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Abstract

A novel framework has recently been proposed for designing the molecular structure of
chemical compounds with a desired chemical property using both artificial neural net-
works and mixed integer linear programming. In this paper, we design a new method
for inferring a polymer based on the framework. For this, we introduce a new way of
representing a polymer as a form of monomer and define new descriptors that feature
the structure of polymers. We also use linear regression as a building block of con-
structing a prediction function in the framework. The results of our computational
experiments reveal a set of chemical properties on polymers to which a prediction
function constructed with linear regression performs well. We also observe that the
proposed method can infer polymers with up to 50 non-hydrogen atoms in a monomer
form.
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1 Introduction

Background In recent years, molecular design has received a great deal of attention from various
research fields such as chemoinformatics, bioinformatics, and materials informatics [1, 2, 3]. In
particular, extensive studies have been done for molecular design using artificial neural networks
(ANNs). Various ANN models have been applied in these studies, which include recurrent neural
networks [4, 5|, variational autoencoders [6], grammar variational autoencoders [7], generative
adversarial networks [8, 9], and invertible flow models [10, 11]. Many of these studies employ
graph convolution techniques [12] to effectively handle molecules represented as chemical graphs.

Molecular design has also been studied for many years in chemoinformatics, under the name of
inverse quantitative structure activity relationship (inverse QSAR). The purpose of this framework
is to seek for chemical structures having desired chemical activities under some constraints, where
the task of prediction of chemical activities from their chemical structures is referred to as QSAR
(or, forward QSAR). In both forward and inverse QSAR, chemical structures are represented as
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undirected graphs (chemical graphs). Then, chemical graphs are transformed into vectors of real or
integer numbers, which are called descriptors in chemoinformatics and vectors correspond to feature
vectors in machine learning. One of the typical approaches to inverse QSAR is to infer feature
vectors from given chemical activities and constraints and then reconstruct chemical graphs from
these feature vectors [13, 14, 15]. However, the reconstruction itself is a challenging task because
it is known to be NP-hard (i.e., theoretically intractable) [16]. Such a difficulty is also suggested
from a huge size of chemical graph space. For example, the number of chemical graphs with up
to 30 atoms (vertices) C, N, 0, and S may exceed 10%° [17]. Due to this inherent difficulty, most
methods for inverse QSAR, including recent ANN-based ones, do not guarantee optimal or exact
solutions.

The targets of most of the inverse QSAR methods and ANN-based molecular design meth-
ods had been small chemical compounds. On the other hand, it is known that macromolecules,
especially polymers, have also a wide range of applications in both medical science and material
science [18, 19]. Accordingly, several studies have recently been done on computational design of
polymers [20, 21|. However, it was pointed out that very few studies addressed the representation
of polymer structures [22], and thus the development of novel and useful representation methods
for polymers remains a challenge.
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Figure 1: An illustration of a framework for inferring a set of chemical graphs C*.

Framework Akutsu and Nagamochi [23] proved that the computation process of a given ANN can
be simulated with a mixed integer linear programming (MILP). Based on this, a novel framework
for inferring chemical graphs has been developed and revised [24, 25, 26|, as illustrated in Figure 1.
It constructs a prediction function in the first phase and infers a chemical graph in the second
phase. The first phase of the framework consists of three stages. In Stage 1, we choose a chemical
property m and a class G of graphs, where a property function a is defined so that a(C) is the value
of 7 for a compound C € G, and collect a data set D, of chemical graphs in G such that a(C) is
available for every C € D,. In Stage 2, we introduce a feature function f : G — R¥ for a positive
integer K. In Stage 3, we construct a prediction function  with an ANN N that, given a vector
z € RE returns a value y = n(z) € R so that n(f(C)) serves as a predicted value to the real value
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a(C) of 7 for each C € D,. Given two reals y* and 7 as an interval for a target chemical value,
the second phase infers chemical graphs C* with y* < n(f(C*)) <" in the next two stages. We
have obtained a feature function f and a prediction function 1 and call an additional constraint
on the substructures of target chemical graphs a topological specification. In Stage 4, we prepare
the following two MILP formulations:

- MILP M(z,y;Cy) with a set C; of linear constraints on variables x and y (and some other

auxiliary variables) simulates the process of computing y := n(z) from a vector z; and

- MILP M(g, x;Cy) with a set Cy of linear constraints on variable = and a variable vector g that

represents a chemical graph C (and some other auxiliary variables) simulates the process of
computing x := f(C) from a chemical graph C and chooses a chemical graph C that satisfies
the given topological specification o.
Given an interval with y*,7* € R, we solve the combined MILP M(g,z,y;Cy,Cs) to find a feature
vector z* € R and a chemical graph C' with the specification o such that f(C') = 2* and
y* < n(z*) < 7* (where if the MILP instance is infeasible then this suggests that there does not
exist such a desired chemical graph). In Stage 5, we generate other chemical graphs C* such that
y* < n(f(C*)) <7 based on the output chemical graph Ct.

MILP formulations required in Stage 4 have been designed for chemical compounds with cycle
index 0 (i.e., acyclic) [25, 27], cycle index 1 [28] and cycle index 2 [29], where no sophisticated
topological specification was available yet. Azam et al. [27] introduced a restricted class of acyclic
graphs that is characterized by an integer p, called a “branch-parameter” such that the restricted
class still covers most of the acyclic chemical compounds in the database. Akutsu and Nag-
amochi [30] extended the idea to define a restricted class of cyclic graphs, called “p-lean cyclic
graphs” and introduced a set of flexible rules for describing a topological specification. Recently,
Tanaka et al. [31] (resp., Zhu et al. [26]) used a decision tree (resp., linear regression) to construct a
prediction function 7 in Stage 3 in the framework and derived an MILP M(x,y;C;) that simulates
the computation process of a decision tree (resp., linear regression).

Two-layered Model Shi et al. [32] proposed a method, called a two-layered model for representing
the feature of a chemical graph in order to deal with an arbitrary graph in the framework. In the
two-layered model, a chemical graph C with a parameter p > 1 is regarded as two parts: the
exterior and the interior of the hydrogen-suppressed chemical graph (C) obtained from C by
removing hydrogen. The exterior consists of maximal acyclic induced subgraphs with height at
most p in (C) and the interior is the connected subgraph of (C) obtained by ignoring the exterior.
Shi et al. [32] defined a feature vector f(C) of a chemical graph C to be a combination of the
frequency of adjacent atom pairs in the interior and the frequency of chemical acyclic graphs among
the set of chemical rooted trees T, rooted at interior-vertices u. Tanaka et al. [31] constructed a
prediction function with a decision tree by using the feature vector by Shi et al. [32]. Recently,
Zhu et al. [26] extended the model to treat chemical elements of multiple valence and chemical
compounds with cations and anions.

Contribution In order to extend our MILP-based framework for designing novel polymers, we
modify the method due to Zhu et al. [26]. For this, we introduce a new way of representing a
polymer as a form of monomer and define new descriptors that feature the structure of polymers.
We modify the MILP formulation proposed by Zhu et al. [26] due to the change of feature function



f (the detail of the MILP M(g,z;Cy) can be found in Appendix E). To generate target chem-
ical graphs C* in Stage 5, we also use and modify the dynamic programming algorithm due to
Zhu et al. [26].

We implemented the framework based on the refined two-layered model and a prediction func-
tion by linear regression. A polymer was inferred by using the framework for the first time in this
paper, where Tanaka et al. [31] studied constructing a prediction function with a decision tree for
some polymer properties but have not argued topological specification of polymers and inference
of a polymer. The results of our computational experiments reveal a set of chemical properties on
polymers to which a prediction function constructed with linear regression on our feature function
performs well. We also observe that the proposed method can infer a polymer with up to 50
non-hydrogen atoms in a monomer form.

The paper is organized as follows. Section 2 introduces some notions on graphs, a modeling of
chemical compounds and define a new monomer representation of polymers. Section 3 describes the
two-layered model for polymers. Section 4 reports the results on some computational experiments
conducted for eight chemical properties on polymers such as glass transition and experimental
amorphous density. Section 5 makes some concluding remarks.

Some technical details are given in Appendices: Appendix A for the idea of linear regression
and an MILP M(xz,y;Cy) formulated by Zhu et al. [26] that simulates a process of computing a
prediction function constructed by linear regression; Appendix B for all descriptors in our feature
function on polymers; Appendix C for a full description of a topological specification; Appendix D
for the detail of test instances used in our computational experiment for Stages 4 and 5; and
Appendix E for the details of our MILP formulation M(g, z;Cs). Note that the modification of the
dynamic programming algorithm is not given in Appendices because it is slight and straightforward.

2 Preliminary

This section introduces some notions and terminologies on graphs, modeling of chemical compounds
and our choice of descriptors.

Let R, Z and Z, denote the sets of reals, integers and non-negative integers, respectively. For
two integers a and b, let [a,b] denote the set of integers ¢ with a < i <b.

Graph Given a graph G, let V(G) and E(G) denote the sets of vertices and edges, respectively.
For a subset V' C V(G) (resp., E' C E(G)) of a graph G, let G — V' (resp., G — E’) denote
the graph obtained from G by removing the vertices in V' (resp., the edges in E’), where we
remove all edges incident to a vertex in V' in G — V’. An edge subset £’ C E(G) in a connected
graph G is called separating (resp., non-separating) if G — E’" becomes disconnected (resp., G — E’
remains connected). The rank r(G) of a graph G is defined to be the minimum |F| of an edge
subset F' C E(G) such that G — F contains no cycle, where r(G) = |E(G)| — |[V(G)| + 1 for a
connected graph G. Observe that r(G — E') = r(G) — | E’| holds for any non-separating edge subset
E' C E(G). An edge e € F(G) in a connected graph G is called a bridge if {e} is separating. For
a connected cyclic graph G, an edge e is called a core-edge if it is in a cycle of G or is a bridge
e = uyug such that each of the connected graphs G;, i = 1,2 of G — e contains a cycle. A vertex
incident to a core-edge is called a core-vertexr of G. A path with two end-vertices u and v is called
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a u,v-path. A set I of edges in G is called a circular set if G contains a cycle C' that contains all
edges in F' and for every edge e € F', I\ {e} is the set of all bridges ¢’ € F' in the graph G — e.

We define a rooted graph to be a graph with a designated vertex, called a root. For a graph
G possibly with a root, a leaf-verter is defined to be a non-root vertex with degree 1. We call
the edge uv incident to a leaf vertex v a leaf-edge, and denote by Vieat(G) and Eje.s(G) the sets of
leaf-vertices and leaf-edges in GG, respectively. For a graph or a rooted graph GG, we define graphs
G;,1 € Z, obtained from G by removing the set of leaf-vertices ¢ times so that

Gy = G; Gi+1 =G, — Vieaf(Gi)a

where we call a vertex v a tree verter if v € Viear(G;) for some ¢ > 0. Define the height ht(v) of
each tree vertex v € Viear(G;) to be i; and ht(v) of each non-tree vertex v adjacent to a tree vertex
to be ht(u) + 1 for the maximum ht(u) of a tree vertex u adjacent to v, where we do not define
height of any non-tree vertex not adjacent to any tree vertex. We call a vertex v with ht(v) = k
a leaf k-branch. The height ht(T) of a rooted tree T" is defined to be the maximum of ht(v) of a
vertex v € V(T'). For an integer k > 0, we call a rooted tree T' k-lean if T' has at most one leaf
k-branch. For an unrooted cyclic graph G, we regard that the set of non-core-edges in G induces
a collection 7T of trees each of which is rooted at a core-vertex, where we call G k-lean if each of
the rooted trees in 7 is k-lean.

2.1 Modeling of Chemical Compounds

We review a modeling of chemical compounds (monomers) and introduce a new way of representing
a polymer as a form of monomer.

To represent a chemical compound, we introduce a set of chemical elements such as H (hydro-
gen), C (carbon), 0 (oxygen), N (nitrogen) and so on. To distinguish a chemical element a with
multiple valences such as § (sulfur), we denote a chemical element a with a valence 7 by a;), where
we do not use such a suffix (i) for a chemical element a with a unique valence. Let A be a set
of chemical elements a(;). For example, A = {H,C,0,N,P,S2),Su),S@)}. Let val : A — [1,6] be
a valence function. For example, val(H) = 1, val(C) = 4, val(0) = 2, val(P) = 5, val(S(z)) = 2,
val(S(1)) = 4 and val(S(g)) = 6. For each chemical element a € A, let mass(a) denote the mass of a.

A chemical compound is represented by a chemical graph defined to be a tuple C = (H, «, 8) of
a simple, connected undirected graph H and functions « : V(H) — A and g : E(H) — [1,3]. The
set of atoms and the set of bonds in the compound are represented by the vertex set V(H) and the
edge set E(H), respectively. The chemical element assigned to a vertex v € V(H) is represented
by a(v) and the bond-multiplicity between two adjacent vertices u,v € V(H) is represented by
B(e) of the edge e = uwv € E(H). We say that two tuples (H;, «;, 5;),i = 1,2 are isomorphic if
they admit an isomorphism ¢, i.e., a bijection ¢ : V/(H;) — V(H;) such that uv € E(H;), aq(u) =
a,a1(v) = b, fi(uv) = m < G(u)p(v) € E(Hy), az(¢(u)) = a,a2(¢(v)) = b, fa(d(u)g(v)) = m.
When H; is rooted at a vertex r;,i = 1,2, (H;, oy, 8;),1 = 1,2 are rooted-isomorphic (r-isomorphic)
if they admit an isomorphism ¢ such that ¢(r;) = 7.

For a notational convenience, we use a function fc : V(H) — [0,12] for a chemical graph
C = (H,a, p), such that fc(u) means the sum of bond-multiplicities of edges incident to a vertex



Be(u) £ Z B(uv) for each vertex u € V(H).

weE(H)

For each vertex u € V(H), define the electron-degree eledegq(u) to be

eledegq(u) 2 Be(u) — val(a(u)).

For each vertex uw € V(H), let deg(v) denote the number of vertices adjacent to u in C.

For a chemical graph C = (H,«, 3), let V,(C), a € A denote the set of vertices v € V(H)
such that a(v) = a in C and define the hydrogen-suppressed chemical graph (C) to be the graph
obtained from H by removing all the vertices v € Vy(C).
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Figure 2: (a) A repeating unit of polymer: thioBis(4-phenyl)carbonate, where e and e} are the
connecting-edges and v} and v} are the connecting-vertices; (b) A monomer form of the polymer
in (a), where the link-edges are depicted with thick lines and v and v} are the connecting-vertices.

Polymers In this paper, we treat a polymer that is a linear concatenation of a single repeating
unit with two connecting-edges of ej and ej such that two adjacent units in the concatenation are
joined with the connecting-edges. We call the two vertices incident to the two connecting-edges
the connecting-vertices. Figure 2(a) illustrates an example of a repeating unit of such a polymer,
where v} and v are the connecting-vertices.

Tanaka et al. [31] proposed a modeling of a polymer as a monomer with no connecting-edges
by introducing an artificial chemical element a* to which the original two connecting-edges of
a repeating unit become newly incident. When the number of repeating units in a polymer is
extremely large, other edges in the repeating unit may have a similar role with the connecting-
edges. For example, edge e} of the repeating unit in Figure 2(a) can serve as the connecting-edges
of a different repeating unit by splitting e} into two edges and merging ej; and e} into a single edge.

To take this into consideration, this paper introduces a new way of representing a polymer as
a monomer form. We call an edge e in a repeating unit of a polymer a link-edge if it is passed by
every path between the connecting-edges ef; and e]. For example, the link-edges in the repeating
unit in Figure 2(a) are given by e}, €}, ..., e5. To represent a polymer as a monomer, we regard
the two connecting-edges efy and e} as a single edge €], as illustrated in Figure 2(b). We call the
resulting chemical graph the monomer representation, where we also call the edge e} a link-edge in
the representation. We still call the vertices incident to e] the connecting-vertices and distinguish
them from other vertices because a polymer that is synthesized from a specified repeating unit



actually may end with the connecting-vertices. (A polymer of a cyclic sequence of a repeating unit
that has no particular ends can be modeled as our monomer representation with no connecting-
vertices.) In what follows, a polymer is represented by the monomer representation C, and the set
of link-edges in C is denoted by E™(C). Note that the set E™(C) is a circular set in C.

