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Abstract. In this paper, we introduce a new problem of finding an
upward drawing of a given plane graph γ with a set P of paths so that
each path in the set is drawn as a poly-line that is monotone in the
y-coordinate. We present a sufficient condition for an instance (γ,P) to
admit such an upward drawing. Our results imply that every 1-plane
graph admits an upward drawing.

1 Introduction

Upward planar drawings of digraphs are well studied problem in Graph Draw-
ing [3]. In an upward planar drawing of a directed graph, no two edges cross and
each edge is a curve monotonically increasing in the vertical direction. It was
shown that an upward planar graph (i.e., a graph that admits an upward planar
drawing) is a subgraph of a planar st-graph and admits a straight-line upward
planar drawing [4, 12], although some digraphs may require exponential area [3].
Testing upward planarity of a digraph is NP-complete [10]; a polynomial-time
algorithm is available for an embedded triconnected digraph [2].

Upward embeddings and orientations of undirected planar graphs were stud-
ied [6]. Computing bimodal and acyclic orientations of mixed graphs (i.e., graphs
with undirected and directed edges) is known as NP-complete [13], and upward
planarity testing for embedded mixed graph is NP-hard [5]. Upward planarity
can be tested in cubic time for mixed outerplane graphs, and linear-time for
special classes of mixed plane triangulations [8].

A monotone drawing is a straight-line drawing such that for every pair of
vertices there exists a path that monotonically increases with respect to some
direction. In an upward drawing, each directed path is monotone, and such paths
are monotone with respect to the same (vertical) line, while in a monotone
drawing, each monotone path is monotone with respect to a different line in
general. Algorithms for constructing planar monotone drawings of trees and
biconnected planar graphs are presented [1].
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In this paper, we introduce a new problem of finding an upward drawing of a
given plane graph γ together with a set P of paths so that each path in the set is
drawn as a poly-line that is monotone in the y-coordinate. Let γ = (V,E, F ) be
a plane graph and D be an upward drawing of γ. We call D monotonic to a path
P of (V,E) if D is upward in the y-coordinate and the drawing induced by path
P is y-monotone. We call D monotonic to a set of paths P if D is monotonic to
each path in P. More specifically, we initiate the following problem.

Path-monotonic Upward Drawing
Input: A connected plane graph γ, a set P of paths of length at least 2 and
two outer vertices s and t.
Output: An (s, t)-upward drawing of γ that is monotonic to P.

We present a sufficient condition for an instance (γ,P) to admit an (s, t)-
upward drawing of γ that is monotonic to P for any two outer vertices s, t ̸∈
Vinl(P) (Theorem 1). Then we apply the result to a problem of finding an upward
drawing of a non-planar embedding of a graph (Theorem 2), and prove that
every 1-plane graph (i.e., a graph embedded with at most one crossing per edge)
admits an (s, t)-upward poly-line drawing (Corollary 1). Note that there is a
1-plane graph that admits no straight-line drawing [16], and there is a 2-plane
graph with three edges that admits no upward drawing.

Figure 1(a) shows an instance (γ,P) with P = {P1 = (v6, u1, v2), P2 =
(v1, u1, v5), P3 = (v3, u2, v4), P4 = (v3, u3, u4, v9), P5 = (v11, u5, u4, v8), P6 =
(v10, u5, u3, v7), P7 = (v10, u6, u4, v7), P8 = (v12, u7, v14), P9 = (v10, u7, v13)}.
Figure 1(b) shows an (s, t)-upward drawing monotonic to P such that each path
is drawn as a poly-line monotone in the y-coordinate for s = v5 and t = v8.
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Fig. 1. (a) plane graph γ with a path set P and a cycle set C, where the edges in
paths in P (resp., cycles C) are depicted with black thick lines (resp., gray thick lines),
and the vertices in Vinl (resp., Vend and V \ Vinl ∪ Vend) are depicted with white circles
(resp., gray circles and white squares); (b) (s = v5, t = v8)-upward poly-line drawing
monotonic to P.
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2 Preliminaries

Graphs In this paper, a graph stands for an undirected multiple graph without
self-loops. A graph with no multiple edges is called simple. Given a graph G =
(V,E), the vertex and edge sets are denoted by V (G) and E(G), respectively.

A path P that visits vertices v1, v2, . . . , vk+1 in this order is denoted by
P = (v1, v2, . . . , vk+1), where vertices v1 and vk+1 are called the end-vertices.
Paths and cycles are simple unless otherwise stated. A path with end-vertices
u, v ∈ V is called a u, v-path. A u, v-path that is a subpath of a path P is called
the sub-u, v-path of P . Denote the set of end-vertices (resp., internal vertices)
of all paths in a set P of paths by Vend(P) (resp., Vinl(P)), which is written as
Vend(P ) (resp., Vinl(P )) for P = {P}.

Let G be a graph with a vertex set V with n = |V | and an edge set E. Let
NG(v) denote the set of neighbors of a vertex v in G. Let X be a subset of V .
Let G[X] denote the subgraph of G induced by the vertices in X. We denote by
NG(X) the set of neighbors of X; i.e., NG(X) = ∪v∈XNG(v) \X. A connected
component H of G may be denoted with the vertex subset V (H) for simplicity.

For two distinct vertices a, b ∈ V , a bijection ρ : V → {1, 2, . . . , n} is called an
st-numbering if ρ(a) = 1, ρ(b) = n, and each vertex v ∈ V \{a, b} has a neighbor
v′ ∈ NG(v) with ρ(v

′) < ρ(v) and a neighbor v′′ ∈ NG(v) with ρ(v) < ρ(v′′). It
is possible to find an st-numbering of a given graph with designated vertices a
and b (if one exists) in linear time using depth-first search [7, 15]. A biconnected
graph admits an st-numbering for any specified vertices a and b.

Digraphs Let G = (V,E) be a digraph. The indegree (resp., outdegree) of a
vertex v ∈ V in G is defined to be the number of edges whose head is v (resp.,
whose tail is v). A source (resp., sink ) is defined to be a vertex of indegree (resp.,
outdegree) 0. When G has no directed cycle, it is called acyclic. A digraph with
n vertices is acyclic if and only if it admits a topological ordering, i.e., a bijection
τ : V → {1, 2, . . . , n} such that τ(u) < τ(v) for any directed edge (u, v).

We define an orientation of a graph G = (V,E) to be a digraph G̃ = (V, Ẽ)
obtained from the graph by replacing each edge uv in G with one of the directed
edge (u, v) or (v, u). A bipolar orientation (or st-orientation) of a graph is defined
to be an acyclic digraph with a single source s and a single sink t [9, 14], where
we call such a bipolar orientation an (s, t)-orientation. A graph has a bipolar
orientation if and only if it admits an st-numbering. Figure 1(b) illustrates an
(s, t)-orientation for s = v5 and t = v8.

Lemma 1. For any vertices s and t in a biconnected graph G possibly with
multiple edges, an (s, t)-orientation G̃ of G can be constructed in linear time.

We call an orientation G̃ of G compatible to a set P of paths in G if each
path in P is directed from one end-vertex to the other in G̃. The orientation in
Figure 1(b) is compatible to the path set P.

Embeddings An embedding Γ of a graph (or a digraph) G = (V,E) is a
representation of G (possibly with multiple edges) in the plane, where each
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vertex in V is a point and each edge e ∈ E is a curve (a Jordan arc) between
the points representing its endvertices. We say that two edges cross if they have
a point in common, called a crossing, other than their endpoints.

To avoid pathological cases, standard non-degeneracy conditions apply: (i)
no edge contains any vertex other than its endpoints; (ii) no edge crosses itself;
(iii) no two edges meet tangentially; and (iv) two edges cross at most one point,
and two crossing edges share no end-vertex (where two edges may share the two
end-vertices). In this paper, we allow three or more edges to share the same
crossing. An edge that does not cross any other edge is called crossing-free.

Let Γ be an embedding of a graph (or digraph) G = (V,E). We call Γ a
poly-line drawing if each edge e ∈ E is drawn as a sequence of line segments.
The point where two consecutive line segments meet is called a bend. We call a
poly-line drawing a straight-line drawing if it has no bend.

We call a curve in the xy-plane y-monotone if the y-coordinate of the points
in the curve increases from one end of the curve to the other. We call Γ an
upward drawing if (i) there is a direction d to be defined as the y-coordinate
such that the curve for each edge e ∈ E is y-monotone; and (ii) when G is a
digraph, the head of e has a larger y-coordinate than that of the tail of e.

For two vertices s, t ∈ V , we call Γ an (s, t)-upward drawing if Γ is upward in
the y-coordinate and the y-coordinate of s (resp., t) in Γ is uniquely minimum
(resp., maximum) among the y-coordinates of vertices in Γ . Figure 1(b) shows
an example of an (s, t)-upward poly-line drawing with s = v5 and t = v8.

Plane Graphs An embedding of a graph G with no crossing is called a plane
graph and is denoted by a tuple (V,E, F ) of a set V of vertices, a set E of edges
and a set F of faces. We call a plane graph pseudo-simple if it has no pair of
multiple edges e and e′ such that the cycle formed by e and e′ encloses no vertex.

Let γ = (V,E, F ) be a plane graph. We say that two paths P and P ′ in γ
intersect if they are edge-disjoint and share a common internal vertex w, and the
edges uw and wv in P and u′w and wv′ in P ′ incident to w appear alternately
around w (i.e., in one of the orderings u, u′, v, v′ and u, v′, v, u′).

Let C be a cycle in γ. Define Venc(C; γ), Eenc(C; γ) and Fenc(C; γ) to be
the sets of vertices v ∈ V \ V (C), edges e ∈ E \ E(C) and inner faces f ∈ F
that are enclosed by C. The interior subgraph γ[C]enc induced from γ by C is
defined to be the plane graph (V (C)∪Venc(C; γ), E(C)∪Eenc(C; γ), Fenc(C; γ)∪
{fC}), where fC denotes the new outer face whose facial cycle is C. The exterior
subgraph induced from γ by C is defined to be the plane graph (V \Venc(C; γ), E\
Eenc(C; γ), F ∪ {fC} \ Fenc(C; γ)), where fC denotes the new inner face whose
facial cycle is C. Note that when γ is biconnected, the graph γ[C]enc remains
biconnected, since every two vertices u, v ∈ V \ Venc(C; γ) have two internally
disjoint paths without using edges in Eenc(C; γ).

