
Adjustive Linear Regression and Its Application to the
Inverse QSAR *

Jianshen Zhu1, Kazuya Haraguchi1, Hiroshi Nagamochi1 and Tatsuya Akutsu2

1 Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-8501, Japan
2 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan

Abstract

In this paper, we propose a new machine learning method, called adjustive linear

regression, which can be regarded as an ANN on an architecture with an input layer

and an output layer of a single node, wherein an error function is minimized by choosing

not only weights of the arcs but also an activation function at each node in the two

layers simultaneously. Under some conditions, such a minimization can be formulated

as a linear program (LP) and a prediction function with adjustive linear regression

is obtained as an optimal solution to the LP. We apply the new machine learning

method to a framework of inferring a chemical compound with a desired property

(i.e., inverse QSAR). From the results of our computational experiments, we observe

that a prediction function constructed by adjustive linear regression for some chemical

properties drastically outperforms that by Lasso linear regression.

Keywords: Machine Learning, Linear Regression, Integer Programming, Linear

Program, Cheminformatics, Materials Informatics, QSAR/QSPR, Molecular Design.

1 Introduction

In this paper, we design a new learning method, called “adjustive linear regression” in order to

construct a function that predicts a chemical property of a given chemical compound. We start

with the background and the recent results on the research.

Background Analysis of chemical compounds is one of the important applications of intelligent

computing. Indeed, various machine learning methods have been applied to the prediction of

chemical activities from their structural data, where such a problem is often referred to as quan-

titative structure activity relationship (QSAR) [1, 2]. Recently, neural networks and deep-learning

technologies have extensively been applied to QSAR [3].

In addition to QSAR, extensive studies have been done on inverse quantitative structure ac-

tivity relationship (inverse QSAR), which seeks for chemical structures having desired chemical

activities under some constraints. Since it is difficult to directly handle chemical structures in both

QSAR and inverse QSAR, chemical compounds are usually represented as vectors of real or integer

numbers, which are often called descriptors in chemoinformatics and correspond to feature vectors

in machine learning. One major approach in inverse QSAR is to infer feature vectors from given

chemical activities and constraints and then reconstruct chemical structures from these feature

*Department of Applied Mathematics and Physics, Kyoto University, Technical Report, TR: 2021-002, September

3, 2021

1



vectors [4, 5, 6], where chemical structures are usually treated as undirected graphs. However, the

reconstruction itself is a challenging task because the number of possible chemical graphs is huge.

For example, chemical graphs with up to 30 atoms (vertices) C, N, O, and S may exceed 1060 [7].

Due to this difficulty, most existing methods for inverse QSAR do not guarantee optimal or exact

solutions.

As a new approach, extensive studies have recently been done for inverse QSAR using artificial

neural networks (ANNs), especially using graph convolutional networks [8]. For example, recurrent

neural networks [10, 11], variational autoencoders [9], grammar variational autoencoders [12], gen-

erative adversarial networks [13], and invertible flow models [14, 15] have been applied. However,

these methods do not yet guarantee optimal or exact solutions.

 RK

x* 

MILP

y*,y*

 input

output

R

  1
*

M(g,x,y;C1,C2)

Stage 5

x*

detect

deliver

Stage 4ANN 

a: property 
    function 

N

..
.  2

..
.

f(    )

y*<h(x*)<y*f(   *)

G : class of chemical
  graphs

Stage 1 Stage 3

h: prediction 
        function 

Stage 2

f : feature 
    function 

 
x:=f(  )

a(  )

h(x)

i s: topological

  specification

   

   

h  function

function f

graph constraints

C1:

C2:

M(x,y;C1)

M(g,x;C2)
g  :   

*

no    *    G s.t.  y*<h(f(   *))<y*

Figure 1: An illustration of a framework for inferring a set of chemical graphs C∗.

Framework Akutsu and Nagamochi [16] proved that the computation process of a given ANN can

be simulated with a mixed integer linear programming (MILP). Based on this, a novel framework

for inferring chemical graphs has been developed and revised [17, 18], as illustrated in Figure 1. It

constructs a prediction function in the first phase and infers a chemical graph in the second phase.

The first phase of the framework consists of three stages. Stage 1 chooses a chemical property π

and a class G of graphs, where a property function a is defined so that a(C) is the value of π for a

compound C ∈ G, and collects a data set Dπ of chemical graphs in G such that a(C) is available
for every C ∈ Dπ. Stage 2 introduces a feature function f : G → RK for a positive integer K.

Stage 3 constructs a prediction function η with an ANN N that, given a vector x ∈ RK , returns a

value y = η(x) ∈ R so that η(f(C)) serves as a predicted value to the real value a(C) of π for each

C ∈ Dπ. Given two reals y∗ and y∗ as an interval for a target chemical value, the second phase

infers chemical graphs C∗ with y∗ ≤ η(f(C∗)) ≤ y∗ in the next two stages. After Stage 3, we have

obtained a feature function f and a prediction function η. We can specify an additional constraint

on the substructures of target chemical graphs, called a topological specification before we infer a

target chemical graph. In Stage 4, the following two MILP formulations are prepared:

- MILP M(x, y; C1) with a set C1 of linear constraints on variables x and y (and some other

auxiliary variables) simulates the process of computing y := η(x) from a vector x; and

2



- MILP M(g, x; C2) with a set C2 of linear constraints on variable x and a variable vector g that

represents a chemical graph C (and some other auxiliary variables) simulates the process of

computing x := f(C) from a chemical graph C and chooses a chemical graph C that satisfies

the given topological specification σ.

Given an interval with boundaries y∗, y∗ ∈ R, Stage 4 solves the combined MILP M(g, x, y; C1, C2)
to find a feature vector x∗ ∈ RK and a chemical graph C† with the specification σ such that

f(C†) = x∗ and y∗ ≤ η(x∗) ≤ y∗ (where if the MILP instance is infeasible then this suggests that

there does not exist such a desired chemical graph). Stage 5 generates other chemical graphs C∗

such that y∗ ≤ η(f(C∗)) ≤ y∗ based on the output chemical graph C†.

A modeling of chemical compounds together with an MILP formulation has been improved so

that a chemical compound with any graph structure can be treated (see Shi et al. [18]). Not only

ANNs but also other machine learning methods have been used to construct a prediction function

η in Stage 3 recently. Tanaka et al. [19] (resp., Zhu et al. [20]) used a decision tree (resp., linear

regression) to construct a prediction function η in Stage 3 in the framework and derived an MILP

M(x, y; C1) that simulates the computation process of a decision tree (resp., linear regression).

The novelty of the framework is based on the fact that a prediction process by linear regression

or ANNs can be modeled as an MILP, to which we can find a mathematically exact solution by

relying on the state-of-the-art solvers from Operations Research (OR). A sophisticated method has

been studied by Shi et al. [18] in order to formulate a sparse MILP instance even for a complicated

requirements in a topological specification. Currently an MILP instance in Stage 4 for inferring

a chemical compound with 50 non-hydrogen atoms contains around 10,000 variables and 10,000

linear constraints, and can be solved in a few seconds.

Contribution In this paper, we apply a mathematical programming in OR to Stage 3 in order to

design a new machine learning method for QSAR. Let us compare linear regression and ANNs. The

former uses a hyperplane to explain a given data set and the latter can represent a more complex

subspace than a hyperplane. Importantly a best hyperplane that minimizes an error function can

be found exactly in the former whereas a local optimum solution to an error function is constructed

by an iterative procedure in the latter and different local optimum solutions often appear depending

on how we have tuned many parameters in ANNs. Linear regression can be regarded as an ANN

on an architecture with an input layer and an output layer of a single node with a linear activation

function. We consider an ANN on the same architecture such that each node in the input and out

layers is equipped with a set Φ of activation functions. Given a data set, we consider a problem

of minimizing an error function on the data set by choosing a weight of each arc, a bias of the

output node and a best activation function for each node simultaneously. With some restriction

on the set Φ of activation functions and the definition of an error function, we show that such

an minimization problem can be formulated as a linear program, which is much easier than an

MILP to solve exactly. We call this new method “adjustive linear regression” and implemented it

in Stages 3 an 4 in the framework. We used the same MILP M(g, x; C2) formulation proposed by

Zhu et al. [20] and omit the details in this paper. We compared adjustive linear regression with

Lasso linear regression in constructing prediction functions for several chemical properties. From

the results of our computational experiments, we observe that a prediction function constructed

by adjustive linear regression for some chemical properties drastically outperform that by Lasso

3



linear regression.

The paper is organized as follows. Section 2 reviews the idea of prediction functions based on

linear regression and ANNs and designs “adjustive linear regression,” a new method for construct-

ing a prediction function by solving a linear program to optimize a choice of weights/bias together

with activation functions in an ANN with no hidden layers. Section 3.1 introduces some notions

on graphs, a modeling of chemical compounds and a choice of descriptors. Section 4 reviews a

method, called a two-layered model for representing the feature of a chemical graph in order to deal

with an arbitrary graph in the framework. Section 5 reports the results on some computational

experiments conducted for the framework of inferring chemical graphs by using our new method

of adjustive linear regression. Section 6 makes some concluding remarks. Some technical details

are given in Appendices: Appendix A for all descriptors in our feature function; Appendix B for a

full description of a topological specification; and Appendix C for the detail of test instances used

in our computational experiment for Stages 4 and 5.

2 Constructing Prediction Functions

Let R, R+, Z and Z+ denote the sets of reals, non-negative reals, integers and non-negative integers,

respectively. For two integers a and b, let [a, b] denote the set of integers i with a ≤ i ≤ b. For a

vector x ∈ Rp, the j-th entry of x is denoted by x(j), j ∈ [1, p].

2.1 Linear Prediction Functions

For an integer K ≥ 1, define a feature space RK . Let X = {x1, x2, . . . , xm} be a set of feature

vectors x ∈ RK and let ai ∈ R be a real assigned to a feature vector xi. Let A = {ai | i ∈ [1,m]}.
A function η : RK → R is called a prediction function. We wish to find a prediction function

η : RK → R based on a subset of {x1, x2, . . . , xm} so that η(xi) is closed to the value ai for many

indices i ∈ [1,m].

For a prediction function η : RK → R, define an error function

Err(η;X ) ≜
∑
i∈[1,m]

(ai − η(xi))
2,

and define the coefficient of determination R2(η,X ) to be

R2(η,X ) ≜ 1− Err(η;X )∑
i∈[1,m](ai − ã)2

for ã =
1

m

∑
i∈[1,m]

ai.

Many methods have been proposed in order to find a prediction function η that minimizes the

error function Err(ηw,b;X ) possibly without using all elements in X .

For the feature space RK , a hyperplane is defined to be a pair (w, b) of a vector w ∈ RK and

a real b ∈ R. A prediction function η is called linear if η is given by ηw,b(x) = w · x + b, x ∈
RK for a hyperplane (w, b). The linear regression is to find a hyperplane (w, b) that minimizes

Err(ηw,b;X ) =
∑

i∈[1,m](ai − (w · xi + b))2.

4



In many cases, a feature vector f contains descriptors that do not play an essential role in

constructing a good prediction function. When we solve the minimization problem, the entries

w(j) for some descriptors j ∈ [1, K] in the resulting hyperplane (w, b) become zero, which means

that these descriptors were not necessarily important for finding a prediction function ηw,b. It

is proposed that solving the minimization with an additional penalty term to the error function

often results in a more number of entries w(j) = 0, reducing a set of descriptors necessary for

defining a prediction function ηw,b. For an error function with such a penalty term, a Ridge

function 1
2m

Err(ηw,b;X ) + λ[
∑

j∈[1,K]w(j)
2 + b2] [21, 22] and a Lasso function 1

2m
Err(ηw,b;X ) +

λ[
∑

j∈[1,K] |w(j)| + |b|] [23] are known, where λ ∈ R is a given real number. As a hybridization

of Ridge linear regression and Lasso linear regression, a linear regression that minimizes an error

function defined to be 1
2m

Err(ηw,b;X ) + λ2[
∑

j∈[1,K]w(j)
2 + b2] + λ1[

∑
j∈[1,K] |w(j)| + |b|] is called

elastic net linear regression [24], where λ1, λ2 ∈ R are given real numbers.

Zhu et al. [20] used Lasso linear regression to construct a prediction function η in Stage 3 in

the framework.

2.2 ANNs for Linear Prediction Functions

It is not difficult to see that a linear prediction function η with a hyperplane (w, b) can be repre-

sented by an ANN N with an input layer Lin = {u1, u2, . . . , uK} of K input nodes and an output

layer Lout = {v} of a single output node v such that the weight of an arc (uj, v) from an input

node uj to the output node v is given by w(j), j ∈ [1, K]; the bias at node v is given by b; and

the activation function at node v is linear. See Figure 2(a) for an illustration of an ANN N that

represents a linear prediction function η with a hyperplane (w, b). Given a vector x ∈ RK , the

ANN N outputs y :=
∑

j∈[1,K]w(j)x(j) + b.

w(1)

(a)  (b)  

u1

uj v

u2

uK

w(j)

w(K)

b

x(1)

x(j)

x(K)

y:=  S w(j)x(j)+b

y

j   [1,K]

w(1)

u1

uj v

u2

uK

w(j)

w(K)

b

x(1)

x(j)

x(K)

z(0):=  S w(j)z(j)+b
j   [1,K]

z(j):= fj(x(j))

z(1):= f1(x(1))

z(K):= fK(x(K))

y:= f0(z(0))

Figure 2: An illustration of the process in ANNs with no hidden layers: (a) An ANN N that

represents a linear prediction function η with a hyperplane (w, b); (b) an ANN Nϕ with activation

functions ϕj, j ∈ [0, K] at all nodes.