3 Two-layered Model

This section reviews the two-layered model proposed by Zhu et al. [26] and makes a necessary
modification so as to apply it to the case of polymers.

Let C = (H,«, ) be a chemical graph and p > 1 be an integer, which we call a branch-
parameter.

A two-layered model of C is a partition of the hydrogen-suppressed chemical graph (C) into
an “interior” and an “exterior” in the following way. We call a vertex v € V({C)) (resp., an edge
e € E((C))) of C an exterior-vertex (resp., exterior-edge) if ht(v) < p (resp., e is incident to an
exterior-vertex) and denote the sets of exterior-vertices and exterior-edges by V*(C) and E*(C),
respectively, and denote V™(C) = V((C)) \ V(C) and E™(C) = E((C)) \ E*(C), respectively.
We call a vertex in VI"*(C) (resp., an edge in E™(C)) an interior-vertex (resp., interior-edge).
The set £(C) of exterior-edges forms a collection of connected graphs each of which is regarded
as a rooted tree T rooted at a vertex v € V(T') with the maximum ht(v). Let 7**({C)) denote
the set of these chemical rooted trees in (C). The interior of C is defined to be the subgraph
(Vint(C), E™(C)) of (C).

Differently from standard monomers, we distinguish the link-edges in the monomer form of
a polymer from other edges in order to feature the topological structure of the polymer. Fig-
ure 3 illustrates an example of a hydrogen-suppressed polymer (C) with E™(C) = {ujuis,
UsU15, U3UL6, UleULT, U1TULS, U4U18}-

For a branch-parameter p = 2, the interior of the chemical graph (C) in Figure 3 is ob-
tained by removing the set of vertices with degree 1 p = 2 times; i.e., first remove the set V} =
{wy,ws, ..., wi} of vertices of degree 1 in (C) and then remove the set Vo = {wog, wig, . . ., Wog }
of vertices of degree 1 in (C) — V4, where the removed vertices become the exterior-vertices of (C).

For each interior-vertex u € V™(C), let T,, € T*((C)) denote the chemical tree rooted at u
(where possibly T, consists of vertex u) and define the p-fringe-tree Clu] to be the chemical rooted
tree obtained from T, by putting back the hydrogens originally attached with T, in C. Let T (C)
denote the set of p-fringe-trees Clu],u € V"(C). Figure 4 illustrates the set 7(C) = {Clw;] | i €
[1,29]} of the 2-fringe-trees of the example C in Figure 3.

Feature Function The feature of an interior-edge e = uv € E™(C) such that a(u) = a,
degcy(u) = d, a(v) = b, deg ¢, (v) = d’ and B(e) = m is represented by a tuple (ad, bd’,m), which
is called the edge-configuration of the edge e, where we call the tuple (a,b,m) the adjacency-
configuration of the edge e.

For an integer K, a feature vector f(C) of a chemical graph C is defined by a feature function
f that consists of K descriptors. We call R¥ the feature space.

Tanaka et al. [31] defined a feature vector f(C) € R¥ to be a combination of the frequency of
edge-configurations of the interior-edges and the frequency of chemical rooted trees among the set
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Figure 3: An illustration of the hydrogen-suppressed monomer representation (C) obtained from
a polymer C by removing all the hydrogens, where the link-edges are depicted with thick lines and
V(C) = {w; | i € [1,26]} and V"(C) = {u; | i € [1,29]} for p = 2 and the connecting-vertices
are marked with asterisks.
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Figure 4: The set T*(C) of 2-fringe-trees Clu,],7 € [1,29] of C with (C) in Figure 3, where the
root of each tree is depicted with a gray circle and the hydrogens attached to non-root vertices are
omitted in the figure.

of chemical rooted trees C[u] over all interior-vertices u. Zhu et al. [26] additionally included two
descriptors that feature the leaf-edges and the rank of a chemical graph. In this paper, we further
introduce new descriptors that features the link-edges in the monomer representation of polymers
(see Appendix B for all descriptors in our feature function on polymers). Note that introduction
of new descriptors requires us to modify the subsystem of simulating the computation process
of a feature function f in an MILP M(x,y;C;). We use the same MILP formulation used by
Zhu et al. [26] for M (z,y;C;) by making a necessary modification (see Appendix E for the details
of our MILP formulation M(g, z;Cs)).



Topological Specification Tanaka et al. [31] also introduced a set of rules for describing a
topological specification in the following way:
(i) a seed graph G¢ as an abstract form of a target chemical graph C;
(i) a set F of chemical rooted trees as candidates for a tree Clu| rooted at each interior-vertex
u in C; and
(iii) lower and upper bounds on the number of components in a target chemical graph such as
chemical elements, double/triple bonds and the interior-vertices in C.
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Figure 5: (a) A seed graph G¢ with EgZ% = {ay,as}, where the vertices in Vi are depicted with
gray circles, the edges in E(>g) are depicted with dotted lines, the edges in E(>1) are depicted
with dashed lines, the edges in E /) are depicted with gray bold lines and the edges in F(_,) are
depicted with black solid lines; (b) A set F = {1, %2,..., 930} € F(D;) of 30 chemical rooted
trees ¢;,1 € [1,30], where the root of each tree is depicted with a gray circle, where the hydrogens
attached to non-root vertices are omitted in the figure.

Figure 5(a) and (b) illustrate examples of a seed graph G¢ and a set F of chemical rooted
trees, respectively. Given a seed graph G, the interior of a target chemical graph C is constructed
from G¢ by replacing some edges a = uv with paths P, between the end-vertices u and v and by
attaching new paths @, to some vertices v. For example, the chemical graph (C) in Figure 3 is
constructed from the seed graph G¢ in Figure 5(a) as follows.

- First replace nine edges a1 = ujus, ay = ugiy, a3 = Uilg, Gy = Uglly, A5 = U Uz, Gg = UsUsz, A7 =

Ugly, ag = ugug and ag = ugu1g in G with new paths P, = (uq, uis, us), Py, = (us, U6, U17, U1s, Us),

Puy = (u1, w19, U0, u2), Fay = (u2,u23,u9), Poy = (ur,uar,uz), Pog = (uz,uz2,u3), Po, =
(ug, ugqg, uz), Poy = (ug,ug) = ag and P,, = (ug,u10), respectively to obtain a subgraph G,
of (C).

- Next attach to this graph G; three new paths Qu, = (ug,us), Qu;y = (U10,U27), Quix =
(u1s, Usgs, Ugg) and Q,, = (U0, u25) to obtain the interior of (C), as illustrated in Figure 6.

- Finally attach to the interior 29 trees selected from the set F and assign chemical elements
and bond-multiplicities in the interior to obtain a chemical graph C in Figure 3. In Figure 4,
Yy € F is selected for Cluy], i € {1,2,4,9,20}. Similarly ¢ for Cluas], 14 for Clug], 15 for
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Figure 6: A graph obtained from the seed graph G¢ in Figure 5(a), where each path @, rooted at
a vertex u is depicted with arrows and the vertices newly introduced from G¢ are depicted with
white circles.

Our definition of a topological specification is analogous with the one by Zhu et al. [26] except
for a necessary modification due to our polymer model with link-edges (see Appendix C for a full
description of topological specification).

4 Computational Results

We implemented our method of Stages 1 to 5 for inferring chemical graphs under a given topological
specification and conducted experiments to evaluate the computational efficiency. We executed
the experiments on a PC with Processor: Core i7-9700 (3.0GHz; 4.7 GHz at the maximum) and
Memory: 16 GB RAM DDRA4.

Results on Phase 1. We have conducted experiments of linear regression for ten chemical
properties on polymers among which we report the following eight properties to which the test
coefficient of determination R? attains at least 0.76: experimental amorphous density (AMD),
dielectric constant (DEC), heat capacity liquid (HcL), heat capacity solid (HCS), mol volume
(MLV), permittivity (PRM), refractive index (RFID) and glass transition(Ta). All these data
sets are provided by Bicerano [36], where we did not include any polymer whose chemical formula
could not be found by its name in the book. For property RFID, we remove the following polymer
as an outlier from the original data set: 2-decyl-1_4-butadiene C with a(C) = 0.4899.
We implemented Stages 1, 2 and 3 in Phase 1 as follows.

Stage 1. We set a graph class G to be the set of all polymers with any graph structure, and set
a branch-parameter p to be 2. We represent a polymer as a monomer representation.

For each of the properties, we first select a set A of chemical elements and then collect a data
set D, on the polymers over the set A of chemical elements. To construct the data set D, we
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eliminated chemical compounds such that the monomer representation C that does not satisfy
one of the following: C is connected; the number of non-hydrogen neighbors of each atom C is at
most 4; and the number of end-vertices of the linked-edges in C is at least two (i.e., no self-loop
is a link-edge in the monomer form). Since the observed values of property PRM are measured by
different frequencies, we include an extra descriptor fq that represents the frequency used for each
polymer C; € D, in our feature vector f(C;).

Table 1 shows the size and range of data sets that we prepared for each chemical property in
Stage 1, where we denote the following;:

- A: the set of elements used in the data set D,; A is one of the following six sets: A; =
{H,C,0,N}; Ay = {H,C,001),002),N}; Ay = {H,C,0,N,C1}; Ay = {H,C,0,N,C1,Siy}; A5 =
{H,C,0,N,C1,8(2),S()}; and Ag = {H,C,0(1),0¢2),N,C1,8i(,F}, where ay for a chemical el-
ement a and an integer ¢ > 1 means that a chemical element a with valence .

- |Dyl|: the size of data set D, over A for the property .

- n, 7: the minimum and maximum values of the number n(C) of non-hydrogen atoms in the
polymers C in D,.

- @, @: the minimum and maximum values of a(C) for 7 over the polymers C in D,.

- |T'|: the number of different edge-configurations of interior-edges over the compounds in D,.

- |F]: the number of non-isomorphic chemical rooted trees in the set of all 2-fringe-trees in the
polymers in D,.

- K: the number of descriptors in a feature vector f(C).

Stage 2. We used the new feature function defined in our chemical model without suppressing
hydrogen (see Appendix B for the detail). We standardize the range of each descriptor and the
range {t € R | a <t <@} of property values a(C),C € D,.

Stage 3. For each chemical property 7, we select a penalty value A, in the Lasso function from
36 different values from 0 to 100 by conducting linear regression as a preliminary experiment.
We conducted an experiment in Stage 3 to evaluate the performance of the prediction function
based on cross-validation. For a property 7, an execution of a cross-validation consists of five trials
of constructing a prediction function as follows. First partition the data set D, into five subsets
DY ke [1, 5] randomly; for each k € [1,5], the i-th trial constructs a prediction function n(k) by
conducting a linear regression with the penalty term A, using the set D, \ D as a training data
set. We used scikit-learn version 0.23.2 with Python 3.8.5 for executing linear regression with Lasso
function. For each property, we executed ten cross-validations and we show the median of test
coefficient of determination R?(n(k), Dgrk)), k € [1,5] over all ten cross-validations (see Appendix A
for the definition coefficient of determination R?(n, D) for a prediction function 1 over a data set
D). Recall that a subset of descriptors is selected in linear regression with Lasso function and let
K’ denote the average number of selected descriptors over all 50 trials. The running time per trial
in a cross-validation was at most one second.
Table 1 shows the results on Stages 2 and 3, where we denote the following:
- A\ the penalty value in the Lasso function selected for a property m, where aEb means a x 10%;
- K’: the average of the number of descriptors selected in the linear regression over all 50 trials
in ten cross-validations;
- test R%: the median of test coefficient of determination R? over all 50 trials in ten cross-
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Table 1: Results in Phase 1.

™ A |Di n 7 a, a T | FI K K’ test R?
AMD Ay 86 4,45 0.838,1.34 28 25 83 H.0E-4 17.7 00914
AMD Ay 93 4,45 0838,145 31 30 94 6.0E—-4 17.0 0.918
DEC A4 37 4,22 2.13,34 22 19 72 40E-3 6.7 0.761
HcL Ay 02 4,25 105.7,677.8 22 17 67 T7.0E—-4 142 0.990
HcL As o5 4,32 105.7,678.1 27 20 81 2.0E-4 283 0.987
HcS Ay o4 4,45 84.5,7205 26 20 75 H.0E-4 164 0.968
HcS  Aj 29 4,45 84.5,7205 32 24 92 5.0E-4 189 0.961
MLV Ay 86 4,45 60.7,466.6 28 25 83 2.0E-5 39.1 0.996
MLV A4 93 4,45 60.7,466.6 31 30 94 2.0E-6 60.8 0.994
PrM Ay 112 4,45 2.23,4.91 25 15 69 4.0E-5 23.7 0.801
Prm A3 131 4,45 2.23,491 25 17 73 bH.0E-5 273 0.784
RFID A, 91 4,29 1.4507,1.683 26 35 96 9.0E—4 22.0 0.852
RrFID Ag 124 4,29 1.339,1.683 32 50 124 9.0E—4 27.8 0.832

Ta Ay 204 4,58 171,673 32 36 101 9.0E-5 40.0 0.902
Tac As 232 4,58 171,673 36 43 118 9.0E-5 45.8 0.894

validations.

From Table 1, we see that the number K’ of selected descriptors is around 15 to 50 over all
properties 7 and that the number K’ becomes slightly larger when the set A of specified chemical
elements is large for the same property .

Results on Phase 2. To execute Stages 4 and 5 in Phase 2, we used a set of two instances I,
and I,,. We here present their seed graphs G¢ (see Appendices C and D for the details of them).
The seed graph G¢ of instance I, is given by the graph in Figure 5(a). Instance [y, is introduced
to represent a set of polymers that includes the four examples of polymers in Figure 7. The seed
graph of instance [y, is illustrated in Figure 8(a).

Stage 4. We executed Stage 4 for four properties 7 € {AMD, HcL, RrIp, TG}. For the MILP
formulation M(z,y;Cy) in Section A, we use the prediction function 7, , that attained the median
test R? in Table 1. To solve an MILP in Stage 4, we used CPLEX version 12.10.

For property PRM, we also need to specify the frequency fq under which the value a(C) is
observed, and set lower and upper bounds fﬂ,ﬁ € R on the frequency to be fq := 60 and fq =
1.0 x 107 in this experiment.

Tables 2 shows the computational results of the experiment in Stage 4 for the four properties
AMD, HcL, PrM, RFID and TG, respectively, where we denote the following:

- m: a property m € {AMD, HcL, RrIp, TG};

- inst.: instance I, or Iy;

- nyg: a lower bound on the number of non-hydrogen atoms;

- y*, 7" lower and upper bounds y*,7* € R on the value a(C) of a polymer C to be inferred,;

#v (resp., #c): the number of variables (resp., constraints) in the MILP in Stage 4;
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(ii) 2_2-pentaneBis(4-phenyl)carbonate; (iii) 1_1-dichloroethyleneBis(4-phenyl)carbonate; (iv)
thioBis(4-phenyl)carbonate, where hydrogens are omitted and connecting edges are depicted with
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Figure 8: (i) A seed graph G for Iy; (ii) A set F of chemical rooted trees.

[-time: the time (sec.) to solve the MILP in Stage 4;

- n: the number n(C') of non-hydrogen atoms in the monomer representation C' inferred in
Stage 4, where “none” means that no desired polymer exists for the topological specification;

- "% the number n'™(CT) of interior-vertices in the monomer representation C' inferred in

Stage 4; and

n: the predicted property value n(f(C")) of the polymer C' inferred in Stage 4.

In Table 2, n(f(C")) is the predicted value of property 7 of a polymer C' constructed by solving

an MILP in Stage 4, where we see that each n(f(C')) actually satisfies the specified lower and

upper bounds on a target chemical value.
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Table 2: Results of Stages 4 and 5.

