
A Method for Inferring Polymers Based on Linear
Regression and Integer Programming *

Ryota Ido1, Shengjuan Cao1, Jianshen Zhu1, Naveed Ahmed Azam1, Kazuya Haraguchi1, Liang

Zhao2, Hiroshi Nagamochi1 and Tatsuya Akutsu3

1Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-8501, Japan
2Graduate School of Advanced Integrated Studies in Human Survavibility (Shishu-Kan), Kyoto University,

Kyoto 606-8306, Japan
3Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan

Abstract

A novel framework has recently been proposed for designing the molecular structure of

chemical compounds with a desired chemical property using both artificial neural net-

works and mixed integer linear programming. In this paper, we design a new method

for inferring a polymer based on the framework. For this, we introduce a new way of

representing a polymer as a form of monomer and define new descriptors that feature

the structure of polymers. We also use linear regression as a building block of con-

structing a prediction function in the framework. The results of our computational

experiments reveal a set of chemical properties on polymers to which a prediction

function constructed with linear regression performs well. We also observe that the

proposed method can infer polymers with up to 50 non-hydrogen atoms in a monomer

form.

Keywords: Machine Learning, Linear Regression, Integer Programming, Polymers,

Cheminformatics, Materials Informatics, QSAR/QSPR, Molecular Design.

1 Introduction

Background In recent years, molecular design has received a great deal of attention from various

research fields such as chemoinformatics, bioinformatics, and materials informatics [1, 2, 3]. In

particular, extensive studies have been done for molecular design using artificial neural networks

(ANNs). Various ANN models have been applied in these studies, which include recurrent neural

networks [4, 5], variational autoencoders [6], grammar variational autoencoders [7], generative

adversarial networks [8, 9], and invertible flow models [10, 11]. Many of these studies employ

graph convolution techniques [12] to effectively handle molecules represented as chemical graphs.

Molecular design has also been studied for many years in chemoinformatics, under the name of

inverse quantitative structure activity relationship (inverse QSAR). The purpose of this framework

is to seek for chemical structures having desired chemical activities under some constraints, where

the task of prediction of chemical activities from their chemical structures is referred to as QSAR

(or, forward QSAR). In both forward and inverse QSAR, chemical structures are represented as

*Department of Applied Mathematics and Physics, Kyoto University, Technical Report, TR: 2021-001, September

3, 2021

1

undirected graphs (chemical graphs). Then, chemical graphs are transformed into vectors of real or

integer numbers, which are called descriptors in chemoinformatics and vectors correspond to feature

vectors in machine learning. One of the typical approaches to inverse QSAR is to infer feature

vectors from given chemical activities and constraints and then reconstruct chemical graphs from

these feature vectors [13, 14, 15]. However, the reconstruction itself is a challenging task because

it is known to be NP-hard (i.e., theoretically intractable) [16]. Such a difficulty is also suggested

from a huge size of chemical graph space. For example, the number of chemical graphs with up

to 30 atoms (vertices) C, N, O, and S may exceed 1060 [17]. Due to this inherent difficulty, most

methods for inverse QSAR, including recent ANN-based ones, do not guarantee optimal or exact

solutions.

The targets of most of the inverse QSAR methods and ANN-based molecular design meth-

ods had been small chemical compounds. On the other hand, it is known that macromolecules,

especially polymers, have also a wide range of applications in both medical science and material

science [18, 19]. Accordingly, several studies have recently been done on computational design of

polymers [20, 21]. However, it was pointed out that very few studies addressed the representation

of polymer structures [22], and thus the development of novel and useful representation methods

for polymers remains a challenge.

 RK

x*

MILP

y*,y*

 input

output

R

 1
*

M(g,x,y;C1,C2)

Stage 5

x*

detect

deliver

Stage 4ANN

a: property
 function

N

..
. 2

..
.

f()

y*<h(x*)<y*f(*)

G : class of chemical
 graphs

Stage 1 Stage 3

h: prediction
 function

Stage 2

f : feature
 function

x:=f()

a()

h(x)

i s: topological

 specification

h function

function f

graph constraints

C1:

C2:

M(x,y;C1)

M(g,x;C2)
g :

*

no * G s.t. y*<h(f(*))<y*

Figure 1: An illustration of a framework for inferring a set of chemical graphs C∗.

Framework Akutsu and Nagamochi [23] proved that the computation process of a given ANN can

be simulated with a mixed integer linear programming (MILP). Based on this, a novel framework

for inferring chemical graphs has been developed and revised [24, 25, 26], as illustrated in Figure 1.

It constructs a prediction function in the first phase and infers a chemical graph in the second

phase. The first phase of the framework consists of three stages. In Stage 1, we choose a chemical

property π and a class G of graphs, where a property function a is defined so that a(C) is the value
of π for a compound C ∈ G, and collect a data set Dπ of chemical graphs in G such that a(C) is
available for every C ∈ Dπ. In Stage 2, we introduce a feature function f : G → RK for a positive

integer K. In Stage 3, we construct a prediction function η with an ANN N that, given a vector

x ∈ RK , returns a value y = η(x) ∈ R so that η(f(C)) serves as a predicted value to the real value

2

a(C) of π for each C ∈ Dπ. Given two reals y∗ and y∗ as an interval for a target chemical value,

the second phase infers chemical graphs C∗ with y∗ ≤ η(f(C∗)) ≤ y∗ in the next two stages. We

have obtained a feature function f and a prediction function η and call an additional constraint

on the substructures of target chemical graphs a topological specification. In Stage 4, we prepare

the following two MILP formulations:

- MILP M(x, y; C1) with a set C1 of linear constraints on variables x and y (and some other

auxiliary variables) simulates the process of computing y := η(x) from a vector x; and

- MILP M(g, x; C2) with a set C2 of linear constraints on variable x and a variable vector g that

represents a chemical graph C (and some other auxiliary variables) simulates the process of

computing x := f(C) from a chemical graph C and chooses a chemical graph C that satisfies

the given topological specification σ.

Given an interval with y∗, y∗ ∈ R, we solve the combined MILP M(g, x, y; C1, C2) to find a feature

vector x∗ ∈ RK and a chemical graph C† with the specification σ such that f(C†) = x∗ and

y∗ ≤ η(x∗) ≤ y∗ (where if the MILP instance is infeasible then this suggests that there does not

exist such a desired chemical graph). In Stage 5, we generate other chemical graphs C∗ such that

y∗ ≤ η(f(C∗)) ≤ y∗ based on the output chemical graph C†.

MILP formulations required in Stage 4 have been designed for chemical compounds with cycle

index 0 (i.e., acyclic) [25, 27], cycle index 1 [28] and cycle index 2 [29], where no sophisticated

topological specification was available yet. Azam et al. [27] introduced a restricted class of acyclic

graphs that is characterized by an integer ρ, called a “branch-parameter” such that the restricted

class still covers most of the acyclic chemical compounds in the database. Akutsu and Nag-

amochi [30] extended the idea to define a restricted class of cyclic graphs, called “ρ-lean cyclic

graphs” and introduced a set of flexible rules for describing a topological specification. Recently,

Tanaka et al. [31] (resp., Zhu et al. [26]) used a decision tree (resp., linear regression) to construct a

prediction function η in Stage 3 in the framework and derived an MILP M(x, y; C1) that simulates

the computation process of a decision tree (resp., linear regression).

Two-layered Model Shi et al. [32] proposed a method, called a two-layered model for representing

the feature of a chemical graph in order to deal with an arbitrary graph in the framework. In the

two-layered model, a chemical graph C with a parameter ρ ≥ 1 is regarded as two parts: the

exterior and the interior of the hydrogen-suppressed chemical graph ⟨C⟩ obtained from C by

removing hydrogen. The exterior consists of maximal acyclic induced subgraphs with height at

most ρ in ⟨C⟩ and the interior is the connected subgraph of ⟨C⟩ obtained by ignoring the exterior.

Shi et al. [32] defined a feature vector f(C) of a chemical graph C to be a combination of the

frequency of adjacent atom pairs in the interior and the frequency of chemical acyclic graphs among

the set of chemical rooted trees Tu rooted at interior-vertices u. Tanaka et al. [31] constructed a

prediction function with a decision tree by using the feature vector by Shi et al. [32]. Recently,

Zhu et al. [26] extended the model to treat chemical elements of multiple valence and chemical

compounds with cations and anions.

Contribution In order to extend our MILP-based framework for designing novel polymers, we

modify the method due to Zhu et al. [26]. For this, we introduce a new way of representing a

polymer as a form of monomer and define new descriptors that feature the structure of polymers.

We modify the MILP formulation proposed by Zhu et al. [26] due to the change of feature function

3

f (the detail of the MILP M(g, x; C2) can be found in Appendix E). To generate target chem-

ical graphs C∗ in Stage 5, we also use and modify the dynamic programming algorithm due to

Zhu et al. [26].

We implemented the framework based on the refined two-layered model and a prediction func-

tion by linear regression. A polymer was inferred by using the framework for the first time in this

paper, where Tanaka et al. [31] studied constructing a prediction function with a decision tree for

some polymer properties but have not argued topological specification of polymers and inference

of a polymer. The results of our computational experiments reveal a set of chemical properties on

polymers to which a prediction function constructed with linear regression on our feature function

performs well. We also observe that the proposed method can infer a polymer with up to 50

non-hydrogen atoms in a monomer form.

The paper is organized as follows. Section 2 introduces some notions on graphs, a modeling of

chemical compounds and define a new monomer representation of polymers. Section 3 describes the

two-layered model for polymers. Section 4 reports the results on some computational experiments

conducted for eight chemical properties on polymers such as glass transition and experimental

amorphous density. Section 5 makes some concluding remarks.

Some technical details are given in Appendices: Appendix A for the idea of linear regression

and an MILP M(x, y; C1) formulated by Zhu et al. [26] that simulates a process of computing a

prediction function constructed by linear regression; Appendix B for all descriptors in our feature

function on polymers; Appendix C for a full description of a topological specification; Appendix D

for the detail of test instances used in our computational experiment for Stages 4 and 5; and

Appendix E for the details of our MILP formulation M(g, x; C2). Note that the modification of the

dynamic programming algorithm is not given in Appendices because it is slight and straightforward.

2 Preliminary

This section introduces some notions and terminologies on graphs, modeling of chemical compounds

and our choice of descriptors.

Let R, Z and Z+ denote the sets of reals, integers and non-negative integers, respectively. For

two integers a and b, let [a, b] denote the set of integers i with a ≤ i ≤ b.

Graph Given a graph G, let V (G) and E(G) denote the sets of vertices and edges, respectively.

For a subset V ′ ⊆ V (G) (resp., E ′ ⊆ E(G)) of a graph G, let G − V ′ (resp., G − E ′) denote

the graph obtained from G by removing the vertices in V ′ (resp., the edges in E ′), where we

remove all edges incident to a vertex in V ′ in G− V ′. An edge subset E ′ ⊆ E(G) in a connected

graph G is called separating (resp., non-separating) if G−E ′ becomes disconnected (resp., G−E ′

remains connected). The rank r(G) of a graph G is defined to be the minimum |F | of an edge

subset F ⊆ E(G) such that G − F contains no cycle, where r(G) = |E(G)| − |V (G)| + 1 for a

connected graph G. Observe that r(G−E ′) = r(G)−|E ′| holds for any non-separating edge subset

E ′ ⊆ E(G). An edge e ∈ E(G) in a connected graph G is called a bridge if {e} is separating. For

a connected cyclic graph G, an edge e is called a core-edge if it is in a cycle of G or is a bridge

e = u1u2 such that each of the connected graphs Gi, i = 1, 2 of G − e contains a cycle. A vertex

incident to a core-edge is called a core-vertex of G. A path with two end-vertices u and v is called

4

a u, v-path. A set F of edges in G is called a circular set if G contains a cycle C that contains all

edges in F and for every edge e ∈ F , F \ {e} is the set of all bridges e′ ∈ F in the graph G− e.

We define a rooted graph to be a graph with a designated vertex, called a root. For a graph

G possibly with a root, a leaf-vertex is defined to be a non-root vertex with degree 1. We call

the edge uv incident to a leaf vertex v a leaf-edge, and denote by Vleaf(G) and Eleaf(G) the sets of

leaf-vertices and leaf-edges in G, respectively. For a graph or a rooted graph G, we define graphs

Gi, i ∈ Z+ obtained from G by removing the set of leaf-vertices i times so that

G0 := G; Gi+1 := Gi − Vleaf(Gi),

where we call a vertex v a tree vertex if v ∈ Vleaf(Gi) for some i ≥ 0. Define the height ht(v) of

each tree vertex v ∈ Vleaf(Gi) to be i; and ht(v) of each non-tree vertex v adjacent to a tree vertex

to be ht(u) + 1 for the maximum ht(u) of a tree vertex u adjacent to v, where we do not define

height of any non-tree vertex not adjacent to any tree vertex. We call a vertex v with ht(v) = k

a leaf k-branch. The height ht(T) of a rooted tree T is defined to be the maximum of ht(v) of a

vertex v ∈ V (T). For an integer k ≥ 0, we call a rooted tree T k-lean if T has at most one leaf

k-branch. For an unrooted cyclic graph G, we regard that the set of non-core-edges in G induces

a collection T of trees each of which is rooted at a core-vertex, where we call G k-lean if each of

the rooted trees in T is k-lean.

2.1 Modeling of Chemical Compounds

We review a modeling of chemical compounds (monomers) and introduce a new way of representing

a polymer as a form of monomer.

To represent a chemical compound, we introduce a set of chemical elements such as H (hydro-

gen), C (carbon), O (oxygen), N (nitrogen) and so on. To distinguish a chemical element a with

multiple valences such as S (sulfur), we denote a chemical element a with a valence i by a(i), where

we do not use such a suffix (i) for a chemical element a with a unique valence. Let Λ be a set

of chemical elements a(i). For example, Λ = {H, C, O, N, P, S(2), S(4), S(6)}. Let val : Λ → [1, 6] be

a valence function. For example, val(H) = 1, val(C) = 4, val(O) = 2, val(P) = 5, val(S(2)) = 2,

val(S(4)) = 4 and val(S(6)) = 6. For each chemical element a ∈ Λ, let mass(a) denote the mass of a.

A chemical compound is represented by a chemical graph defined to be a tuple C = (H,α, β) of

a simple, connected undirected graph H and functions α : V (H) → Λ and β : E(H) → [1, 3]. The

set of atoms and the set of bonds in the compound are represented by the vertex set V (H) and the

edge set E(H), respectively. The chemical element assigned to a vertex v ∈ V (H) is represented

by α(v) and the bond-multiplicity between two adjacent vertices u, v ∈ V (H) is represented by

β(e) of the edge e = uv ∈ E(H). We say that two tuples (Hi, αi, βi), i = 1, 2 are isomorphic if

they admit an isomorphism ϕ, i.e., a bijection ϕ : V (H1) → V (H2) such that uv ∈ E(H1), α1(u) =

a, α1(v) = b, β1(uv) = m ↔ ϕ(u)ϕ(v) ∈ E(H2), α2(ϕ(u)) = a, α2(ϕ(v)) = b, β2(ϕ(u)ϕ(v)) = m.

When Hi is rooted at a vertex ri, i = 1, 2, (Hi, αi, βi), i = 1, 2 are rooted-isomorphic (r-isomorphic)

if they admit an isomorphism ϕ such that ϕ(r1) = r2.

For a notational convenience, we use a function βC : V (H) → [0, 12] for a chemical graph

C = (H,α, β), such that βC(u) means the sum of bond-multiplicities of edges incident to a vertex

5

u; i.e.,

βC(u) ≜
∑

uv∈E(H)

β(uv) for each vertex u ∈ V (H).

For each vertex u ∈ V (H), define the electron-degree eledegC(u) to be

eledegC(u) ≜ βC(u)− val(α(u)).

For each vertex u ∈ V (H), let degC(v) denote the number of vertices adjacent to u in C.
For a chemical graph C = (H,α, β), let Va(C), a ∈ Λ denote the set of vertices v ∈ V (H)

such that α(v) = a in C and define the hydrogen-suppressed chemical graph ⟨C⟩ to be the graph

obtained from H by removing all the vertices v ∈ VH(C).

n

(a) (b)

e2
*

e0
*

e5
*

e6
*

e4
*

e3
*

e1
*

e2
*

e5
*

e6
*

e4
*

e3
*

e1
*v2

*

v1
* v2

*

v1
*

Figure 2: (a) A repeating unit of polymer: thioBis(4-phenyl)carbonate, where e∗0 and e∗1 are the

connecting-edges and v∗1 and v∗2 are the connecting-vertices; (b) A monomer form of the polymer

in (a), where the link-edges are depicted with thick lines and v∗1 and v∗2 are the connecting-vertices.

Polymers In this paper, we treat a polymer that is a linear concatenation of a single repeating

unit with two connecting-edges of e∗0 and e
∗
1 such that two adjacent units in the concatenation are

joined with the connecting-edges. We call the two vertices incident to the two connecting-edges

the connecting-vertices. Figure 2(a) illustrates an example of a repeating unit of such a polymer,

where v∗1 and v∗2 are the connecting-vertices.

Tanaka et al. [31] proposed a modeling of a polymer as a monomer with no connecting-edges

by introducing an artificial chemical element a∗ to which the original two connecting-edges of

a repeating unit become newly incident. When the number of repeating units in a polymer is

extremely large, other edges in the repeating unit may have a similar role with the connecting-

edges. For example, edge e∗2 of the repeating unit in Figure 2(a) can serve as the connecting-edges

of a different repeating unit by splitting e∗2 into two edges and merging e∗0 and e
∗
1 into a single edge.

To take this into consideration, this paper introduces a new way of representing a polymer as

a monomer form. We call an edge e in a repeating unit of a polymer a link-edge if it is passed by

every path between the connecting-edges e∗0 and e∗1. For example, the link-edges in the repeating

unit in Figure 2(a) are given by e∗2, e
∗
3, . . . , e

∗
6. To represent a polymer as a monomer, we regard

the two connecting-edges e∗0 and e∗1 as a single edge e∗1, as illustrated in Figure 2(b). We call the

resulting chemical graph the monomer representation, where we also call the edge e∗1 a link-edge in

the representation. We still call the vertices incident to e∗1 the connecting-vertices and distinguish

them from other vertices because a polymer that is synthesized from a specified repeating unit

6

actually may end with the connecting-vertices. (A polymer of a cyclic sequence of a repeating unit

that has no particular ends can be modeled as our monomer representation with no connecting-

vertices.) In what follows, a polymer is represented by the monomer representation C, and the set

of link-edges in C is denoted by Elnk(C). Note that the set Elnk(C) is a circular set in C.

3 Two-layered Model

This section reviews the two-layered model proposed by Zhu et al. [26] and makes a necessary

modification so as to apply it to the case of polymers.

Let C = (H,α, β) be a chemical graph and ρ ≥ 1 be an integer, which we call a branch-

parameter.

A two-layered model of C is a partition of the hydrogen-suppressed chemical graph ⟨C⟩ into

an “interior” and an “exterior” in the following way. We call a vertex v ∈ V (⟨C⟩) (resp., an edge

e ∈ E(⟨C⟩)) of C an exterior-vertex (resp., exterior-edge) if ht(v) < ρ (resp., e is incident to an

exterior-vertex) and denote the sets of exterior-vertices and exterior-edges by V ex(C) and Eex(C),
respectively, and denote V int(C) = V (⟨C⟩) \ V ex(C) and Eint(C) = E(⟨C⟩) \ Eex(C), respectively.
We call a vertex in V int(C) (resp., an edge in Eint(C)) an interior-vertex (resp., interior-edge).

The set Eex(C) of exterior-edges forms a collection of connected graphs each of which is regarded

as a rooted tree T rooted at a vertex v ∈ V (T) with the maximum ht(v). Let T ex(⟨C⟩) denote

the set of these chemical rooted trees in ⟨C⟩. The interior of C is defined to be the subgraph

(V int(C), E int(C)) of ⟨C⟩.
Differently from standard monomers, we distinguish the link-edges in the monomer form of

a polymer from other edges in order to feature the topological structure of the polymer. Fig-

ure 3 illustrates an example of a hydrogen-suppressed polymer ⟨C⟩ with Elnk(C) = {u1u15,
u5u15, u3u16, u16u17, u17u18, u4u18}.

For a branch-parameter ρ = 2, the interior of the chemical graph ⟨C⟩ in Figure 3 is ob-

tained by removing the set of vertices with degree 1 ρ = 2 times; i.e., first remove the set V1 =

{w1, w2, . . . , w19} of vertices of degree 1 in ⟨C⟩ and then remove the set V2 = {w20, w16, . . . , w26}
of vertices of degree 1 in ⟨C⟩−V1, where the removed vertices become the exterior-vertices of ⟨C⟩.