We consider an ANN Nϕ with the same architecture with the ANN N and introduce activation

functions ϕj at nodes uj, j ∈ [1, K] and an activation function ϕ0 at node v. Given a vector x ∈ RK ,

5



the ANNNϕ outputs y := ϕ0(z(0)) for z(0) :=
∑

j∈[1,K]w(j)z(j)+b and z(j) := ϕj(x(j)), j ∈ [1, K].

In a standard method of a prediction function ηNϕ
with the above ANN Nϕ, we specify each

activation function ϕj and determine weights w and a bias b by executing an iterative procedure

that tries to minimize an error function between the real values ai and the predicted values ηNϕ
(xi).

2.3 Adjustive Linear Regression

In this paper, we design a new method of constructing a prediction function with the above ANN

Nϕ so that (i) not only weights w and a bias b but also prediction functions ϕj are chosen so as to

minimize an error function and (ii) the minimization problem is formulated as a linear programming

problem.

We introduce a class Φj of functions for a choice of each activation function ϕj, j ∈ [0, K].

When we choose a function ϕj ∈ Φj for each j ∈ [0, K] and a hyperplane (w, b), we define a

prediction function ηΨ,w,b such that

ηΨ,w,b(x) ≜ ϕ0(
∑

j∈[1,K]

w(j)(ϕj(x(j)))− b)

for the set Ψ = {ϕj | j ∈ [0, K]} of the functions.

In this paper, we use a function ξ(t) = ct+c′t2+c′′(1−(t−1)2), 0 ≤ t ≤ 1 for a function ϕj, j ∈
[1, K] or the inverse ϕ−1

0 of a function ϕ0, where c, c
′ and c′′ are nonnegative constant constants with

c+c′+c′′ = 1 which will be determined for each j ∈ [0, K] by our method. Note that, for a domain

0 ≤ t ≤ 1, ξ(t) is a monotone increasing function and admits an inverse function ξ−1(t), where

ξ−1(t) = t/(c+ 2c′′) when c′ = c′′ and ξ−1(t) = (−c− 2c′′ +
√
(c+ 2c′′)2 + 4(c′ − c′′)t)/(2c′ − 2c′′)

when c′ ̸= c′′.

We introduce a class Φj of functions in the following way.

1. Normalize the set {xi(j) | xi ∈ X}, j ∈ [1, K] and the set {ai(j) | xi ∈ X} so that the

minimum and maximum in the set become 0 and 1.

2. For each index j ∈ [0, K], define a class Φj of functions to be

Φj ≜ {c0(j)t+ c1(j)t
2 + c2(j)(1− (t− 1)2), 0 ≤ t ≤ 1 | cq(j) ≥ 0, q ∈ [0, 2],∑

q∈[0,2] cq(j) = 1}, j ∈ [1, K].

Define

Φ̃0 ≜ {c0(0)t+ c1(0)t
2 + c2(0)(1− (t− 1)2), 0 ≤ t ≤ 1 | cq(0) ≥ 0, q ∈ [0, 2],∑

q∈[0,2] cq(0) = 1},

Φ0 ≜ {ξ−1(t), 0 ≤ t ≤ 1 | ξ(t) ∈ Φ̃0}.

To use linear programming, we measure an error of a prediction function η over a data set X
by the sum of the absolute errors:

SAE(η;X ) ≜
∑
xi∈X

|ai − η(xi)|.

6



Now our aim is to find a prediction function ηΨ,w,b that minimizes the sum of the absolute

errors SAE(ηΨ,w,b;X ) or equivalently∑
i∈[1,m]

|ϕ−1
0 (ai)− (

∑
j∈[1,K]

w(j)(ϕj(xi(j)))− b)| (1)

over all functions ϕ0 ∈ Φ̃0, ϕj ∈ Φj, j ∈ [1, K] and hyperplanes (w, b).

To formulate this minimization problem as a linear programming problem, we predetermine

the sign of w(j) for each descriptor j in a hyperplane (w, b) that we will choose. Compute the

correlation coefficient σ(Xj, A) between Xj = {xi(j) | i ∈ [1,m]} and A = {ai | i ∈ [1,m]}
and partition the set of descriptors into two sets I+ := {j ∈ [1, K] | σ(Xj, A) ≥ 0} and I− :=

{j ∈ [1, K] | σ(Xj, A) < 0}. We impose an additional constraint that w(j) ≥ 0, j ∈ I+ and

w(j) ≤ 0, j ∈ I−. Then the objective function (1) is described as follows, where we rewrite each

term w(j), j ∈ I+ (resp., −w(j), j ∈ I−) as w′(j):∑
i∈[1,m]

∣∣∣c0(0)ai + c1(0)a
2
i + c2(0)(1− (ai−1)2)

−
∑
j∈I+

[w′(j)
(
c0(j)xi(j) + c1(j)xi(j)

2 + c2(j)(1− (xi(j)−1)2)
)
]

+
∑
j∈I−

[w′(j)
(
c0(j)xi(j) + c1(j)xi(j)

2 + c2(j)(1− (xi(j)−1)2)
)
]− b

∣∣∣.
We minimize (1) over all nonnegative reals cq(j), q ∈ [0, 2], j ∈ [1, K], nonnegative reals w(j), j ∈
[1, K] and a real b ∈ R such that

∑
q∈[0,2] cq(j) = 1, j ∈ [1, K].

Before we derive a linear programming formulation to the above minimization problem, we

include a penalty term for the weights w(j), j ∈ [1, K] analogously with the Lasso linear regression.

We consider the following problem which we call adjustive linear regression, where w′(j)cq(j), q ∈
[0, 2] is rewritten as wq(j).

Adjustive Linear Regression(X , λ)

Minimize:
1

2m

∑
i∈[1,m]

∣∣∣c0(0)ai + c1(0)a
2
i + c2(0)(1− (ai−1)2)

−
∑
j∈I+

[w0(j)xi(j) + w1(j)xi(j)
2 + w2(j)(1− (xi(j)−1)2)]

+
∑
j∈I−

[w0(j)xi(j) + w1(j)xi(j)
2 + w2(j)(1− (xi(j)−1)2)]− b

∣∣∣
+ λ

∑
j∈[1,K]

w0(j) + λ|b|

subject to

c0(0) + c1(0) + c2(0) = 1.

(2)

When the set S = {ai | i ∈ [1,m]} (resp., S = {xi(j) | i ∈ [1,m]} for an index j ∈ [1,m]) is binary

(i.e., S = {0, 1}), we always set c1(0) = c2(0) = 0 (resp., c1(j) = c2(j) = 0).

We observe that adjustive linear regression is an extension of the Lasso linear regression except

that the error function is the sum of absolute errors in the former and the sum of square errors in

the latter.

7



We solve the above minimization problem (2) to construct a prediction function ηΨ,w,b. Let

c∗q(0), q ∈ [0, 2], w∗
q(j), q ∈ [0, 2], j ∈ [1, K] and b∗ denote the values of variables cq(0), q ∈ [0, 2],

wq(j), q ∈ [0, 2], j ∈ [1, K] and b in an optimal solution, respectively. Let K ′ denote the number

of descriptors j ∈ [1, K] with w∗
0(j) > 0 and IK′ denote the set of j ∈ [1, K] with w∗

0(j) > 0. Then

we set

w∗(j) := 0 for j ∈ [1, K] with w∗
0(j) = 0,

w∗(j) := w∗
0(j)/(w

∗
0(j) + w∗

1(j) + w∗
2(j)) for j ∈ I+ ∩ IK′ ,

w∗(j) := −w∗
0(j)/(w

∗
0(j) + w∗

1(j) + w∗
2(j)) for j ∈ I− ∩ IK′ ,

c∗q(j) := w∗
q(j)/w

∗(j), q ∈ [0, 2] for j ∈ IK′ and

w∗ := (w∗
0(1), w

∗
0(2), . . . , w

∗
0(K)) ∈ RK .

For a set Ψ∗ of selected functions ϕj(t) = c∗0(j)t+ c∗1(j)t
2 + c∗2(j)(1− (t− 1)2), j ∈ IK′ with and

ϕ0(t) with ϕ
−1
0 (t) = c∗0(0)t+ c∗1(0)t

2 + c∗2(0)(1− (t− 1)2) and a hyperplane (w∗, b∗), we construct a

prediction function ηΨ∗,w∗,b∗ .

We propose the following scheme of executing adjustive linear regression for constructing a

prediction function and evaluating the performance.

1. Given a data set X = {xi ∈ RK | i ∈ [1,m]} of normalized feature vectors and a set

A = {ai ∈ R | i ∈ [1,m]} of normalized observed values, we choose a real λ > 0 possibly

from a set of candidates for λ > 0 so that the performance of a prediction function ηΨ∗,w∗,b∗

obtained from an optimal solution (Ψ∗, w∗, b∗) to the adjustive linear regression (X , λ) attains
a criterion, where we may use cross-validation and the test coefficient of determination to

know the performance. Note that the reals c∗q(j), q ∈ [1, 2], j ∈ IK′ indicate the non-linearity

of a function ϕj and the resulting prediction function ηΨ∗,w∗,b∗ may easily cause overfitting

when the bounds c∗q(j) are unnecessarily large. To bound reals c∗q(j), q ∈ [1, 2], we also

penalize weights wq(j), q ∈ [1, 2], j ∈ IK′ with the same real λ.

2. With the real λ determined in 1, we evaluate the performance of a prediction function

obtained with adjustive linear regression based on cross-validation. We divide the entire set

X into five subsets X (k), k ∈ [1, 5]. For each k ∈ [1, 5], we use the set X \ X (k) as a training

data to construct a prediction function ηΨ,w,b with adjustive linear regression (X \ X (k), λ)

and compute the coefficient of determination R2(ηΨ,w,b;X (k)).

2.4 An LP formulation for Adjustive Linear Regression

We formulate a linear programming problem to the adjustive linear regression (X , λ).

LP(X , λ):
constants:

- A set X = {xi ∈ RK | i ∈ [1,m]} of feature vectors and a set A = {ai ∈ R | i ∈ [1,m]} of

observed values. Assume that each of the sets Xj = {xi(j) | i ∈ [1,m]}, j ∈ [1, K] and A is

standardized;

- A positive real λ ∈ R: a coefficient for the penalty term;

variables:

- Nonnegative reals cq(0) ∈ R, q ∈ [0, 2];

8



- Nonnegative vectors wq ∈ RK , q ∈ [0, 2] and a real b ∈ R;
- Nonnegative real b ∈ R;
- Nonnegative reals ∆i ≥ 0, i ∈ [1,m];

constraints:

c0(0) + c1(0) + c2(0) = 1, (3)

∆i ≥ c0(0)ai + c1(0)a
2
i + c2(0)(1− (ai−1)2)

−
∑
j∈I+

[w0(j)xi(j) + w1(j)xi(j)
2 + w2(j)(1− (xi(j)−1)2)]

+
∑
j∈I−

[w0(j)xi(j) + w1(j)xi(j)
2 + w2(j)(1− (xi(j)−1)2)]− b ≥ −∆i, i ∈ [1,m], (4)

b ≥ b ≥ −b, (5)

objective function:

Minimize
1

2m

∑
i∈[1,m]

∆i + λ
∑

q∈[0,2],j∈[1,K]

wq(j) + λb.

We see that the numbers of variables and constraints in the linear program LP(X , λ) are both

O(m+K).

Let w∗
q(j), q ∈ [0, 2], j ∈ [1, K] and b∗ denote the values of variables wq(j), q ∈ [0, 2], j ∈ [1, K]

and b in an optimal solution to linear program LP(X , λ), respectively. Let K ′ denote the number

of descriptors j ∈ [1, K] with w∗
0(j) > 0 and IK′ denote the set of j ∈ [1, K] with w∗

0(j) > 0.

Then we obtain an optimal solution to the adjustive linear regression (2) by setting w∗(j) :=

w∗
0(j)/(w

∗
0(j)+w

∗
1(j)+w

∗
2(j)), j ∈ I+∩IK′ , w∗(j) := −w∗

0(j)/(w
∗
0(j)+w

∗
1(j)+w

∗
2(j)), j ∈ I−∩IK′ ,

and c∗q(j) := w∗
q(j)/w

∗(j), q ∈ [1, 2], j ∈ IK′ .

3 Modeling of Chemical Compounds

This section introduces some notions and terminologies on graphs and reviews the modeling of

chemical compounds due to Zhu et al. [20].

Graph Given a graph G, let V (G) and E(G) denote the sets of vertices and edges, respectively.

For a subset V ′ ⊆ V (G) (resp., E ′ ⊆ E(G)) of a graph G, let G − V ′ (resp., G − E ′) denote the

graph obtained from G by removing the vertices in V ′ (resp., the edges in E ′), where we remove

all edges incident to a vertex in V ′ in G − V ′. An edge subset E ′ ⊆ E(G) in a connected graph

G is called separating (resp., non-separating) if G−E ′ remains connected (resp., G−E ′ becomes

disconnected). The rank r(G) of a graph G is defined to be the minimum |F | of an edge subset

9



F ⊆ E(G) such that G − F contains no cycle, where r(G) = |E(G)| − |V (G)| + 1. Observe

that r(G − E ′) = r(G) − |E ′| holds for any non-separating edge subset E ′ ⊆ E(G). An edge

e = u1u2 ∈ E(G) in a connected graph G is called a bridge if {e} is separating, i.e., G− e consists

of two connected graphs Gi containing vertex ui, i = 1, 2. For a connected cyclic graph G, an

edge e is called a core-edge if it is in a cycle of G or is a bridge e = u1u2 such that each of the

connected graphs Gi, i = 1, 2 of G− e contains a cycle. A vertex incident to a core-edge is called

a core-vertex of G. A path with two end-vertices u and v is called a u, v-path.