7 inst. mnpp v, g #v  H#c  Itime n n™ n D-time C-LB #C
AMD I, 30  0.885,0.890 11247 12964 6.20 4930 0.889  0.285 64 64
I 25 1.344,1.350 7125 7690 2.54 28 22 1.347 0.188 2610 100

HcL I, 30 105.7,678.1 12171 13017 31.0 none - - - -
I, 30 658.8,660.2 8469 9916 1.51 3220 660.0 0.189 576 100

PrM I, 30  4.1284.150 9878 12547  10.7 50 30 4.150 0.166 24 24
I 35 3.1583.188 8999 12112 2.03 41 24  3.188  0.190 1.5E4 100

RrID I, 30 1.339,1.683 9979 12661 92.1 none - - - -
I 40 1.406,1.422 10460 15035 2.61 4727 1413 0.202 7.8E5 100

TG I, 30 180.0,181.6 12245 13102 17.0 50 30 181.06  0.220 36 36
Iy, 45 180.6,182.8 12953 18549 32.8 55 28 182.20 0.196 6.3E5 100

We set lower and upper bounds on a target chemical value for property HCL with A; so that
(y*,7") is the maximal range of the observed values over the data set Dy; i.e., (y*,7") := (a,@) =
(105.7,678.1). Similarly for property RFID with Ag, we set (y*,7") := (a,@) = (1.339,1.683). For
an example of I, with AMD, it holds that y* < n(f(C")) < 7* with y* = 0.885, 7* = 0.890 and
n(f(CT)) = 0.889. For instance I, with HCL and RFID, Table 2 reveals that there is no chemical
graph that satisfies the topological specification I,. These infeasible instance and instance I}, with
m =Ta took around 30 to 90 seconds. For the other cases, solving an MILP for inferring a polymer
with around 50 non-hydrogen atoms in the monomer form is around 2 to 15 seconds.

Figure 9(i) (resp., (ii)) illustrates the chemical graph C' inferred from I, (resp., I,,) with
(y*,7*) = (0.885,0.890) of AMD (resp., (y*,7*) = (658.8,660.2) of HCL) in Table 2.
" From Table 2, we observe that instances with around 30 to 55 non-hydrogen atoms in the
monomer representation are solved in around 2 to 30 seconds when they are feasible.

Inferring a polymer with target values in multiple properties

Once we obtained prediction functions 7, for several properties 7, it is easy to include MILP
formulations for these functions 7, into a single MILP Mz, y;C;) so as to infer a chemical graph
that satisfies given target values y* for these properties at the same time. As an additional
experiment in Stage 4, we conducted a computational experiment for inferring a polymer that
has a desired predicted value each of some three properties 7, m and m3. For a combination of
three properties, we selected two sets P; = {AMD, HcL, Ta} and P, = {HcS, MLV, RFID},
where we used the prediction function 7, for each property m € P; constructed in Stage 3. Table 3
shows the result of Stage 4 for inferring a chemical graph C' from instance I, with a set A(P;)
of chemical elements for the set P; of properties such that A(P;) = A3 = {H,C,0,N,C1,S(2)} and
A(P;) = {H,C, 02, N, C1}, where we denote the following:

- P;,i =1,2: a combination of three properties, where P; = {AMD, HcL, TG} and P, = {HcS,

MLV, RFID};

- m: one of the three properties in P;,7 = 1,2 used in the experiment;
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Figure 9: Illustrations of polymers, where the link-edges are depicted with thick lines and the
connecting-vertices are marked with asterisks. (i) A polymer C' with n(f(C")) = 0.889 inferred
from I, with (y*,7*) = (0.885,0.890) of AMD; (ii) A polymer C! with n(f(C')) = 660.0 inferred
from I, with (y*,7*) = (658.8,660.2) of HCL. (iii) A polymer C' inferred from I, with lower and
upper bounds on the predicted property value 1, (f(C")) of property # € {AMD, HcL, TG} in
Table 3.

- y*, Yp: lower and upper bounds y*,y; € R on the predicted property value n:(f(C")) of
property ™ € P;,i = 1,2 for a polymer C' to be inferred;

- #v (resp., #c): the number of variables (resp., constraints) in the MILP in Stage 4;

- I-time: the time (sec.) to solve the MILP in Stage 4;

- n: the number n(C') of non-hydrogen atoms in the monomer representation C' inferred in
Stage 4; and

- n'": the number n™(CT) of interior-vertices in the monomer representation C' inferred in
Stage 4;

- 1.t the predicted property value 1, (f(C")) of property 7 € P;,i = 1,2 for the polymer CT
inferred in Stage 4.

Table 3: Results of Stage 4 for instance [, with specified target values of the three properties in
Pi7 Z = 17 2

P, mip v, U Hv #c  Itime n  n™ N
AMD  1.200,1.224 1.217
P, 25 HcL 624.0,628.0 7525 8211 3.09 31 18 6259
TG 171.0,174.0 171.55
HcS 539, 541 540.7
P, 45 MLV 393, 395 12162 18536 210.2 45 29 394.3
RFID 1.4507,1.479 1.46
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Fig. 9(iii) illustrates the polymer C' inferred from I;, with (¥ n,) = (1.200,1.224), (y* ,7;,) =
(624.0,628.0) and (y ,¥y,) = (171.0,174.0) for m =AMD, m =HCL and 73 =T, respectively.

Stage 5. We executed Stage 5 to generate a more number of target chemical graphs C*, where
we call a chemical graph C* a chemical isomer of a target chemical graph C' of a topological
specification o if f(C*) = f(C') and C* also satisfies the same topological specification . For
this, we executed the same algorithm used by Zhu et al. [26]. We computed chemical isomers C* of
each target chemical graph C' inferred in Stage 4. We execute an algorithm for generating chemical
isomers of C' up to 100 when the number of all chemical isomers exceeds 100. The algorithm can
evaluate a lower bound on the total number of all chemical isomers C' without generating all of
them.

Tables 2 shows the computational results of the experiment in Stage 5 for properties AMD,
HcL, RrID and TG, respectively, where we denote the following:

- D-time: the running time (sec.) to execute the dynamic programming algorithm in Stage 5 to
compute a lower bound on the number of all polymers C* of C' and generate all (or up to 100)
chemical isomers C*;

- C-LB: a lower bound on the number of all chemical isomers C* of C', where aEb means a x
10%; and

- #C: the number of all (or up to 100) chemical isomers C* of C' generated in Stage 5.

From Table 2, we observe that the number of isomers C* of an output polymer C' varies on
each case, where the polymer C' admits only 24 isomers C* for instance I, and @ =PRM and over
6.3 x 10° for instance I, and 7 =T'c. The computation time for generating at most 100 isomers
C* and estimating a lower bound C-LB is at most 0.3 second for all cases in our experiment.

5 Concluding Remarks

In this paper, we designed a method for inferring polymers based on the framework for monomers
proposed by Akutsu and Nagamochi [23]. To treat a polymer as a form of monomers with no
connecting-edges, we introduce a new way of representing a polymer with a monomer form by
distinguishing link-edges from other edges in polymers. Since the link-edges of a polymer are
characteristic to the polymer, we included new descriptors that feature the link-edges of a polymer
into our feature vector. We constructed prediction functions by linear regression for eight chemical
properties on polymers in Phase 1 of the framework. We inferred polymers for the first time in
Phase 2 of the framework. The results of our computational experiments suggest that the method
still can infer a polymer with 50 non-hydrogen atoms in the monomer form in a reasonable running
time.

There are some chemical properties on polymers to which linear regression did not provide a
good prediction function. It is left as a future work to use other learning methods such as decision
trees and neural networks and find new effective descriptors in order to construct a prediction
function with a better performance for these chemical properties on polymers.
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Appendix

A Linear Regressions

This section reviews the method for linear regression used by Zhu et al. [26] in the framework of
inferring chemical graphs.

For an integer p > 1 and a vector = € RP, the j-th entry of x is denoted by z(j),j € [1,p].

Let D be a data set of chemical graphs C with an observed value a(C) € R, where we denote
by a; = a(C;) for an indexed graph C;.

Let f be a feature function that maps a chemical graph C to a vector f(C) € RX where we
denote by x; = f(C;) for an indexed graph C;. For a prediction function 1 : RX — R, define an
error function

Err(n; D) = Z (a; —n(f(Cy)))* = Z (a; — n(z))?,

C,eD C;eD
and define the coefficient of determination R*(n, D) to be

Err(n; D) ~ 1
R%*(n,D) &1 — —— fora = — C).
(D) &1 5 = 7y 2 9(©)

For a feature space RX, a hyperplane is defined to be a pair (w,b) of a vector w € RX and a
real b € R. Given a hyperplane (w,b) € RET! a prediction function 7, : R¥ — R is defined by
setting

Nup(@) Zw-z+b=">" w(f)z(j) +b
Je[LK]

We observe that such a prediction function can be represented as an ANN with an input layer
with K nodes u;,j € [1, K] and an output layer with a single node v such that the weight of edge
arc (uj,v) is set to be w(j), the bias of node w is set to be b and the activation function at node
u is set to be a linear function. However, a learning algorithm for an ANN may not find a set
of weights w(j),j € [1, K] and b that minimizes the error function, since the algorithm simply
iterates modification of the current weights and biases until it terminates at a local optima in the
minimization.

We wish to find a hyperplane (w,b) that minimizes the error function Err(n,; D). In many
cases, a feature vector f contains descriptors that do not play an essential role in constructing
a good prediction function. When we solve the minimization problem, the entries w(j) for some
descriptors j € [1, K| in the resulting hyperplane (w,b) become zero, which means that these
descriptors were not necessarily important for finding a prediction function 7,,;. It is proposed that
solving the minimization with an additional penalty term 7 to the error function often results in a
more number of entries w(j) = 0, reducing a set of descriptors necessary for defining a prediction
function 7,,,. For an error function with such a penalty term, a Ridge function s Err(n, 4; D) +

2[D|
AR jepr w(7)? + 0% [34] and a Lasso function g5 Err (s D) + A3 s [w(i)] + [b] [35] are
known, where A € R is a given real number.
Given a prediction function 7,4, we can simulate a process of computing the output 7, 4(z)

for an input # € R¥ as an MILP M(z,y;C;) in the framework. By solving such an MILP for
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a specified target value y*, we can find a vector x* € R¥ such that n,,(z*) = y*. Instead of
specifying a single target value y*, we use lower and upper bounds y*,7* € R on the value a(C)
of a chemical graph C to be inferred. We can control the range between y* and y* for searching a
chemical graph C by setting y* and §* to be close or different values. A desired MILP is formulated
as follows.

M(z,y;C1): An MILP formulation for the inverse problem to prediction function

constants:
- A hyperplane (w,b) with w € R¥ and b € R;
Real values y*, 7" € R such that y* <7y
A set Iz of indices j € [1, K| such that the j-th descriptor dcp,;(C) is always an integer;

A set I of indices j € [1, K| such that the j-th descriptor dep,;(C) is always non-negative;
0(5),u(y) € R,j € [1, K]: lower and upper bounds on the jth-descriptor;

variables:

Non-negative integer variable z(j) € Z,,j € Iz N 1;
Integer variable x(j) € Z,j € Iz \ I;;

Non-negative real variable z(j) € Z,j € I, \ Iy;

- Real variable z(j) € Z,j € [1, K]\ (Iz U I});

constraints:

objective function:
none.

The number of variables and constraints in the above MILP formulation is O(K). It is not
difficult to see that the above MILP is an NP-hard problem.

The entire MILP for Stage 4 consists of the two MILPs M(x,y;Cy) and M(g, x;Cy) with no
objective function. The latter represents the computation process of our feature function f and a
given topological specification. See Appendix E for the details of MILP M(g, z;Cs).

B A Full Description of Descriptors

Our definition of feature function is analogous with the one by Zhu et al. [26] except for a necessary
modification due to our polymer model with link-edges.

Associated with the two functions o and § in a chemical graph C = (H, «, ), we introduce
functions ac : V(E) — (A\ {H}) x (A\{H}) x [1,3], cs: V(F) — (A\ {H}) x [1,6] and ec : V(FE) —
((A\ {H}) x [1,6]) x ((A\ {H}) x [1,6]) x [1,3] in the following.
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To represent a feature of the exterior of C, a chemical rooted tree in 7(C) is called a fringe-
configuration of C.

We also represent leaf-edges in the exterior of C. For a leaf-edge uv € E((C)) with deg ¢ (u) =
1, we define the adjacency-configuration of e to be an ordered tuple (a(u), a(v), 8(uv)). Define

I 2 {(a,b,m)|a,becA,me[l,min{val(a), val(b)}]}

as a set of possible adjacency-configurations for leaf-edges.

To represent a feature of an interior-vertex v € V**(C) such that a(v) = a and deg¢,(v) = d
(i.e., the number of non-hydrogen atoms adjacent to v is d) in a chemical graph C = (H, a, ),
we use a pair (a,d) € (A\ {H}) x [1,4], which we call the chemical symbol cs(v) of the vertex
v. We treat (a,d) as a single symbol ad, and define A4, to be the set of all chemical symbols
p=ade (A\{H}) x [1,4].

We define a method for featuring interior-edges as follows. Let e = uv € E™(C) be an
interior-edge ¢ = uv € E™(C) such that a(u) = a, a(v) = b and B(e) = m in a chemical graph
C = (H,«, ). To feature this edge e, we use a tuple (a,b,m) € (A \ {H}) x (A \ {H}) x [1, 3],
which we call the adjacency-configuration ac(e) of the edge e. We introduce a total order < over
the elements in A to distinguish between (a,b,m) and (b, a,m) (a # b) notationally. For a tuple
v = (a,b,m), let 7 denote the tuple (b, a,m).

Let e = uv € E™(C) be an interior-edge ¢ = uv € E™(C) such that cs(u) = u, cs(v) = ¢/ and
f(e) = m in a chemical graph C = (H,a, ). To feature this edge e, we use a tuple (u, p',m) €
Agg X Agg x[1, 3], which we call the edge-configuration ec(e) of the edge e. We introduce a total order
< over the elements in A4, to distinguish between (u, ¢/, m) and (i, g1, m) (10 # p) notationally.
For a tuple v = (u, i/, m), let 7 denote the tuple (y/, 1, m).

Let m be a chemical property for which we will construct a prediction function 7 from a feature
vector f(C) of a chemical graph C to a predicted value y € R for the chemical property of C.

We first choose a set A of chemical elements and then collect a data set D, of chemical com-
pounds C' whose chemical elements belong to A, where we regard D, as a set of chemical graphs
C that represent the chemical compounds C' in D,. To define the interior/exterior of chemical
graphs C € D, we next choose a branch-parameter p, where we recommend p = 2.

Let A™(D;) C A (resp., A*(D,) C A) denote the set of chemical elements used in the set
Vint(C) of interior-vertices (resp., the set V(C) of exterior-vertices) of C over all chemical graphs
C € D,, and I'™(D,) (resp., I'™(D,)) denote the set of edge-configurations used in the set E™(C)
of interior-edges (resp., the set E'™5(C) of linked-edges) in C over all chemical graphs C € D,.. Let
F(D,) denote the set of chemical rooted trees 1) r-isomorphic to a chemical rooted tree in 7 (C)
over all chemical graphs C € D,, where possibly a chemical rooted tree ¢ € F(D,) consists of a
single chemical element a € A\ {H}.

We define an integer encoding of a finite set A of elements to be a bijection o : A — [1,|A]],
where we denote by [A] the set [1, |A]] of integers. Introduce an integer coding of each of the sets
A™(D.), A(D,), T'™(D,) and F(D,). Let [a]™ (resp., [a]™) denote the coded integer of an
element a € A™(D,) (resp., a € A®(D,)), [y] denote the coded integer of an element ~ in T'™(D,,)
and [¢] denote an element 1 in F(D,).