We say that two cycles C and C ′ in γ intersect if Fenc(C; γ) \ Fenc(C
′; γ) ̸=

∅ ̸= Fenc(C
′; γ) \ Fenc(C; γ). Let C be a set of cycles in γ. We call C inclusive

if no two cycles in C intersect. When C is inclusive, the inclusion-forest of C is
defined to be a forest I = (C, E) of a disjoint union of rooted trees such that (i)
the cycles in C are regarded as the vertices of I; and (ii) a cycle C is an ancestor
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of a cycle C ′ in I if and only if Fenc(C
′; γ) ⊆ Fenc(C; γ). Let I(C) denote the

inclusion-forest of C.
An st-planar graph is defined to be a bipolar orientation of a plane graph for

which both the source and the sink of the orientation are on the outer face of
the graph. A directed acyclic graph G has an upward planar drawing if and only
if G is a subgraph of an st-planar graph [4, 12]. Every st-planar graph can have
a dominance drawing [3], in which for every two vertices u and v there exists
a path from u to v if and only if both coordinates of u are smaller than the
corresponding coordinates of v. Hence the following result is known.

Lemma 2. [3] (i) Every simple st-planar graph admits an upward straight-line
drawing;
(ii) Every st-planar graph with multiple edges admits an upward poly-line draw-
ing, where each multiple edge has at most one bend; and
(iii) Such a drawing in (i) and (ii) can be constructed in linear time.

We see that (ii) follows from (i) by subdividing each multiple directed edge
(u, v) into a directed path (u,w, v) with a new vertex w to obtain a simple
st-planar graph. Figure 1(b) illustrates an example of an st-planar graph.

3 Path-monotonic Upward Drawing

When a plane graph γ has a pair of multiple edges e and e′ that encloses no
vertex in the interior, we can ignore one of these edges (say e′) to find an upward
drawing of γ, because we can draw e′ along the drawing of e in any upward
drawing of the resulting plane graph. In what follows, we assume that a given
plane graph is pseudo-simple.

In this paper, we present a sufficient condition for an instance (γ,P) to admit
an (s, t)-upward straight-line drawing of γ that is monotonic to P for any two
outer vertices s, t ̸∈ Vinl(P).

Let γ be a connected plane graph. We say that two paths P and P ′ in γ are
1-independent if (i) they intersect at a common internal vertex and have no other
common vertex; or (ii) they have no common vertex that is an internal vertex
of one of them (where they may share at most two vertices that are end-vertices
to both paths). We call a set P of paths 1-independent if any two paths in P are
1-independent. We prove the following main result.

Theorem 1. For a pseudo-simple connected plane graph γ = (G = (V,E), F )
and a 1-independent set P of paths of length at least 2 in γ, let Vinl denote the
set of internal vertices in paths in P, G[Vinl] denote the subgraph of G induced
by Vinl. Assume that γ has no pair of a path P ∈ P and a cycle K with |V (K) \
Vinl| ≤ 1 such that K encloses an end-vertex of P and the internal vertices of P
and the vertices in V (K) ∩ Vinl belong to the same component of G[Vinl].

Then any pair of outer vertices s, t ̸∈ Vinl admits an (s, t)-upward drawing D
monotonic to P, where D can be chosen as a straight-line drawing if γ is simple.
Such a drawing D can be constructed in linear time.
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We assume that the boundary of γ forms a cycle Co such that V (Co)∩Vinl =
∅; if necessary, add two new outer edges es,t and e

′
s,t joining the two outer vertices

s and t to form a new outer facial cycle Co of length 2 (see Appendix 2 for other
method that is independent of choice of vertices s and t). In what follows, we
assume that the boundary of a given connected planar graph γ forms a cycle.

We prove Theorem 1 by showing that every instance satisfying the condi-
tion of the theorem admits an (s, t)-orientation compatible to P, which implies
that the instance admits an (s, t)-upward straight-line (resp., poly-line) drawing
monotonic to P by Lemma 2. To prove the existence of such an (s, t)-orientation
compatible to P, we show Theorem 1 is reduced to the following restricted case.

Lemma 3. For a pseudo-simple connected plane graph γ = (G = (V,E), F ) and
a 1-independent set P of paths of length at least 2 in γ, let Vinl denote the set
of internal vertices in paths in P, {Vi ⊆ Vinl | i = 1, 2, . . . , p} denote the set of
components in G[Vinl] and {Pi | i = 1, 2, . . . , p} denote the partition of P such
that Vinl(Pi) ⊆ Vi. Assume that γ contains an inclusive set C = {C1, C2, . . . , Cp}
of edge-disjoint cycles such that, for each i = 1, 2, . . . , p, Vi ⊆ Venc(C; γ) and
Vend(Pi) ⊆ V (Ci) ⊆ V \ Vinl.

Then any pair of outer vertices s, t ̸∈ Vinl admits an (s, t)-orientation γ̃ of γ
compatible to P. Such an orientation γ̃ can be constructed in linear time.

The instance in Figure 1(a) has three components V1 = {u1, u2}, V2 =
{u3, u4, u5, u6} and V3 = {u7} in G[Vinl]. The instance admits a cycle set
C = {C1 = (v1, v2, w4, v3, v4, v5, v6), C2 = (v3, v7, v8, v9, w5, v10, v11, w6), C3 =
(v10, v12, v13, v14)}, which satisfies the condition of Lemma 3. Figure 1(b) illus-
trates an (s, t)-orientation γ̃ of γ in Figure 1(a) that is compatible to P.

We prove in Section 5 that a given instance of Theorem 1 can be augmented
to a plane graph so that the condition of Lemma 3 is satisfied.

4 Bipolar Orientation on Plane Graphs

This section presents several properties on bipolar orientations in plane graphs,
which will be the basis to our proof of Lemma 3.

Let g : V → R be a vertex-weight function in a graph G = (V,E), where
R denote the set of real numbers. We say that g is bipolar (or (a, b)-bipolar)
to a subgraph G′ = (V ′, E′) of G if (i) g(u) ̸= g(v) for the end-vertices u
and v of each edge e = uv ∈ E′; (ii) V ′ contains a vertex pair (a, b) such
that g(a) < g(v) < g(b) for all vertices v ∈ V ′ \ {a, b}; and (iii) each vertex
v ∈ V ′ \ {a, b} has a neighbor u ∈ NG′(v) with g(u) < g(v) and a neighbor
w ∈ NG′(v) with g(v) < g(w).

Observe that an (a, b)-bipolar function g to a graph G is essentially equivalent
to an st-numbering of G in the sense that it admits an st-numbering σ : V (G) →
{1, 2, . . . , |V (G)|} of G such that σ(a) = 1, σ(b) = |V (G)| and σ(u) < σ(v) holds
for any pair of vertices u, v ∈ V with g(u) < g(v). We observe that any bipolar
function in a plane graph is bipolar to every cycle in the next lemma.
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Fig. 2. (a) mesh graph η2 = (C2,P2) induced from the instance γ in Figure 1(a) with
cycle C2; an instance satisfying the condition of Lemma 3: (b) (s2 = v11, t2 = v8)-

orientation σ̃(µ2) of the split mesh graph σ(µ2); (c) sun augmentation γ∗.

Lemma 4. For a biconnected graph G = (V,E), let g : V → R be a function
(s, t)-bipolar to G. If G admits a plane graph γ = (V,E, F ), then the boundary
of each face f ∈ F forms a cycle Cf and g is bipolar to Cf .

The next lemma states that a bipolar orientation of a plane graph can be ob-
tained from bipolar orientations of the interior and exterior subgraphs of a cycle.

Lemma 5. For a biconnected plane graph γ = (V,E, F ) and a cycle C of the
graph (V,E), let γC (resp., γC) denote the interior (resp., exterior) subgraph of
γ by C. For two outer vertices s and t of γ, let γ̃C be an (s, t)-orientation of γC .

Then the orientation C̃ restricted from γ̃C to C is an (a, b)-orientation of C for
some a, b ∈ V (C), and for any (a, b)-orientation γ̃C of γC , the orientation γ̃ of
γ obtained by combining γ̃C and γ̃C is an (s, t)-orientation of γ.

We now examine a special type of instances of Lemma 3.

Mesh Graph A mesh graph is defined to be a pair µ = (γ,P) of a biconnected
plane graph γ = (V,E, F ) and a 1-independent set P of paths in the graph
(V,E) such that (i) γ consists of an outer facial cycle C and the paths in P; and
(ii) each path P ∈ P ends with vertices in C and has no internal vertex from C,
where V = V (C) ∪

∪
P∈P V (P ) and E = E(C) ∪

∪
P∈P E(P ). We may denote

a mesh graph (γ,P) with an outer facial cycle C by µ = (C,P). Figure 2(a)
illustrates an example of a mesh graph.

Let µ = (γ = (V,E, F ),P) be a mesh graph with an outer facial cycle C.
To find an orientation of µ compatible to P, we treat each u, v-path P ∈ P as
a single edge eP = uv, which we call the split edge of P . The split mesh graph
is defined to be the graph σ(µ) obtained from µ by replacing each path P ∈ P
with the split edge eP ; i.e., σ(µ) = (V (C), E(C) ∪ {eP | P ∈ P}).

Let σ̃(µ) be an orientation of the split mesh graph σ(µ). We say that σ̃(µ)
induces an orientation µ̃ of µ if each u, v-path P ∈ P is directed from u to v

in µ̃ when eP is a directed edge (u, v) in σ̃(µ). Clearly µ̃ is compatible to P.
Figure 2(b) illustrates an (s, t)-orientation of the split mesh graph.
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The next lemma states that an (s, t)-orientation of a mesh graph compatible
to P can be obtained by computing an (s, t)-orientation of the split mesh graph.

Lemma 6. For a mesh graph µ and an (s, t)-orientation σ̃(µ) of the split mesh

graph σ(µ), the orientation µ̃ of µ induced by σ̃(µ) is an (s, t)-orientation of µ.

5 Coating and Confiner

To prove that Theorem 1 implies Lemma 3, this section gives a characterization
of a plane graph that can be augmented to a plane graph such that specified
vertices are contained in some cycles. Let γ = (G = (V,E), F ) be a plane graph.