For each interior-vertex u ∈ V int(C), let Tu ∈ T ex(⟨C⟩) denote the chemical tree rooted at u

(where possibly Tu consists of vertex u) and define the ρ-fringe-tree C[u] to be the chemical rooted

tree obtained from Tu by putting back the hydrogens originally attached with Tu in C. Let T (C)
denote the set of ρ-fringe-trees C[u], u ∈ V int(C). Figure 4 illustrates the set T (C) = {C[ui] | i ∈
[1, 29]} of the 2-fringe-trees of the example C in Figure 3.

Feature Function The feature of an interior-edge e = uv ∈ Eint(C) such that α(u) = a,

deg⟨C⟩(u) = d, α(v) = b, deg⟨C⟩(v) = d′ and β(e) = m is represented by a tuple (ad, bd′,m), which

is called the edge-configuration of the edge e, where we call the tuple (a, b,m) the adjacency-

configuration of the edge e.

For an integer K, a feature vector f(C) of a chemical graph C is defined by a feature function

f that consists of K descriptors. We call RK the feature space.

Tanaka et al. [31] defined a feature vector f(C) ∈ RK to be a combination of the frequency of

edge-configurations of the interior-edges and the frequency of chemical rooted trees among the set

7

O

C

ClCl

C

C

w16 w17

w18

w10

w11

w13w12

w1
w9

w4 w7 w14w8 w15w2 w5w3

w6
w19

C

C

C

C

S(6)

-
N

C O

C

C

O

C

O

C

C

C CC C

C

C

C
C

C

C

C

C

C

C

CC

C

CC C

w24 w25

w26

w20 w21 w22 w23

u16

u15

u18

u20

u17

u19

u29

u14
u13

u11

u7

u9

u2

u6

u4

u8

u12

u5u3

u10

u1 u21 u22

u23

u27u25

u24

u26

u28

C

C PC C

*

*

S(2)

C

O

O

C

C

C

C

C

Figure 3: An illustration of the hydrogen-suppressed monomer representation ⟨C⟩ obtained from

a polymer C by removing all the hydrogens, where the link-edges are depicted with thick lines and

V ex(C) = {wi | i ∈ [1, 26]} and V int(C) = {ui | i ∈ [1, 29]} for ρ = 2 and the connecting-vertices

are marked with asterisks.

H
H

H
H

H
H

C C

CC

C

N

H

C

H

C

H

C

H H

C

H H

CP

O
 [u11] [u6]

 [u7]

 [u12]

 [u8]

 [u10]

 [u14]

 [u15]

 [u1] [u2] [u9]

 [u13] [u3]

 [u4]

 [u17] [u16]
 [u19]

 [u22]
 [u28]

 [u21] [u23] [u24]

 [u25]

 [u20]

 [u26] [u27]

C

 [u18]

 [u29]

H
H

C

C

C

C

C

C

C

C

y19

y18

y27y28y29

y23

y28

y6

y5y4

y1

y18

y1y1y1

y24

y6

y15

y6y6

y2

y11
y11

y6
y11

y1

H
H

O

S(6)
-

y30

H

C

 [u5]
y6

C

C

O

C

O

C

C

ClCl

H

C

C C

O
H

C

H H

C C S(2) O

C

C

C

C

H

C C

C

H

C

C

y25

C

CC

C

Figure 4: The set T ex(C) of 2-fringe-trees C[ui], i ∈ [1, 29] of C with ⟨C⟩ in Figure 3, where the

root of each tree is depicted with a gray circle and the hydrogens attached to non-root vertices are

omitted in the figure.

of chemical rooted trees C[u] over all interior-vertices u. Zhu et al. [26] additionally included two

descriptors that feature the leaf-edges and the rank of a chemical graph. In this paper, we further

introduce new descriptors that features the link-edges in the monomer representation of polymers

(see Appendix B for all descriptors in our feature function on polymers). Note that introduction

of new descriptors requires us to modify the subsystem of simulating the computation process

of a feature function f in an MILP M(x, y; C1). We use the same MILP formulation used by

Zhu et al. [26] for M(x, y; C1) by making a necessary modification (see Appendix E for the details

of our MILP formulation M(g, x; C2)).

8

Topological Specification Tanaka et al. [31] also introduced a set of rules for describing a

topological specification in the following way:

(i) a seed graph GC as an abstract form of a target chemical graph C;
(ii) a set F of chemical rooted trees as candidates for a tree C[u] rooted at each interior-vertex

u in C; and
(iii) lower and upper bounds on the number of components in a target chemical graph such as

chemical elements, double/triple bonds and the interior-vertices in C.

H
H

H
H

a10

a14

a11

a13

a12
u14

u13

u11

u7

u9

u2

u6

u4

u8

u12

u5

u3

u10

(a) A seed graph GC=(VC,EC) with EC ={a1,a2}

u1

a3

a5

a4
a2

a1

a7

a15

a9

a8

a6

a17

a16

a18

(b) A set of chemical rooted trees

: E(＞2)={a1,a2,a3,a4}

: E(＞1)={a5,a6,...,a9}

: E(0/1)={a10}

: E(=1)={a11,a12,...,a18}

-

-

lnk

H
H

C

C

C

C

C

C

C

C

C

H

C

C

C

C

C

O C

ClCl

S(2)

H HH

H
H

H

y1 y3y2 y4

y6

y5

y7 y9y8 y11 y12

C

N

CCC C C C

CCCCC

C

O O

C

C

C

y10
H

CC O

H

NN

H

O

C

C

y14

y15

y13

y17y16 y19 y20y18 y21

H H

C

H H

NN

C

P

O

H

P

H H

PS(2) S(6)

y24 y26 y28 y30y29

y22 y23

y25 y27

-

H
H

O

S(6)

C

C

C

C

C

Figure 5: (a) A seed graph GC with Elnk
C = {a1, a2}, where the vertices in VC are depicted with

gray circles, the edges in E(≥2) are depicted with dotted lines, the edges in E(≥1) are depicted

with dashed lines, the edges in E(0/1) are depicted with gray bold lines and the edges in E(=1) are

depicted with black solid lines; (b) A set F = {ψ1, ψ2, . . . , ψ30} ⊆ F(Dπ) of 30 chemical rooted

trees ψi, i ∈ [1, 30], where the root of each tree is depicted with a gray circle, where the hydrogens

attached to non-root vertices are omitted in the figure.

Figure 5(a) and (b) illustrate examples of a seed graph GC and a set F of chemical rooted

trees, respectively. Given a seed graph GC, the interior of a target chemical graph C is constructed

from GC by replacing some edges a = uv with paths Pa between the end-vertices u and v and by

attaching new paths Qv to some vertices v. For example, the chemical graph ⟨C⟩ in Figure 3 is

constructed from the seed graph GC in Figure 5(a) as follows.

- First replace nine edges a1 = u1u5, a2 = u3u4, a3 = u1u2, a4 = u2u9, a5 = u1u2, a6 = u2u3, a7 =

u6u7, a8 = u3u9 and a9 = u9u10 inGC with new paths Pa1 = (u1, u15, u5), Pa2 = (u3, u16, u17, u18, u4),

Pa3 = (u1, u19, u20, u2), Pa4 = (u2, u23, u9), Pa5 = (u1, u21, u2), Pa6 = (u2, u22, u3), Pa7 =

(u6, u24, u7), Pa8 = (u3, u9) = a8 and Pa9 = (u9, u10), respectively to obtain a subgraph G1

of ⟨C⟩.
- Next attach to this graph G1 three new paths Qu9 = (u9, u26), Qu10 = (u10, u27), Qu18 =

(u18, u28, u29) and Qu20 = (u20, u25) to obtain the interior of ⟨C⟩, as illustrated in Figure 6.

- Finally attach to the interior 29 trees selected from the set F and assign chemical elements

and bond-multiplicities in the interior to obtain a chemical graph C in Figure 3. In Figure 4,

ψ1 ∈ F is selected for C[ui], i ∈ {1, 2, 4, 9, 20}. Similarly ψ2 for C[u24], ψ4 for C[u21], ψ5 for

9

C[u23], ψ6 for C[ui], i ∈ {3, 5, 6, 11, 18, 28}, ψ11 for C[ui], i ∈ {13, 15, 19}, ψ15 for C[u16], ψ18 for

C[ui], i ∈ {10, 17}, ψ19 for C[u22], ψ23 for C[u12], ψ24 for C[u27], ψ25 for C[u7], ψ27 for C[u29],
ψ28 for C[ui], i ∈ {8, 26}, ψ29 for C[u25] and ψ30 for C[u14].

u16

u15

u18

u20

u17

u19

Qu20

Pa1

u29

a14
a11

a13

a12

u14

u13

u11

u7

u9

u2

u6

u4

u8

u12

u5u3

u10

u1

a15
a8

a17

a16

a18

u21 u22

u23

u27u25

u24

u26

u28

Pa2

Pa5 Pa6

Pa3 Pa4
Pa9

Pa7
Qu9

Qu18

Qu10

Figure 6: A graph obtained from the seed graph GC in Figure 5(a), where each path Qu rooted at

a vertex u is depicted with arrows and the vertices newly introduced from GC are depicted with

white circles.

Our definition of a topological specification is analogous with the one by Zhu et al. [26] except

for a necessary modification due to our polymer model with link-edges (see Appendix C for a full

description of topological specification).

4 Computational Results

We implemented our method of Stages 1 to 5 for inferring chemical graphs under a given topological

specification and conducted experiments to evaluate the computational efficiency. We executed

the experiments on a PC with Processor: Core i7-9700 (3.0GHz; 4.7 GHz at the maximum) and

Memory: 16 GB RAM DDR4.

Results on Phase 1. We have conducted experiments of linear regression for ten chemical

properties on polymers among which we report the following eight properties to which the test

coefficient of determination R2 attains at least 0.76: experimental amorphous density (AmD),

dielectric constant (DeC), heat capacity liquid (HcL), heat capacity solid (HcS), mol volume

(MlV), permittivity (Prm), refractive index (RfId) and glass transition(Tg). All these data

sets are provided by Bicerano [36], where we did not include any polymer whose chemical formula

could not be found by its name in the book. For property RfId, we remove the following polymer

as an outlier from the original data set: 2-decyl-1 4-butadiene C with a(C) = 0.4899.

We implemented Stages 1, 2 and 3 in Phase 1 as follows.

Stage 1. We set a graph class G to be the set of all polymers with any graph structure, and set

a branch-parameter ρ to be 2. We represent a polymer as a monomer representation.

For each of the properties, we first select a set Λ of chemical elements and then collect a data

set Dπ on the polymers over the set Λ of chemical elements. To construct the data set Dπ, we

10

eliminated chemical compounds such that the monomer representation C that does not satisfy

one of the following: C is connected; the number of non-hydrogen neighbors of each atom C is at

most 4; and the number of end-vertices of the linked-edges in C is at least two (i.e., no self-loop

is a link-edge in the monomer form). Since the observed values of property Prm are measured by

different frequencies, we include an extra descriptor fq that represents the frequency used for each

polymer Ci ∈ Dπ in our feature vector f(Ci).

Table 1 shows the size and range of data sets that we prepared for each chemical property in

Stage 1, where we denote the following:

- Λ: the set of elements used in the data set Dπ; Λ is one of the following six sets: Λ1 =

{H, C, O, N}; Λ2 = {H, C, O(1), O(2), N}; Λ3 = {H, C, O, N, Cl}; Λ4 = {H, C, O, N, Cl, S(2)}; Λ5 =

{H, C, O, N, Cl, S(2), S(6)}; and Λ6 = {H, C, O(1), O(2), N, Cl, Si(4), F}, where a(i) for a chemical el-

ement a and an integer i ≥ 1 means that a chemical element a with valence i.

- |Dπ|: the size of data set Dπ over Λ for the property π.

- n, n: the minimum and maximum values of the number n(C) of non-hydrogen atoms in the

polymers C in Dπ.

- a, a: the minimum and maximum values of a(C) for π over the polymers C in Dπ.

- |Γ|: the number of different edge-configurations of interior-edges over the compounds in Dπ.

- |F|: the number of non-isomorphic chemical rooted trees in the set of all 2-fringe-trees in the

polymers in Dπ.

- K: the number of descriptors in a feature vector f(C).

Stage 2. We used the new feature function defined in our chemical model without suppressing

hydrogen (see Appendix B for the detail). We standardize the range of each descriptor and the

range {t ∈ R | a ≤ t ≤ a} of property values a(C),C ∈ Dπ.

Stage 3. For each chemical property π, we select a penalty value λπ in the Lasso function from

36 different values from 0 to 100 by conducting linear regression as a preliminary experiment.

We conducted an experiment in Stage 3 to evaluate the performance of the prediction function

based on cross-validation. For a property π, an execution of a cross-validation consists of five trials

of constructing a prediction function as follows. First partition the data set Dπ into five subsets

D
(k)
π , k ∈ [1, 5] randomly; for each k ∈ [1, 5], the i-th trial constructs a prediction function η(k) by

conducting a linear regression with the penalty term λπ using the set Dπ \D(k)
π as a training data

set. We used scikit-learn version 0.23.2 with Python 3.8.5 for executing linear regression with Lasso

function. For each property, we executed ten cross-validations and we show the median of test

coefficient of determination R2(η(k), D
(k)
π), k ∈ [1, 5] over all ten cross-validations (see Appendix A

for the definition coefficient of determination R2(η,D) for a prediction function η over a data set

D). Recall that a subset of descriptors is selected in linear regression with Lasso function and let

K ′ denote the average number of selected descriptors over all 50 trials. The running time per trial

in a cross-validation was at most one second.

Table 1 shows the results on Stages 2 and 3, where we denote the following:

- λπ: the penalty value in the Lasso function selected for a property π, where aEb means a× 10b;

- K ′: the average of the number of descriptors selected in the linear regression over all 50 trials

in ten cross-validations;

- test R2: the median of test coefficient of determination R2 over all 50 trials in ten cross-

11

Table 1: Results in Phase 1.

π Λ |Dπ| n, n a, a |Γ| |F| K λπ K ′ test R2

AmD Λ1 86 4, 45 0.838, 1.34 28 25 83 5.0E−4 17.7 0.914

AmD Λ4 93 4, 45 0.838, 1.45 31 30 94 6.0E−4 17.0 0.918

DeC Λ4 37 4, 22 2.13, 3.4 22 19 72 4.0E−3 6.7 0.761

HcL Λ1 52 4, 25 105.7, 677.8 22 17 67 7.0E−4 14.2 0.990

HcL Λ5 55 4, 32 105.7, 678.1 27 20 81 2.0E−4 28.3 0.987

HcS Λ1 54 4, 45 84.5, 720.5 26 20 75 5.0E−4 16.4 0.968

HcS Λ5 59 4, 45 84.5, 720.5 32 24 92 5.0E−4 18.9 0.961

MlV Λ1 86 4, 45 60.7, 466.6 28 25 83 2.0E−5 39.1 0.996

MlV Λ4 93 4, 45 60.7, 466.6 31 30 94 2.0E−6 60.8 0.994

Prm Λ1 112 4, 45 2.23, 4.91 25 15 69 4.0E−5 23.7 0.801

Prm Λ3 131 4, 45 2.23, 4.91 25 17 73 5.0E−5 27.3 0.784

RfId Λ2 91 4, 29 1.4507, 1.683 26 35 96 9.0E−4 22.0 0.852

RfId Λ6 124 4, 29 1.339, 1.683 32 50 124 9.0E−4 27.8 0.832

Tg Λ1 204 4, 58 171, 673 32 36 101 9.0E−5 40.0 0.902

Tg Λ5 232 4, 58 171, 673 36 43 118 9.0E−5 45.8 0.894

validations.

From Table 1, we see that the number K ′ of selected descriptors is around 15 to 50 over all

properties π and that the number K ′ becomes slightly larger when the set Λ of specified chemical

elements is large for the same property π.

Results on Phase 2. To execute Stages 4 and 5 in Phase 2, we used a set of two instances Ia
and Ib. We here present their seed graphs GC (see Appendices C and D for the details of them).

The seed graph GC of instance Ia is given by the graph in Figure 5(a). Instance Ib is introduced

to represent a set of polymers that includes the four examples of polymers in Figure 7. The seed

graph of instance Ib is illustrated in Figure 8(a).

Stage 4. We executed Stage 4 for four properties π ∈ {AmD, HcL, RfId, Tg}. For the MILP

formulation M(x, y; C1) in Section A, we use the prediction function ηw,b that attained the median

test R2 in Table 1. To solve an MILP in Stage 4, we used CPLEX version 12.10.

For property Prm, we also need to specify the frequency fq under which the value a(C) is

observed, and set lower and upper bounds fq, fq ∈ R on the frequency to be fq := 60 and fq :=

1.0× 107 in this experiment.

Tables 2 shows the computational results of the experiment in Stage 4 for the four properties

AmD, HcL, Prm, RfId and Tg, respectively, where we denote the following:

- π: a property π ∈ {AmD, HcL, RfId, Tg};
- inst.: instance Ia or Ib;

- nLB: a lower bound on the number of non-hydrogen atoms;

- y∗, y∗: lower and upper bounds y∗, y∗ ∈ R on the value a(C) of a polymer C to be inferred;

- #v (resp., #c): the number of variables (resp., constraints) in the MILP in Stage 4;

12

(i) 1_1-(2-methylPropane)Bis(4-phenyl)carbonate

(iv) thioBis(4-phenyl)carbonate

(ii) 2_2-pentaneBis(4-phenyl)carbonate

(iii) 1_1-dichloroethyleneBis(4-phenyl)carbonate

Figure 7: An illustration of four polymers: (i) 1 1-(2-methylPropane)Bis(4-phenyl)carbonate;

(ii) 2 2-pentaneBis(4-phenyl)carbonate; (iii) 1 1-dichloroethyleneBis(4-phenyl)carbonate; (iv)

thioBis(4-phenyl)carbonate, where hydrogens are omitted and connecting edges are depicted with

thick lines.

C

a10

a14

a11

a13

a12 u11

u7

u9

u2

u6

u4

u8

u12 u5

u3

u10

(i) A seed graph GC=(VC,EC) with EC ={a1,a2}

u1

a3

a5

a4

a2

a1

a7

a9

a8

a6

H
H

(ii) A set of chemical rooted trees

H
y1 y3y2

y4 y6y5 y7
y9

y8

y11 y12

CC

C

CC

C

O

y10

H

CC O

H

N

H

O

C

C

y14 y15y13 y16

H H

C

H H

N: E(＞2)={a1,a2} : E(=1)={a3,a4,...,a14}
-

lnk

C

C

C

C

C

C

C

C

H

C

C

C

C

C

O C

ClCl

S(2)

y17

C2 C1

Figure 8: (i) A seed graph GC for Ib; (ii) A set F of chemical rooted trees.

- I-time: the time (sec.) to solve the MILP in Stage 4;

- n: the number n(C†) of non-hydrogen atoms in the monomer representation C† inferred in

Stage 4, where “none” means that no desired polymer exists for the topological specification;

- nint: the number nint(C†) of interior-vertices in the monomer representation C† inferred in

Stage 4; and

- η: the predicted property value η(f(C†)) of the polymer C† inferred in Stage 4.

In Table 2, η(f(C†)) is the predicted value of property π of a polymer C† constructed by solving

an MILP in Stage 4, where we see that each η(f(C†)) actually satisfies the specified lower and

upper bounds on a target chemical value.

13

Table 2: Results of Stages 4 and 5.

π inst. nLB y∗, y∗ #v #c I-time n nint η D-time C-LB #C
AmD Ia 30 0.885, 0.890 11247 12964 6.20 49 30 0.889 0.285 64 64

Ib 25 1.344, 1.350 7125 7690 2.54 28 22 1.347 0.188 2610 100

HcL Ia 30 105.7, 678.1 12171 13017 31.0 none - - - -

Ib 30 658.8, 660.2 8469 9916 1.51 32 20 660.0 0.189 576 100

Prm Ia 30 4.128 4.150 9878 12547 10.7 50 30 4.150 0.166 24 24

Ib 35 3.158 3.188 8999 12112 2.03 41 24 3.188 0.190 1.5E4 100

RfId Ia 30 1.339, 1.683 9979 12661 92.1 none - - - -

Ib 40 1.406, 1.422 10460 15035 2.61 47 27 1.413 0.202 7.8E5 100

Tg Ia 30 180.0, 181.6 12245 13102 17.0 50 30 181.06 0.220 36 36

Ib 45 180.6, 182.8 12953 18549 32.8 55 28 182.20 0.196 6.3E5 100

We set lower and upper bounds on a target chemical value for property HcL with Λ1 so that

(y∗, y∗) is the maximal range of the observed values over the data set Dπ; i.e., (y
∗, y∗) := (a, a) =

(105.7, 678.1). Similarly for property RfId with Λ6, we set (y∗, y∗) := (a, a) = (1.339, 1.683). For

an example of Ia with AmD, it holds that y∗ ≤ η(f(C†)) ≤ y∗ with y∗ = 0.885, y∗ = 0.890 and

η(f(C†)) = 0.889. For instance Ia with HcL and RfId, Table 2 reveals that there is no chemical

graph that satisfies the topological specification Ia. These infeasible instance and instance Ib with

π =Tg took around 30 to 90 seconds. For the other cases, solving an MILP for inferring a polymer

with around 50 non-hydrogen atoms in the monomer form is around 2 to 15 seconds.