We assume that a chemical graph C treated in this paper satisfies degc, (v) < 4 in the hydrogen-
suppressed graph (C).
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In our model, we use an integer mass*(a) = [10 - mass(a)|, for each a € A.

We define the feature vector f(C) of a polymer C = (H, a, ) € D, to be a vector that consists
of the following non-negative integer descriptors dep;(C), i € [1, K], where K = 14 + |A™(D,)| +
[A(Dr)| + [T D )| + [T(Dr)| + [Adg| + | F(Dx)| + [Ty -

—_

10.

11.

12.

13.

14.

depy(C): the number |V (H)| — |Vi| of non-hydrogen atoms in C.

. depy(C): the number |V(C)| of interior-vertices in C.

deps(C): the number |E™(C)| of link-edges in C. This descriptor is newly introduced in
this paper to feature a structure of polymers.

dep,(C): the average ms(C) of mass* over all atoms in C;

i.e., ms(C) £ ﬁ > vy mass™ (a(v)).

dep;(C), i =4 +d,d € [1,4]: the number dg’(C) of non-hydrogen vertices v € V(H) \ Vi of
degree deg<c>(v) = d in the hydrogen-suppressed chemical graph (C).

dep,(C), i = 8 + d,d € [1,4]: the number dg(C) of interior-vertices of interior-degree
degeint (v) = d in the interior C™* = (V™(C), E™*(C)) of C.

dep;(C), i = 124m, m € [2,3]: the number bd™(C) of interior-edges with bond multiplicity
m in C; i.e., bd™(C) £ {e € E™(C) | B(e) = m}.

dep;(C), i = 14+ [a]™, a € A™(D,): the frequency na™(C) = |V,(C) NV (C)]| of chemical

a
element a in the set V"*(C) of interior-vertices in C.

dep;(C), i = 14 + |A™(D,)| + [a]™, a € A(D,): the frequency na®(C) = |V4(C) N V(C)|
of chemical element a in the set V**(C) of exterior-vertices in C.

dep;(C), i = 14 + |A™(D,)| + |[A™(D,)| + [7], v € T™(D,): the frequency ec,(C) of edge-
configuration 7 in the set £ (C) of interior-edges in C.

dep;(C), i = 14 + [A™(Dg)| + [A™(Dx)| + [T™(Dx)| + [7], v € T™(Dx): the frequency
ec,(C) of edge-configuration ~ in the set E™(C) of link-edges in C. This descriptor is newly
introduced in this paper to feature link-edges of polymers.

dep;(C), i = 144 |[A™(Dy)| +[A( Dy )| + [T (Dx)| + [, u € Afy: the frequency of chemical
symbols y1 = a(u) deg ¢y (u) of connecting-vertices u in C.

dep;(C), i = 14 + [A™(Dg)| + |[A™(Dx)| + [T (Dr)| + [T™(Dx)| + [Adg| + [¢], ¥ € F(Dx):
the frequency fc,(C) of fringe-configuration ¢ in the set of p-fringe-trees in C.

dep;(C), i = 14 + [A™(Dx)| + [A™(Dyr)| + [T0(Dx)| + [T (Dx)]| + [Aag| + | F(Dx)] + [v],
v € T : the frequency aclf(C) of adjacency-configuration v in the set of leaf-edges in (C).
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C Specifying Target Chemical Graphs

Our definition of topological specification is analogous with the one by Zhu et al. [26] except for a
necessary modification due to our polymer model with link-edges.

Seed Graph

A seed graph for a polymer is defined to be a graph Go = (Vi, Ec) with a specified edge subset Egk
such that the edge set E¢ consists of four sets F(>), E(>1), /1) and E—;), where each of them can
be empty, and E&¥ is a circular set in G such that ) # E&* C E>9) U E>1) U E(_yy. Figure 5(a)
illustrates an example of a seed graph, where Vo = {uy, us, ..., u1a}, Ezo) = {a1,a2,a3, a4},
E1) = {as, ag, ..., a0}, Eoj1) = {aw0}, Ec1) = {a11, a1z, . .., a1} and EZ* = {ay, as}.

A subdivision S of G¢ is a graph constructed from a seed graph G according to the following
rules:

Each edge e = uv € E(>9) is replaced with a u,v-path P, of length at least 2;

Each edge e = uv € E(>1) is replaced with a u,v-path P, of length at least 1 (equivalently e is
directly used or replaced with a u,v-path P, of length at least 2);

Each edge e € E(g) is either used or discarded; and

Each edge e € /—;) is always used directly.

The set of link-edges in the monomer representation C of an inferred polymer consists of edges
in E&% N (E21) U E>1)) or edges in paths P, for all edges e = uv € EGX N (E>1) U E>y)) in a
subdivision S of G¢.

A target chemical graph C = (H, «, 3) will contain S as a subgraph of the interior H™ of C.

Interior-specification

A graph H* that serves as the interior H™ of a target chemical graph C will be constructed as
follows. First construct a subdivision S of a seed graph G¢ by replacing each edge e = uu’ €
E>9) U E(>1) with a pure u,u-path P.. Next construct a supergraph H* of S by attaching a leaf
path @), at each vertex v € V- or at an internal vertex v € V(P,) \ {u,u'} of each pure u, u'-path
P, for some edge e = uu’ € E(>9) U E(>1), where possibly @, = (v), E(Q,) = 0 (i.e., we do not
attach any new edges to v). We introduce the following rules for specifying the size of H*, the
length |E(P.)| of a pure path P,, the length |E(Q,)| of a leaf path @,, the number of leaf paths
(@, and a bond-multiplicity of each interior-edge, where we call the set of prescribed constants an
interior-specification oy

- Lower and upper bounds ni% ni¥, € Z, on the number of interior-vertices of a target chemical

graph C.
- Lower and upper bounds ni% n¥% € Z, on the number of link-edges of a target chemical

graph C.
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- For each edge e = uu' € E>9) U E(>1),

a lower bound /5(e) and an upper bound fyg(e) on the length |E(P.)| of a pure u,u'-path
P.. (For a notational convenience, set f1g(e) := 0, fug(e) := 1, e € Eg1) and {1p(e) == 1,
KUB(e) =1,e€ E(:l).)

a lower bound blyg(e) and an upper bound blyg(e) on the number of leaf paths @, attached
at internal vertices v of a pure u, u’-path P,.

a lower bound chyg(e) and an upper bound chyg(e) on the maximum length |E(Q,)| of a leaf
path @, attached at an internal vertex v € V(P,) \ {u,u'} of a pure u,u'-path P..

- For each vertex v € V,

a lower bound chyg(v) and an upper bound chyg(v) on the number of leaf paths @), attached
to v, where 0 < chpp(v) < chyg(v) < 1.

a lower bound chpg(v) and an upper bound chyg(v) on the length |E(Q,)| of a leaf path @,
attached to v.

- For each edge e = wu' € E¢, a lower bound bd,, g(e) and an upper bound bd,, yg(e) on
the number of edges with bond-multiplicity m € [2,3] in w,u-path P,, where we regard P.,
e € By U E-1) as single edge e.

We call a graph H* that satisfies an interior-specification oy, a oy, -extension of Go, where the
bond-multiplicity of each edge has been determined.

Table 4 shows an example of an interior-specification oy, to the seed graph G¢ in Figure 5.

Figure 6 illustrates an example of an oy,-extension H* of seed graph G¢ in Figure 5(a) under
the interior-specification oy, in Table 4.

Chemical-specification

Let H* be a graph that serves as the interior H™ of a target chemical graph C, where the
bond-multiplicity of each edge in H* has be determined. Finally we introduce a set of rules
for constructing a target chemical graph C from H* by choosing a chemical element a € A and
assigning a p-fringe-tree 1) to each interior-vertex v € V™. We introduce the following rules for
specifying the size of C, a set of chemical rooted trees that are allowed to use as p-fringe-trees
and lower and upper bounds on the frequency of a chemical element, a chemical symbol, an edge-
configuration, and a fringe-configuration where we call the set of prescribed constants a chemical
specification Oge:
- Lower and upper bounds nyg,n* € Z, on the number of vertices, where ni"t < n;g < n*.
- A subset F* C F(D,) of chemical rooted trees ¢ with ht((1))) < p, where we require that every
p-fringe-tree Clv] rooted at an interior-vertex v in C belongs to F*. Let A®* denote the set of
chemical elements assigned to non-root vertices over all chemical rooted trees in F*.
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Table 4: Example 1 of an interior-specification .

int __ int __ Ink __ Ink __
it =20 [ ol =30 | o =2 [ nlk =24

a; ay a3 a4 Qs Gg ay ag Qag
lre(a;) 2 4 3 2 2 1 1 1 1
lvp(a;) |3 6 6 5 3 3 6 2 6
blig(e;) |0 1 1 0 0 0 0 0 O
blyp(e;) | 1 4 4 3 2 1 1 1 1
chig(e;)) O 2 1 0 0O 0 0O 0 O
chyp(a;) | 3 6 6 3 3 3 3 0 O

Uy Uz U3 Ug Us Us U7 U U9 Ulp Ul U2 U133 Ul4
blig(u;)) |0 0 0 0 0 0 0 0 1 0 0 0 0 0
blup(u;)) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1
chig(w;) ] O 0 0O O O 0 0 0O 1 0 0 0 0 0
chyp(u;) | 4 4 4 4 4 4 4 4 6 4 4 4 4 4

ap Gz a3 a4 a5 Gag ary ag GaGg aip G111 Q12 A3 A4 A5 G Q17 418
bdQ,LB(az‘) o 0 0 o0 o O 0 0 o0 0 0 0 0 1 0 0 0 0
bdzUB(ai) 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
bdg,LB(Cli) o 0 o0 0 o0 0O 0 0 0 0 0 0 0 0 0 0 0 0
bdg,UB(ai) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- A subset A C A™(D,), where we require that every chemical element «(v) assigned to an
interior-vertex v in C belongs to A™. Let A := A™ U A and na,(C) (resp., nal®®(C) and
nad*(C)) denote the number of vertices (resp., interior-vertices and exterior-vertices) v such
that a(v) = a in C.

- Aset AJY € A x [1,4] of chemical symbols.

- Subsets T'nk C T of Tn%( D) of edge-configurations (u, u/, m) with p < g/, where we require
that the edge-configuration ec(e) of an interior-edge (resp., a link-edge) e in C belongs to T
(resp., I'™K). We do not distinguish (u, i/, m) and (p/, g, m).

- Define I'™ (resp., T'mK) to be the set of adjacency-configurations such that I, := {(a,b,m) |

(ad,bd’,m) € T}, t € {int,Ink}. Let ac™(C),v € '™ (resp., ac(C),v € ') denote the
number of interior-edges (resp., link-edges) e such that ac(e) = v in C.

- Subsets A*(v) C {a € A | val(a) > 2}, v € V, we require that every chemical element a(v)
assigned to a vertex v € V¢ in the seed graph belongs to A*(v).

- Lower and upper bound functions narg,nayg : A — [0,n*] and na nal : A™ — [0,n*] on
the number of interior-vertices v such that a(v) = a in C.

- Lower and upper bound functions ns}%, nsi¥g : Aiﬁ; — [0,n*] on the number of interior-vertices
v such that cs(v) = p in C.
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- Lower and upper bound functions ns{'§, nsgfg : Ay — [0,2] on the number of connecting-vertices

v such that cs(v) = p in C.

- Lower and upper bound functions acl® acih, : T — 7. (aclk,aclh : Tk — Z.) on the

number of interior-edges (resp., link-edges) e such that ac(e) = v in C.

- Lower and upper bound functions ecl’y, eclty : T — 7. (resp., ecls, eclik : Tk — 7. ) on the

number of interior-edges (resp., link-edges) e such that ec(e) =~ in C.

- Lower and upper bound functions feyg, fcyg : F* — [0,7*] on the number of interior-vertices v
such that C[v]™ is r-isomorphic to ¢ € F* in C.

- Lower and upper bound functions acly, aclly : T — [0,7*] on the number of leaf-edges uv in

acc with adjacency-configuration v.

We call a chemical graph C that satisfies a chemical specification e, a (Oing, 0ce)-extension of
G, and denote by G(G¢, Oint, 0ce) the set of all (i, 0ce)-extensions of Gg.

Table 5 shows an example of a chemical-specification o, to the seed graph G¢ in Figure 5.

Figure 3 illustrates an example of a (o, 0ce)-extension of G¢ obtained from the oy,-extension
H* in Figure 6 under the chemical-specification o, in Table 5.
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Table 5: Example 2 of a chemical-specification .

nig = 30, n* = 50.
branch-parameter: p = 2
Each of sets F(v),v € Vi and Fg is set to be

the set F of chemical rooted trees 1 with ht({¢)) < p =2 in Figure 5(b).
| A= {H,C,N,0,8(2),8(),P = P(g),C1} | Al = {C2,C3,C4,N2,N3,02,8)2,5(5)3,P4} |

[T [ 11=(C,C,1),1,=(C,C,2),v3=(C,N,1),14=(C,0,1),15=(C,8(2), 1), v%5=(C, S, 1), 17 =(C,P, 1) |
[ [~y =(C2,C2, 1), 72 = (C2,C2,2),73=(C2,C3, 1), 7a= (C2,C3, 2), 75 = (C2, C4, 1), v = (C3,C3, 1),
7 =(C3,C3,2), 75 = (C3, C4, 1), 79 = (C2,N3, 1), y10=(C3, N2, 1), 711 = (C4, N2, 1), y12 = (C2, 02, 1),
Y13 = (C3, 02, 1), Y14 = (CQ, 8(2)2, 1), Y15 = (C3, 3(2)2, 1), Y16 = (C4, S(2)2, 1), Yir= (C?), S(6)3, 1),
Y18 =(C4,8(6)3,1),719=(C2,P4,1), 720 =(C3,P4, 1)

[Tk [ =(c,c, 1), u2_(c C,2),v5=(C,N,1),4=(C,Sp),1) |

[k |y =(C2,C2,1),v,=(C2,C3,1),v4=(C2,C4, 1),7,=(C3,C3,1),~v =(C3,C3,2), v, = (C2,N3, 1),
77 =(C3,82,1),7%=(C2,8)2,1),7%5=(C3,8(2)2, 1), 710 =(C4, 822, 1)

A*(u;) = {C},i € {1, 2, 3 4,5,6,9}, A*(us) = {0}, A*(u12) = {C,P},
A*(w;) = {C,0,N}, i € [1,14] \ {1,2,3,4,5,6,8,9,12}

H C N 0 Sg Sg P Cl C N 0 Sg Se P
nap(a) [40 25 1 1 0 0 0 0| na™(a)| 10 1 0 O 0 0
napp(a) (80 50 8 8 4 4 4 4 ||nalh(a) |25 4 5 2 2 2
C2 C3 C4 N2 N3 02 S(2)2 S(6)3 P4
()3 5 0 0 0 0 0 0 0
ns(p) |12 15 5 5 3 5 1 1 1
C2 C3 C4 N2 N3 02 S@p2 Sg3 P4
s 0 0 0 0 0 0 0 0 0
s [ 2 2 2 2 2 2 1 1 0
Vi Vp V3 Yy Vs Vg V7
ac® ()]0 0 0 0 0 0 O
ac® () [30 10 10 10 2 3 3

T Y3 M Vs Vi €[6,13] i € [14,20]
()10 0 0 0 0 0 0
ec®(7)| 4 15 5 5 10 5 2

7 VA ~i i € [1,10]
acl® ()| 0 0 0 0 || ec®(y) 0
aclE (V) |10 5 5 5 || eclHs(y) 4

ve{y; |i=1,6,11} e F \{;|i=1,6,11}
ferg () 1 0
feus(¥) 10

ve{(cc1),(cc2)} velf\{(c1),(CcC2)}
aci(v) 0 0
aclip(v) 10 8
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D Test Instances for Stages 4 and 5

We prepared the following instances I, and I, for conducting experiments of Stages 4 and 5 in
Phase 2.