We call an inclusive set C = {C1, C2, . . . , Cp} of edge-disjoint cycles in γ
a coating of a family X = {X1, X2, . . . , Xp} of subsets of V if for each i =
1, 2, . . . , p, V (Ci) ∩ X = ∅ and Venc(Ci; γ) ⊇ Xi. We say that a coating C =
{C1, C2, . . . , Cp} of X covers a given family {Y1, Y2, . . . , Yp} of vertices if V (Ci) ⊇
Yi for each i = 1, 2, . . . , p.

For disjoint subsets S, T ⊆ V in γ such that the subgraph G[S] induced by
S is connected, we call a cycle K of G an (S, T )-confiner if |V (K) \ S| ≤ 1 and
the interior vertex set Venc(K; γ) of K contains some vertex t ∈ T .

A plane augmentation of a plane graph γ = (V,E, F ) is defined to be a plane
embedding γ∗ = (V ∗, E∗, F ∗) of a supergraph (V ∗, E∗) of (V,E) such that the
embedding obtained from γ∗ by removing the additional vertices in V ∗ \ V and
edges in E∗ \ E is equal to the original embedding γ.

Sun Augmentation Let γ = (V,E, F ) be a pseudo-simple connected plane
graph such that the outer boundary is a cycle. We introduce sun augmentation,
a method of augmenting γ into a pseudo-simple biconnected plane graph by
adding new vertices and edges in the interior of some inner faces of γ.

For an inner face f ∈ F , let Wf = (v1, v2, . . . , vp) denote the sequence of
vertices that appear along the boundary in the clockwise order, where p ≥ 3
since γ is pseudo-simple. For each inner face f ∈ F ,

(i) create a new cycle C∗
f = (v′1, v

′
2, . . . , v

′
p) with p new vertices v′i, i = 1, 2, . . . , p

in the interior of f so that the facial cycle of f encloses C∗
f ; and

(ii) join each vertex vi, i = 1, 2, . . . , p with v′i and v
′
i+1 with new edges e′i = viv

′
i

and e′′i = viv
′
i+1, where we regard v′p+1 as v′1; We call the new face whose

set consists of the p new edges e′i, i = 1, 2, . . . , p a core face and call a vertex
along a core face a core vertex.

Figure 2(c) illustrates how the sun augmentation γ∗ is constructed.
The next lemma characterizes when a plane graph with two vertex subsets X

and Y can be augmented such that a set of cycles contains vertices in Y without
visiting any vertex in X.

Lemma 7. For a pseudo-simple connected plane graph γ = (G = (V,E), F )
such that the boundary forms a cycle Co and a subset X ⊆ V \V (Co), let {Xi ⊆
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X | i = 1, 2, . . . , p} denote the set of components in G[X] and Yi ⊆ NG(Xi),
i = 1, 2, . . . , p be subsets of V , where possibly Yi ∩ Yj ̸= ∅ for some i ̸= j.

Then γ contains no (Xi, Yi)-confiner for any i = 1, 2, . . . , p if and only if the
sun augmentation γ∗ = (V ∗, E∗, F ∗) of γ contains a coating C of {X1, X2, . . . , Xp}
that covers {Y1, Y2, . . . , Yp}.

Moreover the following can be computed in linear time: (i) Testing whether γ
contains an (Xi, Yi)-confiner for some i = 1, 2, . . . , p; and (ii) Finding a coating
C of {X1, X2, . . . , Xp} that covers {Y1, Y2, . . . , Yp} in γ∗ when γ contains no
(Xi, Yi)-confiner for any i = 1, 2, . . . , p.

We show how the assumption in Lemma 3 is derived from the assumption
of Theorem 1 using Lemma 7. Let {Vi ⊆ Vinl | i = 1, 2, . . . , p} denote the set of
components in G[Vinl] and Pi, i = 1, 2, . . . , p denote the partition of P such that
Vinl(Pi) ⊆ Vi. We apply Lemma 7 to the plane graph γ in Theorem 1 by setting
X := Vinl, Xi := Vi and Yi := Vend(Pi), i = 1, 2, . . . , p. Note that X ⊆ V \V (Co).
We show from the assumption in Theorem 1 that γ has no (Xi, Yi)-confiner for
any i = 1, 2, . . . , p.

To derive a contradiction, assume that γ has an (Xi, Yi)-confiner K for some
i ∈ {1, 2, . . . , p}, where Venc(K; γ) ofK contains an end-vertex y ∈ Yi = Vend(Pi)
of some path P ∈ Pi. Since |K| ≥ 2 and |K \ Xi| ≤ 1, K contains a vertex
v ∈ K ∩ Xi. Now vertex v and the internal vertices of P belong to the same
component G[Xi] = G[Vi] of G[X] in γ. This contradicts the assumption in
Theorem 1. Hence the condition of Lemma 7 holds and the sun augmentation
γ∗ of γ admits a coating C = {C1, C2, . . . , Cp} of {Xi = Vi | i = 1, 2, . . . , p}
that covers {Yi = Vend(Pi) | i = 1, 2, . . . , p}. We see that such a set C of cycles
satisfies the condition of Lemma 3.

6 Algorithmic Proof

This section presents an algorithmic proof to Lemma 3.
For a pseudo-simple biconnected plane graph γ = (V,E, F ) and a 1-independent

set P of paths of length at least 2, we are given a partition {Pi | i = 1, 2, . . . , p}
of P and an inclusive set C = {C1, C2, . . . , Cp} of edge-disjoint cycles that sat-
isfy the condition of Lemma 3. For the instance (γ,P, C) in Figure 1(a), we
obtain P1 = {P1, P2, P3}, P2 = {P4, P5, P6, P7}, P3 = {P8, P9} and C = {C1 =
(v1, v2, w4, v3, v4, v5, v6), C2 = (v3, v7, v8, v9, w5, v10, v11, w6), C3 = (v10, v12, v13, v14)}.

Let I = (C, E) denote the inclusion-forest of C, and Ch(C) denote the set of
child cycles C ′ of each cycle C ∈ C in I, where the cycle C is called the parent
cycle of each cycle C ′ ∈ Ch(C). We call a cycle C ∈ C that has no parent cycle
a root cycle in C, and let Crt denote the set of root cycles in C. For a notational
simplicity, we assume that the indexing of C1, C2, . . . , Cp satisfies i < j when Ci

is the parent cycle of Cj .
Based on the inclusion-forest I, we first decompose the entire plane graph γ

into plane subgraphs γi, i = 0, 1, . . . , p as follows. Define γ0 to be the plane graph
γ − ∪C∈Crt

(Venc(C; γ) ∪ Eenc(C; γ)) obtained from γ by removing the vertices
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and edges in the interior of root cycles C ∈ Crt. For each i = 1, 2, . . . , p, define
γi to be the plane graph γ[Ci]enc −∪C∈Ch(Ci)(Venc(C; γ)∪Eenc(C; γ)) obtained
from the interior subgraph γ[Ci]enc by removing the vertices and edges in the
interior of child cycles C of Ci.

For each cycle Ci, i = 1, 2, . . . , p, we consider the mesh graph µi = (Ci,Pi),
where µi is a plane subgraph of γi. For each inner face f of µi, we consider the
interior subgraph γi[Cf ]enc of the facial cycle Cf of f in γi, where we call an inner
face f of µi trivial if Cf encloses nothing in γi; i.e., Venc(Cf ; γi)∪Eenc(Cf ; γi) = ∅.
Let F (µi) denote the set of non-trivial inner faces f of µi.

We determine orientations of subgraphs γi by an induction on i = 0, 1, . . . , p.
For specified outer vertices s, t ∈ V (Co) \ Vinl, compute an (s, t)-orientation γ̃0
of γ0 using Lemma 1. Consider the plane subgraph γi with i ≥ 1, where we
assume that a bipolar orientation γ̃j of γj has been obtained for all j < i. Let
k denote the index of the parent cycle Ck of Ci or k = 0 if Ci is a root cycle,
where a bipolar orientation γ̃k of γk has been obtained. In γ̃k, cycle Ci forms an
inner facial cycle and the orientation restricted to the facial cycle Ci is a bipolar
orientation, which is an (si, ti)-orientation C̃i for some vertices si, ti ∈ V (Ci) by
Lemma 4. We determine an (si, ti)-orientation of γi as follows:
Step (a) Compute an (si, ti)-orientation µ̃i of the mesh graph µi = (Ci,Pi);
Step (b) Extend the orientation µ̃i to the interior subgraph γi[Cf ]enc of each
non-trivial inner face f ∈ F (µi).

At Step (a), we compute an (si, ti)-orientation σ̃(µi) of the split mesh graph
σ(µi) to obtain an (si, ti)-orientation µ̃i using Lemma 6. For Step (b), we observe
that orientation µ̃i is (sf , tf )-bipolar to the facial cycle Cf of f for some ver-

tices sf , tf ∈ V (Cf ) by Lemma 4. We compute an (sf , tf )-orientation ˜γi[Cf ]enc
of the interior subgraph γi[Cf ]enc induced from γi by Cf using Lemma 1. An
(si, ti)-orientation of γi is obtained from the (si, ti)-orientation µ̃i and (sf , tf )-

orientations ˜γi[Cf ]enc for all inner faces f ∈ F (µi).
We repeat the above procedure until i = p. Finally construct an orientation γ̃

of γ by combining bipolar orientations γ̃i of γi, i = 0, 1, . . . , p. By Lemma 5, γ̃ is
an (s, t)-orientation, which is compatible to P by construction of γ̃. This proves
the correctness of our algorithm for computing an (s, t)-orientation γ̃ compatible
to P (see XXXXX Algorithm ORIENT?? XXXXX in Appendix 7).

The inclusion-forest of an inclusive set C of edge-disjoint cycles can be con-
structed in linear time [11]. Constructing all plane subgraphs γi and face sets
F (µi), i = 1, 2, . . . , p can be done in linear time, since we can find them such
that each edge in γ is scanned a constant number of times. We see that a bipolar
orientation of mesh graph µi or subgraph γi can be computed in time linear
to the size of the graph by Lemmas 1 and 6. The total size of these graphs µi,
i = 1, 2, . . . , p and γi, i = 0, 1, . . . , p is bounded by the size of input graph γ.
Therefore the algorithm can be executed in linear time. This proves Lemma 3.

