph γ_{i} can be computed in time linear to the size of the graph by Lemmas 1 and 6 . The total size of these graphs μ_{i}, $i=1,2, \ldots, p$ and $\gamma_{i}, i=0,1, \ldots, p$ is bounded by the size of input graph γ. Therefore the algorithm can be executed in linear time. This proves Lemma 3.

Figure 3 shows an execution of the algorithm applied to the instance ($\gamma, \mathcal{P}, \mathcal{C}$) in Figure 1(a). Figures 3(b), (c) and (f) show mesh graphs μ_{1}, μ_{2} and μ_{3}, respectively for the instance in Figure 1(a), where $\mathcal{C}_{\mathrm{rt}}=\left\{C_{1}, C_{2}\right\}, \operatorname{Ch}\left(C_{1}\right)=\emptyset$, $\mathrm{Ch}\left(C_{2}\right)=\left\{C_{3}\right\}, F\left(\mu_{1}\right)=\left\{f_{1}\right\}\left(C_{f_{1}}=\left(v_{5}, u_{1}, v_{2}, w_{4}, v_{3}, u_{2}, v_{4}\right)\right), F\left(\mu_{2}\right)=$

Fig. 3. (a) An $\left(s=v_{5}, t=v_{7}\right)$-orientation $\widetilde{\gamma}_{0}$ of γ_{0}; (b) Mesh graph $\mu_{1}=\left(C_{1}, \mathcal{P}_{1}\right)$, where C_{1} is directed as an $\left(s_{1}=v_{5}, t_{1}=v_{1}\right)$-orientation; (c) Mesh graph $\mu_{2}=\left(C_{2}, \mathcal{P}_{2}\right)$, where C_{2} is directed as an $\left(s_{2}=v_{11}, t_{2}=v_{8}\right)$-orientation; (d) Subgraph γ_{1} with an (s_{1}, t_{1})-orientation $\widetilde{\mu}_{1}$ of μ_{1}; (e) Subgraph γ_{2} with an $\left(s_{2}, t_{2}\right)$-orientation $\widetilde{\mu}_{2}$ of $\mu_{2} ;(\mathrm{f})$ Mesh graph $\mu_{3}=\left(C_{3}, \mathcal{P}_{3}\right)$, where C_{3} is directed as an $\left(s_{3}=v_{10}, t_{3}=v_{13}\right)$-orientation; (e) Subgraph γ_{3} with an $\left(s_{3}, t_{3}\right)$-orientation $\widetilde{\mu}_{3}$ of μ_{3}.
$\left\{f_{2}, f_{3}\right\}\left(C_{f_{2}}=\left(v_{10}, u_{5}, u_{4}, u_{6}\right), C_{f_{3}}=\left(v_{10}, u_{6}, u_{4}, v_{9}, w_{5}\right)\right), F\left(\mu_{3}\right)=\left\{f_{4}\right\}\left(C_{f_{4}}=\right.$ $\left(v_{12}, v_{13}, v_{14}\right)$). Figures 3(a), (d), (e) and (g) show subgraphs $\gamma_{0}, \gamma_{1}, \gamma_{2}$ and γ_{3}, respectively for the instance in Figure 1(a). Figure 1(b) shows an (s, t)-orientation of the instance γ in Figure 1(a).

7 Upward Drawing of a Non-plane Embedding

Let Γ be a non-plane embedding of a graph G, and E^{*} denote the set of crossing edges. We define a crossing-set to be a maximal subset $E^{\prime} \subseteq E^{*}$ such that every two edges $e, e^{\prime} \in E^{\prime}$ admit a sequence of edges $e_{1}, e_{2}, \ldots, e_{p}$, where $e_{1}=e$, $e_{p}=e^{\prime}$ and edges e_{i} and e_{i+1} cross for each $i=1,2, \ldots, p-1$. Observe that E^{*} is partitioned into disjoint crossing-sets $E_{1}^{*}, E_{2}^{*}, \ldots, E_{p}^{*}$.

Let E_{i}^{*} be a crossing-set, and $\Gamma\left[E_{i}^{*}\right]$ denote the plane graph induced from Γ by the edges in E_{i}^{*}, where $\Gamma\left[E_{i}^{*}\right]$ is connected. We call E_{i}^{*} outer if the end-vertices of edges in E_{i}^{*} appear as outer vertices along the boundary of $\Gamma\left[E_{i}^{*}\right]$.

We apply Lemma 3 to the problem of finding an upward drawing of a nonplane embedding of a graph, and prove the following results.

Theorem 2. Let Γ be a non-plane embedding of a graph G such that each crossing-set is outer, let $n=|V(G)|$, and let n_{c} denote the number of crossings in Γ. Then for any pair of outer vertices s and t in Γ, there is an (s, t)-upward drawing of Γ, and an upward poly-line drawing of Γ with $O\left(n+n_{\mathrm{c}}\right)$ bends can be constructed in $O\left(n+n_{\mathrm{c}}\right)$ time and space.

Theorem 2 implies the following.
Corollary 1. Every 1-plane graph admits an (s, t)-upward poly-line drawing for any outer vertices s and t, where each edge has at most one bend. Such a drawing can be constructed in linear time.

References

1. P. Angelini, E. Colasante, G. Di Battista, F. Frati, M. Patrignani, Monotone drawings of graphs, J. Graph Algorithms Appl., 16 (1), pp. 5-35, 2012.
2. P. Bertolazzi, G. Di Battista, G. Liotta, C. Mannino, Upward drawings of triconnected digraphs, Algorithmica, 12(6), pp. 476-497, 1994.
3. G. Di Battista G, P. Eades P, R. Tamassia, I. G. Tollis, Graph Drawing: algorithms for the visualization of graphs, Prentice Hall, 1998.
4. G. Di Battista, R. Tamassia, Algorithms for plane representations of acyclic digraphs, Theoret. Comput. Sci., 61, pp. 175-198, 1988.
5. C. Binucci, W. Didimo, M. Patrignani, Upward and quasi-upward planarity testing of embedded mixed graphs, Theor. Comput. Sci. 526, pp. 75-89, 2014.
6. W. Didimo, M. Pizzonia, Upward embeddings and orientations of undirected planar graphs, J. Graph Algorithms Appl., 7(2), pp. 221-241, 2003.
7. S. Even, R. E. Tarjan, Computing an st-numbering, Theoret. Comput. Sci., 2 (3), pp. 339-344, 1976.
8. F. Frati, M. Kaufmann, J. Pach, C. T 坦 th, D. Wood, On the upward planarity of mixed plane graphs, J. Graph Algorithms Appl. 18(2), pp. 253-279, 2014.
9. H. de Fraysseix, P. Ossona de Mendez, P. Rosenstiehl, Bipolar orientations revisited, Disc. Applied Math., 56 (2-3), pp. 157-179, 1995.
10. A. Garg, R. Tamassia, On the computational complexity of upward and rectilinear planarity testing, SIAM J. Comput., 31(2), pp. 601-625, 1992.
11. S. Hong, H. Nagamochi, Re-embedding a 1-plane graph into a straight-line drawing in linear time, Proc. of Graph Drawing 2016, pp. 321-334, 2016.
12. D. Kelly, Fundamentals of planar ordered sets, Discrete Math., 63, pp. 197-216, 1987.
13. M. Patrignani, Finding bimodal and acyclic orientations of mixed planar graphs is NP-complete, RT-DIA-188-2011, Aug 2011.
14. P. Rosenstiehl, R.E. Tarjan, Rectilinear planar layouts and bipolar orientations of planar graphs, Disc. Comput. Geometry, 1 (4), pp. 343-353, 1986.
15. R. E. Tarjan, Two streamlined depth-first search algorithms, Fundamenta Informaticae, 9 (1), pp. 85-94, 1986.
16. C. Thomassen, Rectilinear drawings of graphs, Journal of Graph Theory, 12(3), pp. 335-341, 1988.

Appendix 1: Instances That Admit No Path-monotonic Upward Drawing

We here present some instances that cannot admit a path-monotonic upward drawing. Figure 4 illustrates three such instances. The instance $\left(\gamma_{1}, \mathcal{P}_{1}\right)$ in Figure 4(a) admits no ($s=v_{1}, t=v_{4}$)-upward drawing monotonic to a set $\mathcal{P}_{1}=\left\{P_{1}=\left(v_{1}, v_{2}, v_{3}\right), P_{2}=\left(v_{3}, v_{2}, v_{4}\right)\right\}$ of two paths, where P_{1} and P_{2} share an edge $v_{2} v_{3}$. The instance $\left(\gamma_{2}, \mathcal{P}_{2}\right)$ in Figure $4(\mathrm{~b})$ admits no $\left(s=v_{1}, t=v_{5}\right)$ upward drawing monotonic to a set $\mathcal{P}_{2}=\left\{P_{1}=\left(v_{1}, v_{2}, v_{3}\right), P_{2}=\left(v_{4}, v_{2}, v_{5}\right)\right\}$ of two paths, where P_{1} and P_{2} share a common internal vertex v_{2} but do not intersect. The instance ($\gamma_{3}, \mathcal{P}_{3}$) in Figure $4(\mathrm{c})$ admits no ($s=v_{1}, t=v_{4}$)-upward drawing monotonic to a set $\mathcal{P}_{3}=\left\{P_{1}=\left(v_{1}, v_{2}, v_{3}\right)\right\}$ of a single path.