In Stages 4 and 5, we use four properties 7 € {AMD, HcL, RrID, TG} and define a set
A(m) of chemical elements as follows: A(AMD) = Ay = {H,C,N,0,C1,8(»}, A(HcL) = A(Tg) =
As = {H,C,0,N, C1, S(2), S(G)}, A(RFID) = Ag = {H,C, O(1), 0¢2), N, C1, Siy), F} and A(PrRM) = A3 =
{H,C,0,N,C1}.

(a) I, = (Gg, Oint, 0ce): The instance used in Appendix C to explain the target specification. For
each property 7 € {AMD, HcL, RrID, TG, PRM}, wereplace A = {H,C,N, 0, S(2), S(s), P(5), C1}
in Table 5 with A(7) N {S(2),S(), P5),C1} and remove from the o all chemical symbols,
edge-configurations and fringe-configurations that cannot be constructed from the replaced
element set (i.e., those containing a chemical element in {S(),S), P(5),C1} \ A(7)).

(b) Iy = (G, Oint, 0ce): An instance that represents a set of polymers that includes the four
examples of polymers in Fig. 7. We set a seed graph G¢ = (Vo, Ec = E-1)) to be the
graph with two cycles C; and C; in Fig. 8(a), where we set E>q) = Egk = {ay,as} and
E(:l) = {ag, aio, ... ,a14}.

Set A := A(r) for each property 7 € {AMD, HcL, RFrID, TG}, and set Aid“gt to be the set of
all possible chemical symbols in A x [1,4].

Set T (resp., T'"K) to be the set of edge-configurations of the interior-edges (resp., the link-
edges) used in the four examples of polymers in Fig. 7. Set T'"* (resp., ['2¥) to be the set of
the adjacency-configurations of the edge-configurations in I'™ (resp., I'"k).

We specify nip for each property 7 and set ni% := 14, ni% := n* := nyp + 10, ni%§ := 2,
nik = 2 + max{nyg — 15,0}.

For each link-edge a; € E>9) = Eg* = {a1, a2}, set {ip(a;) := 2 + max{|(nyg — 15)/4],0},
lug(a;) := lup(a;)+5, blug(a;) := 0,blyg(a;) := 3, chyp(a;) := 0, chyp(a;) := 5, bdap(a;) ==
0 and bd27UB<CLi) = LgLB(az)/SJ .

To form two benzene rings from the two cycles C; and Cy, set A*(u) := {C}, blp(u) =
blyg(u) := chyp(u) := chyp(u) := 0, u € V¢, bda1s(a;) :==bdyup(a;) :=0,i € {3,5,7,9,11,13},
bda1p(a;) == bdsyg(a;) == 1,7 € {4,6,8,10,12, 14}.

Not to include any triple-bond, set bdsp(a) := bdsyg(a) :=0,a € Ec.

Set lower bounds naypp, nal nsit nsf® aclt aclik ecit ecl and acly to be 0.

Set upper bounds nayg(a) := n*,na € {H,C}, nayg(a) := 5 + max{nyg — 15,0},a € {0,N},
nayg(a) := 2+ max{|(nLg — 15)/4],0},a € A\ {H,C,0,N}, nsgig(p) := 2, u € AfY, and nag,
nsit aclih acl eclt ecls and aclly to be n*.

Set F to be the set of the 17 chemical rooted trees 1,7 € [1,17] in Fig. 8(b). Set Fg :=
F(v) :=F, v € Vg and fepp(v) := 0,¢ € F, feyp(vy) := 12 + max{nyg — 15,0}, € [1,4],
fecup(¥i) = 8 + max{[(ng — 15)/2],0},7 € [5,12] and feyp(¢;) = 5 + max{|[(nLp —
15)/4],0},i € [13,17],¢; € F.
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E All Constraints in an MILP Formulation for Chemical
Graphs

Our definition of an MILP formulation MILP M(g, x; Cs) is analogous with the one by Zhu et al. [26]
except for a necessary modification due to our polymer model with link-edges.

We define a standard encoding of a finite set A of elements to be a bijection o : A — [1, |A]],
where we denote by [A] the set [1,|A|] of integers and by [e] the encoded element o(e). Let €
denote null, a fictitious chemical element that does not belong to any set of chemical elements,
chemical symbols, adjacency-configurations and edge-configurations in the following formulation.
Given a finite set A, let A, denote the set AU {e} and define a standard encoding of A, to be a
bijection o : A — [0, |A]] such that o(e) = 0, where we denote by [A] the set [0, |A]|] of integers
and by [e] the encoded element o(e), where [¢] = 0.

Let 0 = (G, oint, 0ce) be a target specification, p denote the branch-parameter in the specifi-
cation ¢ and C denote a chemical graph in G(Gc¢, Oint, Oce)-

E.1 Selecting a Cyclical-base
Recall that

E(:l) = {6 € Ec | £LB(6)
E(zl) = {6 € E¢ | ELB(G)

fUB(e) = 1}, E(O/l) = {6 € Ec | £LB(6) = O,EUB(Q) = 1},
17€UB(€) > 2}, E(ZQ) = {6 € Ec | ELB(G) > 2},

A subset EE* C E(_1)U E(>1) U E(9) is given for introducing link-edges in the monomer represen-

tation C of an inferred polymer.

Every edge a; € E(—y) is included in (C);

Each edge a; € E(g/1 is included in (C) if necessary;

- For each edge a; € E>9), edge a; is not included in (C) and instead a path
P = (Uctaﬂ(z’)a UTj—la Uij e aUTj+t> Uchead(i))

of length at least 2 from vertex ’Uctaﬂ(i) to vertex vchead(i) visiting some vertices in Vi is con-
structed in (C); and

- For each edge a; € E(>1), either edge a; is directly used in (C) or the above path P; of length
at least 2 is constructed in (C).

Let tc 2 |Vo| and denote Vi by {v% | i € [1,t¢]}. Regard the seed graph G¢ as a digraph
such that each edge a; with end-vertices v®; and v%; is directed from v®; to v®; when j < j'.
For each directed edge a; € Ec, let head(i) and tail(i) denote the head and tail of ¢®(i); i.e.,
a; = (v%ai(i), Vohead(i))-

Define

kc £ |Es2) U Esyl, ke £ |Esl,
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and denote Ec = {a; | i € [1,m¢]},
Ezoy={ax | k € [LEC/]}? By ={a | k € [E(JH_ L kel},

E(0/1 = {(17; ‘ 1€ [k’c + 1,]{?0 + ‘EO/l H} and E:1 = {G,Z' | 1€ [lfc + ’E 0/1)| + 1,mc]}.

Let I(—;) denote the set of indices ¢ of edges a; € E(—yy. Similarly for I(g/1), I(>1) and I(>9). Let
I denote the set of indices ¢ of edges a; € Elnk.

To control the construction of such a path P; for each edge ar € E(>2) U E(>1), we regard the
index k € [1, kc| of each edge a, € E(>2)U E(>1) as the “color” of the edge. To introduce necessary
linear constraints that can construct such a path P properly in our MILP, we assign the color k
to the vertices v*;_1,v";,..., v1;4; in Vi when the above path P is used in (C).

For each index s € [1,t¢], let Ic(s) denote the set of edges e € E¢ incident to vertex vC,,
and E(J;l)(s) (resp., £ _;)(s)) denote the set of edges a; € E(—) such that the tail (resp., head)
of a; is vertex v®,. Similarly for EJB/U( s), Egny(s), E’;l)(s), B (s), E*. (s) and By (s).

( (=2)
Let Ic(s) denote the set of indices i of edges a; € I¢(s). Similarly for I(:l)( s), [(:1&/9), I;[)/l)(s),

Loyn(5), ]&1)(3) 150y(s), ](+ 5(s) and I 5, (s). Note that [1, kc] = I(>2)UI(>1) and [kc+1,mc] =
Iiz1) U Loy U L (=)

constants:
- n* € Z: an upper bound on the number n(C) of non-hydrogen atoms in C;

- tc = ’VC’ kc = ’E>2‘ kc = |E>2) UE(>1)‘ T = nlél% — |Vc‘, mgc — ’Ec‘ Note that
a; € Ec\ (E(>2) U E(>1)) holds i € [kc¢ + 1, mc¢];

- bip(k), lus(k) € [1,t1], k € [1, kc]: lower and upper bounds on the length of path Py;

- ”1(;(1) = |lwk N E=1y| = [Tk N {[kc + |En)| + 1, mc}|: the number of link-edges created from
Ey;

- niik g € [0,n*]: lower and upper bounds on the number of link-edges of a target polymer C;

variables:
- €9(i) € [0,1], i € [1,mc]: (i) represents edge a; € Ec, i € [1,mc] (e°(i) = 1, i € I_yy;
eC(i) =0,i € 1(22)) (e€(i) = 1 & edge q; is used in (C));

- vT(i) € 10,1], ¢ € [1,t7]: vT(i) = 1 & vertex vT; is used in (C);

- eT(i) €]0,1],7 € [1,tr+1]: € (i) represents edge eT; = (v1;_1,vT;) € Ex, where e’ and €Ty,
are fictitious edges (€T (i) = 1 < edge €T, is used in (C));

- xT(2) € [0,kc], i € [1,¢r]: xT (i) represents the color assigned to vertex vT; (xT(i) =k > 0 &
vertex v7T; is assigned color k; xT (i) = 0 means that vertex v™; is not used in (C));

- ot (k) € [(us(k) — 1, byp(k) — 1], k € [1, kc], clr™(0) € [0,¢p]): the number of vertices v™; € Vi
with color c¢;
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- 0y (k) €[0,1), k € [0,kc]: 6} (k) =1 < x" (i) = k for some i € [1, ty];

- X6, k) €[0,1], i € [1,tr], k € [0,kc] (X" (i, k) =1 & x" (i) = k);

- agg/g(z) € [0,4], i € [1,t¢]: the out-degree of vertex v“; with the used edges e“ in Eg;
)

4
- &Eg; (i) € [0,4], i € [1,tc]: the in-degree of vertex v®; with the used edges e in E¢;

- Nk € [0 nlk]: the number of link-edges in C;
constraints:
ec(i) =1, 1€ [(:1), (3)
(1) =0, (i) >1, i€ Iz, (4)
eC(@) +elr (i) > 1,  clr'(i) <tp - (1—e(3i), i€ Iz, (5)
— . .
> e®(c) = deg (i), > e®(c) = degg (i), i€[l,tc], (6)
€l Sy (UI g 1y (DUI g (3) cel(*zl)(z’)ul(*()/l)(i)ul(il)(i)

XT(i7O) =1- UT(i)’ Z XT(ivk) =1, Z k - XT(ivk) = XT(i)v (S [1vtT]7 (7)

kJE[O,kc} k‘E[O,k‘c]
> X" k) =l (k), tr-oy(k) > > X"(i.k) =6} (k) k€ [0, kel, (8)
i€[1,tr] 1€[1,t7]

UT@ o 1) 2> UT(i)>

ke (Vi —1) —e' (1) 2 x" (1 = 1) = x" (1) 2 v (i = 1) — e'(9), i€2tr], (9
ST (el (k) +1) + 0t = n (10)
kelnN[1,kc]

E.2 Constraints for Including Leaf Paths

Let to denote the number of vertices u € Vg such that blyg(u) = 1 and assume that Vo =
{uy,ug, ..., u,} so that

blUB(Ui) = 1, 1 E [1,{(}] and blUB(’LLl) = 0, 1 € [t’zj + 1,tc].
Define the set of colors for the vertex set {u; | i € [1,c]} U Vi to be [1, cg] with

Let each vertex v%;, i € [1,t¢] (resp., v*; € Vi) correspond to a color i € [1,¢g] (vesp., i + tc €

[1,cr]). When a path P = (u,v";,v";14,...,0",4;) from a vertex u € Vo U Vr is used in (C), we
assign the color i € [1, cp] of the vertex u to the vertices v, 0" 1,.. ., v € Vi,
constants:

32



- cp: the maximum number of different colors assigned to the vertices in Vg;

nt ni¥s € [2,n*]: lower and upper bounds on the number of interior-vertices in C;

- blyg(i) € [0,1], i € [1,fc]: a lower bound on the number of leaf p-branches in the leaf path

rooted at a vertex UCZ';

- blyg(k),blyg(k) € [0,lus(k) — 1], k € [1,kc] = I(>2) U I(>1): lower and upper bounds on the
number of leaf p-branches in the trees rooted at internal vertices of a pure path P for an edge
a, € By U E>g);

variables:

nZt € [ ni8]: the number of interior-vertices in C;

- 0F(i) €10,1], i € [1,tp]: vF (i) = 1 & vertex v¥; is used in C;

F

- e¥(i) € [0,1], i € [1,tp + 1]: €F(i) represents edge e'; = vF;_1v¥;, where e} and ef;,,; are

fictitious edges (e¥'(i) = 1 < edge e is used in C);

- XM(4) € [0, cpl, i € [1,tr]: X" (i) represents the color assigned to vertex v; (x¥(i) = ¢ < vertex
vF; is assigned color c);

- cltf(c) € [0,tg], ¢ € [0, cg]: the number of vertices v*; with color ¢;

- 0% (c) € [blLg(c), 1], c € (1, tc): 0y (c) =1 & x"(i) = c for some i € [1,tp];
- 0 (e) € [0,1], c e [tc + 1, cpl: 0y (c) =1 & x"(i) = c for some i € [1,tp];
- XF<Z7C) = [07 1]7 S [17tF]7 cE [07CF]: XF(Z7C) =le XF(Z) =G

- bl(k,i) € [0,1], k € [1,kc] = L2 U I>1), @ € [1,t7]: bl(k,i) =1 < path Py contains vertex v,
as an internal vertex and the p-fringe-tree rooted at v'; contains a leaf p-branch;

Consj;(l:ns)s — =" (i), CE%F} X' (i0) =1, CE%F} cox"(ie) =x"(0), i€l (11)
ie%ﬂ X (i, c) = ci(c), tp -0k (c) > ie%ﬂ X" (i, ¢) > 6% (c), ¢ €0, cp, (12)
(1) =e"(tp +1) =0, (13)
V(= 1) > 0" (i),
cp - (UM (i —1) —e"(i) = X" (i — 1) = x"(6) 2 v"(i — 1) — e (4), i€2tr],  (14)



bl(k, i) > 6% (tc +14) + X" (i, k) — 1, kel kel,i€1,tr], (15)

> bl(ki) < > (ke +1), (16)

ke[l,kc)i€(l,tr] 1€[1,t7]
blip(k) < Y bl(k,i) < blus(k), k€ [1, k], (17)
1€[1,t7]

te+ > 0T+ > o) =ng" (18)

iE[l,tT] iE[l,tF]

E.3 Constraints for Including Fringe-trees

Recall that F(D,) denotes the set of chemical rooted trees ¢ r-isomorphic to a chemical rooted
tree in 7 (C) over all chemical graphs C € D,, where possibly a chemical rooted tree ¢ € F (D)
consists of a single chemical element a € A\ {H}.