Figure 3 shows an execution of the algorithm applied to the instance (γ,P, C)
in Figure 1(a). Figures 3(b), (c) and (f) show mesh graphs µ1, µ2 and µ3, re-
spectively for the instance in Figure 1(a), where Crt = {C1, C2}, Ch(C1) = ∅,
Ch(C2) = {C3}, F (µ1) = {f1} (Cf1 = (v5, u1, v2, w4, v3, u2, v4)), F (µ2) =
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Fig. 3. (a) An (s = v5, t = v7)-orientation γ̃0 of γ0; (b) Mesh graph µ1 = (C1,P1),
where C1 is directed as an (s1 = v5, t1 = v1)-orientation; (c) Mesh graph µ2 = (C2,P2),
where C2 is directed as an (s2 = v11, t2 = v8)-orientation; (d) Subgraph γ1 with an
(s1, t1)-orientation µ̃1 of µ1; (e) Subgraph γ2 with an (s2, t2)-orientation µ̃2 of µ2; (f)
Mesh graph µ3 = (C3,P3), where C3 is directed as an (s3 = v10, t3 = v13)-orientation;
(e) Subgraph γ3 with an (s3, t3)-orientation µ̃3 of µ3.

{f2, f3} (Cf2 = (v10, u5, u4, u6), Cf3 = (v10, u6, u4, v9, w5)), F (µ3) = {f4} (Cf4 =
(v12, v13, v14)). Figures 3(a), (d), (e) and (g) show subgraphs γ0, γ1, γ2 and γ3, re-
spectively for the instance in Figure 1(a). Figure 1(b) shows an (s, t)-orientation
of the instance γ in Figure 1(a).

7 Upward Drawing of a Non-plane Embedding

Let Γ be a non-plane embedding of a graph G, and E∗ denote the set of crossing
edges. We define a crossing-set to be a maximal subset E′ ⊆ E∗ such that every
two edges e, e′ ∈ E′ admit a sequence of edges e1, e2, . . . , ep, where e1 = e,
ep = e′ and edges ei and ei+1 cross for each i = 1, 2, . . . , p− 1. Observe that E∗

is partitioned into disjoint crossing-sets E∗
1 , E

∗
2 , . . . , E

∗
p .

Let E∗
i be a crossing-set, and Γ [E∗

i ] denote the plane graph induced from Γ
by the edges in E∗

i , where Γ [E
∗
i ] is connected. We call E∗

i outer if the end-vertices
of edges in E∗

i appear as outer vertices along the boundary of Γ [E∗
i ].
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We apply Lemma 3 to the problem of finding an upward drawing of a non-
plane embedding of a graph, and prove the following results.

Theorem 2. Let Γ be a non-plane embedding of a graph G such that each
crossing-set is outer, let n = |V (G)|, and let nc denote the number of crossings
in Γ . Then for any pair of outer vertices s and t in Γ , there is an (s, t)-upward
drawing of Γ , and an upward poly-line drawing of Γ with O(n + nc) bends can
be constructed in O(n+ nc) time and space.

Theorem 2 implies the following.

Corollary 1. Every 1-plane graph admits an (s, t)-upward poly-line drawing for
any outer vertices s and t, where each edge has at most one bend. Such a drawing
can be constructed in linear time.
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Appendix 1: Instances That Admit No Path-monotonic Up-
ward Drawing

We here present some instances that cannot admit a path-monotonic up-
ward drawing. Figure 4 illustrates three such instances. The instance (γ1,P1)
in Figure 4(a) admits no (s = v1, t = v4)-upward drawing monotonic to a set
P1 = {P1 = (v1, v2, v3), P2 = (v3, v2, v4)} of two paths, where P1 and P2 share
an edge v2v3. The instance (γ2,P2) in Figure 4(b) admits no (s = v1, t = v5)-
upward drawing monotonic to a set P2 = {P1 = (v1, v2, v3), P2 = (v4, v2, v5)}
of two paths, where P1 and P2 share a common internal vertex v2 but do not
intersect. The instance (γ3,P3) in Figure 4(c) admits no (s = v1, t = v4)-upward
drawing monotonic to a set P3 = {P1 = (v1, v2, v3)} of a single path.

v3

v4

v1 v1

v3

v4

v2

v1

v5

v3

v4

v2

(a) g1 (c) g3(b) g2

v2

Fig. 4. Illustration for instances (γi,Pi), i = 1, 2, 3 that admit no (s, t)-upward drawing
monotonic to a path set (where each vertex depicted with a gray circle indicates an
end-vertex of a path in Pi): (a) P1 = {P1 = (v1, v2, v3), P2 = (v3, v2, v4)}, s = v1
and t = v4; (b) P2 = {P1 = (v1, v2, v3), P2 = (v4, v2, v5)}, s = v1 and t = v5; (c)
P3 = {P1 = (v1, v2, v3)}, s = v1 and t = v4.

Observe that for each instance (γi,Pi), i = 1, 2 in Figure 4(a)-(b), path set
Pi is not 1-independent. For instance (γ3,P3) in Figure 4(c), path set P3 is
1-independent, however, cycle K = (v1, v2) encloses an end-vertex v3 of P1.

Appendix 2: Preprocessing of Boundary of Instances in The-
orem 1

To prove Theorem 1, we can assume that the boundary of a given connected
plane graph γ forms a cycle as follows. Let (γ = (G = (V,E), F ),P ̸= ∅) be an
instance that satisfies the condition in Theorem 1. If the outer boundary B of γ
contains at most one vertex in V \Vinl, then for any path P with Vinl(P )∩V (B) ̸=
∅, one of the end-vertices of P is enclosed by some cycle K contained in B,
contradicting the assumption that there is no such pair (P,K) in Theorem 1.
Hence the outer boundary B of γ contains at least two vertices in V \ Vinl. Let
ρ(γ) = (v1, v2, . . . , vp), where v1 ̸∈ Vinl denote the sequence of outer vertices of
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γ that appear in the clockwise order along the boundary B, where vi and vj for
some i and j may be the same vertex v ∈ V when v is a cut-vertex of the graph.

We first augment γ such that all vertices in Vinl along the boundary B will be
contained in the interior of the new boundary B′ as follows. For each maximal
subsequence τ = (vi, vi+1, . . . , vj) (i < j) of ρ(γ) such that vi, vj ̸∈ Vinl and
vi+1, vi+2, . . . , vj−1 ∈ Vinl, create a new outer vertex vτ together with two new
outer edges vivτ and vτvj . Let γ

′ denote the resulting pseudo-simple plane graph,
where no vertex in Vinl appears as an outer vertex, and γ′ is simple when γ is
simple. Observe that the condition (i)-(iii) still hold in γ′.

We further augment γ′ into γ′′ so that the outer boundary B′′ becomes a
cycle as follows. If the boundary of γ′ already forms a cycle, then let γ′′ := γ′.
Otherwise let ρ(γ′) = (u1, u2, . . . , up) denote the sequence of outer vertices of
γ′ in the clockwise order along the boundary. For each cut-vertex v, we remove
from the sequence its last appearance. Let (u′1, u

′
2, . . . , u

′
q) denote the resulting

sequence, where each cut-vertex removal of which from γ leaves k components
appear k − 1 times in the new reduced sequence.

For each maximal subsequence ρ′ = (u′i, u
′
i+1, . . . , u

′
j) (i < j) of ρ(γ′) such

that u′i and u′j are not cut-vertices and u′i+1, u
′
i+2, . . . , u

′
j−1 are cut-vertices,

create a new outer edge u′iu
′
j . Let γ

′′ denote the resulting pseudo-simple plane
graph, where the boundary forms a cycle that contains no vertex in Vinl. Note
that γ′′ is simple when γ is simple. Observe that the conditions (i)-(iii) still
hold in γ′′ and any (s, t)-upward straight-line (or poly-line) drawing D′′ of γ′′

monotonic to P can be modified to one for γ just by removing the newly added
vertices and edges in the augmentation.

It is not difficult to see that the above augmentation can be executed in linear
time.

Appendix 3: Proof of Lemma 4

Lemma 4. For a biconnected graph G = (V,E), let g : V → R be a function
(s, t)-bipolar to G. If G admits a plane graph γ = (V,E, F ), then the boundary
of each face f ∈ F forms a cycle Cf and g is bipolar to Cf .

Proof. Let f ∈ F be a face in γ. Since G is biconnected, the boundary of each
face f ∈ F forms a cycle Cf . We call a vertex v in Cf locally maximum (resp.,
locally minimum) if g(v′) < g(v) > g(v′′) (resp., g(v′) > g(v) < g(v′′)) for the
two neighbors v′, v′′ ∈ NG(v) ∩ V (Cf ). To prove the lemma, it suffices to show
that Cf contains exactly one locally maximum vertex and exactly one locally
minimum vertex.

Consider the case where f is an inner face in γ and Cf contains two locally
maximum vertices v∗1 and v∗2 (the other cases can be treated analogously). With-
out loss of generality assume that g(v∗2) ≥ g(v∗1). Let u1, u2 ∈ NG(v

∗
1) ∩ V (Cf ),

where g(u1), g(u2) < g(v∗1) and u1 ̸= v∗2 ̸= u2. Since g is (s, t)-bipolar to G,
there is a v∗i , t-path Pi, i = 1, 2 such that the function values of vertices increase
along the path from v∗i to t. This means that G contains a v∗1 , v

∗
2-path P such

that g(v) ≥ g(v∗1) for all vertices v ∈ V (P ), since g(v∗2) ≥ g(v∗1). Also there
is an s, ui-path Qi, i = 1, 2 such that the function values of vertices increase
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along the path from s to ui, implying that G contains a u1, u2-path Q such that
g(u) < g(v∗1) for all vertices u ∈ V (Q). Since vertices v∗1 and v∗2 , and vertices u1
and u2 appear alternately along Cf , two paths P and Q must have a common
vertex w. This, however, is impossible because g(w) ≥ g(v∗1) and g(w) < g(v∗1)
cannot hold at the same time. ⊓⊔

Appendix 4: Proof of Lemma 5

Lemma 5. For a biconnected plane graph γ = (V,E, F ) and a cycle C of the
graph (V,E), let γC (resp., γC) denote the interior (resp., exterior) subgraph of
γ by C. For two outer vertices s and t of γ, let γ̃C be an (s, t)-orientation of γC .