Figure 9(i) (resp., (ii)) illustrates the chemical graph C† inferred from Ia (resp., Ib) with

(y∗, y∗) = (0.885, 0.890) of AmD (resp., (y∗, y∗) = (658.8, 660.2) of HcL) in Table 2.

From Table 2, we observe that instances with around 30 to 55 non-hydrogen atoms in the

monomer representation are solved in around 2 to 30 seconds when they are feasible.

Inferring a polymer with target values in multiple properties

Once we obtained prediction functions ηπ for several properties π, it is easy to include MILP

formulations for these functions ηπ into a single MILP M(x, y; C1) so as to infer a chemical graph

that satisfies given target values y∗ for these properties at the same time. As an additional

experiment in Stage 4, we conducted a computational experiment for inferring a polymer that

has a desired predicted value each of some three properties π1, π2 and π3. For a combination of

three properties, we selected two sets P1 = {AmD, HcL, Tg} and P2 = {HcS, MlV, RfId},
where we used the prediction function ηπ for each property π ∈ Pi constructed in Stage 3. Table 3

shows the result of Stage 4 for inferring a chemical graph C† from instance Ib with a set Λ(Pi)

of chemical elements for the set Pi of properties such that Λ(P1) = Λ3 = {H, C, O, N, Cl, S(2)} and

Λ(P2) = {H, C, O(2), N, Cl}, where we denote the following:

- Pi, i = 1, 2: a combination of three properties, where P1 = {AmD, HcL, Tg} and P2 = {HcS,

MlV, RfId};
- π: one of the three properties in Pi, i = 1, 2 used in the experiment;

14

(i) (ii) (iii)

*
*

* *

*

*

Figure 9: Illustrations of polymers, where the link-edges are depicted with thick lines and the

connecting-vertices are marked with asterisks. (i) A polymer C† with η(f(C†)) = 0.889 inferred

from Ia with (y∗, y∗) = (0.885, 0.890) of AmD; (ii) A polymer C† with η(f(C†)) = 660.0 inferred

from Ib with (y∗, y∗) = (658.8, 660.2) of HcL. (iii) A polymer C† inferred from Ib with lower and

upper bounds on the predicted property value ηπ(f(C†)) of property π ∈ {AmD, HcL, Tg} in

Table 3.

- y∗
π
, y∗π: lower and upper bounds y∗

π
, y∗π ∈ R on the predicted property value ηπ(f(C†)) of

property π ∈ Pi, i = 1, 2 for a polymer C† to be inferred;

- #v (resp., #c): the number of variables (resp., constraints) in the MILP in Stage 4;

- I-time: the time (sec.) to solve the MILP in Stage 4;

- n: the number n(C†) of non-hydrogen atoms in the monomer representation C† inferred in

Stage 4; and

- nint: the number nint(C†) of interior-vertices in the monomer representation C† inferred in

Stage 4;

- ηπ: the predicted property value ηπ(f(C†)) of property π ∈ Pi, i = 1, 2 for the polymer C†

inferred in Stage 4.

Table 3: Results of Stage 4 for instance Ib with specified target values of the three properties in

Pi, i = 1, 2.

Pi nLB π y∗
π
, y∗π #v #c I-time n nint ηπ

AmD 1.200, 1.224 1.217

P1 25 HcL 624.0, 628.0 7525 8211 3.09 31 18 625.9

Tg 171.0, 174.0 171.55

HcS 539, 541 540.7

P2 45 MlV 393, 395 12162 18536 210.2 45 29 394.3

RfId 1.4507, 1.479 1.46

15

Fig. 9(iii) illustrates the polymer C† inferred from Ib with (y∗
π1
, y∗π1) = (1.200, 1.224), (y∗

π2
, y∗π2) =

(624.0, 628.0) and (y∗
π3
, y∗π3) = (171.0, 174.0) for π1 =AmD, π2 =HcL and π3 =Tg, respectively.

Stage 5. We executed Stage 5 to generate a more number of target chemical graphs C∗, where

we call a chemical graph C∗ a chemical isomer of a target chemical graph C† of a topological

specification σ if f(C∗) = f(C†) and C∗ also satisfies the same topological specification σ. For

this, we executed the same algorithm used by Zhu et al. [26]. We computed chemical isomers C∗ of

each target chemical graph C† inferred in Stage 4. We execute an algorithm for generating chemical

isomers of C† up to 100 when the number of all chemical isomers exceeds 100. The algorithm can

evaluate a lower bound on the total number of all chemical isomers C† without generating all of

them.

Tables 2 shows the computational results of the experiment in Stage 5 for properties AmD,

HcL, RfId and Tg, respectively, where we denote the following:

- D-time: the running time (sec.) to execute the dynamic programming algorithm in Stage 5 to

compute a lower bound on the number of all polymers C∗ of C† and generate all (or up to 100)

chemical isomers C∗;

- C-LB: a lower bound on the number of all chemical isomers C∗ of C†, where aEb means a ×
10b; and

- #C: the number of all (or up to 100) chemical isomers C∗ of C† generated in Stage 5.

From Table 2, we observe that the number of isomers C∗ of an output polymer C† varies on

each case, where the polymer C† admits only 24 isomers C∗ for instance Ia and π =Prm and over

6.3 × 105 for instance Ib and π =Tg. The computation time for generating at most 100 isomers

C∗ and estimating a lower bound C-LB is at most 0.3 second for all cases in our experiment.

5 Concluding Remarks

In this paper, we designed a method for inferring polymers based on the framework for monomers

proposed by Akutsu and Nagamochi [23]. To treat a polymer as a form of monomers with no

connecting-edges, we introduce a new way of representing a polymer with a monomer form by

distinguishing link-edges from other edges in polymers. Since the link-edges of a polymer are

characteristic to the polymer, we included new descriptors that feature the link-edges of a polymer

into our feature vector. We constructed prediction functions by linear regression for eight chemical

properties on polymers in Phase 1 of the framework. We inferred polymers for the first time in

Phase 2 of the framework. The results of our computational experiments suggest that the method

still can infer a polymer with 50 non-hydrogen atoms in the monomer form in a reasonable running

time.

There are some chemical properties on polymers to which linear regression did not provide a

good prediction function. It is left as a future work to use other learning methods such as decision

trees and neural networks and find new effective descriptors in order to construct a prediction

function with a better performance for these chemical properties on polymers.

16

References

[1] Tetko, I.V., Engkvist, O.: From big data to artificial intelligence: chemoinformatics meets

new challenges. J. Cheminformatics 12, 74 (2020)

[2] Xia, X.: Current topics in medicinal chemistry, Bioinformatics and drug discovery, 17,

1709-1726 (2017)

[3] Sanchez-Lengeling, B., Aspuru-Guzik, A.: Inverse molecular design using machine learning:

Generative models for matter engineering, Science, 361, 360-365, (2018)

[4] Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries

for drug discovery with recurrent neural networks. ACS Cent. Sci. 4, 120–131 (2017)

[5] Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., Tsuda, K.: ChemTS: an efficient python

library for de novo molecular generation. STAM 18, 972–976 (2017)

[6] Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., Sánchez-Lengeling,

B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P., Aspuru-Guzik, A.:

Automatic chemical design using a data-driven continuous representation of molecules. ACS

Cent. Sci. 4, 268–276 (2018)

[7] Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. Proc.

of the 34th International Conference on Machine Learning-Volume 70, 1945–1954 (2017)

[8] De Cao, N., Kipf, T.: MolGAN: An implicit generative model for small molecular graphs.

arXiv:1805.11973 (2018)

[9] Prykhodko, O., Johansson, S. V., Kotsias, P-C., Arús-Pous, J., Bjerrum, E. J., Engkvist,

O., Chen, H.: A de novo molecular generation method using latent vector based generative

adversarial network. J. Cheminformatics, 11, 74 (2019)

[10] Madhawa, K, Ishiguro, K., Nakago, K., Abe, M.: GraphNVP: an invertible flow model for

generating molecular graphs. arXiv 1905.11600 (2019)

[11] Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., Tang, J.: GraphAF: a flow-based autore-

gressive model for molecular graph generation. arXiv:2001.09382 (2020)

[12] Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks.

arXiv:1609.02907 (2016)

[13] Miyao, T., Kaneko, H., Funatsu, K.: Inverse QSPR/QSAR analysis for chemical structure

generation (from y to x). J. Chem. Inf. Model. 56, 286–299 (2016)

[14] Ikebata, H., Hongo, K., Isomura, T., Maezono, R., Yoshida, R.: Bayesian molecular design

with a chemical language model. J. Comput. Aided Mol. Des. 31, 379–391 (2017)

[15] Rupakheti, C., Virshup, A., Yang, W., Beratan, D.N.: Strategy to discover diverse optimal

molecules in the small molecule universe. J. Chem. Inf. Model. 55, 529–537 (2015)

17

[16] Akutsu, T., Fukagawa, D., Jansson, J., Sadakane, K.: Inferring a graph from path frequency.

Discrete Appl. Math. 160, 10-11, 1416–1428 (2012)

[17] Bohacek, R.S., McMartin, C., Guida, W.C.: The art and practice of structure-based drug

design: A molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996)

[18] Connor, E. F., Lees, I., Maclean, D.: Polymers as drugs - Advances in therapeutic applications

of polymer binding agents, J. Polym. Sci., Part A: Polym. Chem., 55, 3146-3157 (2017)

[19] Miccio, L. A., Schwartz, G. A.: From chemical structure to quantitative polymer properties

prediction through convolutional neural networks. Polymer, 193, 122341 (2020)

[20] Kumar, J. N., Li, Q., Jun, Y.: Challenges and opportunities of polymer design with machine

learning and high throughput experimentation. MRS Communications, 9, 537544 (2019)

[21] Wu, S., Kondo, Y., Kakimoto, M., Yang, B., Yamada, H., Kuwajima, I., Lambard, G., Hongo,

K., Xu, Y., Shiomi, J., Schick, C., Morikawa, J., Yoshida, R.: Machine-learning-assisted

discovery of polymers with high thermal conductivity using a molecular design algorithm. npj

Computational Materials, 5, 66 (2019)

[22] David, L., Thakkar, A., Mercado, R., Engkvist, O.: Molecular representations in AI-driven

drug discovery: a review and practical guide. J. Cheminformatics, 12, 56 (2020)

[23] Akutsu, T., Nagamochi, H.: A mixed integer linear programming formulation to artificial

neural networks. Proc. of the 2nd Int. Conf. on Information Science and Systems, 215–220

(2019)

[24] Azam, N. A., Chiewvanichakorn, R., Zhang, F., Shurbevski, A., Nagamochi, H., Akutsu,

T.: A method for the inverse QSAR/QSPR based on artificial neural networks and mixed

integer linear programming. Proc. of the 13th International Joint Conference on Biomedical

Engineering Systems and Technologies – Volume 3: BIOINFORMATICS, 101–108 (2020)

[25] Zhang, F., Zhu, J., Chiewvanichakorn, R., Shurbevski, A., Nagamochi, H., Akutsu, T.: A

new integer linear programming formulation to the inverse QSAR/QSPR for acyclic chemical

compounds using skeleton trees. The 33rd International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems, September 22-25, 2020, Kitakyushu,

Japan, Springer LNCS 12144, 433–444 (2020)

[26] Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L., Nagamochi, H., Akutsu, T.: A method

for molecular design based on linear regression and integer programming. 12th International

Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB 2022), Tokyo, Japan

during January 7-10, 2022 (to appear)

[27] Azam, N. A., Zhu, J., Sun, Y., Shi, Y., Shurbevski, A., Zhao, L., Nagamochi, H., Akutsu,

T.: A novel method for inference of acyclic chemical compounds with bounded branch-

height based on artificial neural networks and integer programming. Algorithms for Molecular

Biology, 16, 18 (2021)

18

[28] Ito, R., Azam, N. A., Wang, C., Shurbevski, A., Nagamochi, H., Akutsu, T.: A novel method

for the inverse QSAR/QSPR to monocyclic chemical compounds based on artificial neural

networks and integer programming. BIOCOMP2020, Las Vegas, Nevada, USA, 27-30 July

(2020)

[29] Zhu, J., Wang, C., Shurbevski, A., Nagamochi, H., Akutsu, T.: A novel method for inference

of chemical compounds of cycle index two with desired properties based on artificial neural

networks and integer programming. Algorithms 13, 5, 124 (2020)

[30] Akutsu, T., Nagamochi, H.: A novel method for inference of chemical compounds with

prescribed topological substructures based on integer programming. arXiv: 2010.09203 (2020)

[31] Tanaka, K., Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L., Nagamochi, H., Akutsu, T.:

An inverse QSAR method based on decision tree and integer programming. The 17th Inter-

national Conference on Intelligent Computing, August 12-15, 2021, in Shenzhen, China, In:

Huang D.S., Jo K.H., Li J., Gribova V., Hussain A. (eds) Intelligent Computing Theories and

Application, ICIC 2021, Lecture Notes in Computer Science, vol. 12837. Springer, Cham.

[32] Shi, Y., Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L., Nagamochi, H., Akutsu, T.: An

inverse QSAR method based on a two-layered model and integer programming. International

Journal of Molecular Sciences 22, 2847 (2021)

[33] Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and

deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discovery

Today 23, 1784–1790 (2018)

[34] Hoerl, A., Kennard, R.: Ridge regression. In Encyclopedia of Statistical Sciences. New York:

Wiley, 8, pp. 129–136 (1988)

[35] Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58,

267–288 (1996)

[36] Bicerano, J.: Prediction of Polymer Properties. 3rd Edition, Revised and Expanded. CRC

Press (2002)

19

Appendix

A Linear Regressions

This section reviews the method for linear regression used by Zhu et al. [26] in the framework of

inferring chemical graphs.

For an integer p ≥ 1 and a vector x ∈ Rp, the j-th entry of x is denoted by x(j), j ∈ [1, p].

Let D be a data set of chemical graphs C with an observed value a(C) ∈ R, where we denote

by ai = a(Ci) for an indexed graph Ci.

Let f be a feature function that maps a chemical graph C to a vector f(C) ∈ RK where we

denote by xi = f(Ci) for an indexed graph Ci. For a prediction function η : RK → R, define an

error function

Err(η;D) ≜
∑
Ci∈D

(ai − η(f(Ci)))
2 =

∑
Ci∈D

(ai − η(xi))
2,

and define the coefficient of determination R2(η,D) to be

R2(η,D) ≜ 1− Err(η;D)∑
Ci∈D(ai − ã)2

for ã =
1

|D|
∑
C∈D

a(C).

For a feature space RK , a hyperplane is defined to be a pair (w, b) of a vector w ∈ RK and a

real b ∈ R. Given a hyperplane (w, b) ∈ RK+1, a prediction function ηw,b : RK → R is defined by

setting

ηw,b(x) ≜ w · x+ b =
∑

j∈[1,K]

w(j)x(j) + b.

We observe that such a prediction function can be represented as an ANN with an input layer

with K nodes uj, j ∈ [1, K] and an output layer with a single node v such that the weight of edge

arc (uj, v) is set to be w(j), the bias of node u is set to be b and the activation function at node

u is set to be a linear function. However, a learning algorithm for an ANN may not find a set

of weights w(j), j ∈ [1, K] and b that minimizes the error function, since the algorithm simply

iterates modification of the current weights and biases until it terminates at a local optima in the

minimization.

We wish to find a hyperplane (w, b) that minimizes the error function Err(ηw,b;D). In many

cases, a feature vector f contains descriptors that do not play an essential role in constructing

a good prediction function. When we solve the minimization problem, the entries w(j) for some

descriptors j ∈ [1, K] in the resulting hyperplane (w, b) become zero, which means that these

descriptors were not necessarily important for finding a prediction function ηw,b. It is proposed that

solving the minimization with an additional penalty term τ to the error function often results in a

more number of entries w(j) = 0, reducing a set of descriptors necessary for defining a prediction

function ηw,b. For an error function with such a penalty term, a Ridge function 1
2|D|Err(ηw,b;D) +

λ[
∑

j∈[1,K]w(j)
2 + b2] [34] and a Lasso function 1

2|D|Err(ηw,b;D) + λ[
∑

j∈[1,K] |w(j)| + |b|] [35] are
known, where λ ∈ R is a given real number.

Given a prediction function ηw,b, we can simulate a process of computing the output ηw,b(x)

for an input x ∈ RK as an MILP M(x, y; C1) in the framework. By solving such an MILP for

20

a specified target value y∗, we can find a vector x∗ ∈ RK such that ηw,b(x
∗) = y∗. Instead of

specifying a single target value y∗, we use lower and upper bounds y∗, y∗ ∈ R on the value a(C)
of a chemical graph C to be inferred. We can control the range between y∗ and y∗ for searching a

chemical graph C by setting y∗ and y∗ to be close or different values. A desired MILP is formulated

as follows.

M(x, y; C1): An MILP formulation for the inverse problem to prediction function

constants:

- A hyperplane (w, b) with w ∈ RK and b ∈ R;
- Real values y∗, y∗ ∈ R such that y∗ < y∗;

- A set IZ of indices j ∈ [1, K] such that the j-th descriptor dcpj(C) is always an integer;

- A set I+ of indices j ∈ [1, K] such that the j-th descriptor dcpj(C) is always non-negative;
- ℓ(j), u(j) ∈ R, j ∈ [1, K]: lower and upper bounds on the jth-descriptor;

variables:

- Non-negative integer variable x(j) ∈ Z+, j ∈ IZ ∩ I+;
- Integer variable x(j) ∈ Z, j ∈ IZ \ I+;
- Non-negative real variable x(j) ∈ Z+, j ∈ I+ \ IZ;
- Real variable x(j) ∈ Z, j ∈ [1, K] \ (IZ ∪ I+);
constraints:

ℓ(j) ≤ x(j) ≤ u(j), j ∈ [1, K], (1)

y∗ ≤
∑

j∈[1,K]

w(j)x(j) + b ≤ y∗, (2)

objective function:

none.

The number of variables and constraints in the above MILP formulation is O(K). It is not

difficult to see that the above MILP is an NP-hard problem.

The entire MILP for Stage 4 consists of the two MILPs M(x, y; C1) and M(g, x; C2) with no

objective function. The latter represents the computation process of our feature function f and a

given topological specification. See Appendix E for the details of MILP M(g, x; C2).

B A Full Description of Descriptors

Our definition of feature function is analogous with the one by Zhu et al. [26] except for a necessary

modification due to our polymer model with link-edges.

Associated with the two functions α and β in a chemical graph C = (H,α, β), we introduce

functions ac : V (E) → (Λ\{H})× (Λ\{H})× [1, 3], cs : V (E) → (Λ\{H})× [1, 6] and ec : V (E) →
((Λ \ {H})× [1, 6])× ((Λ \ {H})× [1, 6])× [1, 3] in the following.

21

To represent a feature of the exterior of C, a chemical rooted tree in T (C) is called a fringe-

configuration of C.
We also represent leaf-edges in the exterior of C. For a leaf-edge uv ∈ E(⟨C⟩) with deg⟨C⟩(u) =

1, we define the adjacency-configuration of e to be an ordered tuple (α(u), α(v), β(uv)). Define

Γlf
ac ≜ {(a, b,m) | a, b ∈ Λ,m ∈ [1,min{val(a), val(b)}]}

as a set of possible adjacency-configurations for leaf-edges.

To represent a feature of an interior-vertex v ∈ V int(C) such that α(v) = a and deg⟨C⟩(v) = d

(i.e., the number of non-hydrogen atoms adjacent to v is d) in a chemical graph C = (H,α, β),

we use a pair (a, d) ∈ (Λ \ {H}) × [1, 4], which we call the chemical symbol cs(v) of the vertex

v. We treat (a, d) as a single symbol ad, and define Λdg to be the set of all chemical symbols

µ = ad ∈ (Λ \ {H})× [1, 4].

We define a method for featuring interior-edges as follows. Let e = uv ∈ Eint(C) be an

interior-edge e = uv ∈ Eint(C) such that α(u) = a, α(v) = b and β(e) = m in a chemical graph

C = (H,α, β). To feature this edge e, we use a tuple (a, b,m) ∈ (Λ \ {H}) × (Λ \ {H}) × [1, 3],

which we call the adjacency-configuration ac(e) of the edge e. We introduce a total order < over

the elements in Λ to distinguish between (a, b,m) and (b, a,m) (a ̸= b) notationally. For a tuple

ν = (a, b,m), let ν denote the tuple (b, a,m).