A vertex designated in a graph G is called a root. In this paper, we designate at most two

vertices as roots, and denote by Rt(G) the set of roots of G. We call a graph G rooted (resp.,

bi-rooted) if |Rt(G)| = 1 (resp., |Rt(G)| = 2), where we call G unrooted if Rt(G) = ∅.
For a graph G possibly with roots a leaf-vertex is defined to be a non-root vertex v ∈ V (G) \

Rt(G) with degree 1, call the edge uv incident to a leaf vertex v a leaf-edge, and denote by Vleaf(G)

and Eleaf(G) the sets of leaf-vertices and leaf-edges in G, respectively. For a graph or a rooted

graph G, we define graphs Gi, i ∈ Z+ obtained from G by removing the set of leaf-vertices i times

so that

G0 := G; Gi+1 := Gi − Vleaf(Gi),

where we call a vertex v ∈ Vleaf(Gk) a leaf k-branch and we say that a vertex v ∈ Vleaf(Gk) has

height ht(v) = k in G. The height ht(T ) of a rooted tree T is defined to be the maximum of ht(v)

of a vertex v ∈ V (T ). For an integer k ≥ 0, we call a rooted tree T k-lean if T has at most one leaf

k-branch. For an unrooted cyclic graph G, we regard that the set of non-core-edges in G induces

a collection T of trees each of which is rooted at a core-vertex, where we call G k-lean if each of

the rooted trees in T is k-lean.

3.1 Chemical Graphs

To represent a chemical compound, we introduce a set of chemical elements such as H (hydrogen),

C (carbon), O (oxygen), N (nitrogen) and so on. To distinguish a chemical element a with multiple

valences such as S (sulfur), we denote a chemical element a with a valence i by a(i), where we do

not use such a suffix (i) for a chemical element a with a unique valence. Let Λ be a set of chemical

elements a(i). For example, Λ = {H, C, O, N, P, S(2), S(4), S(6)}. Let val : Λ → [1, 6] be a valence

function. For example, val(H) = 1, val(C) = 4, val(O) = 2, val(P) = 5, val(S(2)) = 2, val(S(4)) = 4

and val(S(6)) = 6. For each chemical element a ∈ Λ, let mass(a) denote the mass of a.

A chemical compound is represented by a chemical graph defined to be a tuple C = (H,α, β) of

a simple, connected undirected graph H and functions α : V (H) → Λ and β : E(H) → [1, 3]. The

set of atoms and the set of bonds in the compound are represented by the vertex set V (H) and the

edge set E(H), respectively. The chemical element assigned to a vertex v ∈ V (H) is represented

by α(v) and the bond-multiplicity between two adjacent vertices u, v ∈ V (H) is represented by

β(e) of the edge e = uv ∈ E(H). We say that two tuples (Hi, αi, βi), i = 1, 2 are isomorphic if

they admit an isomorphism ϕ, i.e., a bijection ϕ : V (H1) → V (H2) such that uv ∈ E(H1), α1(u) =

a, α1(v) = b, β1(uv) = m ↔ ϕ(u)ϕ(v) ∈ E(H2), α2(ϕ(u)) = a, α2(ϕ(v)) = b, β2(ϕ(u)ϕ(v)) = m.

When Hi is rooted at a vertex ri, i = 1, 2, (Hi, αi, βi), i = 1, 2 are rooted-isomorphic (r-isomorphic)

if they admit an isomorphism ϕ such that ϕ(r1) = r2.

10



For a notational convenience, we use a function βC : V (H) → [0, 12] for a chemical graph

C = (H,α, β) such that βC(u) means the sum of bond-multiplicities of edges incident to a vertex

u; i.e.,

βC(u) ≜
∑

uv∈E(H)

β(uv) for each vertex u ∈ V (H).

For each vertex u ∈ V (H), define the electron-degree eledegC(u) to be

eledegC(u) ≜ βC(u)− val(α(u)).

For each vertex u ∈ V (H), let degC(u) denote the number of vertices adjacent to the vertex u in C.
For a chemical graph C = (H,α, β), let Va(C), a ∈ Λ denote the set vertices v ∈ V (H) such

that α(v) = a in C and define the hydrogen-suppressed chemical graph ⟨C⟩ to be the graph obtained

from H by removing all the vertices v ∈ VH(C).

w16

w17

w18

C

O

C C

a10

a12 a14

a13 a15

a16a11

a8

a9

a6

u14

u16

u13

u15

u18
u20

u17

u19 u22

u21
u11u7

u9

u1

u2

u6
u4

u8
u12

u5

u3

u23

u10

a17

w10

w11

w13w12w1

w9

w4

w7

w14

w8

w15

w2

w5

w3

w6N

O

O

C

C

C

O

C

C

C

C

O

C

O

C

C

u27

u25

u24

u26

u28
w19

Pa2

Pa4

Qu5
Qu22C

O

N

C

P

C

CC

C
C

C

C

C

C

C

C
C

C

C

C

C

C

+

O

N

-

S(2)

S(6)

Qu18

Pa3

Pa1

Pa5

-
N

Figure 3: An illustration of a hydrogen-suppressed chemical graph ⟨C⟩ obtained from a chemical

graph C with r(C) = 4 by removing all the hydrogens, where for ρ = 2, V ex(C) = {wi | i ∈ [1, 19]}
and V int(C) = {ui | i ∈ [1, 28]}.

4 Two-layered Model

This section reviews the two-layered model introduced by Zhu et al. [20].

Let C = (H,α, β) be a chemical graph and ρ ≥ 1 be an integer, which we call a branch-

parameter.

A two-layered model of C is a partition of the hydrogen-suppressed chemical graph ⟨C⟩ into

an “interior” and an “exterior” in the following way. We call a vertex v ∈ V (⟨C⟩) (resp., an edge

e ∈ E(⟨C⟩)) of C an exterior-vertex (resp., exterior-edge) if ht(v) < ρ (resp., e is incident to an

exterior-vertex) and denote the sets of exterior-vertices and exterior-edges by V ex(C) and Eex(C),
respectively and denote V int(C) = V (⟨C⟩) \ V ex(C) and Eint(C) = E(⟨C⟩) \ Eex(C), respectively.
We call a vertex in V int(C) (resp., an edge in Eint(C)) an interior-vertex (resp., interior-edge).

11



The set Eex(C) of exterior-edges forms a collection of connected graphs each of which is regarded

as a rooted tree T rooted at the vertex v ∈ V (T ) with the maximum ht(v). Let T ex(⟨C⟩) denote
the set of these chemical rooted trees in ⟨C⟩. The interior Cint of C is defined to be the subgraph

(V int(C), E int(C)) of ⟨C⟩.
Figure 3 illustrates an example of a hydrogen-suppressed chemical graph ⟨C⟩. For a branch-

parameter ρ = 2, the interior of the chemical graph ⟨C⟩ in Figure 3 is obtained by removing the set

of vertices with degree 1 ρ = 2 times; i.e., first remove the set V1 = {w1, w2, . . . , w14} of vertices of

degree 1 in ⟨C⟩ and then remove the set V2 = {w15, w16, . . . , w19} of vertices of degree 1 in ⟨C⟩−V1,
where the removed vertices become the exterior-vertices of ⟨C⟩.

For each interior-vertex u ∈ V int(C), let Tu ∈ T ex(⟨C⟩) denote the chemical tree rooted at u

(where possibly Tu consists of vertex u) and define the ρ-fringe-tree C[u] to be the chemical rooted

tree obtained from Tu by putting back the hydrogens originally attached with Tu in C. Let T (C)
denote the set of ρ-fringe-trees C[u], u ∈ V int(C). Figure 4 illustrates the set T (C) = {C[ui] | i ∈
[1, 28]} of the 2-fringe-trees of the example C with ⟨C⟩ in Figure 3.

OCC C

O

C

C

H

C

CCOC

O

C

C

O

C

C N

N

H

C

H

C

H

C

H

C

H

C

H

N

H

C

H

C

H

C

H

C

C

H H

C

H H

C

H H

C

H H

C

H H

C

S(2)P

C

C

O

N

C O
-

 [u11] [u6]  [u7]

 [u12]

 [u8]  [u10]

 [u14]

 [u15]

 [u1]

 [u2]

 [u9]

 [u13] [u3]  [u4]  [u5]

 [u17] [u16]  [u19]  [u22]

 [u28]

 [u21]

 [u23]  [u24]

 [u25] [u20]  [u26]

 [u27]

C

 [u18]

-

+

H
H

y19

O

S(6)

y4

y11y11y11

y11

y6y6y6y6

y6y6y6y6 y11

y1

y1y1y1

y8

y2

y15

y27

y23

y24y26
y30y25

Figure 4: The set T (C) of 2-fringe-trees C[ui], i ∈ [1, 28] of the example C with ⟨C⟩ in Figure 3,

where the root of each tree is depicted with a gray circle and the hydrogens attached to non-root

vertices are omitted in the figure.

Feature Function The feature of an interior-edge e = uv ∈ Eint(C) such that α(u) = a,

deg⟨C⟩(u) = d, α(v) = b, deg⟨C⟩(v) = d′ and β(e) = m is represented by a tuple (ad, bd′,m), which

is called the edge-configuration of the edge e, where we call the tuple (a, b,m) the adjacency-

configuration of the edge e.

For an integer K, a feature vector f(C) of a chemical graph C is defined by a feature function

f that consists of K descriptors. We call RK the feature space.

Tanaka et al. [19] defined a feature vector f(C) ∈ RK to be a combination of the frequency of

edge-configurations of the interior-edges and the frequency of chemical rooted trees among the set

of chemical rooted trees C[u] over all interior-vertices u.
Topological Specification A topological specification is described as a set of the following rules

proposed by Shi et al. [18] and modified by Tanaka et al. [19]:

12



(i) a seed graph GC as an abstract form of a target chemical graph C;
(ii) a set F of chemical rooted trees as candidates for a tree C[u] rooted at each interior-vertex

u in C; and
(iii) lower and upper bounds on the number of components in a target chemical graph such as

chemical elements, double/triple bonds and the interior-vertices in C.

H
H

H HH

H
H

H
H

u23

a10

a12

a3 u11

a14

a4
u7

a13

a5u9

u10

a15

a16

u1

u2

a11

a8

u6

u4
a9

a6u8
u12

a1

a7

u5

u3

a2

(a) A seed graph GC=(VC,EC) (b) A set      of chemical rooted trees 

a17

: E(＞2)={a1,a2,...,a5}

: E(＞1)={a6}

: E(0/1)={a7} 

: E(=1)={a8,a9,...,a17}

- 

- 

H

y1 y3y2 y4

y6

y5

y7 y9y8 y11 y12

C

N

O

N

CC

C

C

O

C

O

C

C

C

C

CCCCC

CC

O O

CCC

C

C
N

y10

O

C

C

H

H

CC O

H

NN

H

O

C

C

y14

y15

y13

y17y16 y19 y20y18 y21

H H

C

H H

N

CC

CC

N

C O
-

O

S(6)

OC

S(2)

C

N N

C

P

O

H

P

H H

PS(2) S(6)

y24 y26 y28 y30y29

y22 y23

y25 y27

+

- +

Figure 5: (a) An illustration of a seed graph GC with r(GC) = 5, where the vertices in VC are

depicted with gray circles, the edges in E(≥2) are depicted with dotted lines, the edges in E(≥1) are

depicted with dashed lines, the edges in E(0/1) are depicted with gray bold lines and the edges in

E(=1) are depicted with black solid lines; (b) A set F = {ψ1, ψ2, . . . , ψ30} ⊆ F(Dπ) of 30 chemical

rooted trees ψi, i ∈ [1, 30], where the root of each tree is depicted with a gray circle, where the

hydrogens attached to non-root vertices are omitted in the figure.

Figure 5(a) and (b) illustrate examples of a seed graph GC and a set F of chemical rooted

trees, respectively. Given a seed graph GC, the interior of a target chemical graph C is constructed

from GC by replacing some edges a = uv with paths Pa between the end-vertices u and v and by

attaching new paths Qv to some vertices v. For example, a chemical graph C with ⟨C⟩ in Figure 3

is constructed from the seed graph GC in Figure 5(a) as follows.

- First replace five edges a1 = u1u2, a2 = u1u3, a3 = u4u7, a4 = u10u11 and a5 = u11u12 in

GC with new paths Pa1 = (u1, u13, u2), Pa2 = (u1, u14, u3), Pa3 = (u4, u15, u16, u7), Pa4 =

(u10, u17, u18, u19, u11) and Pa5 = (u11, u20, u21, u22, u12), respectively to obtain a subgraph G1

of ⟨C⟩.
- Next attach to this graph G1 three new paths Qu5 = (u5, u24), Qu18 = (u18, u25, u26, u27) and

Qu22 = (u22, u28) to obtain the interior of ⟨C⟩ in Figure 3.

- Finally attach to the interior 28 trees selected from the set F and assign chemical elements

and bond-multiplicities in the interior to obtain a chemical graph C with ⟨C⟩ in Figure 3. In

Figure 4, ψ1 ∈ F is selected for C[ui], i ∈ {6, 7, 11}. Similarly ψ2 for C[u9], ψ4 for C[u1], ψ6

for C[ui], i ∈ {3, 4, 5, 10, 19, 22, 25, 26}, ψ8 for C[u8], ψ11 for C[ui], i ∈ {2, 13, 16, 17, 20}, ψ15 for

C[u12], ψ19 for C[u15], ψ23 for C[u21], ψ24 for C[u24], ψ25 for C[u27], ψ26 for C[u23], ψ27 for C[u14]

13



and ψ30 for C[u28].
Our definition of a topological specification is analogous with the one by Tanaka et al. [19] except

for a necessary modification due to the introduction of multiple valences of chemical elements,

cations and anions (see Appendix B for a full description of topological specification).