To express the condition that the p-fringe-tree is chosen from a rooted tree C;, T; or F;, we
introduce the following set of variables and constraints.

constants:
- npp: a lower bound on the number n(C) of non-hydrogen atoms in C, where nyg, n* > n}f‘é;

- chyp(i), chyg(i) € [0,n*], i € [1,t7]: lower and upper bounds on ht((7;)) of the tree T; rooted
at a vertex UCZ';

- chrp(k), chug(k) € [0,n*], k € [1, kc] = I(»2) U I(>1): lower and upper bounds on the maximum
height ht((T)) of the tree T' € F(Py) rooted at an internal vertex of a path P for an edge
ay € By U E2);

- Prepare a coding of the set F(D,) and let [¢)] denote the coded integer of an element ¢ in
F(Dx);

- Sets F(v) C F(Dy,),v € Vg and Fr C F(D,) of chemical rooted trees T' with ht(T) € [1, pl;

- Define Fri= UvEVC F(U) UFE7 JT_‘ZC = F(Uci)a 1€ [1,tc], .F;T = JT"E, 1€ [1,tT] and .F'ZF = FE;
1€ [1,tp];

- ferp(v), feup(v) € [0,n*], ¢ € F*: lower and upper bound functions on the number of interior-
vertices v such that C[v] is r-isomorphic to ¢ in C;

- FX[pl,p € [1,p],X € {C, T,F}: the set of chemical rooted trees T' € F* with ht((T)) = p;
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- ng([¢]) € [0,3°],¢ € F*: the number n(())) of non-root hydrogen vertices in a chemical rooted
tree v;

- htg([¢]) € [0,p], € F*: the height ht({¥))) of the hydrogen-suppressed chemical rooted tree
(¥);

- deg™([¢]) € [0,3],4 € F*: the number deg,((1)) of non-hydrogen children of the root r of a
chemical rooted tree 1;

- deg™([1]) € [0,3],1 € F*: the number deg,(v)) — deg,({1)) of hydrogen children of the root

of a chemical rooted tree ;

- Vion(¥) € [=3,43],% € F*: the ion-valence of the root in v;

- aclf(y),v € T the frequency of leaf-edges with adjacency-configuration v in 1;

- acly aclly : T — [0,7*]: lower and upper bound functions on the number of leaf-edges uv in

acc with adjacency-configuration v;

variables:
- ng € [nyg,n*]: the number n(C) of non-hydrogen atoms in C;
- 0vX(i) € [0,1],i € [1,tx], X € {T,F}: vX(i) = 1 & vertex v¥; is used in C;

- 6X%(i, [¥)) € [0,1],7 € [1,tx),v € FX, X € {C, T,F}: 6%(i,[¢)]) = 1 & 1 is the p-fringe-tree

rooted at vertex v¥; in C;

- fe([Y]) € [fer(v), feup(¥)], v € F*: the number of interior-vertices v such that Clv] is r-
isomorphic to ¢ in C;

- acl([v]) € [aclz(v),acz(v)],v € TE: the number of leaf-edge with adjacency-configuration v

in C;

- deg(i) € [0,3],i € [1,tx],X € {C,T,F}: the number of non-hydrogen children of the root of
the p-fringe-tree rooted at vertex v*; in C;

- hyddeg™ (i) € [0,4], i € [1,tx], X € {C, T,F}: the number of hydrogen atoms adjacent to vertex
UXZ' (i'e'7 hyddeg<vxz)) in C= (Ha a, 6>a

- eledegy (i) € [=3,+3], i € [1,tx], X € {C,T,F}: the ion-valence vi,, () of vertex v¥; (i.e.,
eledegy (1) = Vion (%) for the p-fringe-tree 1 rooted at v*;) in C = (H, a, f3);

- h2(i) €10,p],4 € [1,tx], X € {C, T, F}: the height ht({T")) of the hydrogen-suppressed chemical
rooted tree (T) of the p-fringe-tree T rooted at vertex v*; in C;

- o(k,i) €[0,1], k € [1,kc] = I(>2)UI(>1),i € [1,t7]: o(k,i) = 1 & the p-fringe-tree T, rooted at
vertex v = vT; with color k has the largest height ht({7,)) among such trees T,,v € Vr;
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constraints:

> oRG ) =1, i € [1,tc],
YeFyL
2555(71, [Y]) = v™(4), i€ [1,tx], X e {T,F},
PeFX

YeFE
> deg™([]) - 6 (i, [¢]) = hyddeg™ (i),
YeFE
> Vien([1]) - 6 (i, [1h]) = eledegy (i), i€[Ltx], X e {C,T,F},
YEFX
> oG [e]) =0 (i) — (i + 1), i€ [1,ty] (eF (tp +1) = 0),
YeFT [p]
> htg([¥]) - 6 (i, [v]) = hX(0), i€[l,tx],X € {C,T,F},
YeFE

§ ng([1]) - 6 (4, []) + E v* (i) + tc = ne,
YeFX i€[L,tx],Xe{T,F}
1€[1,tx],Xe{C, T,F}

> GG ) = fe([y)]), b e Fr,

i€[1,tx],Xe{C,T,F}

S ad@) a6 ) = ad (), o

YeFX ie[l,tx],Xe{C,T,F}

he(i) > chpp(i) — n* - 0% (i), ol (i) + p > chup(i),
h(i) < chup(i), o™ (i) + p < chyp(i) + n* - (1 = 6% (), i€ [1,tc),
ChLB(i) < hC(Z) < ChUB(i), 1€ [i:j -+ 1,tc],

hY(i) < chyp(k) +n* - (05 (fc + i) + 1 — x" (i, k),

¥ (tc +14) + p < chyg(k) +n* - (2 — 55(7% +14) —x (i, k), k€[l ke),i€ 1, tr],
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> ok, i) =6y (k), ke[l ke, (29)

1€[1,t7]
XY@, k) > o(k,i),
W (i) > chyp(k) —n* - (65 (fc + i) + 1 — o(k, 1)),
¥ (tc +1) + p > chip(k) —n* - (2= 0% (tc + i) —o(k, i), k€[l keli€[Ltr].  (30)

E.4 Descriptor for the Number of Specified Degree

We include constraints to compute descriptors for degrees in C.

variables:

- deg®(i) € [0,4], i € [1,tx], X € {C,T,F}: the number of non-hydrogen atoms adjacent to
vertex v = v™; (i.e., degcy(v) = degy(v) — hyddege(v)) in C = (H,a, f);

- degqp(i) € 10,4], ¢ € [1,tc]: the number of edges from vertex v%; to vertices v}, j € [1,tr];

- degpo(i) € [0,4], i € [1,tc]: the number of edges from vertices vT;, j € [1,t7] to vertex v%;

- 6%.(i,d) € [0,1], i € [1,tc], d [1,4 ( d) € [0,1], i € [1,tx], d € [0,4], X € {T,F}:
5§g(i, d) =1 & deg™(i) + hyddeg (i) =

- dg(d) € [dg;p(d),dgyg(d)], d € [1,4]: the number of interior-vertices v with deg (vX;) = d in
C=(H ap)

- degl'(i) € [1,4], i € [1,tc], degk®(i) € [0,4], i € [1,tx],X € {T,F}: the interior-degree
deg it (v%;) in the interior H™ = (Vin*(C), E™(C)) of C; i.e., the number of interior-edges

incident to vertex v%;;

- 61dIg,C<Z7d) [O 1] ) [17
Ok (i,d) =1 & degmt( ) =

- dg™(d) € [dgyp(d),dgyp(d)], d € [1,4]: the number of interior-vertices v with the interior-
degree deg it (v) = d in the interior H™ = (V"*(C), E™(C)) of C = (H, , ).

] d € [1,4], o« (i,d) € [0,1], 7 € [1,tx], d € [0,4], X € {T,F}:

constraints:
> 8y (k) = deger(i), > Oy (k) = degpe(i), i € [1,tc], (31)
kef&)(i)w&l)(i) K€L o) (DI ()
- ,. -t . . . in . -
deg (i) + degq (i) + degor (i) 4 degpe (i) + 6y (i) = degd*(4), i € [1,tc], (32)
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q /. Tt . . in ; r
deg (i) + dege (i) + deger(i) 4 degre (i) = degd (i), i€ [tc+1,tcl,

deglt (i) 4 deg& (i) = degc(i), i€ [1,tc),
> 6500, [W]) = 2 — degg(i) i€ (1t
veFL[p]

207 (4) + 5F(th +14) = degh* (i),
degt"(i) + deg*(i) = deg" (4), i€ 1ty (e'(1) = e (tr +1) = 0),

(i) + € (i + 1) = degg" (i),
degp® (i) + deg*(i) = deg” (4), i€ [1,tg] (e"(1) =" (tp +1) = 0),

> on(id) =1, > d-03,(i,d) = deg* (i) + hyddeg™ (i),

de[0,4] defl,4]

PN LY d-Spi(i,d) = degi*(i), i€ [Ltx],X €{T,C,F},

de(0,4] dell,4]

Zéggzd Z(Sggzd+25 (1,d) = dg(d),

i€[1,tc] i€[1,tr] i€[1,tr]
ool d)y+ Y ot d)+ > Se(i,d) = dg™(d), d e [1,4].
i€[Ltc] i€[1,tr) ie[1,tr]

E.5 Assigning Multiplicity

(36)

(38)

(39)

We prepare an integer variable §(e) for each edge e in the scheme graph SG to denote the bond-
multiplicity of e in a selected graph H and include necessary constraints for the variables to satisfy
in H.

constants:

- Be([¢]): the sum By(r) of bond-multiplicities of edges incident to the root r of a chemical rooted

tree ¥ € F*;

variables:
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- BX(i) €10,3], i € [2,tx], X € {T,F}: the bond-multiplicity of edge eX; in C;

- BC3G) € [0,3], i € [E(; + 1,mc] = I>1) U Loy U L=1y: the bond-multiplicity of edge a; €
By U Egpmy U E=) in G

- BOT(k), BTC(k) € 10,3], k € [1, kc] = I(2) U I>1): the bond-multiplicity of the first (resp., last)
edge of the pure path Py in C;

- B*F(¢) € [0,3],¢ € [1,¢p = tc + tr]: the bond-multiplicity of the first edge of the leaf path Q.

C..e<tcorv™ ~ ¢>tcinC;

rooted at vertex v i
C

- &) €10,4],i € [1,tx],X € {C, T,F}: the sum fcp(v) of bond-multiplicities of edges in the

p-fringe-tree C[v] rooted at interior-vertex v = v¥;;

- 05(i,m) € [0,1], 7 € [2,tx], m € [0,3], X € {T,F}: 05(i,m) = 1 & X(i) = m;
- 6g(z,m) € [0, 1], 1€ [/k\é,mc] = ](21) U [(0/1) U I(:l), m &€ [0,3] (550(7,,771) =1« Bc(l) =m,;

- 6ﬁcT(k,m),5gc(k;,m) € [0,1], k € [1kc] = Iz9) U Iz1y, m € [0,3]: 5ET(k,m) = 1 (resp.,
§TC(k,m) = 1) & () = m (resp., FT(k) = m),

- 05 (e,m) € [0,1], c € [1,cp], m € [0,3],X € {C, T}: 657 (c,m) =1 & [*(c) = m;
- bd™(m) € [0,2n¥%], m € [1,3]: the number of interior-edges with bond-multiplicity m in C;

- bdx(m) € [0,2n1%], X € {C, T,CT, TC}, bdx(m) € [0,2n], X € {F,CF, TF}, m € [1,3]: the
number of interior-edges e € Fx with bond-multiplicity m in C;

constraints:

e“(i) < BO(i) < 3e°(i), i € [ke + 1,mc] = Iiz1) U Toy U Iy, (40)

e* (i) < B(i) < 3e*(i), i €[2,tx],X € {T,F}, (41)

Sy (k) < BT (k) <365 (k), oy (k) < B™(k) < 36, (k), ke [1,kc], (42)
5y (c) < B (c) < 365 (c), c€[l,cp] (43)
Y oxim)=1, Y m-8y(i,m) = B¥i), ie2,tx],Xe{T,F},  (44)
me[0,3] me|0,3]
ST a5 m) =1, Y m-85(i,m) = B°), i € [ke +1,mq), (45)
me|0,3] me[0,3]
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> 0T keom)=1, > m-65"(k,m) =BT (k), ke 1, ke,

mel0,3] me[0,3]
> 6g%km) =1, > m-65° = B C(k), ke (1, kel,
me[0,3] me[0,3]
Z (5/"§F(c, m) =1, Z m - 56 c,m) = 3% (e), c € [1,cpl, (46)
mel[0,3] mel0,3]
> Be([W) - 5 G W) = BLG), i €[Ltx),X € {CT,F}, (47)
YeFX

> 65(i,m) =bde(m), > 65(i,m) = bdr(m),

‘ U?:E+1 mc] 1€[2,tr]
> oyt =bder(m), Y 65¢ = bdrc(m),
ke[l,kc) ke([l,kc)
> 056, m) =bdg(m), D 65" = bdcp(m),
1€[2,tr] c€[1,tc]
> 6 (e;m) = bdyp(m),
c€ltc+1,cr]

bdc(m) 4 bdr(m) 4 bdg(m) + bder(m) + bdrc(m) 4 bdre(m) + bder(m) = bd™ (m),
m e [1,3]. (48)

E.6 Assigning Chemical Elements and Valence Condition

We include constraints so that each vertex v in a selected graph H satisfies the valence condition;

e., Bec(v) = val(a(v)) + eledege(v), where eledege(v) = Vin(?0) for the p-fringe-tree Clv] r-
isomorphic to ¢. With these constraints, a chemical graph C = (H, «, ) on a selected subgraph
H will be constructed.

constants:

- Subsets A™ C A\ {H}, A® C A of chemical elements, where we denote by [e] (resp., [e]™ and
[e]™) of a standard encoding of an element e in the set A (resp., A" and A%);

A valence function: val : A — [1,6];

A function mass* : A — Z (we let mass(a) denote the observed mass of a chemical element
a € A, and define mass*(a) £ |10 - mass(a)]);

- Subsets A*(i) €A™, 4 € [1,tc];

narp(a),nayg(a) € [0,n*], a € A: lower and upper bounds on the number of vertices v with
a(v) = a;
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nal(a), nalth(a) € [0,n*], a € A™: lower and upper bounds on the number of interior-vertices

v with a(v) = a;
- o ([¢Y0]) € [A*™], € F*: the chemical element a(r) of the root r of 1;

- na®™([¢]) € [0,n*], a € A ¢ € F*: the frequency of chemical element a in the set of non-rooted
vertices in 1, where possibly a = H;

A positive integer M € Z,: an upper bound for the average ms(C) of mass* over all atoms in
G

variables:
- BYT(4), BTC(i) € 0,3],i € [1,t7]): the bond-multiplicity of edge e“T;; (resp., €7¢;,) if one exists;
- BYF(i), BT (i) € [0,3],i € [1,tr]: the bond-multiplicity of e®F,; (resp., e™F;,) if one exists;

- aX(i) € [A) 5% (i, [a]™) € [0,1],a € A" § € [1,tx],X € {C,T,F}: o®(i) = [a]"™ > 1 (resp.,
aX(i) = 0) & 6X(i,[a]™) = 1 (resp., 63(i,0) = 0) & a(vX;) = a € A (resp., vertex v=; is not
used in C);

- 0X(i, [a]™) € [0,1],i € [1,tx],a € A" X € {C,T,F}: 6X(i,[a]') = 1 & a(v®)) = a;
- Mass € Zy: Y-,y mass™(a(v));

- WS € Ry 3 ey gy mass™(a(v))/[V (H)J;

- Oatm (i) € [0,1],7 € [nup + narp(H),n* + nayg(H)]: dam(i) = 1 < |V(H)| = 3;

- na([a]) € [nayp(a),nayg(a)], a € A: the number of vertices v € V(H) with a(v) = a, where
possibly a = H;

- na™([a]™) € [nal’(a),nal’s(a)], a € A, X € {C, T, F}: the number of interior-vertices v € V(C)
with a(v) = a;

- nag([a]®™),na®™([a]*™*) € [0,nayp(a)], a € A, X € {C, T,F}: the number of exterior-vertices
rooted at vertices v € Vx and the number of exterior-vertices v such that a(v) = a;

constraints:

BT (k) = 3(e™(d) = x4, k) + 1) < BUN(0) < BTN () + 3(eT(6) = xT (6, k) + 1), 0 € [1, ],
BTO(k) = 3(e" (i +1) — x" (i, k) + 1) < (1) < BTO(k) + 3(e" (i + 1) — x" (i, k) + 1),4 € [L, t],
ke [1,kc),
(49)
B () = 3" (1) — xF(i,¢) + 1) < () < B*F(c) + 3(eF (i) — xF(i,¢) +1),i € [1,t], ce[l,tc],
BF(c) = 3(e"(3) = xF(i,¢) +1) < BTF(0) < BF(c) + 3(e"(3) — xT(3,¢) +1),i € [1,tp], c€ [tc+ 1,cp],
(50)
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oSG ™) =1, Y [a]™ - 63, [a)™) = aC(i), i € [L,tc],

acAint acAint

Z 5§(i’ [a]mt) - UX(i)v Z [a]int ) 5§(i7 [a]int) = ax(i)7 OIS [th]vX = {T7 F}’

aeAint aeAint

Z Oér([lb]) : 5?5(% [’QD]) = O‘X(i)’ (S [LtX]»X € {C’T’F}v

YeFk

> B°0) > T+ DY B

j€lc(i) keIl , (UL, () REI S 0 (U5 (3)
+A7T (i) + BS(1) — eledegg (i) = Y val()oS (i, [a]™), i€ 1,4,
aeAint

> B°0) >, M+ > )

JE€lc (i) kef(+>2)()u1<+21>(i) K€L o) (DUIS ) (3)
+B5(1) — eledeg (i) = Y val(a)dg (i, [a]™), i € [te + 1, tc],
aEAi“t

B0 + BT (i+1) + B (@) + B9 (0) + 57C()
+8" (tc + 1) — eledegy (i) = Y val(a)dy (i, [a]™),

aeAint

€ [Litg] (B'(1) = B (tr +1) = 0),

BY(i) + B (i+1) + BT (i) + B (1)
+B5 (i) — eledegy (i) = Y val(a)dh (i, [a]™),

acAint

€ [Ltg] (8°(1) = 8" (tr +1) = 0),

> 6X(i.[a)™) = nax([a]™), ac A™ Xe{CT,F},

iE[l,tx],iE[l,tx]
3 nal([¢]) - 635G, [0]) = nag(a]™), a €A™ X € {C,T,F},
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(52)

(53)
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na([al™) + nar([a") + nap ([a™) = na™ (2] ™) ac A,

S na(al®) = na®([al®), ac A%
Xe{C,T,F}
na™ ([a]™) + na®™([a]™) = na([a]), ac A™NA™,
naint<[a]int) — naqa])? ac Aint \ Aex,
na®([a]®™) = na([a]), a €A™\ A™, (59)
Z 55@? [a]int) =1, (S [LtC]a (6())
acA*(7)
Z mass”(a) - na([a]) = Mass, (61)
acA

> Oatm (1) = 1, (62)

i€[nys+narp(H),n*+nayp (H)]

> i+ Gaem (1) = ne + na™([H™),

i€[ny,p+narp(H),n*+nayp (H)]
Mass — M+ (1 — ot (4)) < ¢ -mS < Mass + M - (1 — 0atm (7)), @ € [nup + napg(H), n"* 4+ nayg(H)].
(63)

E.7 Constraints for Bounds on the Number of Bonds

We include constraints for specification of lower and upper bounds bdyg and bdyg.

constants:

- bd,,18(7), bd,,us (i) € [0,n%], 7 € [1,mc], m € [2,3]: lower and upper bounds on the number
of edges e € E(P;) with bond-multiplicity S(e) = m in the pure path P; for edge e; € Ec;

variables :

- bdr(k,i,m) € [0,1], k € [1,kc], i € [2,tr], m € [2,3]: bdr(k,i,m) =1 < the pure path Py for
edge e, € E¢ contains edge eT; with B(e1;) = m;

constraints:

bdm,p (i) < 65 (i,m) < bdm,ug(i),i € Ii=1y U L), m € [2,3], (64)

bdr(k,i,m) > 5§(¢,m) +xT (i, k) =1, ke[l kel,ie(2tr],meE]2,3] (65)

43



> o5(iom) = > bdy(k,i,m), me|[2,3], (66)

j€[2,tT} kG[l,kc],iE[Q,tT}

bd,, (k) < Z bdr(k,i,m) + 05" (k,m)+ 05°(k,m) < bdnus(k),

1€[2,t7]

ke[l ke],me [2,3]. (67)

E.8 Descriptor for the Number of Adjacency-configurations

We call a tuple (a,b,m) € (A\ {H}) x (A\{H}) x [1, 3] an adjacency-configuration. The adjacency-
configuration of an edge-configuration (u = ad, ' = bd’, m) is defined to be (a,b,m). We include
constraints to compute the frequency of each adjacency-configuration in an inferred chemical graph

C.

constants:

- A set '™ of edge-configurations v = (i, ¢/, m) with pu < p';

- Let 7 of an edge-configuration v = (u, /', m) denote the edge-configuration (y/, 1, m);

- Let T2 = {(u,p/,m) € T™ | < '}, T2 = {(p, p/ym) € T™ | = p'} and T = {7 | v €
Ik

- Let T, I and I denote the sets of the adjacency-configurations of edge-configurations
in the sets '™ T and ', respectively;

- Let 7 of an adjacency-configuration v = (a, b, m) denote the adjacency-configuration (b, a, m);

- Prepare a coding of the set T2 U Fgég and let [v]"™ denote the coded integer of an element v

3 int int .
in Iy Ul

ac,>)

- Choose subsets I'C T'T TCT [TC [F TCF PIF C pint ([ Pint_ . To compute the frequency of

ac? ac’ ac ? ac ? ac) ac ? ac,>"?
adjacency-configurations exactly, set I'C, := I'T := I'CT .= ['TC¢ .= TV .= TCF .= TTF .—
int int .
Fac U Fac,>7

- ac(v),aclib(v) € [0,2n%]), v = (a,b,m) € T'"": lower and upper bounds on the number of

interior-edges e = uv with a(u) = a, a(v) = b and f(e) = m;

- A subset T!"k C '™ for adjacency-configurations of link-edges. Let 'tk = Tlnkqint_pink - —

) 2 ac,< ac,<’ - ac,=
Lo NThe_ and I, = {(b,a,m) | (a,b,m) € [L ]
- ackX(v),ackE(v) € [0,2ni%], v = (a,b,m) € T2 lower and upper bounds on the number of

link-edges e = uv with a(u) = a, a(v) = b and f(e) = m;

variables:
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ac™ ([v]™) € [acl(v), acls(v)], v € T2 the number of interior-edges with adjacency-configuration

v,

acp([V]™) € [0,t5],v € TE: the
number of edges e© € E¢ (resp., edges el € Er and edges e € Ey) with adjacency-configuration

acc([V]™) € [0,mc],v € TS, acp([V]™) € [0,tr],v € T'L

ac?

v

Y

accr([v™) € [0, min{ke, tr}],v € TST, acre([V]™) € [0,min{ke, tr}],v € TST, acer([V]™) €
0,tc],v € TSF, acrp([v]™) € [0,tr],v € TIF: the number of edges T € Ecr (resp., edges

eTC € Brc and edges Y € Ecp and e™F € Erp) with adjacency-configuration v;

6500, ™) € 0,100 € ko + 1,mc] = Iy U Tom U T, v € T, 850, ™) € [0,1],i €

ac?

[2,t1],v € T OF (4, [V]™) € [0,1],5 € [2,tp],v € fgc: 60X (i, [V]™) = 1 & edge €X; has

ac’

adjacency-configuration v;

OST (K, [v]™), SXC(k, [v]™) € [0,1],k € [1,kc] = Is0y U I>1),v € fSCT: 6T (k, [v]™) = 1 (resp.,

Ol (k, V™) = 1) < edge e“Taiw); (resp., €™heaaqr),;) for some j € [1,¢7] has adjacency-
configuration v;

8CF (¢, [v]™) € [0,1], ¢ € [1,c],v € TSF: 6CF (¢, [v]t) = 1 < edge €°F.; for some i € [1,tp] has
adjacency-configuration v;

5TF (i, [v]™) € [0,1],4 € [1,tr],v € TEF: 6TF (i, [V]™) = 1 < edge €T, for some j € [1, 5] has
adjacency-configuration v;

&CT(k>7 aTC<k) € [07 ’AintH7 ke [17 kC]: Oé(?]) of the edge (Uctail(k)a U) € ECT (resp., (U, Uchead(k)) €
Erc) if any;

a®F(c) € [0, |[A™]],c € [1,tc]: av) of the edge (vC,,v) € Egp if any;
aT(7) € [0, |[A™],i € [1,¢1]: a(v) of the edge (vT;,v) € Erp if any;

AGH(i), A (i), € [0, |A™]),i € [ko+1,me], AL (1), AL (3) € [0, [A™]),i € 2, t], ARF(5), AL (i) €
0, [A]])i € [2,tp]: AXF(i) = AX7(i) = 0 (resp., AXT (i) = a(u) and AX7 (i) = a(v)) & edge
eX; = (u,v) € Fx is used in C (resp., eX; € E(G));

ASTH(k), AT (k) € [0,|A™]],k € [1,ke] = Iz U Iy ASTH (k) = AST (k) = 0 (resp.,
AT (k) = a(u) and AT (k) = a(v)) < edge e, = (u,v) € Eqr for some j € [1,t7] is
used in C (resp., otherwise);

ALCT(k), AL E~ (k) € [0,]A™]],k € [1,kc] = I»2) U I>1): Analogous with ASTT (k) and
A (R);

AL (e) € [0, JA™]], AZF (e) € [0, |A™[] ¢ € [L, ) AT (¢) = AGF () = 0 (vesp., AGF (¢) =
a(u) and ASF~(c) = a(v)) & edge e“F.; = (u,v) € Ecr for some i € [1,tg] is used in C (resp.,
otherwise);

ATE+() e [0, [AR], ATF=(4) € [0, |A™]],i € [1,tr]: Analogous with ASF*(¢) and ASF~(c);
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- ac™k([v]"?) € [acl(v), aclk (v)], v € T'2: the number of link-edges with adjacency-configuration

v,

- ack* (V") adg (W)™ €

e € Er) with adjacency-configuration v;

- actr([V]™) €

[0, min{kc, tr}], ach&([v]™) €

e®T € Ecr (resp., link-edges e1¢ € Ep¢) with adjacency-configuration v;

TG, o) €

with adjacency-configuration v;

constraints:

> ace(™) =

(a,b,m):l/EFgg

E 1nt

(a,b,m)=verint

E 1nt

(a,b,m)=velint

E : aCCT 1nt

(a,b,m)=velnt

E : aCTC 1nt

(a,b,m)=velint

§ aCCF 1nt

(a,b,m)=veriyt

E acCTg

(a,b,m)=velnt

(™) =

> 856, m),

iclko+1,mc)

Zéﬁzm

1€[2,t7]

Zéﬁzm

’LG 2 tp]

= Y &"

ke 1 kc]

= ) 6;°

kG 1 kc]

= > (e

cell, tc]

Z 55" (c,m),

cEftc+1,cr]
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v e\ ¢
vel\t
v e\ Fac,
v ey Fac ,
v ey Fac ,
v ey Fac ,
v ey Fac ,

m € [1,3],
m € [1,3],
m € [1,3],
m € [1,3],
m € [1,3],
m € [1,3],

m € [1,3],

[0,mc], v € Tk the number of link-edges e© € E¢ (resp., edges

0, min{kc, t}],v € T2k the number of link-edges

[0,1],i € [2,tp],v € Tink: gLk [y]nt) = 1 < edge e'; € Er is a link-edge

(68)



> mea (i M) = 50,

v=(a,b,m)el<,

AL+ D ™oL ™) = af(tail(d)),

v=(a,b,m)el<,

AL @)+ Y Mo (i ™) = a%(head(i)),

v=(a,b,m)el<,

AL (@) + AL (1) < 2[A™|(1 = e“(0)), i € [ko + 1,mq),
Z 5 [ mt _aCC([V]mt)7 Ve FSC, (7())
iG[kc+1 mc}
D Gl ™) = acg (™), ve MU, (71)
i€y Nlkc+1,mc]
> me o ™) = 87),
V:(a,b,m)ef;fc
AL+ Y @Ml M) =i - 1),
V:(a,b,m)ef;[‘c
AL+ > B, M) = o (D),
v=(a,b,m)el'L,
AnH(d) + Ay (1) < 2|/\mt|( e (1)), i € [2,t7],
> Gl ™) = ace (V™). v eIy, (72)
26[2 tT}
Oac (1 [V]™) + X1, k) > 20,50, [V]™), i € [2,tr],

k€hnN[1,kc]
O™ (0, ™) Z 006 M)+ D X k) =1, i€ [2,10],
kGIlnkﬁ[l,k(ﬂ
D S ) = adfi (W), velpFuTEs,  (73)

1€(2,tr]
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Z m- 65(:(2.7 [V]int> = BF(Z)a
v=(a,b,m)elL,
A @)+ Y [ M) = o (i - 1),
v=(a,b,m)elL,

A () + ) DMa ™) = a" (i),
v=(a,b,m)el'L,

Aad (1) + AL (1) < 2JA%|(1 = €7 (2)),
> Gaeli, ™) = ace ([V]™),

@t (i) + [A™(1 = X" (i, k) + et (2) = a“t (k)

a®t(k) > (@) — [A™(1 = X" (6, k) + €7 (2)),

> me (k) = 5T (R),
v=(a,b,m)el'CT

ASIT R+ Y [ (k, [V]™) = a(tail(k)),

v=(a,b,m)el'CT

AGT (R + Y M (R ™) = o),

v=(a,b,m)elSCT

ASTT (k) + AL (

Z 5CT

ke[l,kc]

k) < 2]A™|(1 =8, (k)),
(k, []™) = acer([v]™),

Y SR ™) = aci (™),

1€hnN[1,kc]

@t (1) + [N (1 = X (i, k) + €T (i + 1)) > atC(k),
(k) = (i) — [A™)(L = X" (i, k) + e (i + 1)),
> me 8k ™) = 5Tk,
v=(a,b,m)el'TC
AR 4+ Y [aMo (k™) = @ OR),
v=(a,b,m)el'TC
ALY (k) + > Bk, [V]™) = aC(head(k)),

v=(a,b,m)el'LC

AT (R) + A0 (k) < 2/A™|(1 = 6y (K)),
> Ga (ky [V]™) = acre([V]™),

ke[l,kc]
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1 E [2, tF],

vel¥

ac’

(74)

1€ [1,tT],

ke [1, kc],

velct

ac

(75)

v e kyrk (76)

ac,>)

1€ [1,tT],

ke [1, k’c],

v e 'te

ac

(77)



Y 006 ™) = acke (™),

iEIlnkﬂ[l,kc]

o (i) + [A™](1 = X" (4, 0) + €" (i) = a™(c),
() = aF'(i) = [A™|(1 = X" (i, ) + €7 (2)),
> meay (e M) = 57 (o),

v=(a,b,m) EfgCF

Yo ™6 (e, [V]™) = aC(head(e)),

v=(a,b,m)el'SF

AT+ Y ™o (e M) = a® (o),
v=(a,b,m)el'SF

AL (e) + AL () < 2max{[A™] JA™[}(1 — 6¢(0)),
Y G (e V™) = accr ([V]™),

celLtc)

~—

AT (e) +

o () + |A™|(1 = xF (5,0 + te) + €7(4) = o™ (),
o (i) > o (j) = AL = XF (i + te) + " (),
S 6T ™) = G+ ),

V:(a,b,m)ef;FCF
AT+ ) ™o G ™) = o (i),

v=(a,b,m)el'LF

Do B M) = ™),
v=(a,b,m)el'TF

ATFH @) + AT () < 2mas{|A™], [A™]}(1 - 85 + fc)),
S 6T ) = acre(B™),

’iE[l,tT]

Ao (@) +

Y (acx(P]™) +acx([7™) = ac™ (™),

Xe{C,T,F,CT,TC,CF,TF}

ST acx(™) = acm (B,

Xe{C,T,F,CT,TC,CF,TF}

ST (e[ ™) + ack (7)) = act ("),

Xe{C,T,CT,TC}

ST ack() = ac (™)

Xe{C,T,CT,TC}
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Ink | | Trlnk
vel, Ul

ac,>)

1 € [1,tp],

ce [1,t~c],

v eTF

ac

j € [17tF]7

1€ [1,tT],

v e ¥

ac ?

v e

ac,<?

v e it

ac,=?