(a) γ_{1}

(b) γ_{2}

(c) γ_{3}

Fig. 4. Illustration for instances $\left(\gamma_{i}, \mathcal{P}_{i}\right), i=1,2,3$ that admit no (s, t)-upward drawing monotonic to a path set (where each vertex depicted with a gray circle indicates an end-vertex of a path in $\left.\mathcal{P}_{i}\right):\left(\right.$ a) $\mathcal{P}_{1}=\left\{P_{1}=\left(v_{1}, v_{2}, v_{3}\right), P_{2}=\left(v_{3}, v_{2}, v_{4}\right)\right\}, s=v_{1}$ and $t=v_{4}$; (b) $\mathcal{P}_{2}=\left\{P_{1}=\left(v_{1}, v_{2}, v_{3}\right), P_{2}=\left(v_{4}, v_{2}, v_{5}\right)\right\}, s=v_{1}$ and $t=v_{5}$; (c) $\mathcal{P}_{3}=\left\{P_{1}=\left(v_{1}, v_{2}, v_{3}\right)\right\}, s=v_{1}$ and $t=v_{4}$.

Observe that for each instance $\left(\gamma_{i}, \mathcal{P}_{i}\right), i=1,2$ in Figure $4(\mathrm{a})$-(b), path set \mathcal{P}_{i} is not 1 -independent. For instance $\left(\gamma_{3}, \mathcal{P}_{3}\right)$ in Figure $4(\mathrm{c})$, path set \mathcal{P}_{3} is 1-independent, however, cycle $K=\left(v_{1}, v_{2}\right)$ encloses an end-vertex v_{3} of P_{1}.

Appendix 2: Preprocessing of Boundary of Instances in Theorem 1

To prove Theorem 1, we can assume that the boundary of a given connected plane graph γ forms a cycle as follows. Let $(\gamma=(G=(V, E), F), \mathcal{P} \neq \emptyset)$ be an instance that satisfies the condition in Theorem 1. If the outer boundary B of γ contains at most one vertex in $V \backslash V_{\mathrm{inl}}$, then for any path P with $V_{\mathrm{inl}}(P) \cap V(B) \neq$ \emptyset, one of the end-vertices of P is enclosed by some cycle K contained in B, contradicting the assumption that there is no such pair (P, K) in Theorem 1. Hence the outer boundary B of γ contains at least two vertices in $V \backslash V_{\text {inl }}$. Let $\rho(\gamma)=\left(v_{1}, v_{2}, \ldots, v_{p}\right)$, where $v_{1} \notin V_{\text {inl }}$ denote the sequence of outer vertices of
γ that appear in the clockwise order along the boundary B, where v_{i} and v_{j} for some i and j may be the same vertex $v \in V$ when v is a cut-vertex of the graph.

We first augment γ such that all vertices in $V_{\text {inl }}$ along the boundary B will be contained in the interior of the new boundary B^{\prime} as follows. For each maximal subsequence $\tau=\left(v_{i}, v_{i+1}, \ldots, v_{j}\right)(i<j)$ of $\rho(\gamma)$ such that $v_{i}, v_{j} \notin V_{\text {inl }}$ and $v_{i+1}, v_{i+2}, \ldots, v_{j-1} \in V_{\text {inl }}$, create a new outer vertex v_{τ} together with two new outer edges $v_{i} v_{\tau}$ and $v_{\tau} v_{j}$. Let γ^{\prime} denote the resulting pseudo-simple plane graph, where no vertex in V_{inl} appears as an outer vertex, and γ^{\prime} is simple when γ is simple. Observe that the condition (i)-(iii) still hold in γ^{\prime}.

We further augment γ^{\prime} into $\gamma^{\prime \prime}$ so that the outer boundary $B^{\prime \prime}$ becomes a cycle as follows. If the boundary of γ^{\prime} already forms a cycle, then let $\gamma^{\prime \prime}:=\gamma^{\prime}$. Otherwise let $\rho\left(\gamma^{\prime}\right)=\left(u_{1}, u_{2}, \ldots, u_{p}\right)$ denote the sequence of outer vertices of γ^{\prime} in the clockwise order along the boundary. For each cut-vertex v, we remove from the sequence its last appearance. Let $\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{q}^{\prime}\right)$ denote the resulting sequence, where each cut-vertex removal of which from γ leaves k components appear $k-1$ times in the new reduced sequence.

For each maximal subsequence $\rho^{\prime}=\left(u_{i}^{\prime}, u_{i+1}^{\prime}, \ldots, u_{j}^{\prime}\right)(i<j)$ of $\rho\left(\gamma^{\prime}\right)$ such that u_{i}^{\prime} and u_{j}^{\prime} are not cut-vertices and $u_{i+1}^{\prime}, u_{i+2}^{\prime}, \ldots, u_{j-1}^{\prime}$ are cut-vertices, create a new outer edge $u_{i}^{\prime} u_{j}^{\prime}$. Let $\gamma^{\prime \prime}$ denote the resulting pseudo-simple plane graph, where the boundary forms a cycle that contains no vertex in V_{inl}. Note that $\gamma^{\prime \prime}$ is simple when γ is simple. Observe that the conditions (i)-(iii) still hold in $\gamma^{\prime \prime}$ and any (s, t)-upward straight-line (or poly-line) drawing $D^{\prime \prime}$ of $\gamma^{\prime \prime}$ monotonic to \mathcal{P} can be modified to one for γ just by removing the newly added vertices and edges in the augmentation.

It is not difficult to see that the above augmentation can be executed in linear time.

Appendix 3: Proof of Lemma 4

Lemma 4. For a biconnected graph $G=(V, E)$, let $g: V \rightarrow \mathbb{R}$ be a function (s, t)-bipolar to G. If G admits a plane graph $\gamma=(V, E, F)$, then the boundary of each face $f \in F$ forms a cycle C_{f} and g is bipolar to C_{f}.

Proof. Let $f \in F$ be a face in γ. Since G is biconnected, the boundary of each face $f \in F$ forms a cycle C_{f}. We call a vertex v in C_{f} locally maximum (resp., locally minimum) if $g\left(v^{\prime}\right)<g(v)>g\left(v^{\prime \prime}\right)$ (resp., $g\left(v^{\prime}\right)>g(v)<g\left(v^{\prime \prime}\right)$) for the two neighbors $v^{\prime}, v^{\prime \prime} \in N_{G}(v) \cap V\left(C_{f}\right)$. To prove the lemma, it suffices to show that C_{f} contains exactly one locally maximum vertex and exactly one locally minimum vertex.

Consider the case where f is an inner face in γ and C_{f} contains two locally maximum vertices v_{1}^{*} and v_{2}^{*} (the other cases can be treated analogously). Without loss of generality assume that $g\left(v_{2}^{*}\right) \geq g\left(v_{1}^{*}\right)$. Let $u_{1}, u_{2} \in N_{G}\left(v_{1}^{*}\right) \cap V\left(C_{f}\right)$, where $g\left(u_{1}\right), g\left(u_{2}\right)<g\left(v_{1}^{*}\right)$ and $u_{1} \neq v_{2}^{*} \neq u_{2}$. Since g is (s, t)-bipolar to G, there is a v_{i}^{*}, t-path $P_{i}, i=1,2$ such that the function values of vertices increase along the path from v_{i}^{*} to t. This means that G contains a v_{1}^{*}, v_{2}^{*}-path P such that $g(v) \geq g\left(v_{1}^{*}\right)$ for all vertices $v \in V(P)$, since $g\left(v_{2}^{*}\right) \geq g\left(v_{1}^{*}\right)$. Also there is an s, u_{i}-path $Q_{i}, i=1,2$ such that the function values of vertices increase
along the path from s to u_{i}, implying that G contains a u_{1}, u_{2}-path Q such that $g(u)<g\left(v_{1}^{*}\right)$ for all vertices $u \in V(Q)$. Since vertices v_{1}^{*} and v_{2}^{*}, and vertices u_{1} and u_{2} appear alternately along C_{f}, two paths P and Q must have a common vertex w. This, however, is impossible because $g(w) \geq g\left(v_{1}^{*}\right)$ and $g(w)<g\left(v_{1}^{*}\right)$ cannot hold at the same time.

Appendix 4: Proof of Lemma 5

Lemma 5. For a biconnected plane graph $\gamma=(V, E, F)$ and a cycle C of the graph (V, E), let $\gamma_{C}\left(r e s p ., \gamma_{\bar{C}}\right)$ denote the interior (resp., exterior) subgraph of γ by C. For two outer vertices s and t of γ, let $\widetilde{\gamma_{C}}$ be an (s, t)-orientation of γ_{C}. Then the orientation \widetilde{C} restricted from $\widetilde{\gamma_{C}}$ to C is an (a, b)-orientation of C for some $a, b \in V(C)$, and for any (a, b)-orientation $\widetilde{\gamma_{\bar{C}}}$ of $\gamma_{\bar{C}}$, the orientation $\widetilde{\gamma}$ of γ obtained by combining $\widetilde{\gamma_{C}}$ and $\widetilde{\gamma_{\bar{C}}}$ is an (s, t)-orientation of γ.

Proof. A topological ordering g_{C} of $\widetilde{\gamma_{C}}$ is a bipolar vertex weight to γ_{C}. By Lemma 4, g_{C} is bipolar to the inner facial cycle C in γ_{C}, and this means that the orientation \widetilde{C} restricted from $\widetilde{\gamma_{C}}$ to C is an (a, b)-orientation for a source a and a sink b in $V(C)$. In the following, for a cycle H in γ and two vertices $x, y \in V(H)$, let $H_{x y}$ (resp., $H_{y x}$) denote the sub- x, y-path of H that traverses H from x to y (resp., y to x) in the clockwise order.