5 Results

We implemented our method of Stages 1 to 5 for inferring chemical graphs under a given topological

specification and conducted experiments to evaluate the computational efficiency. We executed

the experiments on a PC with Processor: Core i7-9700 (3.0GHz; 4.7 GHz at the maximum) and

Memory: 16 GB RAM DDR4. We used scikit-learn version 0.23.2 with Python 3.8.5 for executing

linear regression with Lasso function or constructing an ANN. To solve an LP in Stage 3 or an

MILP in Stage 4, we used CPLEX version 12.10.

Results on Phase 1. We implemented Stages 1, 2 and 3 in Phase 1 as follows.

We have conducted experiments of adjustive linear regression and for 37 chemical properties of

monomers (resp., ten chemical properties of polymers) using the feature function [20] (resp., [25])

and we found that the test coefficient of determination R2 of ALR exceeds 0.6 for the following 28

properties of monomers:

isotropic polarizability (Alpha); boiling point (Bp); critical pressure (Cp); critical temperature

(Ct); heat capacity at 298.15K (Cv); dissociation constants (Dc); electron density on the most

positive atom (EDPA); flash point (Fp); energy difference between the highest and lowest un-

occupied molecular orbitals (Gap); heat of atomization (Ha); heat of combustion (Hc); heat of

formation (Hf); energy of highest occupied molecular orbital (Homo); heat of vaporization (Hv);

isobaric heat capacities in liquid phase (IhcL); isobaric heat capacities in solid phase (IhcS); KvI-

ats retention index (KvI), octanol/water partition coefficient (Kow); lipophilicity (Lp); energy

of lowest unoccupied molecular orbital (Lumo); melting point (Mp); optical rotation (OptR);

refractive index (Rf); solubility (Sl); surface tension (SfT); internal energy at 0K (U0); viscosity

(Vis); and vapor density (Vd) and that the test coefficient of determination R2 of ALR exceeds

0.8 for the following eight properties of polymers:

experimental amorphous density (AmD); characteristic ratio (ChaR); dielectric constant(DeC);

heat capacity liquid (HcL); heat capacity solid (HcS); mol volume (MlV); refractive index

(RfId); and glass transition (Tg), where we include the result of property permittivity (Prm) for

a comparison with Lasso linear regression and ANN.

We used data sets are provided by HSDB from PubChem [27] for Cp, Ct, Dc, Fp, Hc,

Hv, Kow, OptR, Rf and Vd M. Jalali-Heravi and M. Fatemi [28] for EDPA and KvI, Roy

and Saha [29] for Bp, Ha, Hf and Mp, Ramakrishnan et al. [30] for Alpha, Cv, Lumo and

U0, Goussardet al. [31] for SfT, Goussard et al. [32] for Vis, R. Naef [33] for IhcL and IhcS,

Xiao [34] for Lp and Delaney [35] for Sl. Properties Alpha, Cv, Homo, Lumo and U0 share a

common original data set D∗ with more than 130,000 compounds, and we used a set Dπ of 1,000

compounds randomly selected from D∗ as a common data set of these four properties π in this

experiment.

We used data sets of polymers provided by Bicerano [36], where we did not include any polymer

14



whose chemical formula could not be found by its name in the book. For property ChaR (resp.,

RfId), we remove the following polymer as an outlier from the original data set:

ethyleneTerephthalate, oxy(2-methyl-6-phenyl-1 4-phenylene) and N-vinylCarbazole (resp., 2-decyl-

1 4-butadiene).

Stage 1. We set a graph class G to be the set of all chemical graphs with any graph structure,

and set a branch-parameter ρ to be 2.

For each of the properties, we first select a set Λ of chemical elements and then collect a data

set Dπ on chemical graphs over the set Λ of chemical elements. To construct the data set Dπ, we

eliminated chemical compounds that do not satisfy one of the following: the graph is connected,

the number of carbon atoms is at least four, and the number of non-hydrogen neighbors of each

atom is at most 4.

Table 1 shows the size and range of data sets that we prepared for each chemical property in

Stage 1, where we denote the following:

- Λ: the set of elements used in the data set Dπ; Λ is one of the following 12 sets: Λ1 =

{H, C, O}; Λ2 = {H, C, O, N}; Λ3 = {H, C, O, S}; Λ4 = {H, C, O, Si(4)}; Λ5 = {H, C, O, N, S(2), F};
Λ6 = {H, C(2), C(3), C(4), O, N(2), N(3)}; Λ7 = {H, C, O, N, Cl, Pb}; Λ8 = {H, C, O, N, S(2), S(6), Cl}; Λ9 =

{H, C, O, N, S(2), S(4), S(6), Cl}; Λ10 = {H, C(2), C(3), C(4), C(5), O, N(1), N(2), N(3), F};
Λ11 = {H, C(2), C(3), C(4), O, N(2), N(3), S(2), S(4), S(6), Cl}; Λ12 = {H, C, O, N, P(2), P(5), Cl};
Λ13 = {H, C, O(1), O(2), N}; Λ14 = {H, C, O, N, Cl}; Λ15 = {H, C, O, N, Cl, S(2)}; and
Λ16 = {H, C, O(1), O(2), N, Cl, Si(4), F}, where a(i) for a chemical element a and an integer i ≥ 1

means that a chemical element a with valence i.

- |Dπ|: the size of data set Dπ over Λ for the property π;

- n, n: the minimum and maximum values of the number n(C) of non-hydrogen atoms in com-

pounds C in Dπ;

- a, a: the minimum and maximum values of a(C) for π over compounds C in Dπ;

- |Γ|: the number of different edge-configurations of interior-edges over the compounds in Dπ;

- |F|: the number of non-isomorphic chemical rooted trees in the set of all 2-fringe-trees in the

compounds in Dπ; and

- K: the number of descriptors in a feature vector f(C).

Stage 2. We used the feature function defined in our chemical model without suppressing

hydrogen (see Appendix A for the detail). We standardize the range of each descriptor and the

range {t ∈ R | a ≤ t ≤ a} of property values a(C),C ∈ Dπ.

Stage 3. For each chemical property π, we select a penalty value λπ for a constant λ in ALR(X , λ)
by conducting linear regression as a preliminary experiment.

We conducted an experiment in Stage 3 to evaluate the performance of the prediction function

based on cross-validation. For a property π, an execution of a cross-validation consists of five trials

of constructing a prediction function as follows. First partition the data set Dπ into five subsets

D(k), k ∈ [1, 5] randomly. For each k ∈ [1, 5], the k-th trial constructs a prediction function η(k)

by conducting a linear regression with the penalty term λπ using the set Dπ \ D(k) as a training

data set. For each property, we executed ten cross-validations and we show the median of test

R2(η(k), D(k)), k ∈ [1, 5] over all ten cross-validations. Recall that a subset of descriptors is selected

15



in linear regression with ALR and let K ′ denote the average number of descriptors selected by

ALR over all 50 trials.

16



Table 1: Results in Phase 1 for monomers.

π Λ |Dπ| n, n a, a |Γ| |F| K λπ K ′ L-time ALR LLR ANN

Alpha Λ10 977 4, 9 50.9, 99.6 59 190 297 6.0e−4 88.4 3.00 0.953 0.961 0.888

Bp Λ2 370 4, 67 -11.7, 470.0 22 130 184 5.3e−6 97.3 1.42 0.816 0.599 0.765

Bp Λ8 444 4, 67 -11.7, 470.0 26 163 230 2.8e−6 112.6 2.02 0.832 0.663 0.720

Cp Λ2 125 4, 63 4.7×10−6, 5.52 8 75 112 5.9e−3 17.4 0.15 0.650 0.445 0.694

Cp Λ7 131 4, 63 4.7×10−6, 5.52 8 79 119 8.3e−3 12.3 0.12 0.690 0.555 0.727

Ct Λ2 125 4, 63 56.1, 3607.5 8 76 113 3.1e−3 37.5 0.24 0.900 0.037 0.357

Ct Λ7 132 4, 63 56.1, 3607.5 8 81 121 2.6e−3 43.0 0.28 0.895 0.048 0.356

Cv Λ10 977 4, 9 19.2, 44.0 59 190 297 2.1e−4 143.9 4.57 0.966 0.970 0.911

Dc Λ8 161 5, 44 0.5, 17.11 25 69 130 2.5e−3 45.3 0.35 0.602 0.574 0.622

EDPA Λ1 52 11, 16 0.80, 3.76 9 33 64 2.6e−3 19.0 0.06 0.999 0.999 0.992

Fp Λ2 368 4, 67 -82.99, 300.0 20 131 183 6.0e−4 86.6 1.31 0.719 0.589 0.746

Fp Λ8 424 4, 67 -82.99, 300.0 25 161 229 2.1e−4 109.4 1.92 0.684 0.571 0.745

Gap Λ10 977 4, 9 0.15, 0.41 59 190 297 1.6e−4 145.2 4.77 0.755 0.784 0.795

Ha Λ3 115 4, 11 1100.6, 3009.6 8 83 115 1.1e−3 56.5 0.29 0.998 0.997 0.926

Hc Λ2 255 4, 63 49.6, 35099.6 17 106 154 1.0e−3 69.9 0.74 0.986 0.946 0.848

Hc Λ8 282 4, 63 49.6, 35099.6 21 118 177 1.6e−3 69.8 0.84 0.986 0.951 0.903

Hf Λ1 82 4, 16 30.2, 94.8 5 50 74 8.4e−4 5.8 0.05 0.982 0.987 0.928

Homo Λ10 977 4, 9 -0.11, 0.10 59 190 297 1.0e−4 158.7 4.95 0.689 0.841 0.689

Hv Λ2 95 4, 16 19.12,5193.1 12 63 105 1.6e−3 40.7 0.19 0.626 -13.7 -8.44

IhcL Λ2 770 4, 78 106.3, 1956.1 23 200 256 3.6e−5 126.3 3.24 0.987 0.986 0.974

IhcL Λ8 865 4, 78 106.3, 1956.1 29 246 316 6.0e−4 64.2 1.98 0.989 0.985 0.971

IhcS Λ6 581 5, 70 67.4, 1220.9 33 124 192 1.1e−5 86.5 1.72 0.971 0.985 0.971

IhcS Λ11 668 5, 70 67.4, 1220.9 40 140 228 1.0e−6 96.1 2.21 0.974 0.982 0.968

KvI Λ1 52 11, 16 1422.0, 1919.0 9 33 64 5.9e−3 18.8 0.05 0.838 0.677 0.727

Kow Λ2 684 4, 58 -7.5, 15.6 25 166 223 3.1e−4 119.2 3.13 0.964 0.953 0.952

Kow Λ9 899 4, 69 -7.5, 15.6 37 219 303 5.5e−4 141.4 4.95 0.952 0.927 0.937

Lp Λ2 615 6, 60 -3.62, 6.84 32 116 186 3.1e−4 85.6 1.81 0.844 0.856 0.867

Lp Λ9 936 6, 74 -3.62, 6.84 44 136 231 1.0e−4 108.4 3.37 0.807 0.840 0.859

Lumo Λ10 977 4, 9 -0.11, 0.10 59 190 297 6.0e−4 81.1 2.75 0.833 0.841 0.860

Mp Λ2 467 4, 122 -185.33, 300.0 23 142 197 8.0e−4 95.7 1.78 0.831 0.810 0.799

Mp Λ9 577 4, 122 -185.33, 300.0 32 176 255 1.1e−4 136.6 2.99 0.807 0.810 0.820

OptR Λ2 147 5, 44 -117.0, 165.0 21 55 107 1.0e−3 30.2 0.24 0.876 0.825 0.919

OptR Λ5 157 5, 69 -117.0, 165.0 25 62 123 1.1e−3 32.3 0.27 0.870 0.825 0.878

Rf Λ2 166 4, 26 1.3326, 1.613 14 98 142 3.5e−3 25.4 0.24 0.685 0.619 0.521

Sl Λ2 673 4, 55 -9.332, 1.11 27 154 217 1.0e−3 45.2 1.21 0.784 0.808 0.848

Sl Λ9 915 4, 55 -11.6, 1.11 42 207 300 6.0e−4 73.4 2.33 0.828 0.808 0.861

SfT Λ4 247 5, 33 12.3, 45.1 11 91 128 1.0e−3 63.1 0.67 0.847 0.927 0.859

U0 Λ10 977 4, 9 -570.6, -272.84 59 190 297 1.1e−3 69.7 2.40 0.995 0.999 0.890

Vis Λ4 282 5, 36 -0.64, 1.63 12 88 126 2.1e−3 23.2 0.37 0.911 0.893 0.929

Vd Λ2 474 4, 30 0.7, 20.6 21 160 214 1.0e−4 119.1 2.24 0.985 0.927 0.912

Vd Λ12 551 4, 30 0.7, 20.6 24 191 256 6.0e−4 101.1 2.28 0.980 0.942 0.889

Tables 1 and 2 show the results on Stages 2 and 3 for the properties on monomers and polymers,

respectively, where we denote the following:

17



- λπ: the penalty value in the Lasso function selected for a property π, where a e b means a×10b;

- K ′: the average of the number of descriptors selected in the linear regression over all 50 trials

in ten cross-validations;

- L-time: the average time (sec.) to construct a prediction function with ALR by solving an LP

with O(|Dπ|+K) variables and constraints over all 50 trials in ten cross-validations;

- ALR: the median of test R2 over all 50 trials in ten cross-validations for prediction functions

constructed with ALR;

- LLR: the median of test R2 over all 50 trials in ten cross-validations for prediction functions

constructed with Lasso linear regression; and

- ANN: the median of test R2 over all 50 trials in ten cross-validations for prediction functions

constructed with ANN (see [26] for the details of the implementation).

Table 2: Results in Phase 1 for polymers.