Let e = uv ∈ Eint(C) be an interior-edge e = uv ∈ Eint(C) such that cs(u) = µ, cs(v) = µ′ and

β(e) = m in a chemical graph C = (H,α, β). To feature this edge e, we use a tuple (µ, µ′,m) ∈
Λdg×Λdg×[1, 3], which we call the edge-configuration ec(e) of the edge e. We introduce a total order

< over the elements in Λdg to distinguish between (µ, µ′,m) and (µ′, µ,m) (µ ̸= µ′) notationally.

For a tuple γ = (µ, µ′,m), let γ denote the tuple (µ′, µ,m).

Let π be a chemical property for which we will construct a prediction function η from a feature

vector f(C) of a chemical graph C to a predicted value y ∈ R for the chemical property of C.
We first choose a set Λ of chemical elements and then collect a data set Dπ of chemical com-

pounds C whose chemical elements belong to Λ, where we regard Dπ as a set of chemical graphs

C that represent the chemical compounds C in Dπ. To define the interior/exterior of chemical

graphs C ∈ Dπ, we next choose a branch-parameter ρ, where we recommend ρ = 2.

Let Λint(Dπ) ⊆ Λ (resp., Λex(Dπ) ⊆ Λ) denote the set of chemical elements used in the set

V int(C) of interior-vertices (resp., the set V ex(C) of exterior-vertices) of C over all chemical graphs

C ∈ Dπ, and Γint(Dπ) (resp., Γ
lnk(Dπ)) denote the set of edge-configurations used in the set Eint(C)

of interior-edges (resp., the set Elnk(C) of linked-edges) in C over all chemical graphs C ∈ Dπ. Let

F(Dπ) denote the set of chemical rooted trees ψ r-isomorphic to a chemical rooted tree in T (C)
over all chemical graphs C ∈ Dπ, where possibly a chemical rooted tree ψ ∈ F(Dπ) consists of a

single chemical element a ∈ Λ \ {H}.
We define an integer encoding of a finite set A of elements to be a bijection σ : A → [1, |A|],

where we denote by [A] the set [1, |A|] of integers. Introduce an integer coding of each of the sets

Λint(Dπ), Λ
ex(Dπ), Γ

int(Dπ) and F(Dπ). Let [a]int (resp., [a]ex) denote the coded integer of an

element a ∈ Λint(Dπ) (resp., a ∈ Λex(Dπ)), [γ] denote the coded integer of an element γ in Γint(Dπ)

and [ψ] denote an element ψ in F(Dπ).

We assume that a chemical graph C treated in this paper satisfies deg⟨C⟩(v) ≤ 4 in the hydrogen-

suppressed graph ⟨C⟩.

22

In our model, we use an integer mass∗(a) = ⌊10 ·mass(a)⌋, for each a ∈ Λ.

We define the feature vector f(C) of a polymer C = (H,α, β) ∈ Dπ to be a vector that consists

of the following non-negative integer descriptors dcpi(C), i ∈ [1, K], where K = 14 + |Λint(Dπ)|+
|Λex(Dπ)|+ |Γint(Dπ)|+ |Γlnk(Dπ)|+ |Λdg|+ |F(Dπ)|+ |Γlf

ac|.

1. dcp1(C): the number |V (H)| − |VH| of non-hydrogen atoms in C.

2. dcp2(C): the number |V int(C)| of interior-vertices in C.

3. dcp3(C): the number |Elnk(C)| of link-edges in C. This descriptor is newly introduced in

this paper to feature a structure of polymers.

4. dcp4(C): the average ms(C) of mass∗ over all atoms in C;
i.e., ms(C) ≜ 1

|V (H)|
∑

v∈V (H) mass∗(α(v)).

5. dcpi(C), i = 4 + d, d ∈ [1, 4]: the number dgHd(C) of non-hydrogen vertices v ∈ V (H) \ VH of

degree deg⟨C⟩(v) = d in the hydrogen-suppressed chemical graph ⟨C⟩.

6. dcpi(C), i = 8 + d, d ∈ [1, 4]: the number dgintd (C) of interior-vertices of interior-degree

degCint(v) = d in the interior Cint = (V int(C), E int(C)) of C.

7. dcpi(C), i = 12+m, m ∈ [2, 3]: the number bdint
m (C) of interior-edges with bond multiplicity

m in C; i.e., bdint
m (C) ≜ {e ∈ Eint(C) | β(e) = m}.

8. dcpi(C), i = 14+ [a]int, a ∈ Λint(Dπ): the frequency nainta (C) = |Va(C)∩ V int(C)| of chemical

element a in the set V int(C) of interior-vertices in C.

9. dcpi(C), i = 14 + |Λint(Dπ)|+ [a]ex, a ∈ Λex(Dπ): the frequency naexa (C) = |Va(C) ∩ V ex(C)|
of chemical element a in the set V ex(C) of exterior-vertices in C.

10. dcpi(C), i = 14 + |Λint(Dπ)| + |Λex(Dπ)| + [γ], γ ∈ Γint(Dπ): the frequency ecγ(C) of edge-
configuration γ in the set Eint(C) of interior-edges in C.

11. dcpi(C), i = 14 + |Λint(Dπ)| + |Λex(Dπ)| + |Γint(Dπ)| + [γ], γ ∈ Γlnk(Dπ): the frequency

ecγ(C) of edge-configuration γ in the set Elnk(C) of link-edges in C. This descriptor is newly
introduced in this paper to feature link-edges of polymers.

12. dcpi(C), i = 14+ |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+[µ], µ ∈ Λint
dg : the frequency of chemical

symbols µ = α(u) deg⟨C⟩(u) of connecting-vertices u in C.

13. dcpi(C), i = 14 + |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ |Γlnk(Dπ)|+ |Λdg|+ [ψ], ψ ∈ F(Dπ):

the frequency fcψ(C) of fringe-configuration ψ in the set of ρ-fringe-trees in C.

14. dcpi(C), i = 14 + |Λint(Dπ)| + |Λex(Dπ)| + |Γint(Dπ)| + |Γlnk(Dπ)| + |Λdg| + |F(Dπ)| + [ν],

ν ∈ Γlf
ac: the frequency aclfν (C) of adjacency-configuration ν in the set of leaf-edges in ⟨C⟩.

23

C Specifying Target Chemical Graphs

Our definition of topological specification is analogous with the one by Zhu et al. [26] except for a

necessary modification due to our polymer model with link-edges.

Seed Graph

A seed graph for a polymer is defined to be a graph GC = (VC, EC) with a specified edge subset Elnk
C

such that the edge set EC consists of four sets E(≥2), E(≥1), E(0/1) and E(=1), where each of them can

be empty, and Elnk
C is a circular set in GC such that ∅ ̸= Elnk

C ⊆ E(≥2) ∪E(≥1) ∪E(=1). Figure 5(a)

illustrates an example of a seed graph, where VC = {u1, u2, . . . , u14}, E(≥2) = {a1, a2, a3, a4},
E(≥1) = {a5, a6, . . . , a9}, E(0/1) = {a10}, E(=1) = {a11, a12, . . . , a18} and Elnk

C = {a1, a2}.
A subdivision S of GC is a graph constructed from a seed graph GC according to the following

rules:

- Each edge e = uv ∈ E(≥2) is replaced with a u, v-path Pe of length at least 2;

- Each edge e = uv ∈ E(≥1) is replaced with a u, v-path Pe of length at least 1 (equivalently e is

directly used or replaced with a u, v-path Pe of length at least 2);

- Each edge e ∈ E(0/1) is either used or discarded; and

- Each edge e ∈ E(=1) is always used directly.

The set of link-edges in the monomer representation C of an inferred polymer consists of edges

in Elnk
C ∩ (E(=1) ∪ E(≥1)) or edges in paths Pe for all edges e = uv ∈ Elnk

C ∩ (E(≥1) ∪ E(≥2)) in a

subdivision S of GC.

A target chemical graph C = (H,α, β) will contain S as a subgraph of the interior H int of C.

Interior-specification

A graph H∗ that serves as the interior H int of a target chemical graph C will be constructed as

follows. First construct a subdivision S of a seed graph GC by replacing each edge e = uu′ ∈
E(≥2) ∪ E(≥1) with a pure u, u′-path Pe. Next construct a supergraph H∗ of S by attaching a leaf

path Qv at each vertex v ∈ VC or at an internal vertex v ∈ V (Pe) \ {u, u′} of each pure u, u′-path

Pe for some edge e = uu′ ∈ E(≥2) ∪ E(≥1), where possibly Qv = (v), E(Qv) = ∅ (i.e., we do not

attach any new edges to v). We introduce the following rules for specifying the size of H∗, the

length |E(Pe)| of a pure path Pe, the length |E(Qv)| of a leaf path Qv, the number of leaf paths

Qv and a bond-multiplicity of each interior-edge, where we call the set of prescribed constants an

interior-specification σint:

- Lower and upper bounds nint
LB, n

int
UB ∈ Z+ on the number of interior-vertices of a target chemical

graph C.

- Lower and upper bounds nlnk
LB, n

lnk
UB ∈ Z+ on the number of link-edges of a target chemical

graph C.

24

- For each edge e = uu′ ∈ E(≥2) ∪ E(≥1),

a lower bound ℓLB(e) and an upper bound ℓUB(e) on the length |E(Pe)| of a pure u, u′-path

Pe. (For a notational convenience, set ℓLB(e) := 0, ℓUB(e) := 1, e ∈ E(0/1) and ℓLB(e) := 1,

ℓUB(e) := 1, e ∈ E(=1).)

a lower bound blLB(e) and an upper bound blUB(e) on the number of leaf paths Qv attached

at internal vertices v of a pure u, u′-path Pe.

a lower bound chLB(e) and an upper bound chUB(e) on the maximum length |E(Qv)| of a leaf

path Qv attached at an internal vertex v ∈ V (Pe) \ {u, u′} of a pure u, u′-path Pe.

- For each vertex v ∈ VC,

a lower bound chLB(v) and an upper bound chUB(v) on the number of leaf paths Qv attached

to v, where 0 ≤ chLB(v) ≤ chUB(v) ≤ 1.

a lower bound chLB(v) and an upper bound chUB(v) on the length |E(Qv)| of a leaf path Qv

attached to v.

- For each edge e = uu′ ∈ EC, a lower bound bdm,LB(e) and an upper bound bdm,UB(e) on

the number of edges with bond-multiplicity m ∈ [2, 3] in u, u′-path Pe, where we regard Pe,

e ∈ E(0/1) ∪ E(=1) as single edge e.

We call a graph H∗ that satisfies an interior-specification σint a σint-extension of GC, where the

bond-multiplicity of each edge has been determined.

Table 4 shows an example of an interior-specification σint to the seed graph GC in Figure 5.

Figure 6 illustrates an example of an σint-extension H
∗ of seed graph GC in Figure 5(a) under

the interior-specification σint in Table 4.

Chemical-specification

Let H∗ be a graph that serves as the interior H int of a target chemical graph C, where the

bond-multiplicity of each edge in H∗ has be determined. Finally we introduce a set of rules

for constructing a target chemical graph C from H∗ by choosing a chemical element a ∈ Λ and

assigning a ρ-fringe-tree ψ to each interior-vertex v ∈ V int. We introduce the following rules for

specifying the size of C, a set of chemical rooted trees that are allowed to use as ρ-fringe-trees

and lower and upper bounds on the frequency of a chemical element, a chemical symbol, an edge-

configuration, and a fringe-configuration where we call the set of prescribed constants a chemical

specification σce:

- Lower and upper bounds nLB, n
∗ ∈ Z+ on the number of vertices, where nint

LB ≤ nLB ≤ n∗.

- A subset F∗ ⊆ F(Dπ) of chemical rooted trees ψ with ht(⟨ψ⟩) ≤ ρ, where we require that every

ρ-fringe-tree C[v] rooted at an interior-vertex v in C belongs to F∗. Let Λex denote the set of

chemical elements assigned to non-root vertices over all chemical rooted trees in F∗.

25

Table 4: Example 1 of an interior-specification σint.

nint
LB = 20 nint

UB = 30 nlnk
LB = 2 nlnk

UB = 24

a1 a2 a3 a4 a5 a6 a7 a8 a9
ℓLB(ai) 2 4 3 2 2 1 1 1 1

ℓUB(ai) 3 6 6 5 3 3 6 2 6

blLB(ai) 0 1 1 0 0 0 0 0 0

blUB(ai) 1 4 4 3 2 1 1 1 1

chLB(ai) 0 2 1 0 0 0 0 0 0

chUB(ai) 3 6 6 3 3 3 3 0 0

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14
blLB(ui) 0 0 0 0 0 0 0 0 1 0 0 0 0 0

blUB(ui) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

chLB(ui) 0 0 0 0 0 0 0 0 1 0 0 0 0 0

chUB(ui) 4 4 4 4 4 4 4 4 6 4 4 4 4 4

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18
bd2,LB(ai) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

bd2,UB(ai) 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

bd3,LB(ai) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bd3,UB(ai) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- A subset Λint ⊆ Λint(Dπ), where we require that every chemical element α(v) assigned to an

interior-vertex v in C belongs to Λint. Let Λ := Λint ∪ Λex and naa(C) (resp., nainta (C) and

naexa (C)) denote the number of vertices (resp., interior-vertices and exterior-vertices) v such

that α(v) = a in C.

- A set Λint
dg ⊆ Λ× [1, 4] of chemical symbols.

- Subsets Γlnk ⊆ Γint of Γint(Dπ) of edge-configurations (µ, µ
′,m) with µ ≤ µ′, where we require

that the edge-configuration ec(e) of an interior-edge (resp., a link-edge) e in C belongs to Γint

(resp., Γlnk). We do not distinguish (µ, µ′,m) and (µ′, µ,m).

- Define Γint
ac (resp., Γlnk

ac) to be the set of adjacency-configurations such that Γt
ac := {(a, b,m) |

(ad, bd′,m) ∈ Γt}, t ∈ {int, lnk}. Let acintν (C), ν ∈ Γint
ac (resp., aclnkν (C), ν ∈ Γlnk

ac) denote the

number of interior-edges (resp., link-edges) e such that ac(e) = ν in C.

- Subsets Λ∗(v) ⊆ {a ∈ Λint | val(a) ≥ 2}, v ∈ VC, we require that every chemical element α(v)

assigned to a vertex v ∈ VC in the seed graph belongs to Λ∗(v).

- Lower and upper bound functions naLB, naUB : Λ → [0, n∗] and naintLB, na
int
UB : Λint → [0, n∗] on

the number of interior-vertices v such that α(v) = a in C.

- Lower and upper bound functions nsintLB, ns
int
UB : Λint

dg → [0, n∗] on the number of interior-vertices

v such that cs(v) = µ in C.

26

- Lower and upper bound functions nscntLB, ns
cnt
UB : Λint

dg → [0, 2] on the number of connecting-vertices

v such that cs(v) = µ in C.

- Lower and upper bound functions acintLB, ac
int
UB : Γint

ac → Z+ (aclnkLB, ac
lnk
UB : Γlnk

ac → Z+) on the

number of interior-edges (resp., link-edges) e such that ac(e) = ν in C.

- Lower and upper bound functions ecintLB, ec
int
UB : Γint → Z+ (resp., eclnkLB, ec

lnk
UB : Γlnk → Z+) on the

number of interior-edges (resp., link-edges) e such that ec(e) = γ in C.

- Lower and upper bound functions fcLB, fcUB : F∗ → [0, n∗] on the number of interior-vertices v

such that C[v]fr is r-isomorphic to ψ ∈ F∗ in C.

- Lower and upper bound functions aclfLB, ac
lf
UB : Γlf

ac → [0, n∗] on the number of leaf-edges uv in

acC with adjacency-configuration ν.

We call a chemical graph C that satisfies a chemical specification σce a (σint, σce)-extension of

GC, and denote by G(GC, σint, σce) the set of all (σint, σce)-extensions of GC.

Table 5 shows an example of a chemical-specification σce to the seed graph GC in Figure 5.

Figure 3 illustrates an example of a (σint, σce)-extension of GC obtained from the σint-extension

H∗ in Figure 6 under the chemical-specification σce in Table 5.

27

Table 5: Example 2 of a chemical-specification σce.
nLB = 30, n∗ = 50.

branch-parameter: ρ = 2

Each of sets F(v), v ∈ VC and FE is set to be

the set F of chemical rooted trees ψ with ht(⟨ψ⟩) ≤ ρ = 2 in Figure 5(b).

Λ = {H, C, N, O, S(2), S(6), P = P(6), Cl} Λint
dg = {C2, C3, C4, N2, N3, O2, S(2)2, S(6)3, P4}

Γint
ac ν1=(C, C, 1), ν2=(C, C, 2), ν3=(C, N, 1), ν4=(C, O, 1), ν5=(C, S(2), 1), ν6=(C, S(6), 1), ν7=(C, P, 1)

Γint γ1=(C2, C2, 1), γ2=(C2, C2, 2), γ3=(C2, C3, 1), γ4=(C2, C3, 2), γ5=(C2, C4, 1), γ6=(C3, C3, 1),

γ7=(C3, C3, 2), γ8=(C3, C4, 1), γ9=(C2, N3, 1), γ10=(C3, N2, 1), γ11=(C4, N2, 1), γ12=(C2, O2, 1),

γ13=(C3, O2, 1), γ14=(C2, S(2)2, 1), γ15=(C3, S(2)2, 1), γ16=(C4, S(2)2, 1), γ17=(C3, S(6)3, 1),

γ18=(C4, S(6)3, 1), γ19=(C2, P4, 1), γ20=(C3, P4, 1)

Γlnk
ac ν ′1=(C, C, 1), ν ′2=(C, C, 2), ν ′3=(C, N, 1), ν ′4=(C, S(2), 1)

Γlnk γ′1=(C2, C2, 1), γ′2=(C2, C3, 1), γ′3=(C2, C4, 1), γ′4=(C3, C3, 1), γ′5=(C3, C3, 2), γ′6=(C2, N3, 1),

γ′7=(C3, N2, 1), γ′8=(C2, S(2)2, 1), γ
′
9=(C3, S(2)2, 1), γ

′
10=(C4, S(2)2, 1)

Λ∗(ui) = {C}, i ∈ {1, 2, 3, 4, 5, 6, 9}, Λ∗(u8) = {O}, Λ∗(u12) = {C, P},
Λ∗(ui) = {C, O, N}, i ∈ [1, 14] \ {1, 2, 3, 4, 5, 6, 8, 9, 12}

H C N O S(2) S(6) P Cl

naLB(a) 40 25 1 1 0 0 0 0

naUB(a) 80 50 8 8 4 4 4 4

C N O S(2) S(6) P

naintLB(a) 10 1 0 0 0 0

naintUB(a) 25 4 5 2 2 2

C2 C3 C4 N2 N3 O2 S(2)2 S(6)3 P4

nsintLB(µ) 3 5 0 0 0 0 0 0 0

nsintUB(µ) 12 15 5 5 3 5 1 1 1

C2 C3 C4 N2 N3 O2 S(2)2 S(6)3 P4

nscntLB(µ) 0 0 0 0 0 0 0 0 0

nscntUB(µ) 2 2 2 2 2 2 1 1 0

ν1 ν2 ν3 ν4 ν5 ν6 ν7
acintLB(ν) 0 0 0 0 0 0 0

acintUB(ν) 30 10 10 10 2 3 3

γ1 γ2 γ3 γ4 γ5 γi, i ∈ [6, 13] γi, i ∈ [14, 20]

ecintLB(γ) 0 0 0 0 0 0 0

ecintUB(γ) 4 15 5 5 10 5 2

ν ′1 ν ′2 ν ′3 ν ′4
aclnkLB(ν

′) 0 0 0 0

aclnkUB(ν
′) 10 5 5 5

γ′i, i ∈ [1, 10]

eclnkLB(γ
′) 0

eclnkUB(γ
′) 4

ψ ∈ {ψi | i = 1, 6, 11} ψ ∈ F∗ \ {ψi | i = 1, 6, 11}
fcLB(ψ) 1 0

fcUB(ψ) 10 3

ν ∈ {(C, C, 1), (C, C, 2)} ν ∈ Γlf
ac \ {(C, C, 1), (C, C, 2)}

aclfLB(ν) 0 0

aclfUB(ν) 10 8

28

D Test Instances for Stages 4 and 5

We prepared the following instances Ia and Ib for conducting experiments of Stages 4 and 5 in

Phase 2.

In Stages 4 and 5, we use four properties π ∈ {AmD, HcL, RfId, Tg} and define a set

Λ(π) of chemical elements as follows: Λ(AmD) = Λ4 = {H, C, N, O, Cl, S(2)}, Λ(HcL) = Λ(Tg) =

Λ5 = {H, C, O, N, Cl, S(2), S(6)}, Λ(RfId) = Λ6 = {H, C, O(1), O(2), N, Cl, Si(4), F} and Λ(Prm) = Λ3 =

{H, C, O, N, Cl}.