Let $\widetilde{\gamma_{\bar{C}}}$ be an (a, b)-orientation of $\gamma_{\bar{C}}$. We consider the orientation $\widetilde{\gamma}$ of γ obtained by combining $\widetilde{\gamma_{C}}$ and $\widetilde{\gamma_{\bar{C}}}$. To prove that $\widetilde{\gamma}$ is an (s, t)-orientation of γ, it suffices to show that
(i) $\widetilde{\gamma}$ has no other source or sink than s and t; and
(ii) $\widetilde{\gamma}$ is acyclic.

Each vertex in $\widetilde{\gamma_{C}}$ is reachable from s and reachable to t; and each vertex in $\widetilde{\gamma_{\bar{C}}}$ is reachable from a and reachable to b. This implies that any vertex in $\widetilde{\gamma}$ is reachable from s and reachable to t, proving (i).

To prove (ii), we assume that $\widetilde{\gamma}$ contains a directed cycle Q to derive a contradiction. Choose Q so that the number of inner faces of γ enclosed by Q is minimized. Note that outer vertices s and t are in the exterior of Q, since Q does not contain source s or sink t. Since each of $\widetilde{\gamma_{C}}$ and $\widetilde{\gamma_{\bar{C}}}$ is acyclic, Q must contain some edges $e \in E_{\text {enc }}(C ; \gamma)$ and $e^{\prime} \in E \backslash E(C) \cup E_{\text {enc }}(C ; \gamma)$. This means that there are vertices $u, v \in V(Q)$ such that $\{u, v\}=V\left(Q_{u v}\right) \cap V\left(C_{u v}\right)$ and the edges in $Q_{u v}$ are contained in $\widetilde{\gamma_{\bar{C}}}$. We distinguish three cases.

Case 1. $Q_{u v}$ is a directed path from u to v (resp., v to u) and $C_{u v}$ is a directed path from v to u (resp., u to v) in $\widetilde{\gamma_{\bar{C}}}$: In this case, $Q_{u v}$ and $C_{u v}$ form a directed cycle in $\widetilde{\gamma_{\bar{C}}}$, a contradiction.

Case 2. Each of $Q_{u v}$ and $C_{u v}$ is a directed path from u to v (or from u to v) in $\widetilde{\gamma_{\bar{C}}}$: In this case, we can modify Q by replacing $Q_{u v}$ with $C_{u v}$ to obtain a graph containing a directed cycle that encloses a smaller number of inner faces than Q does. This contradicts the minimality of inner faces enclosed by Q.

Case 3. $a \in V\left(C_{u v}\right) \backslash\{u, v\}$ or $b \in V\left(C_{u v}\right) \backslash\{u, v\}$: Let $b \in V\left(C_{u v}\right) \backslash\{u, v\}$ (the other case can be treated symmetrically). There is a directed b, t-path $P_{b, t}$
in $\widetilde{\gamma}_{\bar{C}}$. Since b is the sink of the oriented cycle C and t is in the exterior of Q, paths $P_{b, t}$ and $Q_{u v}$ intersect at some vertex $w \in V\left(Q_{u v}\right)$. This implies that the sub-b, w-path of $P_{b, t}$ together with paths $Q_{u v}, C_{u v}$ contains a directed cycle. This contradicts that $\widetilde{\gamma_{\bar{C}}}$ is acyclic.

This proves (ii).

Appendix 5: Proof of Lemma 6

Lemma 6. For a mesh graph μ and an (s, t)-orientation $\widetilde{\sigma(\mu)}$ of the split mesh graph $\sigma(\mu)$, the orientation $\widetilde{\mu}$ of μ induced by $\widetilde{\sigma(\mu)}$ is an (s, t)-orientation of μ.

We prove Lemma 6 via the following two lemmas, Lemma 8 and Lemma 9.
For a mesh graph (γ, \mathcal{P}) with an outer facial cycle C and a function g : $V(C) \rightarrow \mathbb{R},(s, t)$-bipolar to C such that $g(u) \neq g(v)$ for any two vertices $u, v \in$ $V(C)$, an orientation $\widetilde{\gamma}$ of γ is called g-proper if

- the edges in C are directed from s to t; and
- the edges in each u, v-path $P \in \mathcal{P}$ are directed from u to v when $g(u)<g(v)$.

We first prove that any g-proper orientation is acyclic in Lemma 9. For this, we use the next technical lemma which facilitates a proof of Lemma 9 .

Lemma 8. For a biconnected plane graph $\gamma=(V, E, F)$ with an outer facial cycle C, let $g: V(C) \rightarrow \mathbb{R}$ be a function bipolar to C such that $g(u) \neq g(v)$ for any two vertices $u, v \in V(C)$. Let $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ be a 1-independent set of a_{i}, b_{i}-paths P_{i} of (V, E) for some $m \geq 2$ such that, for each $i=1,2, \ldots, m$, $V\left(P_{i}\right) \cap V(C)=\left\{a_{i}, b_{i}\right\}$ and $g\left(a_{i}\right)<g\left(b_{i}\right)$. Then $g\left(a_{2}\right)<g\left(b_{1}\right)$ if

- P_{1} and P_{2} intersect; or
- P_{1} and P_{3} intersect at an inner vertex w and P_{2} and P_{3} intersect at a vertex in the sub- a_{3}, w-path of P_{3}.

Proof. The sequence of vertices along C is given by $u_{\min }, u_{2}, u_{3}, \ldots, u_{p-1}, u_{\max }, v_{q-1}$, v_{q-2}, \ldots, v_{2} such that $g\left(u_{1}\right)<g\left(u_{2}\right)<\cdots<g\left(u_{p}\right)$ and $g\left(v_{1}\right)<g\left(v_{2}\right)<\cdots<$ $g\left(v_{q}\right)$ for $u_{1}=v_{1}=u_{\min }$ and $u_{p}=v_{q}=u_{\max }$. Without loss of generality assume that $a_{1} \in\left\{v_{1}, v_{2}, \ldots, v_{q-1}\right\}$ and if $a_{1}=u_{\text {min }}$ then $b_{1} \in\left\{u_{2}, u_{3}, \ldots, u_{p}\right\}$. We distinguish two cases.

Case 1. P_{1} and P_{2} intersect. We distinguish two subcases.
Case 1a. $a_{1}=v_{j}$ with $1 \leq j \leq q-1$ and $b_{1}=u_{k}$ with $2 \leq k \leq p$ (see Figure 5(a)): Let $X=\left\{v_{i} \mid 1 \leq i<j\right\} \cup\left\{u_{i} \mid 1 \leq i<k\right\}$. Since P_{1} and P_{2} intersect at an internal vertex exactly once, one of vertices a_{2} and b_{2} belongs to X, which means that $\min \left\{g\left(a_{2}\right), g\left(b_{2}\right)\right\}<\max \left\{g\left(a_{1}\right), g\left(b_{1}\right)\right\}$ and thereby $g\left(a_{2}\right)<g\left(b_{1}\right)$.
Case 1b. $a_{1}=v_{j}$ and $b_{1}=v_{k}$ with $2 \leq j<k \leq q-1$ (see Figure 5(b)): Let $Y=\left\{v_{i} \mid j<i<k\right\}$. Since P_{1} and P_{2} intersect at an internal vertex exactly once, one of vertices a_{2} and b_{2} belongs to Y, which implies $\min \left\{g\left(a_{2}\right), g\left(b_{2}\right)\right\}<$ $\max \left\{g\left(a_{1}\right), g\left(b_{1}\right)\right\}$ and thereby $g\left(a_{2}\right)<g\left(b_{1}\right)$.

Case 2. P_{1} and P_{2} do not intersect; P_{1} and P_{3} intersect at an inner vertex w; and P_{2} and P_{3} intersect at a vertex of the sub- a_{3}, w-path of P_{3} : Since P_{1} and P_{3} intersect, we know that $g\left(a_{3}\right)<g\left(b_{1}\right)$ by the result in Case 1. We distinguish two subcases.
Case 2a. $a_{1}=v_{j}$ with $1 \leq j \leq q-1$ and $b_{1}=u_{k}$ with $2 \leq k \leq p$ (see Figure 5(a)): As in Case 1a, if a_{2} or b_{2} is a vertex in X, then $\min \left\{g\left(a_{2}\right), g\left(b_{2}\right)\right\}<$ $\max \left\{g\left(a_{1}\right), g\left(b_{1}\right)\right\}$ holds and we are done. Assume that $\left\{a_{2}, b_{2}\right\} \subseteq V(C) \backslash X$. Since P_{2} and P_{3} intersect at a vertex of the sub- a_{3}, w-path of P_{3}, the assumption implies that $a_{3} \in V(C) \backslash X, a_{3}=v_{h}$ with $j<h<q-1$. Moreover, $a_{2}=v_{\ell}$ with $j \leq \ell<h$, since otherwise $a_{2} \in\left\{u_{i} \mid k<i \leq p\right\}$ and $b_{2} \in\left\{v_{i} \mid j \leq i<h\right\}$ implying that $g\left(a_{2}\right)<g\left(b_{2}\right)<g\left(a_{3}\right)<g\left(b_{3}\right)<g\left(b_{1}\right)<g\left(a_{2}\right)$, a contradiction. Now $g\left(a_{1}\right) \leq g\left(a_{2}\right)<g\left(a_{3}\right)$ holds. Since $g\left(a_{3}\right)<g\left(b_{1}\right)$, we obtain $g\left(a_{2}\right)<$ $g\left(a_{3}\right)<g\left(b_{1}\right)$, as required.
Case 2b. $a_{1}=v_{j}$ and $b_{1}=v_{k}$ with $2 \leq j<k \leq q-1$ (see Figure $5(\mathrm{~b})$): As in Case 1b, if a_{2} or b_{2} is a vertex in Y, then $\min \left\{g\left(a_{2}\right), g\left(b_{2}\right)\right\}<\max \left\{g\left(a_{1}\right), g\left(b_{1}\right)\right\}$ holds and we are done. Assume that $\left\{a_{2}, b_{2}\right\} \subseteq V(C) \backslash Y$. Since P_{2} and P_{3} intersect at a vertex of the sub- a_{3}, w-path of P_{3}, we see that $a_{3} \in\left\{v_{i} \mid 1 \leq i<\right.$ $j\} \cup\left\{u_{i} \mid 1 \leq i \leq p-1\right\}$ and a_{2} appears between a_{1} and a_{3} so that $g\left(a_{2}\right)<$ $\max \left\{g\left(a_{1}\right), g\left(a_{3}\right)\right\}$. When $g\left(a_{2}\right)<g\left(a_{1}\right)$, we obtain $g\left(a_{2}\right)<g\left(a_{1}\right)<g\left(b_{1}\right)$. When $g\left(a_{2}\right)<g\left(a_{3}\right)$, we obtain $g\left(a_{2}\right)<g\left(b_{1}\right)$ by $g\left(a_{3}\right)<g\left(b_{1}\right)$.