π Λ |Dπ| n, n a, a |Γ| |F| K λπ K ′ L-time ALR LLR ANN

AmD Λ2 86 4, 45 0.838, 1.34 28 25 83 1.5E−3 22.2 0.09 0.933 0.914 0.885

AmD Λ15 93 4, 45 0.838, 1.45 31 30 94 2.5E−3 24.4 0.10 0.917 0.918 0.823

ChaR Λ1 24 4, 18 5.5, 13.2 15 15 56 5.0E−5 15.0 0.02 0.904 0.650 0.616

ChaR Λ2 27 4, 18 5.5, 13.2 22 17 67 5.9E−3 17.8 0.03 0.835 0.431 0.641

DeC Λ15 37 4, 22 2.13, 3.4 22 19 72 3.1E−3 18.2 0.04 0.918 0.761 0.641

HcL Λ2 52 4, 25 105.7, 677.8 22 17 67 2.1E−3 19.3 0.06 0.996 0.990 0.969

HcL Λ8 55 4, 32 105.7, 678.1 27 20 81 2.6E−3 17.3 0.05 0.992 0.987 0.970

HcS Λ2 54 4, 45 84.5, 720.5 26 20 75 1.0E−3 23.5 0.07 0.963 0.968 0.893

HcS Λ8 59 4, 45 84.5, 720.5 32 24 92 4.1E−4 30.7 0.09 0.983 0.961 0.880

MlV Λ2 86 4, 45 60.7, 466.6 28 25 83 1.0E−3 22.2 0.10 0.998 0.996 0.931

MlV Λ15 93 4, 45 60.7, 466.6 31 30 94 5.6E−4 27.5 0.09 0.997 0.994 0.894

Prm Λ2 112 4, 45 2.23, 4.91 25 15 69 2.6E−4 14.5 0.09 0.505 0.801 0.801

Prm Λ14 131 4, 45 2.23, 4.91 25 17 73 5.9E−3 13.9 0.09 0.489 0.784 0.735

RfId Λ13 91 4, 29 1.4507, 1.683 26 35 96 3.1E−4 32.9 0.15 0.953 0.852 0.871

RfId Λ16 124 4, 29 1.339, 1.683 32 50 124 2.1E−3 37.5 0.21 0.956 0.832 0.891

Tg Λ2 204 4, 58 171, 673 32 36 101 2.5E−3 26.9 0.23 0.923 0.902 0.883

Tg Λ8 232 4, 58 171, 673 36 43 118 1.1E−3 38.6 0.54 0.927 0.894 0.881

From Tables 1 and 2, we see that ALR performs well for most of the properties in our experi-

ments, The performance by ALR is inferior to that by LLR or ANN for some properities such as

Gap, Homo, Lumo, OptR, Sl, SfT and Prm, whereas ALR outperforms LLR and ANN for

properties Bp, Ct, Hv, KvI, Vd, ChaR, RfId and Tg. It should be noted that ALR drastically

improves the result for properties Ct and Hv.

Results on Phase 2. To execute Stages 4 and 5 in Phase 2, we used a set of seven instances Ia,

I ib, i ∈ [1, 4], Ic and Id based on the seed graphs prepared by Zhu et al. [20]. We here present their

seed graphs GC (see Appendix B for the details of Ia and Appendix C for the details of I ib, i ∈ [1, 4],

Ic and Id). The seed graph GC of Ia is given by the graph in Figure 5(a). The seed graph G1
C of

18



I1b (resp., Gi
C, i = 2, 3, 4 of I ib, i = 2, 3, 4) is illustrated in Figure 6.

a1

a2
u1

u2

a1

u3u1 u2
u4

a5a4

a3
a2

u3u1 u2 u4

a1

a5a4

a3

u3u1 u2 u4

a1

a5a4

a3

a2

a2

(i) GC
1

(iii) GC
3

(iv) GC
4

(ii) GC
2

Figure 6: Seed graphs: (i) G1
C for I1b and Id; (ii) G

2
C for I2b; (iii) G

3
C for I3b; (iv) G

4
C for I4b.

Instance Ic has been introduced in order to infer a chemical graph C† such that the core of C†

is equal to the core of chemical graph CA: CID 24822711 in Figure 7(a) and the frequency of each

edge-configuration in the non-core of C† is equal to that of chemical graph CB: CID 59170444 in

Figure 7(b). This means that the seed graph GC of Ic is the core of CA which is indicated by a

shaded area in Figure 7(a).

Instance Id has been introduced in order to infer a chemical monocyclic graph C† such that the

frequency vector of edge-configurations in C† is a vector obtained by merging those of chemical

graphs CA: CID 10076784 and CB: CID 44340250 in Figure 7(c) and (d), respectively. The seed

graph GC of Id is given by G1
C in Figure 6(i).

Stage 4. We executed Stage 4 for two properties π ∈ {Ct, Hv}.
For the MILP formulation M(x, y; C1) in the framework, we use the prediction function ηw,b

constructed in Stage 3. Tables 3 and 4 show the computational results of the experiment in Stage 4

for the two properties, where we denote the following:

- y∗, y∗: lower and upper bounds y∗, y∗ ∈ R on the value a(C) of a chemical graph C to be

inferred;

- #v (resp., #c): the number of variables (resp., constraints) in the MILP in Stage 4;

- I-time: the time (sec.) to solve the MILP in Stage 4;

- n: the number n(C†) of non-hydrogen atoms in the chemical graph C† inferred in Stage 4;

- nint: the number nint(C†) of interior-vertices in the chemical graph C† inferred in Stage 4; and

- η: the predicted property value η(f(C†)) of the chemical graph C† inferred in Stage 4.

From Tables 3 and 4, we observe that an instance with around 50 non-hydrogen atoms is solved

in at most around 1000 seconds. Instances with the size in Stage 4 were solved at most around 100

seconds in the experiments due to Azam et al. [26]. The computation time for Stage 4 increased

possibly because we included a new set of constraints for representing activation functions ϕj in

the MILP M(x, y; C1) of the framework (see Appendix D.11 for the details). Note that for the

properties π ∈ {Ct, Hv}, no prediction functions constructed for the framework [20, 26] performed

well.

Stage 5. We executed Stage 5 to generate a more number of target chemical graphs C∗, where

we call a chemical graph C∗ a chemical isomer of a target chemical graph C† of a topological

specification σ if f(C∗) = f(C†) and C∗ also satisfies the same topological specification σ. We

computed chemical isomers C∗ of each target chemical graph C† inferred in Stage 4. We execute

an algorithm for generating chemical isomers of C† up to 100 when the number of all chemical

19



(a)    A: CID 24822711 (b)    B: CID 59170444

(c)    A: CID 10076784 (d)    B: CID 44340250

Figure 7: Chemical compounds: (a) CID 24822711; (b) CID 59170444; (c) CID 10076784; (d)

CID 44340250, where hydrogens are omitted.

Table 3: Results of Stages 4 and 5 for Ct.

inst. y∗, y∗ #v #c I-time n nint η D-time C-LB #C

Ia 1180, 1220 16190 16895 8.4 42 25 1197.0 0.0619 1 1

I1b 1080, 1120 86470 85993 119.2 35 14 1118.0 0.266 84 84

I2b 1980, 2020 113055 114138 365.5 45 30 1986.9 2.62 4.4×106 100

I3b 1930, 1970 112745 114086 555.4 45 25 1950.9 4.57 1.1×106 100

I4b 1630, 1670 112455 114054 661.2 47 29 1663.8 0.171 5.5×105 100

Ic 1980, 2020 14794 15226 7.2 50 34 2011.0 0.0161 1 1

Id 1430, 1470 12790 14104 11.9 45 23 1447.5 0.164 5184 100

isomers exceeds 100. Such an algorithm can be obtained from the dynamic programming proposed

by Tanaka et al. [19] with a slight modification. The algorithm first decomposes C† into a set of

20



Table 4: Results of Stages 4 and 5 for Hv.

inst. y∗, y∗ #v #c I-time n nint η D-time C-LB #C

Ia 145, 150 16190 16879 24.9 37 23 147.3 0.0632 2 2

I1b 190, 195 14179 13334 146.6 35 12 190.2 0.121 30 30

I2b 290, 295 17986 18547 188.8 46 25 294.2 0.154 604 100

I3b 165, 170 17683 18495 1167.2 45 25 166.8 36.8 7.5×106 100

I4b 250, 255 17400 18463 313.7 50 25 251.8 0.166 2208 100

Ic 285, 290 14838 15254 102.5 50 32 286.8 0.016 1 1

Id 245, 250 12828 14126 351.9 40 23 249.2 5.53 3.9×105 100

acyclic chemical graphs, next replace each acyclic chemical graph T with another acyclic chemical

graph T ′ that admits the same feature vector as that of T and finally assemble the resulting acyclic

chemical graphs into a chemical isomer C∗ of C†. The algorithm can compute a lower bound on

the total number of all chemical isomers C† without generating all of them.

Tables 3 and 4 show the computational results of the experiment in Stage 5 for properties Ct

and Hv, where we denote the following:

- D-time: the running time (sec.) to execute the dynamic programming algorithm in Stage 5 to

compute a lower bound on the number of all chemical isomers C∗ of C† and generate all (or up

to 100) chemical isomers C∗;

- C-LB: a lower bound on the number of all chemical isomers C∗ of C†; and

- #C: the number of all (or up to 100) chemical isomers C∗ of C† generated in Stage 5.

From Tables 3 and 4, we observe that the running time for generating up to 100 target chemical

graphs in Stage 5 is less than around 5 second for many cases. For some chemical graph C†, no

chemical isomer was found by our algorithm. For such a case, we may use a method of generating

other chemical graphs C† in Stage 4 by solving the MILP again with additional linear constraints

in a systematical way (see [26] for the details).

6 Concluding Remarks

In this paper, we proposed a new machine learning method, adjustive linear regression (ALR),

which has the following feature: (i) ALR is an extension of the Lasso linear regression except for

the definition of error functions; (ii) ALR is a special case of an ANN except that a choice of

activation functions is also optimized differently from the standard ANNs and the definition of

error functions; and (iii) ALR can be executed exactly by solving the equivalent linear program

with O(m+K) variables and constraints for a set of m data with K descriptors. Even though ALR

is a special case of an ANN with non-linear activation functions, we still can read the relationship

between cause and effect from a prediction function due to the simple structure of ALR.

When the size of the original data set is large, we can choose a smaller subset for constructing

a prediction function. For example, we chose 1,000 compounds from the data set of 130,000

21



compounds provided by Ramakrishnan et al. [30] for conducting experiments in Stage 3.

In this paper, we used a quadratic function for a set Ψ of activation functions ϕ. We can use

many different functions such as sigmoid function and ramp functions, where the non-linearity of

a function does not affect to derive a linear program for ALR.

References

[1] Lo, Y-C., Rensi, S.E., Torng, W., Altman, R.B.: Machine learning in chemoinformatics and

drug discovery. Drug Discovery Today 23, 1538–1546 (2018)

[2] Tetko, I.V., Engkvist, O.: From Big Data to Artificial Intelligence: chemoinformatics meets

new challenges. J. Cheminformatics 12, 74 (2020)

[3] Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and

deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discovery

Today 23, 1784–1790 (2018)

[4] Miyao, T., Kaneko, H., Funatsu, K.: Inverse QSPR/QSAR analysis for chemical structure

generation (from y to x). J. Chem. Inf. Model. 56, 286–299 (2016)

[5] Ikebata, H., Hongo, K., Isomura, T., Maezono, R., Yoshida, R.: Bayesian molecular design

with a chemical language model. J. Comput. Aided Mol. Des. 31, 379–391 (2017)

[6] Rupakheti, C., Virshup, A., Yang, W., Beratan, D.N.: Strategy to discover diverse optimal

molecules in the small molecule universe. J. Chem. Inf. Model. 55, 529–537 (2015)

[7] Bohacek, R.S., McMartin, C., Guida, W.C.: The art and practice of structure-based drug

design: A molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996)

[8] Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks,

arXiv:1609.02907 (2016)

[9] Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., Sánchez-Lengeling,

B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P., Aspuru-Guzik, A.:

Automatic chemical design using a data-driven continuous representation of molecules. ACS

Cent. Sci. 4, 268–276 (2018)

[10] Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries

for drug discovery with recurrent neural networks. ACS Cent. Sci. 4, 120–131 (2017)

[11] Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., Tsuda, K.: ChemTS: an efficient python

library for de novo molecular generation. STAM 18, 972–976 (2017)

[12] Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. Proc.

of the 34th International Conference on Machine Learning-Volume 70, 1945–1954 (2017)

22



[13] De Cao, N., Kipf, T.: MolGAN: An implicit generative model for small molecular graphs.

arXiv:1805.11973 (2018)

[14] Madhawa, K., Ishiguro, K., Nakago, K., Abe, M.: GraphNVP: an invertible flow model for

generating molecular graphs. arXiv:1905.11600 (2019)

[15] Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., Tang, J.: GraphAF: a flow-based autore-

gressive model for molecular graph generation. arXiv:2001.09382 (2020)

[16] Akutsu, T., Nagamochi, H.: A mixed integer linear programming formulation to artificial

neural networks. Proc. of the 2nd Int. Conf. on Information Science and Systems, 215–220

(2019)

[17] Azam, N. A., Chiewvanichakorn, R., Zhang, F., Shurbevski, A., Nagamochi, H., Akutsu,

T.: A method for the inverse QSAR/QSPR based on artificial neural networks and mixed

integer linear programming. Proc. of the 13th International Joint Conference on Biomedical

Engineering Systems and Technologies – Volume 3: BIOINFORMATICS, 101–108 (2020)

[18] Shi, Y., Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L., Nagamochi, H., Akutsu, T.: An

inverse QSAR method based on a two-layered model and integer programming. International

Journal of Molecular Sciences. 22, 2847 (2021)

[19] Tanaka, K., Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L., Nagamochi, H., Akutsu, T.:

An inverse QSAR method based on decision tree and integer programming, The 17th Inter-

national Conference on Intelligent Computing, August 12-15, 2021, in Shenzhen, China, In:

Huang D.S., Jo K.H., Li J., Gribova V., Hussain A. (eds) Intelligent Computing Theories and

Application, ICIC 2021, Lecture Notes in Computer Science, vol. 12837. Springer, Cham.