Then the orientation C̃ restricted from γ̃C to C is an (a, b)-orientation of C for
some a, b ∈ V (C), and for any (a, b)-orientation γ̃C of γC , the orientation γ̃ of
γ obtained by combining γ̃C and γ̃C is an (s, t)-orientation of γ.

Proof. A topological ordering gC of γ̃C is a bipolar vertex weight to γC . By
Lemma 4, gC is bipolar to the inner facial cycle C in γC , and this means that
the orientation C̃ restricted from γ̃C to C is an (a, b)-orientation for a source
a and a sink b in V (C). In the following, for a cycle H in γ and two vertices
x, y ∈ V (H), let Hxy (resp., Hyx) denote the sub-x, y-path of H that traverses
H from x to y (resp., y to x) in the clockwise order.

Let γ̃C be an (a, b)-orientation of γC . We consider the orientation γ̃ of γ
obtained by combining γ̃C and γ̃C . To prove that γ̃ is an (s, t)-orientation of γ,
it suffices to show that

(i) γ̃ has no other source or sink than s and t; and
(ii) γ̃ is acyclic.

Each vertex in γ̃C is reachable from s and reachable to t; and each vertex in
γ̃C is reachable from a and reachable to b. This implies that any vertex in γ̃ is
reachable from s and reachable to t, proving (i).

To prove (ii), we assume that γ̃ contains a directed cycle Q to derive a
contradiction. Choose Q so that the number of inner faces of γ enclosed by Q
is minimized. Note that outer vertices s and t are in the exterior of Q, since Q
does not contain source s or sink t. Since each of γ̃C and γ̃C is acyclic, Q must
contain some edges e ∈ Eenc(C; γ) and e

′ ∈ E \ E(C) ∪ Eenc(C; γ). This means
that there are vertices u, v ∈ V (Q) such that {u, v} = V (Quv)∩V (Cuv) and the
edges in Quv are contained in γ̃C . We distinguish three cases.

Case 1. Quv is a directed path from u to v (resp., v to u) and Cuv is a directed
path from v to u (resp., u to v) in γ̃C : In this case, Quv and Cuv form a directed
cycle in γ̃C , a contradiction.

Case 2. Each of Quv and Cuv is a directed path from u to v (or from u to
v) in γ̃C : In this case, we can modify Q by replacing Quv with Cuv to obtain a
graph containing a directed cycle that encloses a smaller number of inner faces
than Q does. This contradicts the minimality of inner faces enclosed by Q.

Case 3. a ∈ V (Cuv) \ {u, v} or b ∈ V (Cuv) \ {u, v}: Let b ∈ V (Cuv) \ {u, v}
(the other case can be treated symmetrically). There is a directed b, t-path Pb,t
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in γ̃C . Since b is the sink of the oriented cycle C and t is in the exterior of Q,
paths Pb,t and Quv intersect at some vertex w ∈ V (Quv). This implies that the
sub-b, w-path of Pb,t together with paths Quv, Cuv contains a directed cycle.
This contradicts that γ̃C is acyclic.

This proves (ii). ⊓⊔

Appendix 5: Proof of Lemma 6

Lemma 6. For a mesh graph µ and an (s, t)-orientation σ̃(µ) of the split mesh

graph σ(µ), the orientation µ̃ of µ induced by σ̃(µ) is an (s, t)-orientation of µ.

We prove Lemma 6 via the following two lemmas, Lemma 8 and Lemma 9.
For a mesh graph (γ,P) with an outer facial cycle C and a function g :

V (C) → R, (s, t)-bipolar to C such that g(u) ̸= g(v) for any two vertices u, v ∈
V (C), an orientation γ̃ of γ is called g-proper if

– the edges in C are directed from s to t; and
– the edges in each u, v-path P ∈ P are directed from u to v when g(u) < g(v).

We first prove that any g-proper orientation is acyclic in Lemma 9. For this,
we use the next technical lemma which facilitates a proof of Lemma 9.

Lemma 8. For a biconnected plane graph γ = (V,E, F ) with an outer facial
cycle C, let g : V (C) → R be a function bipolar to C such that g(u) ̸= g(v) for
any two vertices u, v ∈ V (C). Let P = {P1, P2, . . . , Pm} be a 1-independent set
of ai, bi-paths Pi of (V,E) for some m ≥ 2 such that, for each i = 1, 2, . . . ,m,
V (Pi) ∩ V (C) = {ai, bi} and g(ai) < g(bi). Then g(a2) < g(b1) if

– P1 and P2 intersect; or
– P1 and P3 intersect at an inner vertex w and P2 and P3 intersect at a vertex

in the sub-a3, w-path of P3.

Proof. The sequence of vertices along C is given by umin, u2, u3, . . . , up−1, umax, vq−1,
vq−2, . . . , v2 such that g(u1) < g(u2) < · · · < g(up) and g(v1) < g(v2) < · · · <
g(vq) for u1 = v1 = umin and up = vq = umax. Without loss of generality assume
that a1 ∈ {v1, v2, . . . , vq−1} and if a1 = umin then b1 ∈ {u2, u3, . . . , up}. We
distinguish two cases.

Case 1. P1 and P2 intersect. We distinguish two subcases.
Case 1a. a1 = vj with 1 ≤ j ≤ q−1 and b1 = uk with 2 ≤ k ≤ p (see Figure 5(a)):
Let X = {vi | 1 ≤ i < j} ∪ {ui | 1 ≤ i < k}. Since P1 and P2 intersect at an
internal vertex exactly once, one of vertices a2 and b2 belongs to X, which means
that min{g(a2), g(b2)} < max{g(a1), g(b1)} and thereby g(a2) < g(b1).
Case 1b. a1 = vj and b1 = vk with 2 ≤ j < k ≤ q − 1 (see Figure 5(b)): Let
Y = {vi | j < i < k}. Since P1 and P2 intersect at an internal vertex exactly
once, one of vertices a2 and b2 belongs to Y , which implies min{g(a2), g(b2)} <
max{g(a1), g(b1)} and thereby g(a2) < g(b1).

16



Case 2. P1 and P2 do not intersect; P1 and P3 intersect at an inner vertex
w; and P2 and P3 intersect at a vertex of the sub-a3, w-path of P3: Since P1 and
P3 intersect, we know that g(a3) < g(b1) by the result in Case 1. We distinguish
two subcases.
Case 2a. a1 = vj with 1 ≤ j ≤ q − 1 and b1 = uk with 2 ≤ k ≤ p (see
Figure 5(a)): As in Case 1a, if a2 or b2 is a vertex in X, then min{g(a2), g(b2)} <
max{g(a1), g(b1)} holds and we are done. Assume that {a2, b2} ⊆ V (C) \ X.
Since P2 and P3 intersect at a vertex of the sub-a3, w-path of P3, the assumption
implies that a3 ∈ V (C) \ X, a3 = vh with j < h < q − 1. Moreover, a2 = vℓ
with j ≤ ℓ < h, since otherwise a2 ∈ {ui | k < i ≤ p} and b2 ∈ {vi | j ≤ i < h}
implying that g(a2) < g(b2) < g(a3) < g(b3) < g(b1) < g(a2), a contradiction.
Now g(a1) ≤ g(a2) < g(a3) holds. Since g(a3) < g(b1), we obtain g(a2) <
g(a3) < g(b1), as required.
Case 2b. a1 = vj and b1 = vk with 2 ≤ j < k ≤ q − 1 (see Figure 5(b)): As in
Case 1b, if a2 or b2 is a vertex in Y , then min{g(a2), g(b2)} < max{g(a1), g(b1)}
holds and we are done. Assume that {a2, b2} ⊆ V (C) \ Y . Since P2 and P3

intersect at a vertex of the sub-a3, w-path of P3, we see that a3 ∈ {vi | 1 ≤ i <
j} ∪ {ui | 1 ≤ i ≤ p − 1} and a2 appears between a1 and a3 so that g(a2) <
max{g(a1), g(a3)}. When g(a2) < g(a1), we obtain g(a2) < g(a1) < g(b1). When
g(a2) < g(a3), we obtain g(a2) < g(b1) by g(a3) < g(b1). ⊓⊔
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g2

P’

(a) (c) (b) 

Fig. 5. Illustration for plane graphs with paths joining outer vertices: (a) An a1, b1-
path P1 in Cases 1a and 2a in the proof of Lemma 8; (b) An a1, b1-path P1 in Cases 1b
and 2b in the proof of Lemma 8; (c) An a, b-path Pab intersects a u, v-path P at a
vertex wk in the proof of Lemma 9.

We are ready to prove that any g-proper orientation is acyclic.

Lemma 9. For a mesh graph (γ,P) with an outer facial cycle C, let g : V (C) →
R be a function bipolar to C such that g(u) ̸= g(v) for any two vertices u, v ∈
V (C), and γ̃ denote the g-proper orientation of γ. Then
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– γ̃ is acyclic; and
– g can be extended to the inner vertices in V \ V (C) such that g is bipolar to

the graph (V,E) and g(u) < g(v) holds for any directed edge (u, v) in γ̃.

Proof. Let I = (γ,P, C, g) denote a given instance with a mesh graph, an outer
facial cycle and a function g : V (C) → R. We only need to prove the second
statement, because any extended function bipolar to (V,E) means that γ̃ is
acyclic. We prove the second statement by an induction on the number |P| of
paths. When |P| = 0, the lemma is immediate. Assume that |P| ≥ 1.

Choose an a, b-path Pab ∈ P for some vertices a, b ∈ V (C) with g(a) < g(b),
where we assume without loss of generality that the sequence of vertices in
V (Pab) along Pab is given by a,w1, w2, . . . , wr, b. Based on path Pab, we split
instance I into two smaller instances Ii = (γi,Pi, Ci, gi), i = 1, 2.

First we define γi and Ci, i = 1, 2. Let Q1 = Cab (resp., Q2 = Cbc) denote
the sub-a, b-path of C that traverses C from a to b (resp., b to a) in the clockwise
order. We split γ into two plane graphs γi = (Vi, Ei, Fi), i = 1, 2 such that γi is
the interior subgraph of γ by Ci.