(a) Ia = (GC, σint, σce): The instance used in Appendix C to explain the target specification. For

each property π ∈ {AmD, HcL, RfId, Tg, Prm}, we replace Λ = {H, C, N, O, S(2), S(6), P(5), Cl}
in Table 5 with Λ(π) ∩ {S(2), S(6), P(5), Cl} and remove from the σce all chemical symbols,

edge-configurations and fringe-configurations that cannot be constructed from the replaced

element set (i.e., those containing a chemical element in {S(2), S(6), P(5), Cl} \ Λ(π)).

(b) Ib = (GC, σint, σce): An instance that represents a set of polymers that includes the four

examples of polymers in Fig. 7. We set a seed graph GC = (VC, EC = E(=1)) to be the

graph with two cycles C1 and C2 in Fig. 8(a), where we set E(≥2) = Elnk
C = {a1, a2} and

E(=1) = {a3, a12, . . . , a14}.
Set Λ := Λ(π) for each property π ∈ {AmD, HcL, RfId, Tg}, and set Λint

dg to be the set of

all possible chemical symbols in Λ× [1, 4].

Set Γint (resp., Γlnk) to be the set of edge-configurations of the interior-edges (resp., the link-

edges) used in the four examples of polymers in Fig. 7. Set Γint
ac (resp., Γlnk

ac) to be the set of

the adjacency-configurations of the edge-configurations in Γint (resp., Γlnk).

We specify nLB for each property π and set nint
LB := 14, nint

UB := n∗ := nLB + 10, nlnk
LB := 2,

nlnk
UB := 2 + max{nLB − 15, 0}.

For each link-edge ai ∈ E(≥2) = Elnk
C = {a1, a2}, set ℓLB(ai) := 2 + max{⌊(nLB − 15)/4⌋, 0},

ℓUB(ai) := ℓLB(ai)+5, blLB(ai) := 0, blUB(ai) := 3, chLB(ai) := 0, chUB(ai) := 5, bd2,LB(ai) :=

0 and bd2,UB(ai) := ⌊ℓLB(ai)/3⌋.
To form two benzene rings from the two cycles C1 and C2, set Λ∗(u) := {C}, blLB(u) :=

blUB(u) := chLB(u) := chUB(u) := 0, u ∈ VC, bd2,LB(ai) := bd2,UB(ai) := 0, i ∈ {3, 5, 7, 9, 11, 13},
bd2,LB(ai) := bd2,UB(ai) := 1, i ∈ {4, 6, 8, 10, 12, 14}.
Not to include any triple-bond, set bd3,LB(a) := bd3,UB(a) := 0, a ∈ EC.

Set lower bounds naLB, na
int
LB, ns

int
LB, ns

cnt
LB, ac

int
LB, ac

lnk
LB, ec

int
LB, ec

lnk
LB and aclfLB to be 0.

Set upper bounds naUB(a) := n∗, na ∈ {H, C}, naUB(a) := 5 + max{nLB − 15, 0}, a ∈ {O, N},
naUB(a) := 2+max{⌊(nLB− 15)/4⌋, 0}, a ∈ Λ \ {H, C, O, N}, nscntUB(µ) := 2, µ ∈ Λint

dg , and naintUB,

nsintUB, ac
int
UB, ac

lnk
LB, ec

int
UB, ec

lnk
UB and aclfUB to be n∗.

Set F to be the set of the 17 chemical rooted trees ψi, i ∈ [1, 17] in Fig. 8(b). Set FE :=

F(v) := F , v ∈ VC and fcLB(ψ) := 0, ψ ∈ F , fcUB(ψi) := 12 + max{nLB − 15, 0}, i ∈ [1, 4],

fcUB(ψi) := 8 + max{⌊(nLB − 15)/2⌋, 0}, i ∈ [5, 12] and fcUB(ψi) := 5 + max{⌊(nLB −
15)/4⌋, 0}, i ∈ [13, 17], ψi ∈ F .

29

E All Constraints in an MILP Formulation for Chemical

Graphs

Our definition of an MILP formulation MILPM(g, x; C2) is analogous with the one by Zhu et al. [26]

except for a necessary modification due to our polymer model with link-edges.

We define a standard encoding of a finite set A of elements to be a bijection σ : A → [1, |A|],
where we denote by [A] the set [1, |A|] of integers and by [e] the encoded element σ(e). Let ϵ

denote null, a fictitious chemical element that does not belong to any set of chemical elements,

chemical symbols, adjacency-configurations and edge-configurations in the following formulation.

Given a finite set A, let Aϵ denote the set A ∪ {ϵ} and define a standard encoding of Aϵ to be a

bijection σ : A → [0, |A|] such that σ(ϵ) = 0, where we denote by [Aϵ] the set [0, |A|] of integers
and by [e] the encoded element σ(e), where [ϵ] = 0.

Let σ = (GC, σint, σce) be a target specification, ρ denote the branch-parameter in the specifi-

cation σ and C denote a chemical graph in G(GC, σint, σce).

E.1 Selecting a Cyclical-base

Recall that

E(=1) = {e ∈ EC | ℓLB(e) = ℓUB(e) = 1}; E(0/1) = {e ∈ EC | ℓLB(e) = 0, ℓUB(e) = 1};
E(≥1) = {e ∈ EC | ℓLB(e) = 1, ℓUB(e) ≥ 2}; E(≥2) = {e ∈ EC | ℓLB(e) ≥ 2};

A subset Elnk
C ⊆ E(=1) ∪E(≥1) ∪E(≥2) is given for introducing link-edges in the monomer represen-

tation C of an inferred polymer.

- Every edge ai ∈ E(=1) is included in ⟨C⟩;

- Each edge ai ∈ E(0/1) is included in ⟨C⟩ if necessary;

- For each edge ai ∈ E(≥2), edge ai is not included in ⟨C⟩ and instead a path

Pi = (vCtail(i), v
T
j−1, v

T
j, . . . , v

T
j+t, v

C
head(i))

of length at least 2 from vertex vCtail(i) to vertex vChead(i) visiting some vertices in VT is con-

structed in ⟨C⟩; and

- For each edge ai ∈ E(≥1), either edge ai is directly used in ⟨C⟩ or the above path Pi of length

at least 2 is constructed in ⟨C⟩.

Let tC ≜ |VC| and denote VC by {vCi | i ∈ [1, tC]}. Regard the seed graph GC as a digraph

such that each edge ai with end-vertices vCj and vCj′ is directed from vCj to vCj′ when j < j′.

For each directed edge ai ∈ EC, let head(i) and tail(i) denote the head and tail of eC(i); i.e.,

ai = (vCtail(i), v
C
head(i)).

Define

kC ≜ |E(≥2) ∪ E(≥1)|, k̃C ≜ |E(≥2)|,

30

and denote EC = {ai | i ∈ [1,mC]},

E(≥2) = {ak | k ∈ [1, k̃C]}, E(≥1) = {ak | k ∈ [k̃C + 1, kC]},

E(0/1) = {ai | i ∈ [kC + 1, kC + |E(0/1)|]} and E(=1) = {ai | i ∈ [kC + |E(0/1)|+ 1,mC]}.

Let I(=1) denote the set of indices i of edges ai ∈ E(=1). Similarly for I(0/1), I(≥1) and I(≥2). Let

Ilnk denote the set of indices i of edges ai ∈ Elnk
C .

To control the construction of such a path Pi for each edge ak ∈ E(≥2) ∪ E(≥1), we regard the

index k ∈ [1, kC] of each edge ak ∈ E(≥2)∪E(≥1) as the “color” of the edge. To introduce necessary

linear constraints that can construct such a path Pk properly in our MILP, we assign the color k

to the vertices vTj−1, v
T
j, . . . , v

T
j+t in VT when the above path Pk is used in ⟨C⟩.

For each index s ∈ [1, tC], let IC(s) denote the set of edges e ∈ EC incident to vertex vCs,

and E+
(=1)(s) (resp., E−

(=1)(s)) denote the set of edges ai ∈ E(=1) such that the tail (resp., head)

of ai is vertex vCs. Similarly for E+
(0/1)(s), E

−
(0/1)(s), E

+
(≥1)(s), E

−
(≥1)(s), E

+
(≥2)(s) and E−

(≥2)(s).

Let IC(s) denote the set of indices i of edges ai ∈ IC(s). Similarly for I+(=1)(s), I
−
(=1)(s), I

+
(0/1)(s),

I−(0/1)(s), I
+
(≥1)(s), I

−
(≥1)(s), I

+
(≥2)(s) and I

−
(≥2)(s). Note that [1, kC] = I(≥2)∪ I(≥1) and [k̃C+1,mC] =

I(≥1) ∪ I(0/1) ∪ I(=1).

constants:

- n∗ ∈ Z: an upper bound on the number n(C) of non-hydrogen atoms in C;

- tC = |VC|, k̃C = |E(≥2)|, kC = |E(≥2) ∪ E(≥1)|, tT = nint
UB − |VC|, mC = |EC|. Note that

ai ∈ EC \ (E(≥2) ∪ E(≥1)) holds i ∈ [kC + 1,mC];

- ℓLB(k), ℓUB(k) ∈ [1, tT], k ∈ [1, kC]: lower and upper bounds on the length of path Pk;

- n
(=1)
lnk = |Ilnk ∩ E(=1)| = |Ilnk ∩ {[kC + |E(0/1)| + 1,mC}|: the number of link-edges created from

E(=1);

- nlnk
LB, n

lnk
UB ∈ [0, n∗]: lower and upper bounds on the number of link-edges of a target polymer C;

variables:

- eC(i) ∈ [0, 1], i ∈ [1,mC]: e
C(i) represents edge ai ∈ EC, i ∈ [1,mC] (e

C(i) = 1, i ∈ I(=1);

eC(i) = 0, i ∈ I(≥2)) (e
C(i) = 1 ⇔ edge ai is used in ⟨C⟩);

- vT(i) ∈ [0, 1], i ∈ [1, tT]: v
T(i) = 1 ⇔ vertex vTi is used in ⟨C⟩;

- eT(i) ∈ [0, 1], i ∈ [1, tT+1]: eT(i) represents edge eTi = (vTi−1, v
T
i) ∈ ET, where e

T
1 and e

T
tT+1

are fictitious edges (eT(i) = 1 ⇔ edge eTi is used in ⟨C⟩);

- χT(i) ∈ [0, kC], i ∈ [1, tT]: χ
T(i) represents the color assigned to vertex vTi (χ

T(i) = k > 0 ⇔
vertex vTi is assigned color k; χT(i) = 0 means that vertex vTi is not used in ⟨C⟩);

- clrT(k) ∈ [ℓLB(k)− 1, ℓUB(k)− 1], k ∈ [1, kC], clr
T(0) ∈ [0, tT]: the number of vertices vTi ∈ VT

with color c;

31

- δTχ (k) ∈ [0, 1], k ∈ [0, kC]: δ
T
χ (k) = 1 ⇔ χT(i) = k for some i ∈ [1, tT];

- χT(i, k) ∈ [0, 1], i ∈ [1, tT], k ∈ [0, kC] (χ
T(i, k) = 1 ⇔ χT(i) = k);

- d̃eg
+

C(i) ∈ [0, 4], i ∈ [1, tC]: the out-degree of vertex vCi with the used edges eC in EC;

- d̃eg
−
C(i) ∈ [0, 4], i ∈ [1, tC]: the in-degree of vertex vCi with the used edges eC in EC;

- nlnk ∈ [nlnk
LB, n

lnk
UB]: the number of link-edges in C;

constraints:

eC(i) = 1, i ∈ I(=1), (3)

eC(i) = 0, clrT(i) ≥ 1, i ∈ I(≥2), (4)

eC(i) + clrT(i) ≥ 1, clrT(i) ≤ tT · (1− eC(i)), i ∈ I(≥1), (5)

∑
c∈I−

(≥1)
(i)∪I−

(0/1)
(i)∪I−

(=1)
(i)

eC(c) = d̃eg
−
C(i),

∑
c∈I+

(≥1)
(i)∪I+

(0/1)
(i)∪I+

(=1)
(i)

eC(c) = d̃eg
+

C(i), i ∈ [1, tC], (6)

χT(i, 0) = 1− vT(i),
∑

k∈[0,kC]

χT(i, k) = 1,
∑

k∈[0,kC]

k · χT(i, k) = χT(i), i ∈ [1, tT], (7)

∑
i∈[1,tT]

χT(i, k) = clrT(k), tT · δTχ (k) ≥
∑

i∈[1,tT]

χT(i, k) ≥ δTχ (k), k ∈ [0, kC], (8)

vT(i− 1) ≥ vT(i),

kC · (vT(i− 1)− eT(i)) ≥ χT(i− 1)− χT(i) ≥ vT(i− 1)− eT(i), i ∈ [2, tT], (9)

∑
k∈Ilnk∩[1,kC]

(clrT(k) + 1) + n
(=1)
lnk = nlnk. (10)

E.2 Constraints for Including Leaf Paths

Let t̃C denote the number of vertices u ∈ VC such that blUB(u) = 1 and assume that VC =

{u1, u2, . . . , up} so that

blUB(ui) = 1, i ∈ [1, t̃C] and blUB(ui) = 0, i ∈ [t̃C + 1, tC].

Define the set of colors for the vertex set {ui | i ∈ [1, t̃C]} ∪ VT to be [1, cF] with

cF ≜ t̃C + tT = |{ui | i ∈ [1, t̃C]} ∪ VT|.

Let each vertex vCi, i ∈ [1, t̃C] (resp., v
T
i ∈ VT) correspond to a color i ∈ [1, cF] (resp., i + t̃C ∈

[1, cF]). When a path P = (u, vFj, v
F
j+1, . . . , v

F
j+t) from a vertex u ∈ VC ∪ VT is used in ⟨C⟩, we

assign the color i ∈ [1, cF] of the vertex u to the vertices vFj, v
F
j+1, . . . , v

F
j+t ∈ VF.

constants:

32

- cF: the maximum number of different colors assigned to the vertices in VF;

- nint
LB, n

int
UB ∈ [2, n∗]: lower and upper bounds on the number of interior-vertices in C;

- blLB(i) ∈ [0, 1], i ∈ [1, t̃C]: a lower bound on the number of leaf ρ-branches in the leaf path

rooted at a vertex vCi;

- blLB(k), blUB(k) ∈ [0, ℓUB(k) − 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1): lower and upper bounds on the

number of leaf ρ-branches in the trees rooted at internal vertices of a pure path Pk for an edge

ak ∈ E(≥1) ∪ E(≥2);

variables:

- nint
G ∈ [nint

LB, n
int
UB]: the number of interior-vertices in C;

- vF(i) ∈ [0, 1], i ∈ [1, tF]: v
F(i) = 1 ⇔ vertex vFi is used in C;

- eF(i) ∈ [0, 1], i ∈ [1, tF + 1]: eF(i) represents edge eFi = vFi−1v
F
i, where e

F
1 and eFtF+1 are

fictitious edges (eF(i) = 1 ⇔ edge eFi is used in C);

- χF(i) ∈ [0, cF], i ∈ [1, tF]: χ
F(i) represents the color assigned to vertex vFi (χ

F(i) = c ⇔ vertex

vFi is assigned color c);

- clrF(c) ∈ [0, tF], c ∈ [0, cF]: the number of vertices vFi with color c;

- δFχ(c) ∈ [blLB(c), 1], c ∈ [1, t̃C]: δ
F
χ(c) = 1 ⇔ χF(i) = c for some i ∈ [1, tF];

- δFχ(c) ∈ [0, 1], c ∈ [t̃C + 1, cF]: δ
F
χ(c) = 1 ⇔ χF(i) = c for some i ∈ [1, tF];

- χF(i, c) ∈ [0, 1], i ∈ [1, tF], c ∈ [0, cF]: χ
F(i, c) = 1 ⇔ χF(i) = c;

- bl(k, i) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), i ∈ [1, tT]: bl(k, i) = 1 ⇔ path Pk contains vertex v
T
i

as an internal vertex and the ρ-fringe-tree rooted at vTi contains a leaf ρ-branch;

constraints:

χF(i, 0) = 1− vF(i),
∑

c∈[0,cF]

χF(i, c) = 1,
∑

c∈[0,cF]

c · χF(i, c) = χF(i), i ∈ [1, tF], (11)

∑
i∈[1,tF]

χF(i, c) = clrF(c), tF · δFχ(c) ≥
∑
i∈[1,tF]

χF(i, c) ≥ δFχ(c), c ∈ [0, cF], (12)

eF(1) = eF(tF + 1) = 0, (13)

vF(i− 1) ≥ vF(i),

cF · (vF(i− 1)− eF(i)) ≥ χF(i− 1)− χF(i) ≥ vF(i− 1)− eF(i), i ∈ [2, tF], (14)

33

bl(k, i) ≥ δFχ(t̃C + i) + χT(i, k)− 1, k ∈ [1, kC], i ∈ [1, tT], (15)

∑
k∈[1,kC],i∈[1,tT]

bl(k, i) ≤
∑

i∈[1,tT]

δFχ(t̃C + i), (16)

blLB(k) ≤
∑

i∈[1,tT]

bl(k, i) ≤ blUB(k), k ∈ [1, kC], (17)

tC +
∑

i∈[1,tT]

vT(i) +
∑
i∈[1,tF]

vF(i) = nint
G . (18)

E.3 Constraints for Including Fringe-trees

Recall that F(Dπ) denotes the set of chemical rooted trees ψ r-isomorphic to a chemical rooted

tree in T (C) over all chemical graphs C ∈ Dπ, where possibly a chemical rooted tree ψ ∈ F(Dπ)

consists of a single chemical element a ∈ Λ \ {H}.
To express the condition that the ρ-fringe-tree is chosen from a rooted tree Ci, Ti or Fi, we

introduce the following set of variables and constraints.

constants:

- nLB: a lower bound on the number n(C) of non-hydrogen atoms in C, where nLB, n
∗ ≥ nint

LB;

- chLB(i), chUB(i) ∈ [0, n∗], i ∈ [1, tT]: lower and upper bounds on ht(⟨Ti⟩) of the tree Ti rooted

at a vertex vCi;

- chLB(k), chUB(k) ∈ [0, n∗], k ∈ [1, kC] = I(≥2) ∪ I(≥1): lower and upper bounds on the maximum

height ht(⟨T ⟩) of the tree T ∈ F(Pk) rooted at an internal vertex of a path Pk for an edge

ak ∈ E(≥1) ∪ E(≥2);

- Prepare a coding of the set F(Dπ) and let [ψ] denote the coded integer of an element ψ in

F(Dπ);

- Sets F(v) ⊆ F(Dπ), v ∈ VC and FE ⊆ F(Dπ) of chemical rooted trees T with ht(T) ∈ [1, ρ];

- Define F∗ :=
∪
v∈VC F(v) ∪ FE, FC

i := F(vCi), i ∈ [1, tC], FT
i := FE, i ∈ [1, tT] and FF

i := FE,

i ∈ [1, tF];

- fcLB(ψ), fcUB(ψ) ∈ [0, n∗], ψ ∈ F∗: lower and upper bound functions on the number of interior-

vertices v such that C[v] is r-isomorphic to ψ in C;

- FX
i [p], p ∈ [1, ρ],X ∈ {C,T,F}: the set of chemical rooted trees T ∈ FX

i with ht(⟨T ⟩) = p;

34

- nH([ψ]) ∈ [0, 3ρ], ψ ∈ F∗: the number n(⟨ψ⟩) of non-root hydrogen vertices in a chemical rooted

tree ψ;

- htH([ψ]) ∈ [0, ρ], ψ ∈ F∗: the height ht(⟨ψ⟩) of the hydrogen-suppressed chemical rooted tree

⟨ψ⟩;

- degHr ([ψ]) ∈ [0, 3], ψ ∈ F∗: the number degr(⟨ψ⟩) of non-hydrogen children of the root r of a

chemical rooted tree ψ;

- deghydr ([ψ]) ∈ [0, 3], ψ ∈ F∗: the number degr(ψ)− degr(⟨ψ⟩) of hydrogen children of the root r

of a chemical rooted tree ψ;

- vion(ψ) ∈ [−3,+3], ψ ∈ F∗: the ion-valence of the root in ψ;

- aclfν (ψ), ν ∈ Γlf
ac: the frequency of leaf-edges with adjacency-configuration ν in ψ;

- aclfLB, ac
lf
UB : Γlf

ac → [0, n∗]: lower and upper bound functions on the number of leaf-edges uv in

acC with adjacency-configuration ν;

variables:

- nG ∈ [nLB, n
∗]: the number n(C) of non-hydrogen atoms in C;

- vX(i) ∈ [0, 1], i ∈ [1, tX], X ∈ {T,F}: vX(i) = 1 ⇔ vertex vXi is used in C;

- δXfr (i, [ψ]) ∈ [0, 1], i ∈ [1, tX], ψ ∈ FX
i ,X ∈ {C,T,F}: δXfr (i, [ψ]) = 1 ⇔ ψ is the ρ-fringe-tree

rooted at vertex vXi in C;