Fig. 5. Illustration for plane graphs with paths joining outer vertices: (a) An a_{1}, b_{1-} path P_{1} in Cases 1a and 2a in the proof of Lemma 8; (b) An a_{1}, b_{1}-path P_{1} in Cases 1b and 2 b in the proof of Lemma 8; (c) An a, b-path $P_{a b}$ intersects a u, v-path P at a vertex w_{k} in the proof of Lemma 9 .

We are ready to prove that any g-proper orientation is acyclic.
Lemma 9. For a mesh graph (γ, \mathcal{P}) with an outer facial cycle C, let $g: V(C) \rightarrow$ \mathbb{R} be a function bipolar to C such that $g(u) \neq g(v)$ for any two vertices $u, v \in$ $V(C)$, and $\widetilde{\gamma}$ denote the g-proper orientation of γ. Then
$-\widetilde{\gamma}$ is acyclic; and
$-g$ can be extended to the inner vertices in $V \backslash V(C)$ such that g is bipolar to the graph (V, E) and $g(u)<g(v)$ holds for any directed edge (u, v) in $\widetilde{\gamma}$.
Proof. Let $I=(\gamma, \mathcal{P}, C, g)$ denote a given instance with a mesh graph, an outer facial cycle and a function $g: V(C) \rightarrow \mathbb{R}$. We only need to prove the second statement, because any extended function bipolar to (V, E) means that $\widetilde{\gamma}$ is acyclic. We prove the second statement by an induction on the number $|\mathcal{P}|$ of paths. When $|\mathcal{P}|=0$, the lemma is immediate. Assume that $|\mathcal{P}| \geq 1$.

Choose an a, b-path $P_{a b} \in \mathcal{P}$ for some vertices $a, b \in V(C)$ with $g(a)<g(b)$, where we assume without loss of generality that the sequence of vertices in $V\left(P_{a b}\right)$ along $P_{a b}$ is given by $a, w_{1}, w_{2}, \ldots, w_{r}, b$. Based on path $P_{a b}$, we split instance I into two smaller instances $I_{i}=\left(\gamma_{i}, \mathcal{P}_{i}, C_{i}, g_{i}\right), i=1,2$.

First we define γ_{i} and $C_{i}, i=1,2$. Let $Q_{1}=C_{a b}$ (resp., $Q_{2}=C_{b c}$) denote the sub- a, b-path of C that traverses C from a to b (resp., b to a) in the clockwise order. We split γ into two plane graphs $\gamma_{i}=\left(V_{i}, E_{i}, F_{i}\right), i=1,2$ such that γ_{i} is the interior subgraph of γ by C_{i}.

Next we define a set \mathcal{P}_{i} of paths for each plane graph γ_{i}. Let P be an arbitrary u, v-path in $\mathcal{P} \backslash\left\{P_{a b}\right\}$ for some vertices $u, v \in V(C)$ with $g(u)<g(v)$. Since \mathcal{P} is 1-independent, we see that path P satisfies one of following cases:
(i) $E(P) \subseteq E_{1}$ and $V_{\text {inl }}(P) \cap V\left(P_{a b}\right)=\emptyset$, where $u, v \in V\left(Q_{1}\right)$;
(ii) $E(P) \subseteq E_{2}$ and $V_{\mathrm{inl}}(P) \cap V\left(P_{a b}\right)=\emptyset$, where $u, v \in V\left(Q_{2}\right)$;
(iii) $u \in V\left(Q_{1}\right) \backslash\{a, b\}, v \in V\left(Q_{2}\right) \backslash\{a, b\}$; and
(iv) $u \in V\left(Q_{2}\right) \backslash\{a, b\}, v \in V\left(Q_{1}\right) \backslash\{a, b\}$.

See Figure 5(c) for an illustration of path $P_{a b}$. For each u, v-path P in case (iii) or (iv), which has exactly one common internal vertex w with $P_{a b}$, let P^{\prime} (resp., $P^{\prime \prime}$) denote the sub- u, w-path (resp., sub- w, v-path) of P. Define \mathcal{P}_{1} to be the set of paths P in case (i), paths P^{\prime} in case (iii) and paths $P^{\prime \prime}$ in case (iv). Define \mathcal{P}_{2} to be the set of paths P in case (ii), paths $P^{\prime \prime}$ in case (iii) and paths P^{\prime} in case (iv).

Finally we define a function $g_{i}: V_{i} \rightarrow \mathbb{R}$ for each $i=1,2$ so that the resulting instance $I_{i}=\left(\gamma_{i}, \mathcal{P}_{i}, C_{i}, g_{i}\right)$ satisfies the condition of the lemma. For this, we let $n=|V|, \delta=\min \{|g(u)-g(v)| \mid u, v \in V(C), u \neq v\}$, where $\delta>0$ by the assumption on g, and define functions h and $g^{\prime}: V_{\mathrm{inl}}\left(P_{a b}\right) \rightarrow \mathbb{R}$ as follows.

$$
\begin{aligned}
& h\left(w_{k}\right):=\max \left\{g(u) \mid \text { a } u, v \text {-path } P \in \mathcal{P} \text { with } g(u)<g(v) \text { intersects } P_{a, b}\right. \\
&\left.\quad \text { at some a vertex } w_{j} \in\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}\right\} \\
& g^{\prime}\left(w_{k}\right):=\max \left\{g(a), h\left(w_{k}\right)\right\}+\frac{k}{n} \delta .
\end{aligned}
$$

For each $i=1,2$, define a function $g_{i}: V\left(C_{i}\right) \rightarrow \mathbb{R}$ such that

$$
g_{i}(v):=\left\{\begin{array}{l}
g(v), v \in V\left(Q_{i}\right) \\
g^{\prime}(v), v v \in V_{\mathrm{inl}}\left(P_{a b}\right) .
\end{array}\right.
$$

$g_{i}(v)=g(v)$ for each vertex $v \in V\left(Q_{i}\right)$ and $g_{i}(w)=g^{\prime}(w)$ for each vertex $w \in V_{\text {inl }}\left(P_{a b}\right)$.

Now we prove that for each $i=1,2$,
(a) g_{i} is bipolar to C_{i}; and
(b) for each u^{*}, v^{*}-path $P^{*} \in \mathcal{P}_{i}$ directed from u^{*} to v^{*} in $\bar{\gamma}$, it holds $g_{i}\left(u^{*}\right)<$ $g_{i}\left(v^{*}\right)$, which implies that the orientation restricted from $\bar{\gamma}$ to γ_{i} is g_{i}-proper.

To prove (a), it suffices to show that

$$
\begin{equation*}
g(a)<g^{\prime}\left(w_{1}\right)<g^{\prime}\left(w_{2}\right)<\cdots<g^{\prime}\left(w_{r}\right)<g(b) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{i}(u) \neq g^{\prime}(v) \text { for any vertices } u, v \in V\left(C_{i}\right), i=1,2 . \tag{2}
\end{equation*}
$$

By definition of h, we see that $h\left(w_{1}\right) \leq h\left(w_{2}\right) \leq \cdots \leq h\left(w_{r}\right)$, which implies $g(a) \leq \max \left\{g(a), h\left(w_{1}\right)\right\} \leq \cdots \leq \max \left\{g(a), h\left(w_{r}\right)\right\}$. Since $0<\delta / n<2 \delta / n<$ $\cdots<r \delta / n$, we have $g(a)<g^{\prime}\left(w_{1}\right)<g^{\prime}\left(w_{2}\right)<\cdots<g^{\prime}\left(w_{r}\right)$. We here prove that $\max \left\{g(a), h\left(w_{r}\right)\right\}<g(b)$, where $g(a)<g(b)$ is immediate from the choice of $P_{a b}$. By Lemma 8 , any u, v-path P that intersects $P_{a b}$ at an internal vertex w_{j} with $1 \leq j \leq r$ satisfies $\min \{g(u), g(v)\}<\max \{g(a), g(b)\}=g(b)$. This implies that $h\left(w_{r}\right)<g(b)$, proving (1).