Next we define a set Pi of paths for each plane graph γi. Let P be an arbitrary
u, v-path in P \ {Pab} for some vertices u, v ∈ V (C) with g(u) < g(v). Since P
is 1-independent, we see that path P satisfies one of following cases:

(i) E(P ) ⊆ E1 and Vinl(P ) ∩ V (Pab) = ∅, where u, v ∈ V (Q1);
(ii) E(P ) ⊆ E2 and Vinl(P ) ∩ V (Pab) = ∅, where u, v ∈ V (Q2);
(iii) u ∈ V (Q1) \ {a, b}, v ∈ V (Q2) \ {a, b}; and
(iv) u ∈ V (Q2) \ {a, b}, v ∈ V (Q1) \ {a, b}.

See Figure 5(c) for an illustration of path Pab. For each u, v-path P in case
(iii) or (iv), which has exactly one common internal vertex w with Pab, let P

′

(resp., P ′′) denote the sub-u,w-path (resp., sub-w, v-path) of P . Define P1 to
be the set of paths P in case (i), paths P ′ in case (iii) and paths P ′′ in case (iv).
Define P2 to be the set of paths P in case (ii), paths P ′′ in case (iii) and paths
P ′ in case (iv).

Finally we define a function gi : Vi → R for each i = 1, 2 so that the resulting
instance Ii = (γi,Pi, Ci, gi) satisfies the condition of the lemma. For this, we
let n = |V |, δ = min{|g(u) − g(v)| | u, v ∈ V (C), u ̸= v}, where δ > 0 by the
assumption on g, and define functions h and g′ : Vinl(Pab) → R as follows.

h(wk) := max{g(u) | a u, v-path P ∈ P with g(u) < g(v) intersects Pa,b

at some a vertex wj ∈ {w1, w2, . . . , wk}},
g′(wk) := max{g(a), h(wk)}+ k

nδ.

For each i = 1, 2, define a function gi : V (Ci) → R such that

gi(v) :=

{
g(v), v ∈ V (Qi)
g′(v), vv ∈ Vinl(Pab).

gi(v) = g(v) for each vertex v ∈ V (Qi) and gi(w) = g′(w) for each vertex
w ∈ Vinl(Pab).

Now we prove that for each i = 1, 2,
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(a) gi is bipolar to Ci; and
(b) for each u∗, v∗-path P ∗ ∈ Pi directed from u∗ to v∗ in γ, it holds gi(u

∗) <
gi(v

∗), which implies that the orientation restricted from γ to γi is gi-proper.

To prove (a), it suffices to show that

g(a) < g′(w1) < g′(w2) < · · · < g′(wr) < g(b), (1)

and
gi(u) ̸= g′(v) for any vertices u, v ∈ V (Ci), i = 1, 2. (2)

By definition of h, we see that h(w1) ≤ h(w2) ≤ · · · ≤ h(wr), which implies
g(a) ≤ max{g(a), h(w1)} ≤ · · · ≤ max{g(a), h(wr)}. Since 0 < δ/n < 2δ/n <
· · · < rδ/n, we have g(a) < g′(w1) < g′(w2) < · · · < g′(wr). We here prove that
max{g(a), h(wr)} < g(b), where g(a) < g(b) is immediate from the choice of Pab.
By Lemma 8, any u, v-path P that intersects Pab at an internal vertex wj with
1 ≤ j ≤ r satisfies min{g(u), g(v)} < max{g(a), g(b)} = g(b). This implies that
h(wr) < g(b), proving (1).

Note that max{g(a), h(wk)} ∈ {g(u) | u ∈ V (C)}, k = 1, 2, . . . , r. By def-
inition of δ > 0, we see that gi(u) ̸= gi(wk) for any vertices u ∈ V (Qi) and
wk ∈ Vinl(Pab) and that gi(wj) ̸= gi(wk) for any vertices wj , wk ∈ Vinl(Pab) with
1 ≤ j < k ≤ r by (1). This proves (2).

We prove (b) in the case where P ∗ ∈ P1 (the other case can be treated
symmetrically). We distinguish three cases.

Case 1. P ∗ = P for a u, v-path P ∈ P in case (i), where g(u) < g(v), u∗ = u
and v∗ = v: In this case, g1(u) = g(u) < g(v) = g1(v) and condition (b) holds.

Case 2. P ∗ = P ′ for the sub-u,w-path P ′ of a u, v-path P ∈ P of case (iii),
where g(u) < g(v), u∗ = u and v∗ = w: Since paths P and Pab intersect at
w, we see by definition of h that g1(u) = g(u) ≤ h(w) ≤ max{g(a), h(w)} <
max{g(a), h(w)}+ δ/n ≤ g′(w) = g1(w), indicating that condition (b) holds.

Case 3. P ∗ = P ′′ for the sub-w, v-path P ′′ of a u, v-path P ∈ P of case
(iv), where g(u) < g(v), u∗ = w and v∗ = v: See Figure 5(c) for an illustration
of path P ∗ = P ′′. We show that g(a) < g(v) and h(w) < g(v). Since P and
Pab intersect, it holds g(a) < g(v) by Lemma 8. Let w = wk and Pcd ∈ P be
a c, d-path that attains the value of h(wk); i.e., h(wk) = g(c) < g(d) and Pcd

contains a vertex wj ∈ {w1, w2, . . . , wk}. Hence P and Pab intersect at wk and
Pcd and Pab intersect at vertex wj of the sub-a,wk-path of Pab. By Lemma 8,
it holds h(wk) = g(c) < g(v). Now g(a) < g(v) and h(wk) = g(c) < g(v), where
g(v) − g(a) ≥ δ and g(v) − h(wk) = g(v) − g(c) ≥ δ by the definition of δ. We
see that g1(wk) = g′(wk) = max{g(a), h(wk)}+ k

nδ < g(v) = g1(v). This proves
that condition (b) holds.

Observe that for each i = 1, 2, gi(u) ̸= gi(v) for all vertices u, v ∈ Vi. By
conditions (a) and (b), each instance Ii = (γi,Pi, Ci, gi), i = 1, 2 satisfies the
condition of the lemma. Since |Pi| < |P| for each i = 1, 2, we see by the induction
hypothesis that function gi : V (Ci) → R can be extended to a function gi : Vi →
R bipolar to the graph (Vi, Ei) such that gi(u) < gi(v) for any directed edge
(u, v) in the gi-proper orientation γi of γi, where γi is the restriction of γ onto
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(Vi, Ei). An extension of function g : V (C) → R to a function g : V → R is
obtained by combining the extensions of g1 and g2 into the inner vertices of γ1
and γ2. We easily see that the resulting extension is a function bipolar to the
entire plane graph γ such that g(u) < g(v) for any directed edge (u, v) in the
g-proper orientation γ of γ.

This completes the proof of the lemma. ⊓⊔

Lemma 9 implies Lemma 6 as follows. For an (s, t)-orientation σ̃(µ) of the
split mesh graph σ(µ), there is an st-numbering (i.e., an (s, t)-bipolar vertex-
weight function) g to the split graph σ(µ). Now the orientation µ̃ of µ induced

by σ̃(µ) is g-proper. Hence by Lemma 9, orientation µ̃ is acyclic. Obviously
orientation µ̃ still has the same source s and sink t, and it is an (s, t)-orientation
of µ.

This proves Lemma 6.

Appendix 6: Proof of Lemma 7

Lemma 7. For a pseudo-simple connected plane graph γ = (G = (V,E), F )
such that the boundary forms a cycle Co and a subset X ⊆ V \V (Co), let {Xi ⊆
X | i = 1, 2, . . . , p} denote the set of components in G[X] and Yi ⊆ NG(Xi),
i = 1, 2, . . . , p be subsets of V , where possibly Yi ∩ Yj ̸= ∅ for some i ̸= j.

Then γ contains no (Xi, Yi)-confiner for any i = 1, 2, . . . , p if and only if the
sun augmentation γ∗ = (V ∗, E∗, F ∗) of γ contains a coating C of {X1, X2, . . . , Xp}
that covers {Y1, Y2, . . . , Yp}.

Moreover the following can be computed in linear time:

(i) Testing whether γ contains an (Xi, Yi)-confiner for some i = 1, 2, . . . , p; and
(ii) Finding a coating C of {X1, X2, . . . , Xp} that covers {Y1, Y2, . . . , Yp} in γ∗

when γ contains no (Xi, Yi)-confiner for any i = 1, 2, . . . , p.

We prove Lemma 7 after showing some lemma. We observe that the sun
augmentation γ∗ = (G∗ = (V ∗, E∗), F ∗) of a pseudo-simple connected plane
graph γ is a pseudo-simple biconnected plane graph such that

(i) For two non-core faces f and f ′ sharing a core vertex u, either f and f ′

share a non-core vertex and an edge or a non-core face f ′′ contains u and
the non-core vertices in f and f ′;

(ii) No new edge in E∗ \ E joins two original vertices in V , and G∗[X] = G[X]
for any subset X ⊆ V ;

(iii) After removing the original edges in E, the resulting graph γ∗ − E remains
connected;

(iv) γ∗ is simple when γ is simple; and
(v) |V ∗| ≤ |V |+ 2|E|, and the sun augmentation γ∗ can be computed in linear

time.

We here prove the next lemma on properties of coating.
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Fig. 6. (a) A fictitious configuration where the boundary of face fy contains at least

two vertices w,w′ ∈ N
(2)
G (Xi) ⊆ V (Bi); (b) A fictitious configuration where an (Xi, T )-

confiner K intersects a cycle Ci such that t ∈ V (Ci), V (Ci)∩X = ∅ and Venc(Ci; γ
∗) ⊇

Xi; (c) Plane subgraph η
(2)
i = (W

(2)
i = Xi ∪ N

(2)
G (Xi), E

(2)
i , F

(2)
i ) and cycle Ci =

(v1, v2, . . . , vm).

Lemma 10. For a pseudo-simple plane graph γ = (G = (V,E), F ) such that
the boundary forms a cycle Co and a subset X ⊆ V \ V (Co), let {Xi ⊆ X |
i = 1, 2, . . . , p} denote the set of components in G[X], E[Xi] denote the set of
edges in the component G[Xi], E

+
i denote the set of edges in E between Xi and

NG(Xi), ηi = (Xi ∪ NG(Xi), E[Xi] ∪ E+
i , Fi), i = 1, 2, . . . , p denote the plane

subgraph of γ induced by the vertices in Xi∪NG(Xi) and the edges in E[Xi]∪E+
i ,

and denote by Bi the outer boundary of ηi.