[20] Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L., Nagamochi, H., Akutsu, T.: A method

for molecular design based on linear regression and integer programming. arXiv: 2107.02381

(2021) http://arxiv.org/abs/2107.02381

[21] Hoerl, A., Kennard, R.: Ridge Regression: Biased Estimation for Nonorthogonal Problems.

Technometrics, 12(1), 55–67 (1970)

[22] Hoerl, A., Kennard, R.: Ridge Regression: Applications to Nonorthogonal Problems. Tech-

nometrics, 12(1), 69–82 (1970)

[23] Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58,

267–288 (1996)

[24] Zou, H., and Hastie, T.: Regularization and variable selection via the elastic net. J. Royal

Statistical Society: Series B (Statistical Methodology), 67(2), 301-320 (2005)

[25] Ido, R., Cao, S., Zhu, J., Azam, N. A., Haraguchi, K., Zhao, L., Nagamochi, H., Akutsu,

T.: A method for inferring polymers based on linear regression and integer programming.

Department of Applied Mathematics and Physics, Kyoto University, Technical Report, TR:

2021-001 http://www.amp.i.kyoto-u.ac.jp/tecrep/ (2021)

23



[26] Azam, N. A., Zhu, J., Haraguchi, K., Zhao, L., Nagamochi, H., Akutsu, T.: Molecular design

based on artificial neural networks, integer programming and grid neighbor search. arXiv:

2108.10266 (2021)

[27] Annotations from HSDB (on pubchem): https://pubchem.ncbi.nlm.nih.gov/. Accessed:

2021-8-26.

[28] Jalali-Heravi, M., Fatemi, M. : H.Artificial neural network modeling of Kovats reten-

tion indices for noncyclic and monocyclic terpenes (2001) https://doi.org/10.1016/

S0021-9673(00)01274-7/

[29] Roy, K., Saha, A.: Comparative QSPR studies with molecular connectivity, molecular negen-

tropy and TAU indices (2003) https://doi.org/10.1007/s00894-003-0135-z/

[30] Ramakrishnan, R., Dral, P., Rupp, M., Anatole von Lilienfeld, O.: Quantum chemistry struc-

tures and properties of 134 kilo molecules (2014) https://doi.org/10.6084/m9.figshare.

c.978904.v5. Accessed: 2021-8-26.

[31] Goussard, V., Duprat, F., Gerbaud, V., Ploix, J.-J., Dreyfus, G., Nardello-Rataj, V., Aubry,

J.-M.: Predicting the surface tension of liquids: comparison of four modeling approaches and

application to cosmetic oils, J. Chem. Inf. Model., 57, 12, 29862995 (2017) https://pubs.

acs.org/doi/full/10.1021/acs.jClm.7b00512

[32] Goussard, V., Franois Duprat F., Ploix, J.-L., Dreyfus, G., Nardello-Rataj, V., Aubry, J.-M.:

A new machine-learning tool for fast estimation of liquid viscosity. application to cosmetic

oils, J. Chem. Inf. Model., 60, 4, 20122023 (2020) https://pubs.acs.org/doi/10.1021/

acs.jcim.0c00083

[33] Naef, R.: Calculation of the isobaric heat capacities of the liquid and solid phase of organic

compounds at and around 298.15 K based on their“ true”molecular volume. Molecules, 24

(8) (2019), https://www.mdpi.com/1420-3049/24/8/1626/

[34] Xiao, N.: Lipophilicity Dataset - logD7.4 of 1,130 Compounds (2017) https://doi.org/10.

6084/m9.figshare.5596750. Accessed: 2021-8-26.

[35] Delaney, J.S.: ESOL: Estimating Aqueous Solubility Directly from Molecular

Structure (2019) https://figshare.com/articles/dataset/ESOL_Estimating_Aqueous_

Solubility_Directly_from_Molecular_Structure/7944677/1. Accessed: 2021-8-26.

[36] Bicerano, J.: Prediction of Polymer Properties. 3rd Edition, Revised and Expanded. CRC

Press (2002)

24



Appendix

A A Full Description of Descriptors

Associated with the two functions α and β in a chemical graph C = (H,α, β), we introduce

functions ac : V (E) → (Λ\{H})× (Λ\{H})× [1, 3], cs : V (E) → (Λ\{H})× [1, 6] and ec : V (E) →
((Λ \ {H})× [1, 6])× ((Λ \ {H})× [1, 6])× [1, 3] in the following.

To represent a feature of the exterior of C, a chemical rooted tree in T (C) is called a fringe-

configuration of C.
We also represent leaf-edges in the exterior of C. For a leaf-edge uv ∈ E(⟨C⟩) with deg⟨C⟩(u) =

1, we define the adjacency-configuration of e to be an ordered tuple (α(u), α(v), β(uv)). Define

Γlf
ac ≜ {(a, b,m) | a, b ∈ Λ,m ∈ [1,min{val(a), val(b)}]}

as a set of possible adjacency-configurations for leaf-edges.

To represent a feature of an interior-vertex v ∈ V int(C) such that α(v) = a and deg⟨C⟩(v) = d

(i.e., the number of non-hydrogen atoms adjacent to v is d) in a chemical graph C = (H,α, β),

we use a pair (a, d) ∈ (Λ \ {H}) × [1, 4], which we call the chemical symbol cs(v) of the vertex

v. We treat (a, d) as a single symbol ad, and define Λdg to be the set of all chemical symbols

µ = ad ∈ (Λ \ {H})× [1, 4].

We define a method for featuring interior-edges as follows. Let e = uv ∈ Eint(C) be an

interior-edge e = uv ∈ Eint(C) such that α(u) = a, α(v) = b and β(e) = m in a chemical graph

C = (H,α, β). To feature this edge e, we use a tuple (a, b,m) ∈ (Λ \ {H}) × (Λ \ {H}) × [1, 3],

which we call the adjacency-configuration ac(e) of the edge e. We introduce a total order < over

the elements in Λ to distinguish between (a, b,m) and (b, a,m) (a ̸= b) notationally. For a tuple

ν = (a, b,m), let ν denote the tuple (b, a,m).

Let e = uv ∈ Eint(C) be an interior-edge e = uv ∈ Eint(C) such that cs(u) = µ, cs(v) = µ′ and

β(e) = m in a chemical graph C = (H,α, β). To feature this edge e, we use a tuple (µ, µ′,m) ∈
Λdg×Λdg×[1, 3], which we call the edge-configuration ec(e) of the edge e. We introduce a total order

< over the elements in Λdg to distinguish between (µ, µ′,m) and (µ′, µ,m) (µ ̸= µ′) notationally.

For a tuple γ = (µ, µ′,m), let γ denote the tuple (µ′, µ,m).

Let π be a chemical property for which we will construct a prediction function η from a feature

vector f(C) of a chemical graph C to a predicted value y ∈ R for the chemical property of C.
We first choose a set Λ of chemical elements and then collect a data set Dπ of chemical com-

pounds C whose chemical elements belong to Λ, where we regard Dπ as a set of chemical graphs

C that represent the chemical compounds C in Dπ. To define the interior/exterior of chemical

graphs C ∈ Dπ, we next choose a branch-parameter ρ, where we recommend ρ = 2.

Let Λint(Dπ) ⊆ Λ (resp., Λex(Dπ) ⊆ Λ) denote the set of chemical elements used in the set

V int(C) of interior-vertices (resp., the set V ex(C) of exterior-vertices) of C over all chemical graphs

C ∈ Dπ, and Γint(Dπ) denote the set of edge-configurations used in the set Eint(C) of interior-

edges in C over all chemical graphs C ∈ Dπ. Let F(Dπ) denote the set of chemical rooted trees ψ

r-isomorphic to a chemical rooted tree in T (C) over all chemical graphs C ∈ Dπ, where possibly a

chemical rooted tree ψ ∈ F(Dπ) consists of a single chemical element a ∈ Λ \ {H}.

25



We define an integer encoding of a finite set A of elements to be a bijection σ : A → [1, |A|],
where we denote by [A] the set [1, |A|] of integers. Introduce an integer coding of each of the sets

Λint(Dπ), Λ
ex(Dπ), Γ

int(Dπ) and F(Dπ). Let [a]int (resp., [a]ex) denote the coded integer of an

element a ∈ Λint(Dπ) (resp., a ∈ Λex(Dπ)), [γ] denote the coded integer of an element γ in Γint(Dπ)

and [ψ] denote an element ψ in F(Dπ).

We assume that a chemical graph C treated in this paper satisfies deg⟨C⟩(v) ≤ 4 in the hydrogen-

suppressed graph ⟨C⟩.
In our model, we use an integer mass∗(a) = ⌊10 ·mass(a)⌋, for each a ∈ Λ.

We define the feature vector f(C) of a chemical graph C = (H,α, β) ∈ Dπ to be a vector

that consists of the following non-negative integer descriptors dcpi(C), i ∈ [1, K], where K =

14 + |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ |F(Dπ)|+ |Γlf
ac|.

1. dcp1(C): the number |V (H)| − |VH| of non-hydrogen atoms in C.

2. dcp2(C): the rank r(C) of C.

3. dcp3(C): the number |V int(C)| of interior-vertices in C.

4. dcp4(C): the average ms(C) of mass∗ over all atoms in C;
i.e., ms(C) ≜ 1

|V (H)|
∑

v∈V (H) mass∗(α(v)).

5. dcpi(C), i = 4 + d, d ∈ [1, 4]: the number dgHd(C) of non-hydrogen vertices v ∈ V (H) \ VH of

degree deg⟨C⟩(v) = d in the hydrogen-suppressed chemical graph ⟨C⟩.

6. dcpi(C), i = 8 + d, d ∈ [1, 4]: the number dgintd (C) of interior-vertices of interior-degree

degCint(v) = d in the interior Cint = (V int(C), E int(C)) of C.

7. dcpi(C), i = 12+m, m ∈ [2, 3]: the number bdint
m (C) of interior-edges with bond multiplicity

m in C; i.e., bdint
m (C) ≜ {e ∈ Eint(C) | β(e) = m}.

8. dcpi(C), i = 14+ [a]int, a ∈ Λint(Dπ): the frequency nainta (C) = |Va(C)∩ V int(C)| of chemical

element a in the set V int(C) of interior-vertices in C.

9. dcpi(C), i = 14 + |Λint(Dπ)|+ [a]ex, a ∈ Λex(Dπ): the frequency naexa (C) = |Va(C) ∩ V ex(C)|
of chemical element a in the set V ex(C) of exterior-vertices in C.

10. dcpi(C), i = 14 + |Λint(Dπ)| + |Λex(Dπ)| + [γ], γ ∈ Γint(Dπ): the frequency ecγ(G) of edge-

configuration γ in the set Eint(C) of interior-edges in C.

11. dcpi(C), i = 14+ |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ [ψ], ψ ∈ F(Dπ): the frequency fcψ(C)
of fringe-configuration ψ in the set of ρ-fringe-trees in C.

12. dcpi(C), i = 14 + |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ |F(Dπ)|+ [ν], ν ∈ Γlf
ac: the frequency

aclfν (C) of adjacency-configuration ν in the set of leaf-edges in ⟨C⟩.

26



B Specifying Target Chemical Graphs

Given a prediction function η and a target value y∗ ∈ R, we call a chemical graph C∗ such that

η(x∗) = y∗ for the feature vector x∗ = f(C∗) a target chemical graph. This section presents a set of

rules for specifying topological substructure of a target chemical graph in a flexible way in Stage 4.

We first describe how to reduce a chemical graph C = (H,α, β) into an abstract form based

on which our specification rules will be defined. To illustrate the reduction process, we use the

chemical graph C = (H,α, β) such that ⟨C⟩ is given in Figure 3.

R1 Removal of all ρ-fringe-trees: The interior H int = (V int(C), E int(C)) of C is obtained

by removing the non-root vertices of each ρ-fringe-trees C[u] ∈ T (C), u ∈ V int(C). Figure 8

illustrates the interior H int of chemical graph C with ρ = 2 in Figure 3.

R2 Removal of some leaf paths: We call a u, v-path Q in H int a leaf path if vertex v is a leaf-

vertex of H int and the degree of each internal vertex of Q in H int is 2, where we regard that

Q is rooted at vertex u. A connected subgraph S of the interior H int of C is called a cyclical-

base if S is obtained from H by removing the vertices in V (Qu) \ {u}, u ∈ X for a subset X

of interior-vertices and a set {Qu | u ∈ X} of leaf u, v-paths Qu such that no two paths Qu

and Qu′ share a vertex. Figure 9(a) illustrates a cyclical-base S = H int−
∪
u∈X(V (Qu)\{u})

of the interior H int for a set {Qu5 = (u5, u24), Qu18 = (u18, u25, u26, u27), Qu22 = (u22, u28)} of

leaf paths in Figure 8.

R3 Contraction of some pure paths: A path in S is called pure if each internal vertex of

the path is of degree 2. Choose a set P of several pure paths in S so that no two paths

share vertices except for their end-vertices. A graph S ′ is called a contraction of a graph

S (with respect to P) if S ′ is obtained from S by replacing each pure u, v-path with a

single edge a = uv, where S ′ may contain multiple edges between the same pair of adjacent

vertices. Figure 9(b) illustrates a contraction S ′ obtained from the chemical graph S by

contracting each uv-path Pa ∈ P into a new edge a = uv, where a1 = u1u2, a2 = u1u3, a3 =

u4u7, a4 = u10u11 and a5 = u11u12 and P = {Pa1 = (u1, u13, u2), Pa2 = (u1, u14, u3), Pa3 =

(u4, u15, u16, u7), Pa4 = (u10, u17, u18, u19, u11), Pa5 = (u11, u20, u21, u22, u12)} of pure paths in

Figure 9(a).