= Flnk

ac,<?

Ink
v E Faq:)

(79)

(80)

(81)

(82)



> ad™ (™) = (83)

vevel'lnk

E.9 Descriptor for the Number of Chemical Symbols

We include constraints for computing the frequency of each chemical symbol in Age. Let cs(v)
denote the chemical symbol of an interior-vertex v in a chemical graph C to be inferred; i.e.,
cs(v) = p = ad € Aqg such that a(v) = a and deg ) (v) = degy (v)— —deg?(v) =dinC = (H,a,j).

constants:
- A set ARY of chemical symbols;

- Prepare a coding of each of the two sets A} and let [1]™ denote the coded integer of an element

e Agg;
- Choose subsets AC AdTg, AF Aid“gt: To compute the frequency of chemical symbols exactly, set
Adcg = AdTg = Agg = Agga

variables:
- ns™([u)™) € [0,n%], u € Aidngt: the number of interior-vertices v with cs(v) = p;
- Oty [p]™) € [0,1], 7 € [1,tx], u € Ay, X € {C, T, F};

constraints:

Sl ™) =1 > [ aX G ™) = o (i),

pehy,ufer p=adeA,

ST d 6K ™) = deg¥(d),

u:aclEA()j(g

€ [1,tx],X € {C,T,F}, (84)

Z (5 1nt Z 5 mt Z 5 1nt _nsmt([u]int)’ EAmt. (85)

ZE[I tc ’LG 1 tT ’LG 1 tF]

E.10 Descriptor for the Number of Edge-configurations

We include constraints to compute the frequency of each edge-configuration in an inferred chemical
graph C.

constants:

- A set T of edge-configurations v = (u, ', m) with u < g/, where we let % denote (p/, i, m);
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- Let T2 = {(u, pym) € T™ [ < '}, T2 = {(p, 'y m) € T™ | = p'} and T2 = { (', pp,m) |
(. p/,m) € T2

- Prepare a coding of the set ™ UT™™ and let [y]™ denote the coded integer of an element v in
Fint U I“i;lt;

fCT ’ch ’fF ’fCF

ec) ec~7 ec 7 - ec’ - ec ?

- Choose subsets fec, r feTCF C It yI'nt; To compute the frequency of edge-
configurations exactly, set 'S, ;=T := TS :=T0C :=TF =T .= ['TF .= Pint y Pint;

int int

eci® (), eclib (v) € [0,2n8], v = (u, i/, m) € T™: lower and upper bounds on the number of
interior-edges e = uv with cs(u) = p, cs(v) = ¢’ and p(e) = m;

- A subset '™ C '™ for edge-configurations of link-edges. Let "2k = [lmkqint ok — plokAint
and ' = {(b,a,m) | (a,b,m) € T2}

- ecl5 (), ecBE(y) € [0,2n8%], v = (u, 4/, m) € T'™: lower and upper bounds on the number of

link-edges e = uv with cs(u) = u, cs(v) = ¢’ and B(e) = m;

- nsf ([u]), nsgs([u]) € [0,2], p € Aly: lower and upper bounds on the number of connecting-

vertices v with cs(v) = p; Define

P2t o= {(p, /1) €y € T2 | ' € Mgy, msii (i) <1< msup(p), P (1) <1 < msus(i)};
P o= {(p, /1) € y € TF |y ' € Ay, s (i) < 1< msup(p), P () < 1 < msus(i)};
Pt = {(u,p, 1) € v € T2 | € Ay nsf(p) = 2}

variables:

- ec™([y]") € [ecli (), eclh(7)],v € T'™: the number of interior-edges with edge-configuration
v

- eco([y]™) € [0,mc],y € TS, ecr([(y]™) € [0,t7],v € TL, ecr([y]™) € [0,t¢],7 € TE: the
number of edges e“ € Ec (resp., edges eI € Et and edges e € Fr) with edge-configuration 7;

- ecor([1]™) € [0,min{kc, tr}],y € TCT, ecro([V™) € [0, min{ke, tr}],y € TCE, ecor([]™) €
0,tc],y € TSE, ecrp([y]™) € [0,tr],v € TIF: the number of edges e“T € Egr (resp., edges
eTC € Erc and edges e“F € Ecr and ™" € Erp) with edge-configuration +;

- 560(3(27 [,y]int) E [07 1]77’ € [/];(; + 17mC] = [(21) U I(O/llU I(:1)77 € fgm 6;[‘(;(27 h/]int) € [07 1]72 S
[2,t7],7 € Ta, 0ec(i, [YI™) € [0,1],4 € [2,te],7 € Tt 0(i,[7]") = 1 & edge ¥, has edge-

configuration ~;

- 623‘0(]{;7 [V]mt%é;[‘c?C(kl’ [W]int) S [07 1]7k S [17 kC] = I(ZQ) U 1(21)7’7 € fSCTi 55336(]{;7 [,y]int) =1
resp., L% (k, [7]™) = 1) < edge e“Tiai; (resp., € Chendrn) i) for some j € [1,tr] has edge-
ec,C ( )7] ( )7.7

configuration ~;

- 6<S:FC(C7 [’Y]int) € [07 1]70 € [17%]77 € fch: 5S:FC(07 h/]int) =l<e edge eCFC,i for some ¢ € [LtF]
has edge-configuration ~;
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- e (i, [Y]™) € 10,1],4 € [1,t1],7y € FTF. O (1, [Y]™) = 1 & edge e ; for some j € [1, 5]
has edge-configuration ~;

i deg%T(k’), degEC(kz) € [0,4],k € [1, k¢]: deg ¢ ( ) of an end-vertex v € Vi of the edge (vctail(k), v) €
Ecr (resp., (vavchead(k)) € Erc) if any;

- degt¥(e) € 10,4], ¢ € [1,t¢]: deg ) (v) of an end-vertex v € Vg of the edge (v, v) € Egp if any;

- degp" (i) €10,4],i € [1,tq]: deg e (v) of an end-vertex v € Vi of the edge (vTy,v) € Ery if any;

- ASH(), A (i), € [0,4],0 € [ko + 1,mc), ALH(E), AL (i) € [0,4],i € [2,t2], ALF(i), AL (i) €
[0,4],i € [2,tp]: AZF(i) = AL (i) = 0 (vesp., AZF(i) = degcy(u) and AL (i) = deg () (v)) ©
edge eX; = (u,v) € Ex is used in (C) (resp., eX; & E((C)));

- AGC}Z:TJF(]{,'),Ag:Ti(k’) € [0,4],]{7 - [].,kc} = I(>2) U 1(21)2 AS:T+(]{?) = ASCTi(kJ) = 0 (reSp.,
ASTT (k) = degey(u) and AZT (k) = degcy(v)) © edge e gy = (u,v) € Ecr for some
Jj € [1,tr]is used in (C) (resp., otherwise);

- ALOT(K), AL (k) € 0,4,k € [1,kc] = I(32) U I(>1): Analogous with AST (k) and AST(k);

- ASFH(e), ASF(¢) € 10,4],c € [1, ta]: ASFH(e) = ASF=(c) = 0 (resp., ASF*(c) = degcy(u) and
ASF(c) = degiey(v)) & edge e = (u,v) € Ecr for some j € [1,tg] is used in (C) (resp.,
otherwise);

- ATFFG), ATF=(4) € [0,4],1 € [1,¢7]: Analogous with ASF*(¢) and ASF~(e);

- ecd™([y]"*) € [ecl5(7), ecBE(v)], v € T™k: the number of link-edges with edge-configuration ~;

- ec%lk([fy]int) eck([y]n%) € [0,mc],7 € '™k the number of link-edges e© € E¢ (resp., edges

el € Er) with edge-configuration 7;

- ecBX([v]") € [0, min{kc, tr}], ecR&([y]™) € [0, min{kc, tr}],y € ['™: the number of link-edges
eCT € Egr (resp., link-edges €T € Erc) with adjacency-configuration +;

- oLk [y]mt) € [0,1],i € [2,tr],y € Tk §LIk(G [y]™) = 1 & edge eT; € Er is a link-edge
with edge-configuration ~;

- 8 ([y]) € [0,1],y € TRt U TRt U TRt 5 ([y]™) = 1 < ec(e) =~ for the link-edge e joining
connecting-vertices;

constraints:
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v €M™\ T,
vy €™\ TL,
y €™\ TE,
yeI™\ T,
v €™\ TLC,
yeI™\ T,
yeI™\TIF,

i€fkc+1,mc]

23

Yoo oeceI™ = Y 65(m), m € [1,3],
(o’ ym) =y €T i€[kc+1,mc]
Z ecr([y]™) = Z 83 (i,m) m € [1, 3],
(st ;m)=ry€Tint i€[2,tr]
Z ecr ([1]™) Z 85 (i,m) m € [1, 3],
(1, ym)=~y€int 1€[2,tp)
Z eccr([y]™) Z 5CT k,m) m € [1,3],
(st ym)=~y€lint ke[l,kc]
Z ecro([y]™) Z 5 m € [1,3],
(st ym)=~€lint ke[l,kc]
Z ecer([y]™) Z 55 m € [1,3],
(pspt! ym)=ry€Tint ce[l,tc)
Z eCTF([’y]int) = Z 5EF(C7 m)v m e [17 3]a
(1,0 ym)=ry€lint c€ltc+1,cr]
Z [(av b, m)]int ’ 656(27 [’Y]im) = Z [V]int ’ 65(:(27 [V]int>7
y=(ad,bd’,m)el’C, vel'S,
ASF@) 4+ > d-8Q(3 ™) = deg®(tail(4)),
7:(adrulvm)€fg:
AST(@) 4+ > d- 6531, (™) = deg®(head(i)),
y=(p,bd,m)el'S,
AGH(E) + AL (1) < 8(1 = €C(4)), € [ke + 1,mcl,
> 683 ™M) = ece((v™), yels,

(86)

(87)

(88)



Yo el M) = et (™),

ZAellnkﬁ[’;'\C/"'_lv"nc]

Z [(a7 b, m)]int ) 5;1::(i7 h/]int) =

v=(ad,bd’,m)el'T, vel'T,
A@+ ) doon(i ™) =deg" (i — 1),
'y:(ad,u’,m)efgc
AL+ D de b (i V™) = deg™ (i),
y=(p,bd,m)€TL,

AL+ AL (1) < 8(1— €' (i),
> ou(i, [1™) = ecr([y™),

1€[2,t7]

D W™ ™),

X (i, k) > 26,050, [7]™), i€ [2,tq),

Seci, 1™+ Y

k€ lnkN[1,kc]

0™ (1, [1]™) 2 00 (i, ™)+ D

k’E[]nkﬂ[l,kc}

D 08 (E, )™ = ectX (™),

1€ [Q,tT]

(i k) =1, i€ (2t

Yo l@bm) G M) = Y ™ e []™),

v=(ad,bd’,m)eLE, velL,
ALF@)+ ) A0 = deg" (i - 1),
v=(ad,u’,m)€eTE,

AL+ D d- Sk ™) = deg"(i,0),
y=(j,bd,m)€TE,

AL + AL (1) < 8(1 =€ (),
D Gk ™) = ecr([y]™),

1€[2,tr)

o4

v e MUYk, (89)

i €[2,tr],
v eIt (90)

ec’

v € My ik, (91)

1€ [2,tp],
velt (92)

ec’



deg" (i) +4(1 — X" (i, k) + €T (i) > degy" (k),

degCT(k:) > degT(i) —4(1 — XT(i,k) 4 eT(i))’ i € [ te],
Z [(a,b, m>]int 6ecC(k [’}/]int) _ Z [V]int . 6SCT<I€’ [V]int),
v=(ad,bd’,m)el'ST seror

AT (k) + o A6k ™) = deg (tail(k)),
'Y:(adhu'/?m)efeccT
AST(R) 4+ D d Sk ™) = degtT (k),
y=(p,bd,m)el'ST

AT (k) + AT (k) <81 - 8T (K). ke [Lkd],

> Gk, ™) = ecor (™), v el (93)
k‘E[l,kc]
Z 6CT mt _ eCl(Ijl}I(w([’Y]int), v c Flnk U Flnk (94)

’L'EI]“kﬁ[l kc}

deg” (i) +4(1 — X" (i, k) + " (i + 1)) > degr® (),

degtC (k) > deg" (i) — 4(1 — X" (i, k) + T (i + 1)), i€ [l,tr],
Z [(a,b, m>]int 5ec0(k [fy]int) _ Z [V]int . (S;IZ:C(]{, [V]int),
y=(ad,bd’,m)el'TC vel'TC

AR+ Y d ok ™) = degtC (k)
7:(ad’ﬂlvm)€fg‘cc
AR+ D d- Rk ™) = deg®(head(k)),
y=(p,bd,m)€TLC

AT (k) + AL (k) < 8(1 =6, (k)), ke (1, k],

> ek, ™) = ecrc([y]™), eTe, (95)
ke[l,kc]
Z 5TC 1nt eclflé([v]mt), = Flnk U 1—\1;1k7 (96)

1€hnkN[1,kc]
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deg™ (i) + 4(1 — xF

(i,¢) +e

"

i) = degg" (c)

Y

degt¥(c) > deg (i) — 4(1 — XF (4, ¢) + €7 (4)),
Sele, ™) = Y ™ 0 (e, ™),

vel'CF

) do(e ™) = deg®(o),

Y labm)t

v=(ad,bd’,;m)el'SF

A (o)

v=(ad, ' ,;m)eTSF

ALT@+ Y dod(e ™) = degr" (o)

deg" (j) + 4(1 — X"

degy (i)

Y. labm)t

v=(ad,bd’,m)el'LF

Ace(0)

A (i) +

>

Xe{C,T,F,CT,TC,CF,TF}

v=(1,bd,m)€TSF

Y

ACF (¢ )_I_ACF*( ) < 8(1—0dy(c)),

Z 56CC

cell, tc]

mt

= eccr([7]™)

(j. i+ tc) +€"(5)) = degp" ()

Y

)

> deg" () — 4(1 — X' (j,i + tc) + €7 (4)),

Searn (i, 1) = D W™ - 807G, []™),

vel'TF

) da( ™) = deg™ (i),

v=(ad,i/,;m)eTEF

y=(p,bd,m)el'LF

Y A8 ™) = deggt (i)

9

AL + AL (1) < 8(1 =6 (i + to)),
> Sen (i, []™) = ecrr (™)

1€[1,t7]

(eex ([y]™) + ecx(F1™))

> ecx ([1]™)

Xe{C,T,F,CT,TC,CF,TF}

ST (e () + ec (™) = ect (™),

Xe{C,T,CT,TC}

Y ek (™) =

Xe{C,T,CT,TC}

2

,Yel“lnk

eClnk([,Y]int) = Mk,

26

Y

(&S [17tF]7

ce[l,tc],
'yGF

ec ?

j € [17tF]7

1€ [1 tT],

T~TF
vyele,

int
velZ,

v e,

v € ThX,

v € 'k,

(100)

(101)



nspp () < 0™(L, [1]) + 0 (2, [1]) < nstp((u)), pE Mgy, (102)

S e =1,

VEantUFC:“tUFC;t
eclnk([’}/]int) Z (5cnt([’7]int), ~y c Fc<nt U th
eclnk([i]int) Z 6(:111;([,Y]int)7 v c Fc>nt

(103)

E.11 Constraints for Normalization of Feature Vectors

By introducing a tolerance € > 0 in the conversion between integers and reals, we include the
following constraints for normalizing of a feature vector z = (z(1),z(2),...,x(K)):

(1 £)(x(j) — min(dep; D,))

. (14 ¢)(x(j) — min(dep;; D))
. <z(j) <
max(dcp;; Dr) — min(dep;; Dy)

~ max(dcp;; Dy) — min(depy; D)’

jeLK]. (104)

An example of a tolerance is € = 1 x 107°.
We use the same conversion for descriptor z; = ms.
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