(i) Let y be a vertex in NG(Xi) \ V (Bi) for some i. Then there is a (Xi, {y})-
confiner;

(ii) For a subset T ⊆ NG(Xi) for some i ∈ {1, 2, . . . , p}, assume that γ has
an (Xi, T )-confiner. Then no plane augmentation γ∗ of γ admits a coating
C = {C1, C2, . . . , Cp} of {X1, X2, . . . , Xp} such that T ⊆ V (Ci);

(iii) The sun augmentation γ∗ = (G∗ = (V ∗, E∗), F ∗) of γ contains a coating C =
{C1, C2, . . . , Cp} of {X1, X2, . . . , Xp} such that NG(Xi) ∩ V (Bi) ⊆ V (Ci),
i = 1, 2, . . . , p; and

(iv) A coating C of the sun augmentation γ∗ in (iii) can be computed in linear
time.

Proof. Let N
(2)
G (X) denote the set of neighbors u ∈ NG(X) incident to more

than one vertex in X; i.e., N
(2)
G (X) = {u ∈ NG(X) | |NG(u)∩X| ≥ 2}. For each
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Fig. 7. (a) Two faces f, f ′ ∈ F ∗
i with E(f) ∩E(f ′) = ∅ and V (f) ∩ V (f ′) = {w} ⊆ V ;

(b) Two faces f, f ′ ∈ F ∗
i with E(f) ∩ E(f ′) = ∅ and V (f) ∩ V (f ′) = {w} ⊆ V ∗ \ V ;

(c) A fictitious configuration where Ci and Ci′ share an edge e = uv; (d) A fictitious
configuration where Ci and Ci′ intersect at a vertex w.

i = 1, 2, . . . , p, let E[Xi] denote the set of edges in the component G[Xi] and

E
(2)
i denote the set of edges in E+

i between Xi and N
(2)
G (Xi).

(i) Note that E(G[Xi]) is the set of edges between two vertices inXi. Consider

the graph η†i = ηi − (E+
i \E(Bi)) obtained from ηi by removing all inner edges

in E+
i , where η†i and ηi have the same boundary Bi. Observe that any vertex in

V (Bi)∩NG(Xi) belongs to N
(2)
G (Xi). There is an inner face fy of the plane graph

η†i such that the interior of fy contains vertex y ∈ NG(Xi)\V (Bi). The boundary

of fy contains at most one vertex in N
(2)
G (Xi) (⊆ V (Bi)), since otherwise G[Xi]

cannot be connected, as illustrated in Figure 6(a). The boundary of fy may not
be a cycle, but it contains a cycle K that encloses y. We see that y has a neighbor
y′ ∈ Xi which is connected to a vertex in K in G[Xi]. Since |K \Xi| ≤ 1, we see
that K is an (Xi, {y})-confiner.

(ii) Let K be an (Xi, T )-confiner that encloses a vertex t ∈ T . To derive a
contradiction, assume that there is a cycle Ci in some plane augmentation γ∗ of γ
such that t ∈ V (Ci), V (Ci)∩X = ∅ and Venc(Ci; γ

∗) ⊇ Xi. This implies that two
cycles K and Ci cannot share two or more vertices in the plane, as illustrated in
Figure 6(b). Note that Ci contains vertex t ∈ Venc(K; γ∗). We see that cycle Ci

cannot have Xi as part of its interior without sharing two or more vertices with
K, a contradiction. Therefore no plane augmentation γ∗ of γ admits a coating
C = {C1, C2, . . . , Cp} of {X1, X2, . . . , Xp} such that T ⊆ V (Ci).

(iii) We introduce some notations. For each i = 1, 2, . . . , p, let η
(2)
i = (Xi ∪

N
(2)
G (Xi), E[Xi] ∪ E

(2)
i , F

(2)
i ) denote the plane subgraph of γ induced by the

vertices in Xi ∪ N (2)
G (Xi) and the edges in Xi ∪ N (2)

G (Xi), and denote by B
(2)
i

the outer boundary of η
(2)
i . Figure 6(c) illustrates plane subgraph η

(2)
i .

Let γ∗ = (G∗ = (V ∗, E∗), F ∗) denote the sun augmentation of γ. For an
inner face f in γ∗, let V (f) and E(f) denote the sets of vertices and edges of
the facial cycle Cf of f , respectively.
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For each i = 1, 2, . . . , p, let F ∗
i denote the set of faces f in γ∗ such that V (f)

contains a vertex in Xi and E(f) contains an edge outside the boundary B
(2)
i .

Each face f ∈ F ∗
i is a non-core face with |V (f)∩Xi| = 1, 2. Note that no edge in

E∗ \E joins two vertices in V in γ∗. Hence no face f ∈ F ∗
i contains any vertex in

Xj with i ̸= j; i.e., V (f)∩Xj = ∅, since otherwise Xi and Xj would belong to the
same component of G[X]. Let ψ = (f1, f2, . . . , fq), q = |F ∗

i | denote the circular

sequence of the faces in F ∗
i in the order that they appear along B

(2)
i , where

fj and fj+1, j = 1, 2, . . . , q share a vertex in Xi ∪ N (2)
G (Xi). Let v1, v2, . . . , vm

denote the sequence of vertices in ∪j=1,2,...,qV (fj) \ Xi in γ
∗ in the order that

they appear in the sequence f1, f2, . . . , fq, where {v1, v2, . . . , vm} ∩X = ∅ since
V (f)∩X = ∅ for all faces f ∈ F ∗

i . Since each non-core face in F ∗
i is a triangle, γ∗

contains an edge ej joining two vertices vj and vj+1 (or an edge em joining vm
and v1). Let Ci = (v1, v2, . . . , vm) denote the subgraph that consists of vertices
v1, v2, . . . , vm and edges e1, e2, . . . , em. See Figure 6(c) for an illustration of cycle
Ci.

From {v1, v2, . . . , vm} ∩ X, V (Ci) ∩ X = ∅ holds. Note that G[Xi] and Ci

are both connected graphs, where V (Ci) contains a vertex not enclosed by the

boundary B
(2)
i . Hence V (Ci) ∩X = ∅ implies that Venc(Ci; γ) ⊇ Xi.

Note that V (B
(2)
i ) ⊆ V (Bi) holds and the boundary B

(2)
i contains all vertices

inXi∩V (Bi) and the neighbors inN
(2)
G (Xi)∩V (Bi). Each neighbor v ∈ NG(Xi)∩

V (Bi) \ N (2)
G (Xi) is adjacent to a vertex x ∈ Xi ∩ V (B

(2)
i ). This implies that

NG(Xi) ∩ V (Bi) ⊆ V (Ci).

We show that Ci is a simple cycle. Consider two faces f, f ′ ∈ F ∗
i that share a

vertex w ∈ V (Ci). When E(f)∩E(f ′) ̸= ∅, f and f ′ are indexed consecutively as
fj and fj+1 in the sequence ψ. Assume that E(f)∩E(f ′) = ∅ and V (f)∩V (f ′) =
{w}. Note that each of f and f ′ contains a vertex in Xi, say x ∈ V (f)∩Xi and
x′ ∈ V (f ′) ∩ Xi. First consider the case where w ∈ V . Since each of f and f ′

contains a vertex in Xi, we see that w ∈ N
(2)
G (Xi). In this case, E(B

(2)
i ) contains

exactly two edges incident to w, which must be wx ∈ E(f) and wx′ ∈ E(f ′),
as shown in Figure 7(a). This implies that no other face f ′′ ∈ F ∗

i \ {f, f ′} can
contain such a vertex w by the definition of F ∗

i .

Next consider the case where w is a core vertex in V ∗ \V . By construction of
the sun augmentation γ∗, each of V (f) and V (f ′) contains exactly one vertex in
V , which are x and x′, respectively, and the set {x,w, x′} forms a non-core face
f ′′, where f ′′ ∈ F ∗

i holds, as shown in Figure 7(b). Hence faces f, f ′′ and f ′ are
indexed consecutively as fj , fj+1 and fj+2 in the sequence ψ. From these two
cases, we see that Ci is a simple cycle. Also each inner face f with V (f)∩V (Ci) ̸=
∅ in the interior γ∗[Ci]enc belongs to F

∗
i , and satisfies V (f)∩X = V (f)∩Xi ̸= ∅.

In particular, each edge e ∈ E(Ci) is contained in a non-core face f(e) ∈ F ∗
i .

Finally we prove that the cycles Ci and Ci′ with 1 ≤ i < i′ ≤ p are edge-
disjoint and do not intersect. Assume that Ci and Ci′ share an edge e = uv.
Note that e is contained in a non-core face f(e) ∈ F ∗

i and in a non-core face
f ′(e) ∈ F ∗

i′ , where f(e) and f
′(e) contain a vertex x ∈ Xi and a vertex x′ ∈ Xi′ ,

respectively, and V (f(e)) = {u, v, x} and V (f ′(e)) = {u, v, x′}, as shown in
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Figure 7(c). However, when two non-core faces share an edge e = uv, one of the
faces cannot have a vertex in V \{u, v} in the sun augmentation γ∗. This implies
that Ci and Ci′ are edge-disjoint.

Next assume that Ci and Ci′ intersect at a vertex w ∈ V (Ci) ∩ V (Ci′). Let
e = uw ∈ E(Ci) and e

′ = u′w ∈ E(Ci′) be edges incident to w, where we choose
e′ in the interior γ∗[Ci]enc. Then e and e′ are contained in faces f(e) ∈ F ∗

i and
f ′(e) ∈ F ∗

i′ , respectively, as shown in Figure 7(d). Recall that a vertex x ∈ Xi

and a vertex x′ ∈ Xi′ are contained in f(e) and f ′(e′), respectively. However,
we have observed that any inner face in γ∗[Ci]enc containing a vertex in V (Ci)
contains a vertex x ∈ Xi, contradicting that such a face f ′(e′) contains a vertex
x̃ ∈ Xi other than x

′ ∈ Xi, since x̃ and x′ must have been in the same component
of G[X]. Hence Ci and Ci′ do not intersect.

Therefore C = {C1, C2, . . . , Cp} is a coating of {X1, X2, . . . , Xp} such that
NG(Xi) ∩ V (Bi) ⊆ V (Ci), i = 1, 2, . . . , p.