Note that $\max \left\{g(a), h\left(w_{k}\right)\right\} \in\{g(u) \mid u \in V(C)\}, k=1,2, \ldots, r$. By definition of $\delta>0$, we see that $g_{i}(u) \neq g_{i}\left(w_{k}\right)$ for any vertices $u \in V\left(Q_{i}\right)$ and $w_{k} \in V_{\mathrm{inl}}\left(P_{a b}\right)$ and that $g_{i}\left(w_{j}\right) \neq g_{i}\left(w_{k}\right)$ for any vertices $w_{j}, w_{k} \in V_{\mathrm{inl}}\left(P_{a b}\right)$ with $1 \leq j<k \leq r$ by (1). This proves (2).

We prove (b) in the case where $P^{*} \in \mathcal{P}_{1}$ (the other case can be treated symmetrically). We distinguish three cases.

Case 1. $P^{*}=P$ for a u, v-path $P \in \mathcal{P}$ in case (i), where $g(u)<g(v), u^{*}=u$ and $v^{*}=v$: In this case, $g_{1}(u)=g(u)<g(v)=g_{1}(v)$ and condition (b) holds.

Case 2. $P^{*}=P^{\prime}$ for the sub- u, w-path P^{\prime} of a u, v-path $P \in \mathcal{P}$ of case (iii), where $g(u)<g(v), u^{*}=u$ and $v^{*}=w$: Since paths P and $P_{a b}$ intersect at w, we see by definition of h that $g_{1}(u)=g(u) \leq h(w) \leq \max \{g(a), h(w)\}<$ $\max \{g(a), h(w)\}+\delta / n \leq g^{\prime}(w)=g_{1}(w)$, indicating that condition (b) holds.

Case 3. $P^{*}=P^{\prime \prime}$ for the sub- w, v-path $P^{\prime \prime}$ of a u, v-path $P \in \mathcal{P}$ of case (iv), where $g(u)<g(v), u^{*}=w$ and $v^{*}=v$: See Figure 5(c) for an illustration of path $P^{*}=P^{\prime \prime}$. We show that $g(a)<g(v)$ and $h(w)<g(v)$. Since P and $P_{a b}$ intersect, it holds $g(a)<g(v)$ by Lemma 8 . Let $w=w_{k}$ and $P_{c d} \in \mathcal{P}$ be a c, d-path that attains the value of $h\left(w_{k}\right)$; i.e., $h\left(w_{k}\right)=g(c)<g(d)$ and $P_{c d}$ contains a vertex $w_{j} \in\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$. Hence P and $P_{a b}$ intersect at w_{k} and $P_{c d}$ and $P_{a b}$ intersect at vertex w_{j} of the sub- a, w_{k}-path of $P_{a b}$. By Lemma 8, it holds $h\left(w_{k}\right)=g(c)<g(v)$. Now $g(a)<g(v)$ and $h\left(w_{k}\right)=g(c)<g(v)$, where $g(v)-g(a) \geq \delta$ and $g(v)-h\left(w_{k}\right)=g(v)-g(c) \geq \delta$ by the definition of δ. We see that $g_{1}\left(w_{k}\right)=g^{\prime}\left(w_{k}\right)=\max \left\{g(a), h\left(w_{k}\right)\right\}+\frac{k}{n} \delta<g(v)=g_{1}(v)$. This proves that condition (b) holds.

Observe that for each $i=1,2, g_{i}(u) \neq g_{i}(v)$ for all vertices $u, v \in V_{i}$. By conditions (a) and (b), each instance $I_{i}=\left(\gamma_{i}, \mathcal{P}_{i}, C_{i}, g_{i}\right), i=1,2$ satisfies the condition of the lemma. Since $\left|\mathcal{P}_{i}\right|<|\mathcal{P}|$ for each $i=1$, 2 , we see by the induction hypothesis that function $g_{i}: V\left(C_{i}\right) \rightarrow \mathbb{R}$ can be extended to a function $g_{i}: V_{i} \rightarrow$ \mathbb{R} bipolar to the graph $\left(V_{i}, E_{i}\right)$ such that $g_{i}(u)<g_{i}(v)$ for any directed edge (u, v) in the g_{i}-proper orientation $\bar{\gamma}_{i}$ of γ_{i}, where $\bar{\gamma}_{i}$ is the restriction of $\bar{\gamma}$ onto
$\left(V_{i}, E_{i}\right)$. An extension of function $g: V(C) \rightarrow \mathbb{R}$ to a function $g: V \rightarrow \mathbb{R}$ is obtained by combining the extensions of g_{1} and g_{2} into the inner vertices of γ_{1} and γ_{2}. We easily see that the resulting extension is a function bipolar to the entire plane graph γ such that $g(u)<g(v)$ for any directed edge (u, v) in the g-proper orientation $\bar{\gamma}$ of γ.

This completes the proof of the lemma.
Lemma 9 implies Lemma 6 as follows. For an (s, t)-orientation $\widetilde{\sigma(\mu)}$ of the split mesh graph $\sigma(\mu)$, there is an st-numbering (i.e., an (s, t)-bipolar vertexweight function) g to the split graph $\sigma(\mu)$. Now the orientation $\widetilde{\mu}$ of μ induced by $\widetilde{\sigma(\mu)}$ is g-proper. Hence by Lemma 9 , orientation $\widetilde{\mu}$ is acyclic. Obviously orientation $\widetilde{\mu}$ still has the same source s and $\operatorname{sink} t$, and it is an (s, t)-orientation of μ.

This proves Lemma 6.

Appendix 6: Proof of Lemma 7

Lemma 7. For a pseudo-simple connected plane graph $\gamma=(G=(V, E), F)$ such that the boundary forms a cycle C^{o} and a subset $X \subseteq V \backslash V\left(C^{o}\right)$, let $\left\{X_{i} \subseteq\right.$ $X \mid i=1,2, \ldots, p\}$ denote the set of components in $G[X]$ and $Y_{i} \subseteq N_{G}\left(X_{i}\right)$, $i=1,2, \ldots, p$ be subsets of V, where possibly $Y_{i} \cap Y_{j} \neq \emptyset$ for some $i \neq j$.

Then γ contains no (X_{i}, Y_{i})-confiner for any $i=1,2, \ldots, p$ if and only if the sun augmentation $\gamma^{*}=\left(V^{*}, E^{*}, F^{*}\right)$ of γ contains a coating \mathcal{C} of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ that covers $\left\{Y_{1}, Y_{2}, \ldots, Y_{p}\right\}$.

Moreover the following can be computed in linear time:
(i) Testing whether γ contains an $\left(X_{i}, Y_{i}\right)$-confiner for some $i=1,2, \ldots, p$; and
(ii) Finding a coating \mathcal{C} of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ that covers $\left\{Y_{1}, Y_{2}, \ldots, Y_{p}\right\}$ in γ^{*} when γ contains no $\left(X_{i}, Y_{i}\right)$-confiner for any $i=1,2, \ldots, p$.

We prove Lemma 7 after showing some lemma. We observe that the sun augmentation $\gamma^{*}=\left(G^{*}=\left(V^{*}, E^{*}\right), F^{*}\right)$ of a pseudo-simple connected plane graph γ is a pseudo-simple biconnected plane graph such that
(i) For two non-core faces f and f^{\prime} sharing a core vertex u, either f and f^{\prime} share a non-core vertex and an edge or a non-core face $f^{\prime \prime}$ contains u and the non-core vertices in f and f^{\prime};
(ii) No new edge in $E^{*} \backslash E$ joins two original vertices in V, and $G^{*}[X]=G[X]$ for any subset $X \subseteq V$;
(iii) After removing the original edges in E, the resulting graph $\gamma^{*}-E$ remains connected;
(iv) γ^{*} is simple when γ is simple; and
(v) $\left|V^{*}\right| \leq|V|+2|E|$, and the sun augmentation γ^{*} can be computed in linear time.

We here prove the next lemma on properties of coating.

Fig. 6. (a) A fictitious configuration where the boundary of face f_{y} contains at least two vertices $w, w^{\prime} \in N_{G}^{(2)}\left(X_{i}\right) \subseteq V\left(B_{i}\right) ;$ (b) A fictitious configuration where an $\left(X_{i}, T\right)$ confiner K intersects a cycle C_{i} such that $t \in V\left(C_{i}\right), V\left(C_{i}\right) \cap X=\emptyset$ and $V_{\text {enc }}\left(C_{i} ; \gamma^{*}\right) \supseteq$ X_{i}; (c) Plane subgraph $\eta_{i}^{(2)}=\left(W_{i}^{(2)}=X_{i} \cup N_{G}^{(2)}\left(X_{i}\right), E_{i}^{(2)}, F_{i}^{(2)}\right)$ and cycle $C_{i}=$ $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$.