We will define a set of rules so that a chemical graph can be obtained from a graph (called

a seed graph in the next section) by applying processes R3 to R1 in a reverse way. We specify

topological substructures of a target chemical graph with a tuple (GC, σint, σce) called a target

specification defined under the set of the following rules.

Seed Graph

A seed graph GC = (VC, EC) is defined to be a graph (possibly with multiple edges) such that the

edge set EC consists of four sets E(≥2), E(≥1), E(0/1) and E(=1), where each of them can be empty.

A seed graph plays a role of the most abstract form S ′ in R3. Figure 5(a) illustrates an example

of a seed graph GC with r(GC) = 5, where VC = {u1, u2, . . . , u12, u23}, E(≥2) = {a1, a2, . . . , a5},
E(≥1) = {a6}, E(0/1) = {a7} and E(=1) = {a8, a9, . . . , a16}.

27



a10

a12 a14

a13 a15

a16a11

a8

a9

a6

u14

u16

u13

u15

u18 u20
u17

u19 u22

u21
u11u7

u9

u1

u2

u6
u4

u8
u12

u5

u3

u23

u10

a17

O
O

u27

u25

u24

u26

u28
Qu5

Qu18

Qu22

N

C

O

N

C

CC

C
C

C

C

C

C

C

C

C
C

C

C

C

C

C
P

S(2)

S(6)

N

Figure 8: The interior H int of chemical graph C with ⟨C⟩ in Figure 3 for ρ = 2.

u23

a10

a12

a3 u11

a14

a4
u7

a13

a5u9

u10

a15

a16

u1

u2

a11

a8

u6

u4
a9

a6u8
u12

a1

u5

u3

a2

a17

(b) A contraction S’ of  S(a) A cyclical-base S of  Hint

a10

a12 a14

a13 a15

a16a11

a8

a9

a6

u14

u16

u13

u15 u18

u20
u17

u19 u22

u21
u11u7

u9

u1

u2

u6
u4 u8

u12

u5

u3

u23

u10

a17

Pa1

Pa2

Pa3
Pa4

Pa5

N

O

N

C

C

C
C

C

C

C

C

C

C

C
C

C

C

C

C

N

O

N

C

C

C

C

C

C

C

C

C

C

S(2)

S(2)

S(6)

P

Figure 9: (a) A cyclical-base S = H int−
∪
u∈{u5,u18,u22}(V (Qu)\{u}) of the interior H int in Figure 8;

(b) A contraction S ′ of S for a pure path set P = {Pa1 , Pa2 , . . . , Pa5} in (a), where a new edge

obtained by contracting a pure path is depicted with a thick line.

A subdivision S of GC is a graph constructed from a seed graph GC according to the following

rules:

- Each edge e = uv ∈ E(≥2) is replaced with a u, v-path Pe of length at least 2;

- Each edge e = uv ∈ E(≥1) is replaced with a u, v-path Pe of length at least 1 (equivalently e is

directly used or replaced with a u, v-path Pe of length at least 2);

- Each edge e ∈ E(0/1) is either used or discarded, where E(0/1) is required to be chosen as a

non-separating edge subset of E(GC) since otherwise the connectivity of a final chemical graph

C is not guaranteed; r(C) = r(GC)− |E ′| holds for a subset E ′ ⊆ E(0/1) of edges discarded in a

final chemical graph C; and

28



- Each edge e ∈ E(=1) is always used directly.

We allow a possible elimination of edges in E(0/1) as an optional rule in constructing a target

chemical graph from a seed graph, even though such an operation has not been included in the

process R3. A subdivision S plays a role of a cyclical-base in R2. A target chemical graph

C = (H,α, β) will contain S as a subgraph of the interior H int of C.

Interior-specification

A graph H∗ that serves as the interior H int of a target chemical graph C will be constructed as

follows. First construct a subdivision S of a seed graph GC by replacing each edge e = uu′ ∈
E(≥2) ∪ E(≥1) with a pure u, u′-path Pe. Next construct a supergraph H∗ of S by attaching a leaf

path Qv at each vertex v ∈ VC or at an internal vertex v ∈ V (Pe) \ {u, u′} of each pure u, u′-path

Pe for some edge e = uu′ ∈ E(≥2) ∪ E(≥1), where possibly Qv = (v), E(Qv) = ∅ (i.e., we do not

attach any new edges to v). We introduce the following rules for specifying the size of H∗, the

length |E(Pe)| of a pure path Pe, the length |E(Qv)| of a leaf path Qv, the number of leaf paths

Qv and a bond-multiplicity of each interior-edge, where we call the set of prescribed constants an

interior-specification σint:

- Lower and upper bounds nint
LB, n

int
UB ∈ Z+ on the number of interior-vertices of a target chemical

graph C.

- For each edge e = uu′ ∈ E(≥2) ∪ E(≥1),

a lower bound ℓLB(e) and an upper bound ℓUB(e) on the length |E(Pe)| of a pure u, u′-path

Pe. (For a notational convenience, set ℓLB(e) := 0, ℓUB(e) := 1, e ∈ E(0/1) and ℓLB(e) := 1,

ℓUB(e) := 1, e ∈ E(=1).)

a lower bound blLB(e) and an upper bound blUB(e) on the number of leaf paths Qv attached

at internal vertices v of a pure u, u′-path Pe.

a lower bound chLB(e) and an upper bound chUB(e) on the maximum length |E(Qv)| of a leaf

path Qv attached at an internal vertex v ∈ V (Pe) \ {u, u′} of a pure u, u′-path Pe.

- For each vertex v ∈ VC,

a lower bound chLB(v) and an upper bound chUB(v) on the number of leaf paths Qv attached

to v, where 0 ≤ chLB(v) ≤ chUB(v) ≤ 1.

a lower bound chLB(v) and an upper bound chUB(v) on the length |E(Qv)| of a leaf path Qv

attached to v.

- For each edge e = uu′ ∈ EC, a lower bound bdm,LB(e) and an upper bound bdm,UB(e) on

the number of edges with bond-multiplicity m ∈ [2, 3] in u, u′-path Pe, where we regard Pe,

e ∈ E(0/1) ∪ E(=1) as single edge e.

We call a graph H∗ that satisfies an interior-specification σint a σint-extension of GC, where the

bond-multiplicity of each edge has been determined.

29



Table 5: Example 1 of an interior-specification σint.

nint
LB = 20 nint

UB = 28

a1 a2 a3 a4 a5 a6
ℓLB(ai) 2 2 2 3 2 1

ℓUB(ai) 3 4 3 5 4 4

blLB(ai) 0 0 0 1 1 0

blUB(ai) 1 1 0 2 1 0

chLB(ai) 0 1 0 4 3 0

chUB(ai) 3 3 1 6 5 2

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u23
blLB(ui) 0 0 0 0 0 0 0 0 0 0 0 0 0

blUB(ui) 1 1 1 1 1 0 0 0 0 0 0 0 0

chLB(ui) 0 0 0 0 1 0 0 0 0 0 0 0 0

chUB(ui) 1 0 0 0 3 0 1 1 0 1 2 4 1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17
bd2,LB(ai) 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

bd2,UB(ai) 1 1 0 2 2 0 0 0 0 0 0 1 0 0 0 0 0

bd3,LB(ai) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bd3,UB(ai) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 5 shows an example of an interior-specification σint to the seed graph GC in Figure 5.

Figure 10 illustrates an example of an σint-extension H
∗ of seed graph GC in Figure 5 under

the interior-specification σint in Table 5.

a10

a12 a14

a13 a15

a16
a11

a8

a9

a6

u14

u16

u13

u15

u18

u20

u17

u19

u22

u21
u11u7

u9

u1

u2

u6
u4 u8

u12

u5

u3

u23

u10

a17

u27

u25

u24

u26

u28

Figure 10: An illustration of a graph H∗ that is obtained from the seed graph GC in Figure 5

under the interior-specification σint in Table 5, where the vertices newly introduced by pure paths

Pai and leaf paths Qvi are depicted with white squares and circles, respectively.

30



Chemical-specification

Let H∗ be a graph that serves as the interior H int of a target chemical graph C, where the

bond-multiplicity of each edge in H∗ has be determined. Finally we introduce a set of rules

for constructing a target chemical graph C from H∗ by choosing a chemical element a ∈ Λ and

assigning a ρ-fringe-tree ψ to each interior-vertex v ∈ V int. We introduce the following rules for

specifying the size of C, a set of chemical rooted trees that are allowed to use as ρ-fringe-trees

and lower and upper bounds on the frequency of a chemical element, a chemical symbol, and an

edge-configuration, where we call the set of prescribed constants a chemical specification σce:

- Lower and upper bounds nLB, n
∗ ∈ Z+ on the number of vertices, where nint

LB ≤ nLB ≤ n∗.

- Subsets F(v) ⊆ F(Dπ), v ∈ VC and FE ⊆ F(Dπ) of chemical rooted trees ψ with ht(⟨ψ⟩) ≤ ρ,

where we require that every ρ-fringe-tree C[v] rooted at a vertex v ∈ VC (resp., at an internal

vertex v not in VC) in C belongs to F(v) (resp., FE). Let F∗ := FE ∪
∪
v∈VC F(v) and Λex

denote the set of chemical elements assigned to non-root vertices over all chemical rooted trees

in F∗.

- A subset Λint ⊆ Λint(Dπ), where we require that every chemical element α(v) assigned to an

interior-vertex v in C belongs to Λint. Let Λ := Λint ∪ Λex and naa(C) (resp., nainta (C) and

naexa (C)) denote the number of vertices (resp., interior-vertices and exterior-vertices) v such

that α(v) = a in C.

- A set Λint
dg ⊆ Λ × [1, 4] of chemical symbols and a set Γint ⊆ Γint(Dπ) of edge-configurations

(µ, µ′,m) with µ ≤ µ′, where we require that the edge-configuration ec(e) of an interior-edge e

in C belongs to Γint. We do not distinguish (µ, µ′,m) and (µ′, µ,m).

- Define Γint
ac to be the set of adjacency-configurations such that Γint

ac := {(a, b,m) | (ad, bd′,m) ∈
Γint}. Let acintν (C), ν ∈ Γint

ac denote the number of interior-edges e such that ac(e) = ν in C.

- Subsets Λ∗(v) ⊆ {a ∈ Λint | val(a) ≥ 2}, v ∈ VC, we require that every chemical element α(v)

assigned to a vertex v ∈ VC in the seed graph belongs to Λ∗(v).

- Lower and upper bound functions naLB, naUB : Λ → [1, n∗] and naintLB, na
int
UB : Λint → [1, n∗] on

the number of interior-vertices v such that α(v) = a in C.

- Lower and upper bound functions nsintLB, ns
int
UB : Λint

dg → [1, n∗] on the number of interior-vertices

v such that cs(v) = µ in C.

- Lower and upper bound functions acintLB, ac
int
UB : Γint

ac → Z+ on the number of interior-edges e such

that ac(e) = ν in C.

- Lower and upper bound functions ecintLB, ec
int
UB : Γint → Z+ on the number of interior-edges e such

that ec(e) = γ in C.

- Lower and upper bound functions fcLB, fcUB : F∗ → [0, n∗] on the number of interior-vertices v

such that C[v] is r-isomorphic to ψ ∈ F∗ in C.

31



- Lower and upper bound functions aclfLB, ac
lf
UB : Γlf

ac → [0, n∗] on the number of leaf-edges uv in

acC with adjacency-configuration ν.

We call a chemical graph C that satisfies a chemical specification σce a (σint, σce)-extension of

GC, and denote by G(GC, σint, σce) the set of all (σint, σce)-extensions of GC.

Table 6 shows an example of a chemical-specification σce to the seed graph GC in Figure 5.

Table 6: Example 2 of a chemical-specification σce.
nLB = 30, n∗ = 50.

branch-parameter: ρ = 2

Each of sets F(v), v ∈ VC and FE is set to be

the set F of chemical rooted trees ψ with ht(⟨ψ⟩) ≤ ρ = 2 in Figure 5(b).

Λ = {H, C, N, O, S(2), S(6), P = P(5)} Λdg = {C2, C3, C4, N2, N3, O2, S(2)2, S(6)3, P4}
Γint
ac ν1=(C, C, 1), ν2=(C, C, 2), ν3=(C, N, 1), ν4=(C, O, 1), ν5=(C, S(2), 1), ν6=(C, S(6), 1), ν7=(C, P, 1)

Γint γ1=(C2, C2, 1), γ2=(C2, C3, 1), γ3=(C2, C3, 2), γ4=(C2, C4, 1), γ5=(C3, C3, 1), γ6=(C3, C3, 2),

γ7=(C3, C4, 1), γ8=(C2, N2, 1), γ9=(C3, N2, 1), γ10=(C3, O2, 1), γ11=(C2, C2, 2), γ12=(C2, O2, 1),

γ13=(C3, N3, 1), γ14=(C4, S(2)2, 2), γ15=(C2, S(6)3, 1), γ16=(C3, S(6)3, 1), γ17=(C2, P4, 2),

γ18=(C3, P4, 1)

Λ∗(u1) = Λ∗(u8) = {C, N}, Λ∗(u9) = {C, O}, Λ∗(u) = {C}, u ∈ VC \ {u1, u8, u9}
H C N O S(2) S(6) P

naLB(a) 40 27 1 1 0 0 0

naUB(a) 65 37 4 8 1 1 1

C N O S(2) S(6) P

naintLB(a) 9 1 0 0 0 0

naintUB(a) 23 4 5 1 1 1

C2 C3 C4 N2 N3 O2 S(2)2 S(6)3 P4

nsintLB(µ) 3 5 0 0 0 0 0 0 0

nsintUB(µ) 8 15 2 2 3 5 1 1 1

ν1 ν2 ν3 ν4 ν5 ν6 ν7
acintLB(ν) 0 0 0 0 0 0 0

acintUB(ν) 30 10 10 10 1 1 1

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12 γ13 γ14 γ15 γ16 γ17 γ18
ecintLB(γ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ecintUB(γ) 4 15 4 4 10 5 4 4 6 4 4 4 2 2 2 2 2 2

ψ ∈ {ψi | i = 1, 6, 11} ψ ∈ F∗ \ {ψi | i = 1, 6, 11}
fcLB(ψ) 1 0

fcUB(ψ) 10 3

ν ∈ {(C, C, 1), (C, C, 2)} ν ∈ Γlf
ac \ {(C, C, 1), (C, C, 2)}

aclfLB(ν) 0 0

aclfUB(ν) 10 8

Figure 3 illustrates an example C of a (σint, σce)-extension ofGC obtained from the σint-extension

H∗ in Figure 10 under the chemical-specification σce in Table 6. Note that r(C) = r(H∗) =

r(GC)− 1 = 4 holds since the edge in E(0/1) is discarded in H∗.