(iv) We show that, for each i = 1, 2, . . . , p, the cycle Ci ∈ C can be computed
in O(|V (Ci)|) time after some linear-time preprocessing.

As observed, the sun augmentation γ∗ of γ can be constructed in linear time.
For each vertex v ∈ V ∗, let E∗(v) denote the set of edges in E∗ incident to v in
γ∗, where we assume that the edges in E∗(v) are stored in a linked-list in the
clockwise order around v.

We compute the set E[X] of edges in E that join two vertices in X, the
components X1, X2, . . . , Xp in the induced graph G[X] = (V,E[X]) and the
edge set E[Xi] ∪ E+

i , i = 1, 2, . . . , p in linear time. For each edge e ∈ E, we
also compute id(e) as the index i of the component Xi in G[X] such that e ∈
E[Xi] ∪ E+

i .

For each vertex v ∈ NG(X), let E+
i (v), i = 1, 2, . . . , p denote the set of edges

in E+
i incident to v. We show how to compute each non-empty set E+

i (v) so
that the edges in E+

i (v) are stored in a linked-list in the clockwise order around
v. Prepare a 1-dimensional array A with entries A[i] = (a, b), i = 1, 2, . . . , p such
that a stores a vertex (or null) and b stores an edge (or null), which is initialized as
A[i] :=(null,null). We choose each vertex v ∈ NG(X) in some order, and traverse
the edges in the linked-list for E∗(v). When we encounter an edge e ∈ E∗(v)∩E
with id(e) = j in the list, update the current entry A[j] = (a, b) as follows. If
a ̸= v then set A[j] := (v, e); and if a = v then b ∈ E+

j (v) holds and we set
A[j] := (v, e) and let the edge b be linked to the current edge e in the linked-list
for E+

j (v). After this, the linked-list for each non-empty set E+
i (v), v ∈ NG(X),

i = 1, 2, . . . , p is computed in linear time since the number of edges scanned

in this procedure is a constant times for each edge. Also the set N
(2)
G (Xi) is

obtained as the set of vertices v ∈ NG(X) with |E+
i (v)| ≥ 2.

Finally we find some edge e∗i incident to a vertex x ∈ Xi ∩ V (B
(2)
i ) not from

the interior of the graph η
(2)
i = (V

(2)
i , E

(2)
i , F

(2)
i ) for each i = 1, 2, . . . , p. We call

such an edge the first edge of i. Let E+
(2) denote the set of edges between Xi and

N
(2)
G (Xi) for all i = 1, 2, . . . , p, and remove the edges in E+

(2) from γ∗ to obtain

a graph γ∗ − E+
(2), which remains connected by the construction of γ∗. Then
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compute a spanning tree T ∗ of γ∗ − E+
(2) as follows. First construct a spanning

tree Ti of component G[Xi] for each i = 1, 2, . . . , p, and choose a spanning tree
T ∗ in γ∗−E+

(2) such that T ∗ contains all spanning trees Ti, i = 1, 2, . . . , p. Regard

T ∗ as a digraph rooted at some vertex s ∈ V (Co) wherein each edge uv in T ∗

is directed from the parent u to the child v. Note that T ∗ contains exactly one
incoming edge e = (u, v) for each tree Ti such that v belongs to Xi and u is the

parent of v in T ∗. Note that v ∈ V (B
(2)
i ) and u ̸∈ N

(2)
G (Xi) since the edges in

E+
(2) are removed. We set this edge e to be the first edge e∗i of i.

In the following, i is an index i ∈ {1, 2, . . . , p}. We are ready to generate the
sequence ψ of faces in F ∗

i . In the following, we find the edges in E(f) of these faces
incident to Xi, from these edges we can find the sequence ψ = (f1, f2, . . . , fq).
See Figure 6(c) for an illustration of the sequence f1, f2, . . . , fq. For the first edge
e∗i = x1v with x1 ∈ Xi, we initialize e := x1v and x := x1. Then we repeat the
following:

Trace(e, x): traverse edges in the linked-list of E∗(x) starting from the
edge e until we encounter an edge e′ = xu ∈ E∗(x) such that u ∈ Xi or

u ∈ N
(2)
G (Xi) for the first time.

In the former, we execute Trace(e′ = xu, u); In the latter, we traverse the
linked-list for E+

i (u) to find the next edge e′ = ux′ with x′ ∈ Xi in O(1) time
and then execute Trace(e′ = ux′, x′).

We see that the above procedure can correctly find the edges in E(f) of the
faces in the sequence ψ = (f1, f2, . . . , fq) in O(q) time. Based on sequence ψ,
we can construct the cycle Ci in O(|V (Ci)|) = O(q) time. The total time for
computing all cycles Ci, i = 1, 2, . . . , p is linear to the size of γ. ⊓⊔

Now we prove Lemma 7 by using Lemma 10.
Given a pseudo-simple connected plane graph γ = (G = (V,E), F ) and a

subset X ⊆ V \ V (Co) in Lemma 7, we construct the sun augmentation γ∗ of
γ and a coating C of {X1, X2, . . . , Xp} such that NG(Xi) ∩ V (Bi) ⊆ V (Ci) in
Lemma 10(ii). We distinguish two cases:
(a) V (Ci) ⊇ Yi for each i = 1, 2, . . . , p; and
(b) there is a vertex y ∈ Yi \ V (Ci) for some i ∈ {1, 2, . . . , p}.

In (a), the obtained coating C of {X1, X2, . . . , Xp} covers {Y1, Y2, . . . , Yp},
and there is no (Xi, Yi)-confiner for any i by Lemma 10(ii). In (b), y ∈ Yi \
V (Ci) ⊆ NG(Xi) \ V (Ci) ⊆ NG(Xi) \ (NG(Xi) ∩ V (Bi)) = NG(Xi) \ V (Bi).
Hence by Lemma 10(i), γ has an (Xi, {y})-confiner, which is also an (Xi, Yi)-
confiner by the definition of confiners.

The arguments in (a) and (b) imply that γ contains no (Xi, Yi)-confiner
for any i = 1, 2, . . . , p if and only if the sun augmentation γ∗ of γ contains a
coating C of {X1, X2, . . . , Xp} that covers {Y1, Y2, . . . , Yp}. Computing the sun
augmentation γ∗ and a coating C of {X1, X2, . . . , Xp} in Lemma 10(ii) can be
done in linear time by Lemma 10(iv).

This proves Lemma 7.
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Appendix 7: Algorithm ORIENT for Proving Lemma 3

An entire algorithm for proving Lemma 3 is described as follows.

Algorithm ORIENT
Input:A pseudo-simple biconnected plane graph γ = (V,E, F ), an 1-independent
set P of paths of length at least 2, a partition Pi, i = 1, 2, . . . , p of P and an
inclusive set C = {C1, C2, . . . , Cp} of edge-disjoint cycles satisfying the condition
of Lemma 3 and two outer vertices s and t of γ.
Output An (s, t)-orientation γ̃ of γ compatible to P.

1: Compute the inclusion-forest I = (C, E) of C and the set Crt of root cycles
in C, letting the indexing of C1, C2, . . . , Cp satisfy i < j when Ci is the
parent cycle of Cj , the plane subgraphs γi and the sets F (µi) of non-trivial
inner faces, i = 1, 2, . . . , p;

2: Compute an (s, t)-orientation γ̃0 of γ0 using Lemma 1;
3: for each i = 1, 2, . . . , p do

/* Now orientation γ̃k of the parent cycle Ck of non-root cycle Ci

or γ̃k = γ̃0 of root cycle Ci is (si, ti)-bipolar to Ci for some si, ti ∈ V (Ci)
by Lemma 4; Execute Step (a) */

4: Compute an (si, ti)-orientation µ̃i of mesh graph ηi = (Ci,Pi) using
Lemmas 1 and 6;

5: for each inner face f ∈ F (µi) do
/* Now orientation µ̃i is (sf , tf )-bipolar to the facial cycle Cf of f
for some vertices sf , tf ∈ V (Cf ) by Lemma 4; Execute Step (b) */

6: Compute an (sf , tf )-orientation ˜γi[Cf ]enc of the interior subgraph
γi[Cf ]enc induced from γi by Cf using Lemma 1.

7: endfor
8: endfor;
9: Output the orientation γ̃ of γ by combining bipolar orientations γ̃i
of γi, i = 1, 2, . . . , p.

Appendix 8: Proof of Theorem 2

Theorem 2 Let Γ be a non-plane embedding of a graph G such that each
crossing-set is outer, and let n = |V (G)| and nc denote the number of cross-
ings in Γ .

Then for any pair of outer vertices s and t in Γ , there is an (s, t)-upward
drawing of Γ , and an upward poly-line drawing of Γ with O(n + nc) bends can
be computed in O(n+ nc) time and space.

Proof. We show that Theorem 1 can be applied to the planarization of an in-
stance of Theorem 2. Let Γ be a non-plane embedding of a graph G. Assume
that each crossing-set E∗

i is outer.
We construct the plane graph by planarizing Γ , i.e., replacing each edge

crossing as a graph vertex. If the resulting planarization is not connected, then
we add a least number of new edges to make it connected while keeping planarity.
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Let γ = (G = (V,E), F ) denote the resulting connected plane graph, Vinl
denote the set of crossings in Γ , and Vend denote the set of end-vertices of crossing
edges in E∗. Clearly Vinl ∩ Vend = ∅. In γ, each crossing edge e = uv ∈ E∗ in Γ
is replaced with a path Pe = (u1, u2, . . . , uk) in γ such that u1 = u, uk = v, and
u2, u3, . . . , uk−1 ∈ Vinl.

Define a path set P = {Pe | e ∈ E∗}, where we see that P is 1-independent
since Γ satisfies the standard non-degeneracy conditions. Let E∗

1 , E
∗
2 , . . . , E

∗
p be

the partition of E∗ into crossing-sets. For each crossing-set E∗
i , let Pi denote the

set of paths Pe with e ∈ E∗
i , where Vinl(Pi) is a component in G[Vinl]. Since each

crossing-set E∗
i is outer, we see that γ has no (Vinl, Vend)-separator K.

By Theorem 1, there exists an (s, t)-upward poly-line drawing of Γ for any
outer vertices s and t, and such a drawing can be constructed in linear time,
where the total number of bends is at most |E(G)|+ |Vinl| = O(n+ nc).

This proves Theorem 2. ⊓⊔
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