- fc([ψ]) ∈ [fcLB(ψ), fcUB(ψ)], ψ ∈ F∗: the number of interior-vertices v such that C[v] is r-

isomorphic to ψ in C;

- aclf([ν]) ∈ [aclfLB(ν), ac
lf
UB(ν)], ν ∈ Γlf

ac: the number of leaf-edge with adjacency-configuration ν

in C;

- degexX (i) ∈ [0, 3], i ∈ [1, tX],X ∈ {C,T,F}: the number of non-hydrogen children of the root of

the ρ-fringe-tree rooted at vertex vXi in C;

- hyddegX(i) ∈ [0, 4], i ∈ [1, tX], X ∈ {C,T,F}: the number of hydrogen atoms adjacent to vertex

vXi (i.e., hyddeg(v
X
i)) in C = (H,α, β);

- eledegX(i) ∈ [−3,+3], i ∈ [1, tX], X ∈ {C,T,F}: the ion-valence vion(ψ) of vertex vXi (i.e.,

eledegX(i) = vion(ψ) for the ρ-fringe-tree ψ rooted at vXi) in C = (H,α, β);

- hX(i) ∈ [0, ρ], i ∈ [1, tX], X ∈ {C,T,F}: the height ht(⟨T ⟩) of the hydrogen-suppressed chemical

rooted tree ⟨T ⟩ of the ρ-fringe-tree T rooted at vertex vXi in C;

- σ(k, i) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), i ∈ [1, tT]: σ(k, i) = 1 ⇔ the ρ-fringe-tree Tv rooted at

vertex v = vTi with color k has the largest height ht(⟨Tv⟩) among such trees Tv, v ∈ VT;

35

constraints: ∑
ψ∈FC

i

δCfr(i, [ψ]) = 1, i ∈ [1, tC],

∑
ψ∈FX

i

δXfr (i, [ψ]) = vX(i), i ∈ [1, tX],X ∈ {T,F}, (19)

∑
ψ∈FX

i

degHr ([ψ]) · δXfr (i, [ψ]) = degexX (i),

∑
ψ∈FX

i

deghydr ([ψ]) · δXfr (i, [ψ]) = hyddegX(i),

∑
ψ∈FX

i

vion([ψ]) · δXfr (i, [ψ]) = eledegX(i), i ∈ [1, tX],X ∈ {C,T,F}, (20)

∑
ψ∈FF

i [ρ]

δFfr(i, [ψ]) ≥ vF(i)− eF(i+ 1), i ∈ [1, tF] (e
F(tF + 1) = 0), (21)

∑
ψ∈FX

i

htH([ψ]) · δXfr (i, [ψ]) = hX(i), i ∈ [1, tX],X ∈ {C,T,F}, (22)

∑
ψ∈FX

i
i∈[1,tX],X∈{C,T,F}

nH([ψ]) · δXfr (i, [ψ]) +
∑

i∈[1,tX],X∈{T,F}

vX(i) + tC = nG, (23)

∑
i∈[1,tX],X∈{C,T,F}

δXfr (i, [ψ]) = fc([ψ]), ψ ∈ F∗, (24)

∑
ψ∈FX

i ,i∈[1,tX],X∈{C,T,F}

aclfν (ψ) · δXfr (i, [ψ]) = aclf([ν]), ν ∈ Γlf
ac, (25)

hC(i) ≥ chLB(i)− n∗ · δFχ(i), clrF(i) + ρ ≥ chLB(i),

hC(i) ≤ chUB(i), clrF(i) + ρ ≤ chUB(i) + n∗ · (1− δFχ(i)), i ∈ [1, t̃C], (26)

chLB(i) ≤ hC(i) ≤ chUB(i), i ∈ [t̃C + 1, tC], (27)

hT(i) ≤ chUB(k) + n∗ · (δFχ(t̃C + i) + 1− χT(i, k)),

clrF(t̃C + i) + ρ ≤ chUB(k) + n∗ · (2− δFχ(t̃C + i)− χT(i, k)), k ∈ [1, kC], i ∈ [1, tT], (28)

36

∑
i∈[1,tT]

σ(k, i) = δTχ (k), k ∈ [1, kC], (29)

χT(i, k) ≥ σ(k, i),

hT(i) ≥ chLB(k)− n∗ · (δFχ(t̃C + i) + 1− σ(k, i)),

clrF(t̃C + i) + ρ ≥ chLB(k)− n∗ · (2− δFχ(t̃C + i)− σ(k, i)), k ∈ [1, kC], i ∈ [1, tT]. (30)

E.4 Descriptor for the Number of Specified Degree

We include constraints to compute descriptors for degrees in C.

variables:

- degX(i) ∈ [0, 4], i ∈ [1, tX], X ∈ {C,T,F}: the number of non-hydrogen atoms adjacent to

vertex v = vXi (i.e., deg⟨C⟩(v) = degH(v)− hyddegC(v)) in C = (H,α, β);

- degCT(i) ∈ [0, 4], i ∈ [1, tC]: the number of edges from vertex vCi to vertices vTj, j ∈ [1, tT];

- degTC(i) ∈ [0, 4], i ∈ [1, tC]: the number of edges from vertices vTj, j ∈ [1, tT] to vertex vCi;

- δCdg(i, d) ∈ [0, 1], i ∈ [1, tC], d ∈ [1, 4], δXdg(i, d) ∈ [0, 1], i ∈ [1, tX], d ∈ [0, 4], X ∈ {T,F}:
δXdg(i, d) = 1 ⇔ degX(i) + hyddegX(i) = d;

- dg(d) ∈ [dgLB(d), dgUB(d)], d ∈ [1, 4]: the number of interior-vertices v with degH(v
X
i) = d in

C = (H,α, β);

- degintC (i) ∈ [1, 4], i ∈ [1, tC], degintX (i) ∈ [0, 4], i ∈ [1, tX],X ∈ {T,F}: the interior-degree

degHint(vXi) in the interior H int = (V int(C), E int(C)) of C; i.e., the number of interior-edges

incident to vertex vXi;

- δintdg,C(i, d) ∈ [0, 1], i ∈ [1, tC], d ∈ [1, 4], δintdg,X(i, d) ∈ [0, 1], i ∈ [1, tX], d ∈ [0, 4], X ∈ {T,F}:
δintdg,X(i, d) = 1 ⇔ degintX (i) = d;

- dgint(d) ∈ [dgLB(d), dgUB(d)], d ∈ [1, 4]: the number of interior-vertices v with the interior-

degree degHint(v) = d in the interior H int = (V int(C), E int(C)) of C = (H,α, β).

constraints:∑
k∈I+

(≥2)
(i)∪I+

(≥1)
(i)

δTχ (k) = degCT(i),
∑

k∈I−
(≥2)

(i)∪I−
(≥1)

(i)

δTχ (k) = degTC(i), i ∈ [1, tC], (31)

d̃eg
−
C(i) + d̃eg

+

C(i) + degCT(i) + degTC(i) + δFχ(i) = degintC (i), i ∈ [1, t̃C], (32)

37

d̃eg
−
C(i) + d̃eg

+

C(i) + degCT(i) + degTC(i) = degintC (i), i ∈ [t̃C + 1, tC], (33)

degintC (i) + degexC (i) = degC(i), i ∈ [1, tC], (34)

∑
ψ∈FC

i [ρ]

δCfr(i, [ψ]) ≥ 2− degintC (i) i ∈ [1, tC], (35)

2vT(i) + δFχ(t̃C + i) = degintT (i),

degintT (i) + degexT (i) = degT(i), i ∈ [1, tT] (e
T(1) = eT(tT + 1) = 0), (36)

vF(i) + eF(i+ 1) = degintF (i),

degintF (i) + degexF (i) = degF(i), i ∈ [1, tF] (e
F(1) = eF(tF + 1) = 0), (37)

∑
d∈[0,4]

δXdg(i, d) = 1,
∑
d∈[1,4]

d · δXdg(i, d) = degX(i) + hyddegX(i),

∑
d∈[0,4]

δintdg,X(i, d) = 1,
∑
d∈[1,4]

d · δintdg,X(i, d) = degintX (i), i ∈ [1, tX],X ∈ {T,C,F}, (38)

∑
i∈[1,tC]

δCdg(i, d) +
∑

i∈[1,tT]

δTdg(i, d) +
∑
i∈[1,tF]

δFdg(i, d) = dg(d),

∑
i∈[1,tC]

δintdg,C(i, d) +
∑

i∈[1,tT]

δintdg,T(i, d) +
∑
i∈[1,tF]

δintdg,F(i, d) = dgint(d), d ∈ [1, 4]. (39)

E.5 Assigning Multiplicity

We prepare an integer variable β(e) for each edge e in the scheme graph SG to denote the bond-

multiplicity of e in a selected graph H and include necessary constraints for the variables to satisfy

in H.

constants:

- βr([ψ]): the sum βψ(r) of bond-multiplicities of edges incident to the root r of a chemical rooted

tree ψ ∈ F∗;

variables:

38

- βX(i) ∈ [0, 3], i ∈ [2, tX], X ∈ {T,F}: the bond-multiplicity of edge eXi in C;

- βC(i) ∈ [0, 3], i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1): the bond-multiplicity of edge ai ∈
E(≥1) ∪ E(0/1) ∪ E(=1) in C;

- βCT(k), βTC(k) ∈ [0, 3], k ∈ [1, kC] = I(≥2) ∪ I(≥1): the bond-multiplicity of the first (resp., last)

edge of the pure path Pk in C;

- β∗F(c) ∈ [0, 3], c ∈ [1, cF = t̃C + tT]: the bond-multiplicity of the first edge of the leaf path Qc

rooted at vertex vCc, c ≤ t̃C or vTc−t̃C , c > t̃C in C;

- βX
ex(i) ∈ [0, 4], i ∈ [1, tX],X ∈ {C,T,F}: the sum βCv of bond-multiplicities of edges in the

ρ-fringe-tree C[v] rooted at interior-vertex v = vXi;

- δXβ (i,m) ∈ [0, 1], i ∈ [2, tX], m ∈ [0, 3], X ∈ {T,F}: δXβ (i,m) = 1 ⇔ βX(i) = m;

- δCβ (i,m) ∈ [0, 1], i ∈ [k̃C,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), m ∈ [0, 3]: δCβ (i,m) = 1 ⇔ βC(i) = m;

- δCT
β (k,m), δTC

β (k,m) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), m ∈ [0, 3]: δCT
β (k,m) = 1 (resp.,

δTC
β (k,m) = 1) ⇔ βCT(k) = m (resp., βTC(k) = m);

- δ∗Fβ (c,m) ∈ [0, 1], c ∈ [1, cF], m ∈ [0, 3],X ∈ {C,T}: δ∗Fβ (c,m) = 1 ⇔ β∗F(c) = m;

- bdint(m) ∈ [0, 2nint
UB], m ∈ [1, 3]: the number of interior-edges with bond-multiplicity m in C;

- bdX(m) ∈ [0, 2nint
UB],X ∈ {C,T,CT,TC}, bdX(m) ∈ [0, 2nint

UB],X ∈ {F,CF,TF}, m ∈ [1, 3]: the

number of interior-edges e ∈ EX with bond-multiplicity m in C;

constraints:

eC(i) ≤ βC(i) ≤ 3eC(i), i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), (40)

eX(i) ≤ βX(i) ≤ 3eX(i), i ∈ [2, tX],X ∈ {T,F}, (41)

δTχ (k) ≤ βCT(k) ≤ 3δTχ (k), δTχ (k) ≤ βTC(k) ≤ 3δTχ (k), k ∈ [1, kC], (42)

δFχ(c) ≤ βXF(c) ≤ 3δFχ(c), c ∈ [1, cF] (43)

∑
m∈[0,3]

δXβ (i,m) = 1,
∑

m∈[0,3]

m · δXβ (i,m) = βX(i), i ∈ [2, tX],X ∈ {T,F}, (44)

∑
m∈[0,3]

δCβ (i,m) = 1,
∑

m∈[0,3]

m · δCβ (i,m) = βC(i), i ∈ [k̃C + 1,mC], (45)

39

∑
m∈[0,3]

δCT
β (k,m) = 1,

∑
m∈[0,3]

m · δCT
β (k,m) = βCT(k), k ∈ [1, kC],∑

m∈[0,3]

δTC
β (k,m) = 1,

∑
m∈[0,3]

m · δTC
β (k,m) = βTC(k), k ∈ [1, kC],∑

m∈[0,3]

δ∗Fβ (c,m) = 1,
∑

m∈[0,3]

m · δ∗Fβ (c,m) = β∗F(c), c ∈ [1, cF], (46)

∑
ψ∈FX

i

βr([ψ]) · δXfr (i, [ψ]) = βX
ex(i), i ∈ [1, tX],X ∈ {C,T,F}, (47)

∑
i∈[k̃C+1,mC]

δCβ (i,m) = bdC(m),
∑

i∈[2,tT]

δTβ (i,m) = bdT(m),

∑
k∈[1,kC]

δCT
β (k,m) = bdCT(m),

∑
k∈[1,kC]

δTC
β (k,m) = bdTC(m),

∑
i∈[2,tF]

δFβ (i,m) = bdF(m),
∑

c∈[1,t̃C]

δ∗Fβ (c,m) = bdCF(m),

∑
c∈[t̃C+1,cF]

δ∗Fβ (c,m) = bdTF(m),

bdC(m) + bdT(m) + bdF(m) + bdCT(m) + bdTC(m) + bdTF(m) + bdCF(m) = bdint(m),

m ∈ [1, 3]. (48)

E.6 Assigning Chemical Elements and Valence Condition

We include constraints so that each vertex v in a selected graph H satisfies the valence condition;

i.e., βC(v) = val(α(v)) + eledegC(v), where eledegC(v) = vion(ψ) for the ρ-fringe-tree C[v] r-

isomorphic to ψ. With these constraints, a chemical graph C = (H,α, β) on a selected subgraph

H will be constructed.

constants:

- Subsets Λint ⊆ Λ \ {H},Λex ⊆ Λ of chemical elements, where we denote by [e] (resp., [e]int and

[e]ex) of a standard encoding of an element e in the set Λ (resp., Λint
ϵ and Λex

ϵ);

- A valence function: val : Λ → [1, 6];

- A function mass∗ : Λ → Z (we let mass(a) denote the observed mass of a chemical element

a ∈ Λ, and define mass∗(a) ≜ ⌊10 ·mass(a)⌋);

- Subsets Λ∗(i) ⊆ Λint, i ∈ [1, tC];

- naLB(a), naUB(a) ∈ [0, n∗], a ∈ Λ: lower and upper bounds on the number of vertices v with

α(v) = a;

40

- naintLB(a), na
int
UB(a) ∈ [0, n∗], a ∈ Λint: lower and upper bounds on the number of interior-vertices

v with α(v) = a;

- αr([ψ]) ∈ [Λex],∈ F∗: the chemical element α(r) of the root r of ψ;

- naexa ([ψ]) ∈ [0, n∗], a ∈ Λex, ψ ∈ F∗: the frequency of chemical element a in the set of non-rooted

vertices in ψ, where possibly a = H;

- A positive integer M ∈ Z+: an upper bound for the average ms(C) of mass∗ over all atoms in

C;

variables:

- βCT(i), βTC(i) ∈ [0, 3], i ∈ [1, tT]: the bond-multiplicity of edge eCT
j,i (resp., e

TC
j,i) if one exists;

- βCF(i), βTF(i) ∈ [0, 3], i ∈ [1, tF]: the bond-multiplicity of eCF
j,i (resp., e

TF
j,i) if one exists;

- αX(i) ∈ [Λint
ϵ], δXα (i, [a]

int) ∈ [0, 1], a ∈ Λint
ϵ , i ∈ [1, tX],X ∈ {C,T,F}: αX(i) = [a]int ≥ 1 (resp.,

αX(i) = 0) ⇔ δXα (i, [a]
int) = 1 (resp., δXα (i, 0) = 0) ⇔ α(vXi) = a ∈ Λ (resp., vertex vXi is not

used in C);

- δXα (i, [a]
int) ∈ [0, 1], i ∈ [1, tX], a ∈ Λint,X ∈ {C,T,F}: δXα (i, [a]t) = 1 ⇔ α(vXi) = a;

- Mass ∈ Z+:
∑

v∈V (H) mass∗(α(v));

- ms ∈ R+:
∑

v∈V (H) mass∗(α(v))/|V (H)|;

- δatm(i) ∈ [0, 1], i ∈ [nLB + naLB(H), n
∗ + naUB(H)]: δatm(i) = 1 ⇔ |V (H)| = i;

- na([a]) ∈ [naLB(a), naUB(a)], a ∈ Λ: the number of vertices v ∈ V (H) with α(v) = a, where

possibly a = H;

- naint([a]int) ∈ [naintLB(a), na
int
UB(a)], a ∈ Λ,X ∈ {C,T,F}: the number of interior-vertices v ∈ V (C)

with α(v) = a;

- naexX ([a]ex), naex([a]ex) ∈ [0, naUB(a)], a ∈ Λ, X ∈ {C,T,F}: the number of exterior-vertices

rooted at vertices v ∈ VX and the number of exterior-vertices v such that α(v) = a;

constraints:

βCT(k)− 3(eT(i)− χT(i, k) + 1) ≤ βCT(i) ≤ βCT(k) + 3(eT(i)− χT(i, k) + 1), i ∈ [1, tT],

βTC(k)− 3(eT(i+ 1)− χT(i, k) + 1) ≤ βTC(i) ≤ βTC(k) + 3(eT(i+ 1)− χT(i, k) + 1), i ∈ [1, tT],

k ∈ [1, kC],

(49)

β∗F(c)− 3(eF(i)− χF(i, c) + 1) ≤ βCF(i) ≤ β∗F(c) + 3(eF(i)− χF(i, c) + 1), i ∈ [1, tF], c ∈ [1, t̃C],

β∗F(c)− 3(eF(i)− χF(i, c) + 1) ≤ βTF(i) ≤ β∗F(c) + 3(eF(i)− χF(i, c) + 1), i ∈ [1, tF], c ∈ [t̃C + 1, cF],

(50)

41

∑
a∈Λint

δCα (i, [a]
int) = 1,

∑
a∈Λint

[a]int · δXα (i, [a]int) = αC(i), i ∈ [1, tC],∑
a∈Λint

δXα (i, [a]
int) = vX(i),

∑
a∈Λint

[a]int · δXα (i, [a]int) = αX(i), i ∈ [1, tX],X ∈ {T,F}, (51)

∑
ψ∈FX

i

αr([ψ]) · δXfr (i, [ψ]) = αX(i), i ∈ [1, tX],X ∈ {C,T,F}, (52)

∑
j∈IC(i)

βC(j) +
∑

k∈I+
(≥2)

(i)∪I+
(≥1)

(i)

βCT(k) +
∑

k∈I−
(≥2)

(i)∪I−
(≥1)

(i)

βTC(k)

+β∗F(i) + βC
ex(i)− eledegC(i) =

∑
a∈Λint

val(a)δCα (i, [a]
int), i ∈ [1, t̃C], (53)

∑
j∈IC(i)

βC(j) +
∑

k∈I+
(≥2)

(i)∪I+
(≥1)

(i)

βCT(k) +
∑

k∈I−
(≥2)

(i)∪I−
(≥1)

(i)

βTC(k)

+βC
ex(i)− eledegC(i) =

∑
a∈Λint

val(a)δCα (i, [a]
int), i ∈ [t̃C + 1, tC], (54)

βT(i) + βT(i+1) + βT
ex(i) + βCT(i) + βTC(i)

+β∗F(t̃C + i)− eledegT(i) =
∑
a∈Λint

val(a)δTα (i, [a]
int),

i ∈ [1, tT] (β
T(1) = βT(tT + 1) = 0), (55)

βF(i) + βF(i+1) + βCF(i) + βTF(i)

+βF
ex(i)− eledegF(i) =

∑
a∈Λint

val(a)δFα(i, [a]
int),

i ∈ [1, tF] (β
F(1) = βF(tF + 1) = 0), (56)

∑
i∈[1,tX],i∈[1,tX]

δXα (i, [a]
int) = naX([a]

int), a ∈ Λint,X ∈ {C,T,F}, (57)

∑
ψ∈FX

i

naexa ([ψ]) · δXfr (i, [ψ]) = naexX ([a]ex), a ∈ Λex,X ∈ {C,T,F}, (58)

42

naC([a]
int) + naT([a]

int) + naF([a]
int) = naint([a]int), a ∈ Λint,∑

X∈{C,T,F}

naexX ([a]ex) = naex([a]ex), a ∈ Λex,

naint([a]int) + naex([a]ex) = na([a]), a ∈ Λint ∩ Λex,

naint([a]int) = na([a]), a ∈ Λint \ Λex,

naex([a]ex) = na([a]), a ∈ Λex \ Λint, (59)

∑
a∈Λ∗(i)

δCα (i, [a]
int) = 1, i ∈ [1, tC], (60)

∑
a∈Λ

mass∗(a) · na([a]) = Mass, (61)

∑
i∈[nLB+naLB(H),n∗+naUB(H)]

δatm(i) = 1, (62)

∑
i∈[nLB+naLB(H),n∗+naUB(H)]

i · δatm(i) = nG + naex([H]ex),

Mass−M · (1− δatm(i)) ≤ i ·ms ≤ Mass +M · (1− δatm(i)), i ∈ [nLB + naLB(H), n
∗ + naUB(H)].