Lemma 10. For a pseudo-simple plane graph $\gamma=(G=(V, E), F)$ such that the boundary forms a cycle C^{o} and a subset $X \subseteq V \backslash V\left(C^{o}\right)$, let $\left\{X_{i} \subseteq X \mid\right.$ $i=1,2, \ldots, p\}$ denote the set of components in $\bar{G}[X], E\left[X_{i}\right]$ denote the set of edges in the component $G\left[X_{i}\right], E_{i}^{+}$denote the set of edges in E between X_{i} and $N_{G}\left(X_{i}\right), \eta_{i}=\left(X_{i} \cup N_{G}\left(X_{i}\right), E\left[X_{i}\right] \cup E_{i}^{+}, F_{i}\right), i=1,2, \ldots, p$ denote the plane subgraph of γ induced by the vertices in $X_{i} \cup N_{G}\left(X_{i}\right)$ and the edges in $E\left[X_{i}\right] \cup E_{i}^{+}$, and denote by B_{i} the outer boundary of η_{i}.
(i) Let y be a vertex in $N_{G}\left(X_{i}\right) \backslash V\left(B_{i}\right)$ for some i. Then there is a $\left(X_{i},\{y\}\right)$ confiner;
(ii) For a subset $T \subseteq N_{G}\left(X_{i}\right)$ for some $i \in\{1,2, \ldots, p\}$, assume that γ has an $\left(X_{i}, T\right)$-confiner. Then no plane augmentation γ^{*} of γ admits a coating $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ such that $T \subseteq V\left(C_{i}\right)$;
(iii) The sun augmentation $\gamma^{*}=\left(G^{*}=\left(V^{*}, E^{*}\right), F^{*}\right)$ of γ contains a coating $\mathcal{C}=$ $\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ such that $N_{G}\left(X_{i}\right) \cap V\left(B_{i}\right) \subseteq V\left(C_{i}\right)$, $i=1,2, \ldots, p$; and
(iv) A coating \mathcal{C} of the sun augmentation γ^{*} in (iii) can be computed in linear time.
Proof. Let $N_{G}^{(2)}(X)$ denote the set of neighbors $u \in N_{G}(X)$ incident to more than one vertex in X; i.e., $N_{G}^{(2)}(X)=\left\{u \in N_{G}(X)| | N_{G}(u) \cap X \mid \geq 2\right\}$. For each

Fig. 7. (a) Two faces $f, f^{\prime} \in F_{i}^{*}$ with $E(f) \cap E\left(f^{\prime}\right)=\emptyset$ and $V(f) \cap V\left(f^{\prime}\right)=\{w\} \subseteq V$; (b) Two faces $f, f^{\prime} \in F_{i}^{*}$ with $E(f) \cap E\left(f^{\prime}\right)=\emptyset$ and $V(f) \cap V\left(f^{\prime}\right)=\{w\} \subseteq V^{*} \backslash V$; (c) A fictitious configuration where C_{i} and $C_{i^{\prime}}$ share an edge $e=u v$; (d) A fictitious configuration where C_{i} and $C_{i^{\prime}}$ intersect at a vertex w.
$i=1,2, \ldots, p$, let $E\left[X_{i}\right]$ denote the set of edges in the component $G\left[X_{i}\right]$ and $E_{i}^{(2)}$ denote the set of edges in E_{i}^{+}between X_{i} and $N_{G}^{(2)}\left(X_{i}\right)$.
(i) Note that $E\left(G\left[X_{i}\right]\right)$ is the set of edges between two vertices in X_{i}. Consider the graph $\eta_{i}^{\dagger}=\eta_{i}-\left(E_{i}^{+} \backslash E\left(B_{i}\right)\right)$ obtained from η_{i} by removing all inner edges in E_{i}^{+}, where η_{i}^{\dagger} and η_{i} have the same boundary B_{i}. Observe that any vertex in $V\left(B_{i}\right) \cap N_{G}\left(X_{i}\right)$ belongs to $N_{G}^{(2)}\left(X_{i}\right)$. There is an inner face f_{y} of the plane graph η_{i}^{\dagger} such that the interior of f_{y} contains vertex $y \in N_{G}\left(X_{i}\right) \backslash V\left(B_{i}\right)$. The boundary of f_{y} contains at most one vertex in $N_{G}^{(2)}\left(X_{i}\right)\left(\subseteq V\left(B_{i}\right)\right)$, since otherwise $G\left[X_{i}\right]$ cannot be connected, as illustrated in Figure 6(a). The boundary of f_{y} may not be a cycle, but it contains a cycle K that encloses y. We see that y has a neighbor $y^{\prime} \in X_{i}$ which is connected to a vertex in K in $G\left[X_{i}\right]$. Since $\left|K \backslash X_{i}\right| \leq 1$, we see that K is an $\left(X_{i},\{y\}\right)$-confiner.
(ii) Let K be an $\left(X_{i}, T\right)$-confiner that encloses a vertex $t \in T$. To derive a contradiction, assume that there is a cycle C_{i} in some plane augmentation γ^{*} of γ such that $t \in V\left(C_{i}\right), V\left(C_{i}\right) \cap X=\emptyset$ and $V_{\text {enc }}\left(C_{i} ; \gamma^{*}\right) \supseteq X_{i}$. This implies that two cycles K and C_{i} cannot share two or more vertices in the plane, as illustrated in Figure $6(\mathrm{~b})$. Note that C_{i} contains vertex $t \in V_{\mathrm{enc}}\left(K ; \gamma^{*}\right)$. We see that cycle C_{i} cannot have X_{i} as part of its interior without sharing two or more vertices with K, a contradiction. Therefore no plane augmentation γ^{*} of γ admits a coating $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ such that $T \subseteq V\left(C_{i}\right)$.
(iii) We introduce some notations. For each $i=1,2, \ldots, p$, let $\eta_{i}^{(2)}=\left(X_{i} \cup\right.$ $\left.N_{G}^{(2)}\left(X_{i}\right), E\left[X_{i}\right] \cup E_{i}^{(2)}, F_{i}^{(2)}\right)$ denote the plane subgraph of γ induced by the vertices in $X_{i} \cup N_{G}^{(2)}\left(X_{i}\right)$ and the edges in $X_{i} \cup N_{G}^{(2)}\left(X_{i}\right)$, and denote by $B_{i}^{(2)}$ the outer boundary of $\eta_{i}^{(2)}$. Figure 6(c) illustrates plane subgraph $\eta_{i}^{(2)}$.

Let $\gamma^{*}=\left(G^{*}=\left(V^{*}, E^{*}\right), F^{*}\right)$ denote the sun augmentation of γ. For an inner face f in γ^{*}, let $V(f)$ and $E(f)$ denote the sets of vertices and edges of the facial cycle C_{f} of f, respectively.

For each $i=1,2, \ldots, p$, let F_{i}^{*} denote the set of faces f in γ^{*} such that $V(f)$ contains a vertex in X_{i} and $E(f)$ contains an edge outside the boundary $B_{i}^{(2)}$. Each face $f \in F_{i}^{*}$ is a non-core face with $\left|V(f) \cap X_{i}\right|=1,2$. Note that no edge in $E^{*} \backslash E$ joins two vertices in V in γ^{*}. Hence no face $f \in F_{i}^{*}$ contains any vertex in X_{j} with $i \neq j$; i.e., $V(f) \cap X_{j}=\emptyset$, since otherwise X_{i} and X_{j} would belong to the same component of $G[X]$. Let $\psi=\left(f_{1}, f_{2}, \ldots, f_{q}\right), q=\left|F_{i}^{*}\right|$ denote the circular sequence of the faces in F_{i}^{*} in the order that they appear along $B_{i}^{(2)}$, where f_{j} and $f_{j+1}, j=1,2, \ldots, q$ share a vertex in $X_{i} \cup N_{G}^{(2)}\left(X_{i}\right)$. Let $v_{1}, v_{2}, \ldots, v_{m}$ denote the sequence of vertices in $\cup_{j=1,2, \ldots, q} V\left(f_{j}\right) \backslash X_{i}$ in γ^{*} in the order that they appear in the sequence $f_{1}, f_{2}, \ldots, f_{q}$, where $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \cap X=\emptyset$ since $V(f) \cap X=\emptyset$ for all faces $f \in F_{i}^{*}$. Since each non-core face in F_{i}^{*} is a triangle, γ^{*} contains an edge e_{j} joining two vertices v_{j} and v_{j+1} (or an edge e_{m} joining v_{m} and $\left.v_{1}\right)$. Let $C_{i}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ denote the subgraph that consists of vertices $v_{1}, v_{2}, \ldots, v_{m}$ and edges $e_{1}, e_{2}, \ldots, e_{m}$. See Figure 6(c) for an illustration of cycle C_{i}.

From $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \cap X, V\left(C_{i}\right) \cap X=\emptyset$ holds. Note that $G\left[X_{i}\right]$ and C_{i} are both connected graphs, where $V\left(C_{i}\right)$ contains a vertex not enclosed by the boundary $B_{i}^{(2)}$. Hence $V\left(C_{i}\right) \cap X=\emptyset$ implies that $V_{\text {enc }}\left(C_{i} ; \gamma\right) \supseteq X_{i}$.

Note that $V\left(B_{i}^{(2)}\right) \subseteq V\left(B_{i}\right)$ holds and the boundary $B_{i}^{(2)}$ contains all vertices in $X_{i} \cap V\left(B_{i}\right)$ and the neighbors in $N_{G}^{(2)}\left(X_{i}\right) \cap V\left(B_{i}\right)$. Each neighbor $v \in N_{G}\left(X_{i}\right) \cap$ $V\left(B_{i}\right) \backslash N_{G}^{(2)}\left(X_{i}\right)$ is adjacent to a vertex $x \in X_{i} \cap V\left(B_{i}^{(2)}\right)$. This implies that $N_{G}\left(X_{i}\right) \cap V\left(B_{i}\right) \subseteq V\left(C_{i}\right)$.