(63)

E.7 Constraints for Bounds on the Number of Bonds

We include constraints for specification of lower and upper bounds bdLB and bdUB.

constants:

- bdm,LB(i), bdm,UB(i) ∈ [0, nint
UB], i ∈ [1,mC], m ∈ [2, 3]: lower and upper bounds on the number

of edges e ∈ E(Pi) with bond-multiplicity β(e) = m in the pure path Pi for edge ei ∈ EC;

variables :

- bdT(k, i,m) ∈ [0, 1], k ∈ [1, kC], i ∈ [2, tT], m ∈ [2, 3]: bdT(k, i,m) = 1 ⇔ the pure path Pk for

edge ek ∈ EC contains edge eTi with β(e
T
i) = m;

constraints:

bdm,LB(i) ≤ δCβ (i,m) ≤ bdm,UB(i), i ∈ I(=1) ∪ I(0/1),m ∈ [2, 3], (64)

bdT(k, i,m) ≥ δTβ (i,m) + χT(i, k)− 1, k ∈ [1, kC], i ∈ [2, tT],m ∈ [2, 3], (65)

43

∑
j∈[2,tT]

δTβ (j,m) ≥
∑

k∈[1,kC],i∈[2,tT]

bdT(k, i,m), m ∈ [2, 3], (66)

bdm,LB(k) ≤
∑

i∈[2,tT]

bdT(k, i,m) + δCT
β (k,m) + δTC

β (k,m) ≤ bdm,UB(k),

k ∈ [1, kC],m ∈ [2, 3]. (67)

E.8 Descriptor for the Number of Adjacency-configurations

We call a tuple (a, b,m) ∈ (Λ\{H})× (Λ\{H})× [1, 3] an adjacency-configuration. The adjacency-

configuration of an edge-configuration (µ = ad, µ′ = bd′,m) is defined to be (a, b,m). We include

constraints to compute the frequency of each adjacency-configuration in an inferred chemical graph

C.
constants:

- A set Γint of edge-configurations γ = (µ, µ′,m) with µ ≤ µ′;

- Let γ of an edge-configuration γ = (µ, µ′,m) denote the edge-configuration (µ′, µ,m);

- Let Γint
< = {(µ, µ′,m) ∈ Γint | µ < µ′}, Γint

= = {(µ, µ′,m) ∈ Γint | µ = µ′} and Γint
> = {γ | γ ∈

Γint
< };

- Let Γint
ac,<, Γ

int
ac,= and Γint

ac,> denote the sets of the adjacency-configurations of edge-configurations

in the sets Γint
< , Γint

= and Γint
> , respectively;

- Let ν of an adjacency-configuration ν = (a, b,m) denote the adjacency-configuration (b, a,m);

- Prepare a coding of the set Γint
ac ∪ Γint

ac,> and let [ν]int denote the coded integer of an element ν

in Γint
ac ∪ Γint

ac,>;

- Choose subsets Γ̃C
ac, Γ̃

T
ac, Γ̃

CT
ac , Γ̃

TC
ac , Γ̃

F
ac, Γ̃

CF
ac , Γ̃

TF
ac ⊆ Γint

ac ∪ Γint
ac,>; To compute the frequency of

adjacency-configurations exactly, set Γ̃C
ac := Γ̃T

ac := Γ̃CT
ac := Γ̃TC

ac := Γ̃F
ac := Γ̃CF

ac := Γ̃TF
ac :=

Γint
ac ∪ Γint

ac,>;

- acintLB(ν), ac
int
UB(ν) ∈ [0, 2nint

UB], ν = (a, b,m) ∈ Γint
ac : lower and upper bounds on the number of

interior-edges e = uv with α(u) = a, α(v) = b and β(e) = m;

- A subset Γlnk
ac ⊆ Γint

ac for adjacency-configurations of link-edges. Let Γlnk
ac,< = Γlnk

ac ∩Γint
ac,<, Γ

lnk
ac,= =

Γlnk
ac ∩ Γint

ac,= and Γint
ac,> = {(b, a,m) | (a, b,m) ∈ Γlnk

ac,<};

- aclnkLB(ν), ac
lnk
UB(ν) ∈ [0, 2nint

UB], ν = (a, b,m) ∈ Γlnk
ac : lower and upper bounds on the number of

link-edges e = uv with α(u) = a, α(v) = b and β(e) = m;

variables:

44

- acint([ν]int) ∈ [acintLB(ν), ac
int
UB(ν)], ν ∈ Γint

ac : the number of interior-edges with adjacency-configuration

ν;

- acC([ν]
int) ∈ [0,mC], ν ∈ Γ̃C

ac, acT([ν]
int) ∈ [0, tT], ν ∈ Γ̃T

ac, acF([ν]
int) ∈ [0, tF], ν ∈ Γ̃F

ac: the

number of edges eC ∈ EC (resp., edges eT ∈ ET and edges eF ∈ EF) with adjacency-configuration

ν;

- acCT([ν]
int) ∈ [0,min{kC, tT}], ν ∈ Γ̃CT

ac , acTC([ν]
int) ∈ [0,min{kC, tT}], ν ∈ Γ̃CT

ac , acCF([ν]
int) ∈

[0, t̃C], ν ∈ Γ̃CF
ac , acTF([ν]

int) ∈ [0, tT], ν ∈ Γ̃TF
ac : the number of edges eCT ∈ ECT (resp., edges

eTC ∈ ETC and edges eCF ∈ ECF and eTF ∈ ETF) with adjacency-configuration ν;

- δCac(i, [ν]
int) ∈ [0, 1], i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), ν ∈ Γ̃C

ac, δ
T
ac(i, [ν]

int) ∈ [0, 1], i ∈
[2, tT], ν ∈ Γ̃T

ac, δ
F
ac(i, [ν]

int) ∈ [0, 1], i ∈ [2, tF], ν ∈ Γ̃F
ac: δXac(i, [ν]

int) = 1 ⇔ edge eXi has

adjacency-configuration ν;

- δCT
ac (k, [ν]int), δTC

ac (k, [ν]int) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), ν ∈ Γ̃CT
ac : δCT

ac (k, [ν]int) = 1 (resp.,

δTC
ac (k, [ν]int) = 1) ⇔ edge eCT

tail(k),j (resp., eTC
head(k),j) for some j ∈ [1, tT] has adjacency-

configuration ν;

- δCF
ac (c, [ν]

int) ∈ [0, 1], c ∈ [1, t̃C], ν ∈ Γ̃CF
ac : δ

CF
ac (c, [ν]

int) = 1 ⇔ edge eCF
c,i for some i ∈ [1, tF] has

adjacency-configuration ν;

- δTF
ac (i, [ν]

int) ∈ [0, 1], i ∈ [1, tT], ν ∈ Γ̃TF
ac : δ

TF
ac (i, [ν]

int) = 1 ⇔ edge eTF
i,j for some j ∈ [1, tF] has

adjacency-configuration ν;

- αCT(k), αTC(k) ∈ [0, |Λint|], k ∈ [1, kC]: α(v) of the edge (v
C
tail(k), v) ∈ ECT (resp., (v, vChead(k)) ∈

ETC) if any;

- αCF(c) ∈ [0, |Λint|], c ∈ [1, t̃C]: α(v) of the edge (vCc, v) ∈ ECF if any;

- αTF(i) ∈ [0, |Λint|], i ∈ [1, tT]: α(v) of the edge (vTi, v) ∈ ETF if any;

- ∆C+
ac (i),∆C−

ac (i),∈ [0, |Λint|], i ∈ [k̃C+1,mC], ∆
T+
ac (i),∆T−

ac (i) ∈ [0, |Λint|], i ∈ [2, tT], ∆
F+
ac (i),∆

F−
ac (i) ∈

[0, |Λint|], i ∈ [2, tF]: ∆X+
ac (i) = ∆X−

ac (i) = 0 (resp., ∆X+
ac (i) = α(u) and ∆X−

ac (i) = α(v)) ⇔ edge

eXi = (u, v) ∈ EX is used in C (resp., eXi ̸∈ E(G));

- ∆CT+
ac (k),∆CT−

ac (k) ∈ [0, |Λint|], k ∈ [1, kC] = I(≥2) ∪ I(≥1): ∆CT+
ac (k) = ∆CT−

ac (k) = 0 (resp.,

∆CT+
ac (k) = α(u) and ∆CT−

ac (k) = α(v)) ⇔ edge eCT
tail(k),j = (u, v) ∈ ECT for some j ∈ [1, tT] is

used in C (resp., otherwise);

- ∆TC+
ac (k),∆TC−

ac (k) ∈ [0, |Λint|], k ∈ [1, kC] = I(≥2) ∪ I(≥1): Analogous with ∆CT+
ac (k) and

∆CT−
ac (k);

- ∆CF+
ac (c) ∈ [0, |Λint|],∆CF−

ac (c) ∈ [0, |Λint|], c ∈ [1, t̃C]: ∆
CF+
ac (c) = ∆CF−

ac (c) = 0 (resp., ∆CF+
ac (c) =

α(u) and ∆CF−
ac (c) = α(v)) ⇔ edge eCF

c,i = (u, v) ∈ ECF for some i ∈ [1, tF] is used in C (resp.,

otherwise);

- ∆TF+
ac (i) ∈ [0, |Λint|],∆TF−

ac (i) ∈ [0, |Λint|], i ∈ [1, tT]: Analogous with ∆CF+
ac (c) and ∆CF−

ac (c);

45

- aclnk([ν]int) ∈ [aclnkLB(ν), ac
lnk
UB(ν)], ν ∈ Γlnk

ac : the number of link-edges with adjacency-configuration

ν;

- aclnkC ([ν]int), aclnkT ([ν]int) ∈ [0,mC], ν ∈ Γlnk
ac : the number of link-edges eC ∈ EC (resp., edges

eT ∈ ET) with adjacency-configuration ν;

- aclnkCT([ν]
int) ∈ [0,min{kC, tT}], aclnkTC([ν]

int) ∈ [0,min{kC, tT}], ν ∈ Γlnk
ac : the number of link-edges

eCT ∈ ECT (resp., link-edges eTC ∈ ETC) with adjacency-configuration ν;

- δT,lnkac (i, [ν]int) ∈ [0, 1], i ∈ [2, tT], ν ∈ Γlnk
ac : δ

T,lnk
ac (i, [ν]int) = 1 ⇔ edge eTi ∈ ET is a link-edge

with adjacency-configuration ν;

constraints:

acC([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃C
ac,

acT([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃T
ac,

acF([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃F
ac,

acCT([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃CT
ac ,

acTC([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃TC
ac ,

acCF([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃CF
ac ,

acTF([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃TF
ac ,

(68)

∑
(a,b,m)=ν∈Γint

ac

acC([ν]
int) =

∑
i∈[k̃C+1,mC]

δCβ (i,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acT([ν]
int) =

∑
i∈[2,tT]

δTβ (i,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acF([ν]
int) =

∑
i∈[2,tF]

δFβ (i,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acCT([ν]
int) =

∑
k∈[1,kC]

δCT
β (k,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acTC([ν]
int) =

∑
k∈[1,kC]

δTC
β (k,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acCF([ν]
int) =

∑
c∈[1,t̃C]

δ∗Fβ (c,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acTF([ν]
int) =

∑
c∈[t̃C+1,cF]

δ∗Fβ (c,m), m ∈ [1, 3],

(69)

46

∑
ν=(a,b,m)∈Γ̃C

ac

m · δCac(i, [ν]int) = βC(i),

∆C+
ac (i) +

∑
ν=(a,b,m)∈Γ̃C

ac

[a]intδCac(i, [ν]
int) = αC(tail(i)),

∆C−
ac (i) +

∑
ν=(a,b,m)∈Γ̃C

ac

[b]intδCac(i, [ν]
int) = αC(head(i)),

∆C+
ac (i) + ∆C−

ac (i) ≤ 2|Λint|(1− eC(i)), i ∈ [k̃C + 1,mC],∑
i∈[k̃C+1,mC]

δCac(i, [ν]
int) = acC([ν]

int), ν ∈ Γ̃C
ac, (70)

∑
i∈Ilnk∩[k̃C+1,mC]

δCac(i, [ν]
int) = aclnkC ([ν]int), ν ∈ Γlnk

ac ∪ Γlnk
ac,>, (71)

∑
ν=(a,b,m)∈Γ̃T

ac

m · δTac(i, [ν]int) = βT(i),

∆T+
ac (i) +

∑
ν=(a,b,m)∈Γ̃T

ac

[a]intδTac(i, [ν]
int) = αT(i− 1),

∆T−
ac (i) +

∑
ν=(a,b,m)∈Γ̃T

ac

[b]intδTac(i, [ν]
int) = αT(i),

∆T+
ac (i) + ∆T−

ac (i) ≤ 2|Λint|(1− eT(i)), i ∈ [2, tT],∑
i∈[2,tT]

δTac(i, [ν]
int) = acT([ν]

int), ν ∈ Γ̃T
ac, (72)

δTac(i, [ν]
int)+

∑
k∈Ilnk∩[1,kC]

χT(i, k) ≥ 2δT,lnkac (i, [ν]int), i ∈ [2, tT],

δT,lnkac (i, [ν]int) ≥ δTac(i, [ν]
int)+

∑
k∈Ilnk∩[1,kC]

χT(i, k)−1, i ∈ [2, tT],∑
i∈[2,tT]

δT,lnkac (i, [ν]int) = aclnkT ([ν]int), ν ∈ Γlnk
ac ∪ Γlnk

ac,>, (73)

47

∑
ν=(a,b,m)∈Γ̃F

ac

m · δFac(i, [ν]int) = βF(i),

∆F+
ac (i) +

∑
ν=(a,b,m)∈Γ̃F

ac

[a]intδFac(i, [ν]
int) = αF(i− 1),

∆F−
ac (i) +

∑
ν=(a,b,m)∈Γ̃F

ac

[b]intδFac(i, [ν]
int) = αF(i),

∆F+
ac (i) + ∆F−

ac (i) ≤ 2|Λex|(1− eF(i)), i ∈ [2, tF],∑
i∈[2,tF]

δFac(i, [ν]
int) = acF([ν]

int), ν ∈ Γ̃F
ac, (74)

αT(i) + |Λint|(1− χT(i, k) + eT(i)) ≥ αCT(k),

αCT(k) ≥ αT(i)− |Λint|(1− χT(i, k) + eT(i)), i ∈ [1, tT],∑
ν=(a,b,m)∈Γ̃CT

ac

m · δCT
ac (k, [ν]int) = βCT(k),

∆CT+
ac (k) +

∑
ν=(a,b,m)∈Γ̃CT

ac

[a]intδCT
ac (k, [ν]int) = αC(tail(k)),

∆CT−
ac (k) +

∑
ν=(a,b,m)∈Γ̃CT

ac

[b]intδCT
ac (k, [ν]int) = αCT(k),

∆CT+
ac (k) + ∆CT−

ac (k) ≤ 2|Λint|(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δCT
ac (k, [ν]int) = acCT([ν]

int), ν ∈ Γ̃CT
ac , (75)

∑
i∈Ilnk∩[1,kC]

δCT
ac (i, [ν]int) = aclnkCT([ν]

int), ν ∈ Γlnk
ac ∪ Γlnk

ac,>, (76)

αT(i) + |Λint|(1− χT(i, k) + eT(i+ 1)) ≥ αTC(k),

αTC(k) ≥ αT(i)− |Λint|(1− χT(i, k) + eT(i+ 1)), i ∈ [1, tT],∑
ν=(a,b,m)∈Γ̃TC

ac

m · δTC
ac (k, [ν]int) = βTC(k),

∆TC+
ac (k) +

∑
ν=(a,b,m)∈Γ̃TC

ac

[a]intδTC
ac (k, [ν]int) = αTC(k),

∆TC−
ac (k) +

∑
ν=(a,b,m)∈Γ̃TC

ac

[b]intδTC
ac (k, [ν]int) = αC(head(k)),

∆TC+
ac (k) + ∆TC−

ac (k) ≤ 2|Λint|(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δTC
ac (k, [ν]int) = acTC([ν]

int), ν ∈ Γ̃TC
ac , (77)

48

∑
i∈Ilnk∩[1,kC]

δTC
ac (i, [ν]int) = aclnkTC([ν]

int), ν ∈ Γlnk
ac ∪ Γlnk

ac,>, (78)

αF(i) + |Λint|(1− χF(i, c) + eF(i)) ≥ αCF(c),

αCF(c) ≥ αF(i)− |Λint|(1− χF(i, c) + eF(i)), i ∈ [1, tF],∑
ν=(a,b,m)∈Γ̃CF

ac

m · δCF
ac (c, [ν]

int) = β∗F(c),

∆CF+
ac (c) +

∑
ν=(a,b,m)∈Γ̃CF

ac

[a]intδCF
ac (c, [ν]

int) = αC(head(c)),

∆CF−
ac (c) +

∑
ν=(a,b,m)∈Γ̃CF

ac

[b]intδCF
ac (c, [ν]

int) = αCF(c),

∆CF+
ac (c) + ∆CF−

ac (c) ≤ 2max{|Λint|, |Λint|}(1− δFχ(c)), c ∈ [1, t̃C],∑
c∈[1,t̃C]

δCF
ac (c, [ν]

int) = acCF([ν]
int), ν ∈ Γ̃CF

ac , (79)

αF(j) + |Λint|(1− χF(j, i+ t̃C) + eF(j)) ≥ αTF(i),

αTF(i) ≥ αF(j)− |Λint|(1− χF(j, i+ t̃C) + eF(j)), j ∈ [1, tF],∑
ν=(a,b,m)∈Γ̃TF

ac

m · δTF
ac (i, [ν]

int) = β∗F(i+ t̃C),

∆TF+
ac (i) +

∑
ν=(a,b,m)∈Γ̃TF

ac

[a]intδTF
ac (i, [ν]

int) = αT(i),

∆TF−
ac (i) +

∑
ν=(a,b,m)∈Γ̃TF

ac

[b]intδTF
ac (i, [ν]

int) = αTF(i),

∆TF+
ac (i) + ∆TF−

ac (i) ≤ 2max{|Λint|, |Λint|}(1− δFχ(i+ t̃C)), i ∈ [1, tT],∑
i∈[1,tT]

δTF
ac (i, [ν]

int) = acTF([ν]
int), ν ∈ Γ̃TF

ac , (80)

∑
X∈{C,T,F,CT,TC,CF,TF}

(acX([ν]
int) + acX([ν]

int)) = acint([ν]int), ν ∈ Γint
ac,<,∑

X∈{C,T,F,CT,TC,CF,TF}

acX([ν]
int) = acint([ν]int), ν ∈ Γint

ac,=, (81)

∑
X∈{C,T,CT,TC}

(aclnkX ([ν]int) + aclnkX ([ν]int)) = aclnk([ν]int), ν ∈ Γlnk
ac,<,∑

X∈{C,T,CT,TC}

aclnkX ([ν]int) = aclnk([ν]int), ν ∈ Γlnk
ac,=, (82)

49

∑
ν∈ν∈Γlnk

ac

aclnk([ν]int) = nlnk. (83)

E.9 Descriptor for the Number of Chemical Symbols

We include constraints for computing the frequency of each chemical symbol in Λdg. Let cs(v)

denote the chemical symbol of an interior-vertex v in a chemical graph C to be inferred; i.e.,

cs(v) = µ = ad ∈ Λdg such that α(v) = a and deg⟨C⟩(v) = degH(v)−deghydC (v) = d in C = (H,α, β).

constants:

- A set Λint
dg of chemical symbols;

- Prepare a coding of each of the two sets Λint
dg and let [µ]int denote the coded integer of an element

µ ∈ Λint
dg ;

- Choose subsets Λ̃C
dg, Λ̃

T
dg, Λ̃

F
dg ⊆ Λint

dg : To compute the frequency of chemical symbols exactly, set

Λ̃C
dg := Λ̃T

dg := Λ̃F
dg := Λint

dg ;

variables:

- nsint([µ]int) ∈ [0, nint
UB], µ ∈ Λint

dg : the number of interior-vertices v with cs(v) = µ;

- δXns(i, [µ]
int) ∈ [0, 1], i ∈ [1, tX], µ ∈ Λint

dg , X ∈ {C,T,F};

constraints: ∑
µ∈Λ̃X

dg∪{ϵ}

δXns(i, [µ]
int) = 1,

∑
µ=ad∈Λ̃X

dg

[a]int · δXns(i, [µ]int) = αX(i),

∑
µ=ad∈Λ̃X

dg

d · δXns(i, [µ]int) = degX(i),

i ∈ [1, tX],X ∈ {C,T,F}, (84)

∑
i∈[1,tC]

δCns(i, [µ]
int) +

∑
i∈[1,tT]

δTns(i, [µ]
int) +

∑
i∈[1,tF]

δFns(i, [µ]
int) = nsint([µ]int), µ ∈ Λint

dg . (85)

E.10 Descriptor for the Number of Edge-configurations

We include constraints to compute the frequency of each edge-configuration in an inferred chemical

graph C.
constants:

- A set Γint of edge-configurations γ = (µ, µ′,m) with µ ≤ µ′, where we let γ denote (µ′, µ,m);

50

- Let Γint
< = {(µ, µ′,m) ∈ Γint | µ < µ′}, Γint

= = {(µ, µ′,m) ∈ Γint | µ = µ′} and Γint
> = {(µ′, µ,m) |

(µ, µ′,m) ∈ Γint
< };

- Prepare a coding of the set Γint ∪ Γint
> and let [γ]int denote the coded integer of an element γ in

Γint ∪ Γint
> ;

- Choose subsets Γ̃C
ec, Γ̃

T
ec, Γ̃

CT
ec , Γ̃

TC
ec , Γ̃

F
ec, Γ̃

CF
ec , Γ̃

TF
ec ⊆ Γint ∪Γint

> ; To compute the frequency of edge-

configurations exactly, set Γ̃C
ec := Γ̃T

ec := Γ̃CT
ec := Γ̃TC

ec := Γ̃F
ec := Γ̃CF

ec := Γ̃TF
ec := Γint ∪ Γint

> ;

- ecintLB(γ), ec
int
UB(γ) ∈ [0, 2nint

UB], γ = (µ, µ′,m) ∈ Γint: lower and upper bounds on the number of

interior-edges e = uv with cs(u) = µ, cs(v) = µ′ and β(e) = m;

- A subset Γlnk ⊆ Γint for edge-configurations of link-edges. Let Γlnk
< = Γlnk∩Γint

< , Γlnk
= = Γlnk∩Γint

=

and Γint
> = {(b, a,m) | (a, b,m) ∈ Γlnk

< };

- eclnkLB(γ), ec
lnk
UB(γ) ∈ [0, 2nint

UB], γ = (µ, µ′,m) ∈ Γint: lower and upper bounds on the number of

link-edges e = uv with cs(u) = µ, cs(v) = µ′ and β(e) = m;

- nscntLB([µ]), ns
cnt
UB([µ]) ∈ [0, 2], µ ∈ Λint

dg : lower and upper bounds on the number of connecting-

vertices v with cs(v) = µ; Define

Γcnt
< := {(µ, µ′, 1) ∈ γ ∈ Γlnk

< | µ, µ′ ∈ Λint
dg , ns

cnt
LB(µ) ≤ 1 ≤ nsUB(µ), ns

cnt
LB(µ

′) ≤ 1 ≤ nsUB(µ
′)};

Γcnt
> := {(µ, µ′, 1) ∈ γ ∈ Γlnk

> | µ, µ′ ∈ Λint
dg , ns

cnt
LB(µ) ≤ 1 ≤ nsUB(µ), ns

cnt
LB(µ

′) ≤ 1 ≤ nsUB(µ
′)};

Γcnt
= := {(µ, µ, 1) ∈ γ ∈ Γlnk

= | µ ∈ Λint
dg , ns

cnt
UB(µ) = 2};

variables:

- ecint([γ]int) ∈ [ecintLB(γ), ec
int
UB(γ)], γ ∈ Γint: the number of interior-edges with edge-configuration

γ;

- ecC([γ]
int) ∈ [0,mC], γ ∈ Γ̃C

ec, ecT([γ]
int) ∈ [0, tT], γ ∈ Γ̃T

ec, ecF([γ]
int) ∈ [0, tF], γ ∈ Γ̃F

ec: the

number of edges eC ∈ EC (resp., edges eT ∈ ET and edges eF ∈ EF) with edge-configuration γ;

- ecCT([γ]
int) ∈ [0,min{kC, tT}], γ ∈ Γ̃CT

ec , ecTC([γ]
int) ∈ [0,min{kC, tT}], γ ∈ Γ̃CT

ec , ecCF([γ]
int) ∈

[0, t̃C], γ ∈ Γ̃CF
ec , ecTF([γ]

int) ∈ [0, tT], γ ∈ Γ̃TF
ec : the number of edges eCT ∈ ECT (resp., edges

eTC ∈ ETC and edges eCF ∈ ECF and eTF ∈ ETF) with edge-configuration γ;

- δCec(i, [γ]
int) ∈ [0, 1], i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), γ ∈ Γ̃C

ec, δ
T
ec(i, [γ]

int) ∈ [0, 1], i ∈
[2, tT], γ ∈ Γ̃T

ec, δ
F
ec(i, [γ]

int) ∈ [0, 1], i ∈ [2, tF], γ ∈ Γ̃F
ec: δ

X
ec(i, [γ]

t) = 1 ⇔ edge eXi has edge-

configuration γ;

- δCT
ec,C(k, [γ]

int), δTC
ec,C(k, [γ]

int) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), γ ∈ Γ̃CT
ec : δCT

ec,C(k, [γ]
int) = 1

(resp., δTC
ec,C(k, [γ]

int) = 1) ⇔ edge eCT
tail(k),j (resp., eTC

head(k),j) for some j ∈ [1, tT] has edge-

configuration γ;

- δCF
ec,C(c, [γ]

int) ∈ [0, 1], c ∈ [1, t̃C], γ ∈ Γ̃CF
ec : δ

CF
ec,C(c, [γ]

int) = 1 ⇔ edge eCF
c,i for some i ∈ [1, tF]

has edge-configuration γ;

51

- δTF
ec,T(i, [γ]

int) ∈ [0, 1], i ∈ [1, tT], γ ∈ Γ̃TF
ec : δ

TF
ec,T(i, [γ]

int) = 1 ⇔ edge eTF
i,j for some j ∈ [1, tF]

has edge-configuration γ;

- degCT
T (k), degTC

T (k) ∈ [0, 4], k ∈ [1, kC]: deg⟨C⟩(v) of an end-vertex v ∈ VT of the edge (vCtail(k), v) ∈
ECT (resp., (v, vChead(k)) ∈ ETC) if any;

- degCF
F (c) ∈ [0, 4], c ∈ [1, t̃C]: deg⟨C⟩(v) of an end-vertex v ∈ VF of the edge (vCc, v) ∈ ECF if any;

- degTF
F (i) ∈ [0, 4], i ∈ [1, tT]: deg⟨C⟩(v) of an end-vertex v ∈ VF of the edge (vTi, v) ∈ ETF if any;

- ∆C+
ec (i),∆C−

ec (i),∈ [0, 4], i ∈ [k̃C + 1,mC], ∆
T+
ec (i),∆T−

ec (i) ∈ [0, 4], i ∈ [2, tT], ∆
F+
ec (i),∆F−

ec (i) ∈
[0, 4], i ∈ [2, tF]: ∆X+

ec (i) = ∆X−
ec (i) = 0 (resp., ∆X+

ec (i) = deg⟨C⟩(u) and ∆X−
ec (i) = deg⟨C⟩(v)) ⇔

edge eXi = (u, v) ∈ EX is used in ⟨C⟩ (resp., eXi ̸∈ E(⟨C⟩));

- ∆CT+
ec (k),∆CT−

ec (k) ∈ [0, 4], k ∈ [1, kC] = I(≥2) ∪ I(≥1): ∆CT+
ec (k) = ∆CT−

ec (k) = 0 (resp.,

∆CT+
ec (k) = deg⟨C⟩(u) and ∆CT−

ec (k) = deg⟨C⟩(v)) ⇔ edge eCT
tail(k),j = (u, v) ∈ ECT for some

j ∈ [1, tT] is used in ⟨C⟩ (resp., otherwise);

- ∆TC+
ec (k),∆TC−

ec (k) ∈ [0, 4], k ∈ [1, kC] = I(≥2) ∪ I(≥1): Analogous with ∆CT+
ec (k) and ∆CT−

ec (k);

- ∆CF+
ac (c),∆CF−

ec (c) ∈ [0, 4], c ∈ [1, t̃C]: ∆
CF+
ec (c) = ∆CF−

ec (c) = 0 (resp., ∆CF+
ec (c) = deg⟨C⟩(u) and

∆CF−
ec (c) = deg⟨C⟩(v)) ⇔ edge eCF

c,j = (u, v) ∈ ECF for some j ∈ [1, tF] is used in ⟨C⟩ (resp.,

otherwise);

- ∆TF+
ec (i),∆TF−

ec (i) ∈ [0, 4], i ∈ [1, tT]: Analogous with ∆CF+
ec (c) and ∆CF−

ec (c);

- eclnk([γ]int) ∈ [eclnkLB(γ), ec
lnk
UB(γ)], γ ∈ Γlnk: the number of link-edges with edge-configuration γ;

- eclnkC ([γ]int), eclnkT ([γ]int) ∈ [0,mC], γ ∈ Γlnk: the number of link-edges eC ∈ EC (resp., edges

eT ∈ ET) with edge-configuration γ;

- eclnkCT([γ]
int) ∈ [0,min{kC, tT}], eclnkTC([γ]

int) ∈ [0,min{kC, tT}], γ ∈ Γlnk: the number of link-edges

eCT ∈ ECT (resp., link-edges eTC ∈ ETC) with adjacency-configuration γ;

- δT,lnkec (i, [γ]int) ∈ [0, 1], i ∈ [2, tT], γ ∈ Γlnk: δT,lnkec (i, [γ]int) = 1 ⇔ edge eTi ∈ ET is a link-edge

with edge-configuration γ;

- δcnt([γ]int) ∈ [0, 1], γ ∈ Γcnt
< ∪ Γcnt

= ∪ Γcnt
> : δcnt([γ]int) = 1 ⇔ ec(e) = γ for the link-edge e joining

connecting-vertices;

constraints:

52

ecC([γ]
int) = 0, γ ∈ Γint \ Γ̃C

ec,

ecT([γ]
int) = 0, γ ∈ Γint \ Γ̃T

ec,

ecF([γ]
int) = 0, γ ∈ Γint \ Γ̃F

ec,

ecCT([γ]
int) = 0, γ ∈ Γint \ Γ̃CT

ec ,

ecTC([γ]
int) = 0, γ ∈ Γint \ Γ̃TC

ec ,

ecCF([γ]
int) = 0, γ ∈ Γint \ Γ̃CF

ec ,

ecTF([γ]
int) = 0, γ ∈ Γint \ Γ̃TF

ec ,

(86)

∑
(µ,µ′,m)=γ∈Γint

ecC([γ]
int) =

∑
i∈[k̃C+1,mC]

δCβ (i,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecT([γ]
int) =

∑
i∈[2,tT]

δTβ (i,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecF([γ]
int) =

∑
i∈[2,tF]

δFβ (i,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecCT([γ]
int) =

∑
k∈[1,kC]

δCT
β (k,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecTC([γ]
int) =

∑
k∈[1,kC]

δTC
β (k,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecCF([γ]
int) =

∑
c∈[1,t̃C]

δ∗Fβ (c,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecTF([γ]
int) =

∑
c∈[t̃C+1,cF]

δ∗Fβ (c,m), m ∈ [1, 3],

(87)

∑
γ=(ad,bd′,m)∈Γ̃C

ec

[(a, b,m)]int · δCec(i, [γ]int) =
∑
ν∈Γ̃C

ac

[ν]int · δCac(i, [ν]int),

∆C+
ec (i) +

∑
γ=(ad,µ′,m)∈Γ̃C

ec

d · δCec(i, [γ]int) = degC(tail(i)),

∆C−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃C

ec

d · δCec(i, [γ]int) = degC(head(i)),

∆C+
ec (i) + ∆C−

ec (i) ≤ 8(1− eC(i)), i ∈ [k̃C + 1,mC],∑
i∈[k̃C+1,mC]

δCec(i, [γ]
int) = ecC([γ]

int), γ ∈ Γ̃C
ec, (88)

53

∑
i∈Ilnk∩[k̃C+1,mC]

δCec(i, [γ]
int) = eclnkC ([γ]int), γ ∈ Γlnk ∪ Γlnk

> , (89)

∑
γ=(ad,bd′,m)∈Γ̃T

ec

[(a, b,m)]int · δTec(i, [γ]int) =
∑
ν∈Γ̃T

ac

[ν]int · δTac(i, [ν]int),

∆T+
ec (i) +

∑
γ=(ad,µ′,m)∈Γ̃T

ec

d · δTec(i, [γ]int) = degT(i− 1),

∆T−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃T

ec

d · δTec(i, [γ]int) = degT(i),

∆T+
ec (i) + ∆T−

ec (i) ≤ 8(1− eT(i)), i ∈ [2, tT],∑
i∈[2,tT]

δTec(i, [γ]
int) = ecT([γ]

int), γ ∈ Γ̃T
ec, (90)

δTec(i, [γ]
int)+

∑
k∈Ilnk∩[1,kC]

χT(i, k) ≥ 2δT,lnkec (i, [γ]int), i ∈ [2, tT],

δT,lnkec (i, [γ]int) ≥ δTec(i, [γ]
int)+

∑
k∈Ilnk∩[1,kC]

χT(i, k)−1, i ∈ [2, tT],∑
i∈[2,tT]

δT,lnkec (i, [γ]int) = eclnkT ([γ]int), γ ∈ Γlnk ∪ Γlnk
> , (91)

∑
γ=(ad,bd′,m)∈Γ̃F

ec

[(a, b,m)]int · δFec(i, [γ]int) =
∑
ν∈Γ̃F

ac

[ν]int · δFac(i, [ν]int),

∆F+
ec (i) +

∑
γ=(ad,µ′,m)∈Γ̃F

ec

d · δFec(i, [γ]int) = degF(i− 1),

∆F−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃F

ec

d · δFec(i, [γ]int) = degF(i, 0),

∆F+
ec (i) + ∆F−

ec (i) ≤ 8(1− eF(i)), i ∈ [2, tF],∑
i∈[2,tF]

δFec(i, [γ]
int) = ecF([γ]

int), γ ∈ Γ̃F
ec, (92)

54

degT(i) + 4(1− χT(i, k) + eT(i)) ≥ degCT
T (k),

degCT
T (k) ≥ degT(i)− 4(1− χT(i, k) + eT(i)), i ∈ [1, tT],∑

γ=(ad,bd′,m)∈Γ̃CT
ec

[(a, b,m)]int · δCT
ec,C(k, [γ]

int) =
∑
ν∈Γ̃CT

ac

[ν]int · δCT
ac (k, [ν]int),

∆CT+
ec (k) +

∑
γ=(ad,µ′,m)∈Γ̃CT

ec

d · δCT
ec,C(k, [γ]

int) = degC(tail(k)),

∆CT−
ec (k) +

∑
γ=(µ,bd,m)∈Γ̃CT

ec

d · δCT
ec,C(k, [γ]

int) = degCT
T (k),

∆CT+
ec (k) + ∆CT−

ec (k) ≤ 8(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δCT
ec,C(k, [γ]

int) = ecCT([γ]
int), γ ∈ Γ̃CT

ec , (93)

∑
i∈Ilnk∩[1,kC]

δCT
ec (i, [γ]int) = eclnkCT([γ]

int), γ ∈ Γlnk ∪ Γlnk
> , (94)

degT(i) + 4(1− χT(i, k) + eT(i+ 1)) ≥ degTC
T (k),

degTC
T (k) ≥ degT(i)− 4(1− χT(i, k) + eT(i+ 1)), i ∈ [1, tT],∑

γ=(ad,bd′,m)∈Γ̃TC
ec

[(a, b,m)]int · δTC
ec,C(k, [γ]

int) =
∑
ν∈Γ̃TC

ac

[ν]int · δTC
ac (k, [ν]int),

∆TC+
ec (k) +

∑
γ=(ad,µ′,m)∈Γ̃TC

ec

d · δTC
ec,C(k, [γ]

int) = degTC
T (k),

∆TC−
ec (k) +

∑
γ=(µ,bd,m)∈Γ̃TC

ec

d · δTC
ec,C(k, [γ]

int) = degC(head(k)),

∆TC+
ec (k) + ∆TC−

ec (k) ≤ 8(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δTC
ec,C(k, [γ]

int) = ecTC([γ]
int), γ ∈ Γ̃TC

ec , (95)

∑
i∈Ilnk∩[1,kC]

δTC
ec (i, [γ]int) = eclnkTC([γ]

int), γ ∈ Γlnk ∪ Γlnk
> , (96)

55

degF(i) + 4(1− χF(i, c) + eF(i)) ≥ degCF
F (c),

degCF
F (c) ≥ degF(i)− 4(1− χF(i, c) + eF(i)), i ∈ [1, tF],∑

γ=(ad,bd′,m)∈Γ̃CF
ec

[(a, b,m)]int · δCF
ec,C(c, [γ]

int) =
∑
ν∈Γ̃CF

ac

[ν]int · δCF
ac (c, [ν]

int),

∆CF+
ec (c) +

∑
γ=(ad,µ′,m)∈Γ̃CF

ec

d · δCF
ec,C(c, [γ]

int) = degC(c),

∆CF−
ec (c) +

∑
γ=(µ,bd,m)∈Γ̃CF

ec

d · δCF
ec,C(c, [γ]

int) = degCF
F (c),

∆CF+
ec (c) + ∆CF−

ec (c) ≤ 8(1− δFχ(c)), c ∈ [1, t̃C],∑
c∈[1,t̃C]

δCF
ec,C(c, [γ]

int) = ecCF([γ]
int), γ ∈ Γ̃CF

ec , (97)

degF(j) + 4(1− χF(j, i+ t̃C) + eF(j)) ≥ degTF
F (i),

degTF
F (i) ≥ degF(j)− 4(1− χF(j, i+ t̃C) + eF(j)), j ∈ [1, tF],∑

γ=(ad,bd′,m)∈Γ̃TF
ec

[(a, b,m)]int · δTF
ec,T(i, [γ]

int) =
∑
ν∈Γ̃TF

ac

[ν]int · δTF
ac (i, [ν]

int),

∆TF+
ec (i) +

∑
γ=(ad,µ′,m)∈Γ̃TF

ec

d · δTF
ec,T(i, [γ]

int) = degT(i),

∆TF−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃TF

ec

d · δTF
ec,T(i, [γ]

int) = degTF
F (i),

∆TF+
ec (i) + ∆TF−

ec (i) ≤ 8(1− δFχ(i+ t̃C)), i ∈ [1, tT],∑
i∈[1,tT]

δTF
ec,T(i, [γ]

int) = ecTF([γ]
int), γ ∈ Γ̃TF

ec , (98)

∑
X∈{C,T,F,CT,TC,CF,TF}

(ecX([γ]
int) + ecX([γ]

int)) = ecint([γ]int), γ ∈ Γint
< ,∑

X∈{C,T,F,CT,TC,CF,TF}

ecX([γ]
int) = ecint([γ]int), γ ∈ Γint

= , (99)

∑
X∈{C,T,CT,TC}

(eclnkX ([γ]int) + eclnkX ([γ]int)) = eclnk([γ]int), γ ∈ Γlnk
< ,

∑
X∈{C,T,CT,TC}

eclnkX ([γ]int) = eclnk([γ]int), γ ∈ Γlnk
= . (100)

∑
γ∈Γlnk

eclnk([γ]int) = nlnk, (101)

56

nscntLB([µ]) ≤ δcnt(1, [µ]) + δcnt(2, [µ]) ≤ nscntUB([µ]), µ ∈ Λint
dg , (102)

∑
γ∈Γcnt

< ∪Γcnt
= ∪Γcnt

>

δcnt([γ]int) = 1,

eclnk([γ]int) ≥ δcnt([γ]int), γ ∈ Γcnt
< ∪ Γcnt

=

eclnk([γ]int) ≥ δcnt([γ]int), γ ∈ Γcnt
>

(103)

E.11 Constraints for Normalization of Feature Vectors

By introducing a tolerance ε > 0 in the conversion between integers and reals, we include the

following constraints for normalizing of a feature vector x = (x(1), x(2), . . . , x(K)):

(1− ε)(x(j)−min(dcpj;Dπ))

max(dcpj;Dπ)−min(dcpj;Dπ)
≤ x̂(j) ≤

(1 + ε)(x(j)−min(dcpj;Dπ))

max(dcpj;Dπ)−min(dcpj;Dπ)
, j ∈ [1, K]. (104)

An example of a tolerance is ε = 1× 10−5.

We use the same conversion for descriptor xj = ms.

57