We show that C_{i} is a simple cycle. Consider two faces $f, f^{\prime} \in F_{i}^{*}$ that share a vertex $w \in V\left(C_{i}\right)$. When $E(f) \cap E\left(f^{\prime}\right) \neq \emptyset, f$ and f^{\prime} are indexed consecutively as f_{j} and f_{j+1} in the sequence ψ. Assume that $E(f) \cap E\left(f^{\prime}\right)=\emptyset$ and $V(f) \cap V\left(f^{\prime}\right)=$ $\{w\}$. Note that each of f and f^{\prime} contains a vertex in X_{i}, say $x \in V(f) \cap X_{i}$ and $x^{\prime} \in V\left(f^{\prime}\right) \cap X_{i}$. First consider the case where $w \in V$. Since each of f and f^{\prime} contains a vertex in X_{i}, we see that $w \in N_{G}^{(2)}\left(X_{i}\right)$. In this case, $E\left(B_{i}^{(2)}\right)$ contains exactly two edges incident to w, which must be $w x \in E(f)$ and $w x^{\prime} \in E\left(f^{\prime}\right)$, as shown in Figure $7(\mathrm{a})$. This implies that no other face $f^{\prime \prime} \in F_{i}^{*} \backslash\left\{f, f^{\prime}\right\}$ can contain such a vertex w by the definition of F_{i}^{*}.

Next consider the case where w is a core vertex in $V^{*} \backslash V$. By construction of the sun augmentation γ^{*}, each of $V(f)$ and $V\left(f^{\prime}\right)$ contains exactly one vertex in V, which are x and x^{\prime}, respectively, and the set $\left\{x, w, x^{\prime}\right\}$ forms a non-core face $f^{\prime \prime}$, where $f^{\prime \prime} \in F_{i}^{*}$ holds, as shown in Figure 7(b). Hence faces $f, f^{\prime \prime}$ and f^{\prime} are indexed consecutively as f_{j}, f_{j+1} and f_{j+2} in the sequence ψ. From these two cases, we see that C_{i} is a simple cycle. Also each inner face f with $V(f) \cap V\left(C_{i}\right) \neq$ \emptyset in the interior $\gamma^{*}\left[C_{i}\right]_{\text {enc }}$ belongs to F_{i}^{*}, and satisfies $V(f) \cap X=V(f) \cap X_{i} \neq \emptyset$. In particular, each edge $e \in E\left(C_{i}\right)$ is contained in a non-core face $f(e) \in F_{i}^{*}$.

Finally we prove that the cycles C_{i} and $C_{i^{\prime}}$ with $1 \leq i<i^{\prime} \leq p$ are edgedisjoint and do not intersect. Assume that C_{i} and $C_{i^{\prime}}$ share an edge $e=u v$. Note that e is contained in a non-core face $f(e) \in F_{i}^{*}$ and in a non-core face $f^{\prime}(e) \in F_{i^{\prime}}^{*}$, where $f(e)$ and $f^{\prime}(e)$ contain a vertex $x \in X_{i}$ and a vertex $x^{\prime} \in X_{i^{\prime}}$, respectively, and $V(f(e))=\{u, v, x\}$ and $V\left(f^{\prime}(e)\right)=\left\{u, v, x^{\prime}\right\}$, as shown in

Figure 7(c). However, when two non-core faces share an edge $e=u v$, one of the faces cannot have a vertex in $V \backslash\{u, v\}$ in the sun augmentation γ^{*}. This implies that C_{i} and $C_{i^{\prime}}$ are edge-disjoint.

Next assume that C_{i} and $C_{i^{\prime}}$ intersect at a vertex $w \in V\left(C_{i}\right) \cap V\left(C_{i^{\prime}}\right)$. Let $e=u w \in E\left(C_{i}\right)$ and $e^{\prime}=u^{\prime} w \in E\left(C_{i^{\prime}}\right)$ be edges incident to w, where we choose e^{\prime} in the interior $\gamma^{*}\left[C_{i}\right]_{\text {enc }}$. Then e and e^{\prime} are contained in faces $f(e) \in F_{i}^{*}$ and $f^{\prime}(e) \in F_{i^{\prime}}^{*}$, respectively, as shown in Figure 7(d). Recall that a vertex $x \in X_{i}$ and a vertex $x^{\prime} \in X_{i^{\prime}}$ are contained in $f(e)$ and $f^{\prime}\left(e^{\prime}\right)$, respectively. However, we have observed that any inner face in $\gamma^{*}\left[C_{i}\right]_{\mathrm{enc}}$ containing a vertex in $V\left(C_{i}\right)$ contains a vertex $x \in X_{i}$, contradicting that such a face $f^{\prime}\left(e^{\prime}\right)$ contains a vertex $\tilde{x} \in X_{i}$ other than $x^{\prime} \in X_{i}$, since \tilde{x} and x^{\prime} must have been in the same component of $G[X]$. Hence C_{i} and $C_{i^{\prime}}$ do not intersect.

Therefore $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ is a coating of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ such that $N_{G}\left(X_{i}\right) \cap V\left(B_{i}\right) \subseteq V\left(C_{i}\right), i=1,2, \ldots, p$.
(iv) We show that, for each $i=1,2, \ldots, p$, the cycle $C_{i} \in \mathcal{C}$ can be computed in $O\left(\left|V\left(C_{i}\right)\right|\right)$ time after some linear-time preprocessing.

As observed, the sun augmentation γ^{*} of γ can be constructed in linear time. For each vertex $v \in V^{*}$, let $E^{*}(v)$ denote the set of edges in E^{*} incident to v in γ^{*}, where we assume that the edges in $E^{*}(v)$ are stored in a linked-list in the clockwise order around v.

We compute the set $E[X]$ of edges in E that join two vertices in X, the components $X_{1}, X_{2}, \ldots, X_{p}$ in the induced graph $G[X]=(V, E[X])$ and the edge set $E\left[X_{i}\right] \cup E_{i}^{+}, i=1,2, \ldots, p$ in linear time. For each edge $e \in E$, we also compute $\operatorname{id}(e)$ as the index i of the component X_{i} in $G[X]$ such that $e \in$ $E\left[X_{i}\right] \cup E_{i}^{+}$.

For each vertex $v \in N_{G}(X)$, let $E_{i}^{+}(v), i=1,2, \ldots, p$ denote the set of edges in E_{i}^{+}incident to v. We show how to compute each non-empty set $E_{i}^{+}(v)$ so that the edges in $E_{i}^{+}(v)$ are stored in a linked-list in the clockwise order around v. Prepare a 1-dimensional array A with entries $A[i]=(a, b), i=1,2, \ldots, p$ such that a stores a vertex (or null) and b stores an edge (or null), which is initialized as $A[i]:=\left(\right.$ null,null). We choose each vertex $v \in N_{G}(X)$ in some order, and traverse the edges in the linked-list for $E^{*}(v)$. When we encounter an edge $e \in E^{*}(v) \cap E$ with $\operatorname{id}(e)=j$ in the list, update the current entry $A[j]=(a, b)$ as follows. If $a \neq v$ then set $A[j]:=(v, e)$; and if $a=v$ then $b \in E_{j}^{+}(v)$ holds and we set $A[j]:=(v, e)$ and let the edge b be linked to the current edge e in the linked-list for $E_{j}^{+}(v)$. After this, the linked-list for each non-empty set $E_{i}^{+}(v), v \in N_{G}(X)$, $i=1,2, \ldots, p$ is computed in linear time since the number of edges scanned in this procedure is a constant times for each edge. Also the set $N_{G}^{(2)}\left(X_{i}\right)$ is obtained as the set of vertices $v \in N_{G}(X)$ with $\left|E_{i}^{+}(v)\right| \geq 2$.

Finally we find some edge e_{i}^{*} incident to a vertex $x \in X_{i} \cap V\left(B_{i}^{(2)}\right)$ not from the interior of the graph $\eta_{i}^{(2)}=\left(V_{i}^{(2)}, E_{i}^{(2)}, F_{i}^{(2)}\right)$ for each $i=1,2, \ldots, p$. We call such an edge the first edge of i. Let $E_{(2)}^{+}$denote the set of edges between X_{i} and $N_{G}^{(2)}\left(X_{i}\right)$ for all $i=1,2, \ldots, p$, and remove the edges in $E_{(2)}^{+}$from γ^{*} to obtain a graph $\gamma^{*}-E_{(2)}^{+}$, which remains connected by the construction of γ^{*}. Then
compute a spanning tree T^{*} of $\gamma^{*}-E_{(2)}^{+}$as follows. First construct a spanning tree T_{i} of component $G\left[X_{i}\right]$ for each $i=1,2, \ldots, p$, and choose a spanning tree T^{*} in $\gamma^{*}-E_{(2)}^{+}$such that T^{*} contains all spanning trees $T_{i}, i=1,2, \ldots, p$. Regard T^{*} as a digraph rooted at some vertex $s \in V\left(C^{o}\right)$ wherein each edge $u v$ in T^{*} is directed from the parent u to the child v. Note that T^{*} contains exactly one incoming edge $e=(u, v)$ for each tree T_{i} such that v belongs to X_{i} and u is the parent of v in T^{*}. Note that $v \in V\left(B_{i}^{(2)}\right)$ and $u \notin N_{G}^{(2)}\left(X_{i}\right)$ since the edges in $E_{(2)}^{+}$are removed. We set this edge e to be the first edge e_{i}^{*} of i.

In the following, i is an index $i \in\{1,2, \ldots, p\}$. We are ready to generate the sequence ψ of faces in F_{i}^{*}. In the following, we find the edges in $E(f)$ of these faces incident to X_{i}, from these edges we can find the sequence $\psi=\left(f_{1}, f_{2}, \ldots, f_{q}\right)$. See Figure 6(c) for an illustration of the sequence $f_{1}, f_{2}, \ldots, f_{q}$. For the first edge $e_{i}^{*}=x_{1} v$ with $x_{1} \in X_{i}$, we initialize $e:=x_{1} v$ and $x:=x_{1}$. Then we repeat the following:

Trace (e, x) : traverse edges in the linked-list of $E^{*}(x)$ starting from the edge e until we encounter an edge $e^{\prime}=x u \in E^{*}(x)$ such that $u \in X_{i}$ or $u \in N_{G}^{(2)}\left(X_{i}\right)$ for the first time.

In the former, we execute $\operatorname{Trace}\left(e^{\prime}=x u, u\right)$; In the latter, we traverse the linked-list for $E_{i}^{+}(u)$ to find the next edge $e^{\prime}=u x^{\prime}$ with $x^{\prime} \in X_{i}$ in $O(1)$ time and then execute $\operatorname{Trace}\left(e^{\prime}=u x^{\prime}, x^{\prime}\right)$.

We see that the above procedure can correctly find the edges in $E(f)$ of the faces in the sequence $\psi=\left(f_{1}, f_{2}, \ldots, f_{q}\right)$ in $O(q)$ time. Based on sequence ψ, we can construct the cycle C_{i} in $O\left(\left|V\left(C_{i}\right)\right|\right)=O(q)$ time. The total time for computing all cycles $C_{i}, i=1,2, \ldots, p$ is linear to the size of γ.

Now we prove Lemma 7 by using Lemma 10.
Given a pseudo-simple connected plane graph $\gamma=(G=(V, E), F)$ and a subset $X \subseteq V \backslash V\left(C^{o}\right)$ in Lemma 7, we construct the sun augmentation γ^{*} of γ and a coating \mathcal{C} of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ such that $N_{G}\left(X_{i}\right) \cap V\left(B_{i}\right) \subseteq V\left(C_{i}\right)$ in Lemma 10(ii). We distinguish two cases:
(a) $V\left(C_{i}\right) \supseteq Y_{i}$ for each $i=1,2, \ldots, p$; and
(b) there is a vertex $y \in Y_{i} \backslash V\left(C_{i}\right)$ for some $i \in\{1,2, \ldots, p\}$.

In (a), the obtained coating \mathcal{C} of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ covers $\left\{Y_{1}, Y_{2}, \ldots, Y_{p}\right\}$, and there is no $\left(X_{i}, Y_{i}\right)$-confiner for any i by Lemma 10(ii). In (b), $y \in Y_{i} \backslash$ $V\left(C_{i}\right) \subseteq N_{G}\left(X_{i}\right) \backslash V\left(C_{i}\right) \subseteq N_{G}\left(X_{i}\right) \backslash\left(N_{G}\left(X_{i}\right) \cap V\left(B_{i}\right)\right)=N_{G}\left(X_{i}\right) \backslash V\left(B_{i}\right)$. Hence by Lemma 10(i), γ has an $\left(X_{i},\{y\}\right)$-confiner, which is also an $\left(X_{i}, Y_{i}\right)$ confiner by the definition of confiners.

The arguments in (a) and (b) imply that γ contains no (X_{i}, Y_{i})-confiner for any $i=1,2, \ldots, p$ if and only if the sun augmentation γ^{*} of γ contains a coating \mathcal{C} of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ that covers $\left\{Y_{1}, Y_{2}, \ldots, Y_{p}\right\}$. Computing the sun augmentation γ^{*} and a coating \mathcal{C} of $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ in Lemma 10(ii) can be done in linear time by Lemma 10(iv).

This proves Lemma 7.

Appendix 7: Algorithm ORIENT for Proving Lemma 3

An entire algorithm for proving Lemma 3 is described as follows.
Algorithm ORIENT
Input: A pseudo-simple biconnected plane graph $\gamma=(V, E, F)$, an 1-independent set \mathcal{P} of paths of length at least 2 , a partition $\mathcal{P}_{i}, i=1,2, \ldots, p$ of \mathcal{P} and an inclusive set $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of edge-disjoint cycles satisfying the condition of Lemma 3 and two outer vertices s and t of γ.
Output An (s, t)-orientation $\widetilde{\gamma}$ of γ compatible to \mathcal{P}.
1: Compute the inclusion-forest $\mathcal{I}=(\mathcal{C}, \mathcal{E})$ of \mathcal{C} and the set $\mathcal{C}_{\mathrm{rt}}$ of root cycles in \mathcal{C}, letting the indexing of $C_{1}, C_{2}, \ldots, C_{p}$ satisfy $i<j$ when C_{i} is the parent cycle of C_{j}, the plane subgraphs γ_{i} and the sets $F\left(\mu_{i}\right)$ of non-trivial inner faces, $i=1,2, \ldots, p$;
2: Compute an (s, t)-orientation $\widetilde{\gamma_{0}}$ of γ_{0} using Lemma 1;
3: for each $i=1,2, \ldots, p$ do
/* Now orientation $\widetilde{\gamma}_{k}$ of the parent cycle C_{k} of non-root cycle C_{i}
or $\widetilde{\gamma}_{k}=\widetilde{\gamma}_{0}$ of root cycle C_{i} is $\left(s_{i}, t_{i}\right)$-bipolar to C_{i} for some $s_{i}, t_{i} \in V\left(C_{i}\right)$ by Lemma 4; Execute Step (a) */
4: \quad Compute an $\left(s_{i}, t_{i}\right)$-orientation $\widetilde{\mu}_{i}$ of mesh graph $\eta_{i}=\left(C_{i}, \mathcal{P}_{i}\right)$ using Lemmas 1 and 6;
5: \quad for each inner face $f \in F\left(\mu_{i}\right)$ do /* Now orientation $\widetilde{\mu}_{i}$ is $\left(s_{f}, t_{f}\right)$-bipolar to the facial cycle C_{f} of f for some vertices $s_{f}, t_{f} \in V\left(C_{f}\right)$ by Lemma 4; Execute Step (b) */
6: \quad Compute an $\left(s_{f}, t_{f}\right)$-orientation $\left.\gamma_{i} \widetilde{\left[C_{f}\right]}\right]_{\text {enc }}$ of the interior subgraph $\gamma_{i}\left[C_{f}\right]_{\text {enc }}$ induced from γ_{i} by C_{f} using Lemma 1.
endfor
endfor;
9: Output the orientation $\widetilde{\gamma}$ of γ by combining bipolar orientations $\widetilde{\gamma}_{i}$ of $\gamma_{i}, i=1,2, \ldots, p$.

Appendix 8: Proof of Theorem 2

Theorem 2 Let Γ be a non-plane embedding of a graph G such that each crossing-set is outer, and let $n=|V(G)|$ and n_{c} denote the number of crossings in Γ.

Then for any pair of outer vertices s and t in Γ, there is an (s, t)-upward drawing of Γ, and an upward poly-line drawing of Γ with $O\left(n+n_{\mathrm{c}}\right)$ bends can be computed in $O\left(n+n_{\mathrm{c}}\right)$ time and space.

Proof. We show that Theorem 1 can be applied to the planarization of an instance of Theorem 2. Let Γ be a non-plane embedding of a graph G. Assume that each crossing-set E_{i}^{*} is outer.

We construct the plane graph by planarizing Γ, i.e., replacing each edge crossing as a graph vertex. If the resulting planarization is not connected, then we add a least number of new edges to make it connected while keeping planarity.

Let $\gamma=(G=(V, E), F)$ denote the resulting connected plane graph, $V_{\text {inl }}$ denote the set of crossings in Γ, and $V_{\text {end }}$ denote the set of end-vertices of crossing edges in E^{*}. Clearly $V_{\mathrm{inl}} \cap V_{\text {end }}=\emptyset$. In γ, each crossing edge $e=u v \in E^{*}$ in Γ is replaced with a path $P_{e}=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ in γ such that $u_{1}=u, u_{k}=v$, and $u_{2}, u_{3}, \ldots, u_{k-1} \in V_{\text {inl }}$.

Define a path set $\mathcal{P}=\left\{P_{e} \mid e \in E^{*}\right\}$, where we see that \mathcal{P} is 1-independent since Γ satisfies the standard non-degeneracy conditions. Let $E_{1}^{*}, E_{2}^{*}, \ldots, E_{p}^{*}$ be the partition of E^{*} into crossing-sets. For each crossing-set E_{i}^{*}, let \mathcal{P}_{i} denote the set of paths P_{e} with $e \in E_{i}^{*}$, where $V_{\mathrm{inl}}\left(\mathcal{P}_{i}\right)$ is a component in $G\left[V_{\mathrm{inl}}\right]$. Since each crossing-set E_{i}^{*} is outer, we see that γ has no ($V_{\mathrm{inl}}, V_{\text {end }}$)-separator K.

By Theorem 1, there exists an (s, t)-upward poly-line drawing of Γ for any outer vertices s and t, and such a drawing can be constructed in linear time, where the total number of bends is at most $|E(G)|+\left|V_{\mathrm{inl}}\right|=O\left(n+n_{\mathrm{c}}\right)$.

This proves Theorem 2.

[^0]: * Technical Report TR2020-002, Department of Applied Mathematics and Physics, Kyoto University, April, 13, 2020