32



C Test Instances for Stages 4 and 5

We prepared the following instances (a)-(d) for conducting experiments of Stages 4 and 5 in

Phase 2.

In Stages 4 and 5, we use five properties π ∈ {Hc, Vd, OptR, IhcLiq, Vis} and define a set

Λ(π) of chemical elements as follows:

Λ(Hc) = {H, C, N, O, S(2), S(6), Cl}, Λ(Vd) = {H, C, N, O, N, Cl, P(3), P(5)},
Λ(OptR) = {H, C, N, O, S(2), F}, Λ(IhcLiq) = {H, C, N, O, S(2), S(6), Cl} and

Λ(Vis) = {H, C, O, Si}.

(a) Ia = (GC, σint, σce): The instance introduced in Section B to explain the target specifi-

cation. For each property π, we replace Λ = {H, C, N, O, S(2), S(6), P(5)} in Table 6 with

Λ(π) ∩ {S(2), S(6), P(5)} and remove from the σce all chemical symbols, edge-configurations

and fringe-configurations that cannot be constructed from the replaced element set (i.e.,

those containing a chemical element in {S(2), S(6), P(5)} \ Λ(π)).

(b) I ib = (Gi
C, σ

i
int, σ

i
ce), i = 1, 2, 3, 4: An instance for inferring chemical graphs with rank at most

2. In the four instances I ib, i = 1, 2, 3, 4, the following specifications in (σint, σce) are common.

Set Λ := Λ(π) for a given property π ∈ {Hc, Vd, OptR, IhcLiq, Vis}, set Λint
dg to be

the set of all possible symbols in Λ× [1, 4] that appear in the data set Dπ and set Γint

to be the set of all edge-configurations that appear in the data set Dπ. Set Λ
∗(v) := Λ,

v ∈ VC.

The lower bounds ℓLB, blLB, chLB, bd2,LB, bd3,LB, naLB, na
int
LB, ns

int
LB, ac

int
LB, ec

int
LB and aclfLB

are all set to be 0.

Set upper bounds naUB(a) := n∗, na ∈ {H, C}, naUB(a) := 5, na ∈ {O, N}, naUB(a) :=

2, na ∈ Λ \ {H, C, O, N}. The other upper bounds ℓUB, blUB, chUB, bd2,UB, bd3,UB, na
int
UB,

nsintUB, ac
int
UB, ec

int
UB and aclfUB are all set to be an upper bound n∗ on n(G∗).

For each property π, let F(Dπ) denote the set of 2-fringe-trees in the compounds in Dπ,

and select a subset F i
π ⊆ F(Dπ) with |F i

π| = 45 − 5i, i ∈ [1, 5]. For each instance I ib,

set FE := F(v) := F i
π, v ∈ VC and fcLB(ψ) := 0, fcUB(ψ) := 10, ψ ∈ F i

π.

Instance I1b is given by the rank-1 seed graph G1
C in Figure 6(i) and Instances I ib, i = 2, 3, 4

are given by the rank-2 seed graph Gi
C, i = 2, 3, 4 in Figure 6(ii)-(iv).

(i) For instance I1b, select as a seed graph the monocyclic graph G1
C = (VC, EC = E(≥2) ∪

E(≥1)) in Figure 6(i), where VC = {u1, u2}, E(≥2) = {a1} and E(≥1) = {a2}. Set nint
LB :=

5, nint
UB := 15, nLB := 35 and n∗ := 38. We include a linear constraint ℓ(a1) ≤ ℓ(a2) and

5 ≤ ℓ(a1) + ℓ(a2) ≤ 15 as part of the side constraint.

(ii) For instance I2b, select as a seed graph the graph G2
C = (VC, EC = E(≥2) ∪E(≥1) ∪E(=1))

in Figure 6(ii), where VC = {u1, u2, u3, u4}, E(≥2) = {a1, a2}, E(≥1) = {a3} and E(=1) =

{a4, a5}. Set nint
LB := 25, nint

UB := 30, nLB := 45 and n∗ := 50. We include a linear

constraint ℓ(a1) ≤ ℓ(a2) and ℓ(a1) + ℓ(a2) + ℓ(a3) ≤ 15.

33



(iii) For instance I3b, select as a seed graph the graph G3
C = (VC, EC = E(≥2) ∪ E(≥1) ∪

E(=1)) in Figure 6(iii), where VC = {u1, u2, u3, u4}, E(≥2) = {a1}, E(≥1) = {a2, a3} and

E(=1) = {a4, a5}. Set nint
LB := 25, nint

UB := 30, nLB := 45 and n∗ := 50. We include linear

constraints ℓ(a1) ≤ ℓ(a2) + ℓ(a3), ℓ(a2) ≤ ℓ(a3) and ℓ(a1) + ℓ(a2) + ℓ(a3) ≤ 15.

(iv) For instance I4b, select as a seed graph the graph G4
C = (VC, EC = E(≥2) ∪E(≥1) ∪E(=1))

in Figure 6(iv), where VC = {u1, u2, u3, u4}, E(≥1) = {a1, a2, a3} and E(=1) = {a4, a5}.
Set nint

LB := 25, nint
UB := 30, nLB := 45 and n∗ := 50. We include linear constraints

ℓ(a2) ≤ ℓ(a1) + 1, ℓ(a2) ≤ ℓ(a3) + 1, ℓ(a1) ≤ ℓ(a3) and ℓ(a1) + ℓ(a2) + ℓ(a3) ≤ 15.

We define instances in (c) and (d) in order to find chemical graphs that have an intermediate

structure of given two chemical cyclic graphs GA = (HA = (VA, EA), αA, βA) and GB = (HB =

(VB, EB), αB, βB). Let Λint
A and Λint

dg,A denote the sets of chemical elements and chemical symbols

of the interior-vertices in GA, Γ
int
A denote the sets of edge-configurations of the interior-edges in

GA, and FA denote the set of 2-fringe-trees in GA. Analogously define sets Λint
B , Λint

dg,B, Γ
int
B and

FB in GB.

(c) Ic = (GC, σint, σce): An instance aimed to infer a chemical graph G† such that the core of G†

is equal to the core of GA and the frequency of each edge-configuration in the non-core of

G† is equal to that of GB. We use chemical compounds CID 24822711 and CID 59170444 in

Figure 7(a) and (b) for GA and GB, respectively.

Set a seed graph GC = (VC, EC = E(=1)) to be the core of GA.

Set Λ := {H, C, N, O}, and set Λint
dg to be the set of all possible chemical symbols in Λ× [1, 4].

Set Γint := Γint
A ∪ Γint

B and Λ∗(v) := {αA(v)}, v ∈ VC.

Set nint
LB := min{nint(GA), n

int(GB)}, nint
UB := max{nint(GA), n

int(GB)},
nLB := min{n(GA), n(GB)} − 10 and n∗ := max{n(GA), n(GB)}+ 5.

Set lower bounds ℓLB, blLB, chLB, bd2,LB, bd3,LB, naLB, na
int
LB, ns

int
LB, ac

int
LB and aclfLB to be 0.

Set upper bounds naUB(a) := n∗, na ∈ {H, C}, naUB(a) := 5, na ∈ {O, N}, naUB(a) := 2, na ∈
Λ \ {H, C, O, N} and set the other upper bounds ℓUB, blUB, chUB, bd2,UB, bd3,UB, na

int
UB, ns

int
UB,

acintUB and aclfUB to be n∗.

Set ecintLB(γ) to be the number of core-edges in GA with γ ∈ Γint and ecintUB(γ) to be the number

interior-edges in GA and GB with edge-configuration γ.

Let F (p)
B , p ∈ [1, 2] denote the set of chemical rooted trees r-isomorphic p-fringe-trees in GB;

Set FE := F(v) := F (1)
B ∪ F (2)

B , v ∈ VC and fcLB(ψ) := 0, fcUB(ψ) := 10, ψ ∈ F (1)
B ∪ F (2)

B .

(d) Id = (G1
C, σint, σce): An instance aimed to infer a chemical monocyclic graph G† such that

the frequency vector of edge-configurations in G† is a vector obtained by merging those of

GA and GB. We use chemical monocyclic compounds CID 10076784 and CID 44340250 in

Figure 7(c) and (d) for GA and GB, respectively. Set a seed graph to be the monocyclic seed

graph G1
C = (VC, EC = E(≥2) ∪ E(≥1)) with VC = {u1, u2}, E(≥2) = {a1} and E(≥1) = {a2} in

Figure 6(i).

Set Λ := {H, C, N, O}, Λint
dg := Λint

dg,A ∪ Λint
dg,B and Γint := Γint

A ∪ Γint
B .

Set nint
LB := min{nint(GA), n

int(GB)}, nint
UB := max{nint(GA), n

int(GB)},
nLB := min{n(GA), n(GB)} and n∗ := max{n(GA), n(GB)}.

34



Set lower bounds ℓLB, blLB, chLB, bd2,LB, bd3,LB, naLB, na
int
LB, ns

int
LB, ac

int
LB and aclfLB to be 0.

Set upper bounds naUB(a) := n∗, na ∈ {H, C}, naUB(a) := 5, na ∈ {O, N}, naUB(a) := 2, na ∈
Λ \ {H, C, O, N} and set the other upper bounds ℓUB, blUB, chUB, bd2,UB, bd3,UB, na

int
UB, ns

int
UB,

acintUB and aclfUB to be n∗.

For each edge-configuration γ ∈ Γint, let x∗A(γ
int) (resp., x∗B(γ

int)) denote the number of

interior-edges with γ in GA (resp., GB), γ ∈ Γint and set

x∗min(γ) := min{x∗A(γ), x∗B(γ)}, x∗max(γ) := max{x∗A(γ), x∗B(γ)},
ecintLB(γ) := ⌊(3/4)x∗min(γ) + (1/4)x∗max(γ)⌋ and

ecintUB(γ) := ⌈(1/4)x∗min(γ) + (3/4)x∗max(γ)⌉.
Set FE := F(v) := FA ∪ FB, v ∈ VC and fcLB(ψ) := 0, fcUB(ψ) := 10, ψ ∈ FA ∪ FB.

We include a linear constraint ℓ(a1) ≤ ℓ(a2) and 5 ≤ ℓ(a1) + ℓ(a2) ≤ 15 as part of the side

constraint.

D All Constraints in an MILP Formulation for Chemical

Graphs

We define a standard encoding of a finite set A of elements to be a bijection σ : A→ [1, |A|], where
we denote by [A] the set [1, |A|] of integers and by [e] the encoded element σ(e). Let ϵ denote

null, a fictitious chemical element that does not belong to any set of chemical elements, chemical

symbols, adjacency-configurations and edge-configurations in the following formulation. Given a

finite set A, let Aϵ denote the set A ∪ {ϵ} and define a standard encoding of Aϵ to be a bijection

σ : A → [0, |A|] such that σ(ϵ) = 0, where we denote by [Aϵ] the set [0, |A|] of integers and by [e]

the encoded element σ(e), where [ϵ] = 0.

Let σ = (GC, σint, σce) be a target specification, ρ denote the branch-parameter in the specifi-

cation σ and C denote a chemical graph in G(GC, σint, σce).

D.1 Selecting a Cyclical-base

Recall that

E(=1) = {e ∈ EC | ℓLB(e) = ℓUB(e) = 1}; E(0/1) = {e ∈ EC | ℓLB(e) = 0, ℓUB(e) = 1};
E(≥1) = {e ∈ EC | ℓLB(e) = 1, ℓUB(e) ≥ 2}; E(≥2) = {e ∈ EC | ℓLB(e) ≥ 2};

- Every edge ai ∈ E(=1) is included in ⟨C⟩;

- Each edge ai ∈ E(0/1) is included in ⟨C⟩ if necessary;

- For each edge ai ∈ E(≥2), edge ai is not included in ⟨C⟩ and instead a path

Pi = (vCtail(i), v
T
j−1, v

T
j, . . . , v

T
j+t, v

C
head(i))

of length at least 2 from vertex vCtail(i) to vertex vChead(i) visiting some vertices in VT is con-

structed in ⟨C⟩; and

35



- For each edge ai ∈ E(≥1), either edge ai is directly used in ⟨C⟩ or the above path Pi of length

at least 2 is constructed in ⟨C⟩.

Let tC ≜ |VC| and denote VC by {vCi | i ∈ [1, tC]}. Regard the seed graph GC as a digraph

such that each edge ai with end-vertices vCj and vCj′ is directed from vCj to vCj′ when j < j′.

For each directed edge ai ∈ EC, let head(i) and tail(i) denote the head and tail of eC(i); i.e.,

ai = (vCtail(i), v
C
head(i)).

Define

kC ≜ |E(≥2) ∪ E(≥1)|, k̃C ≜ |E(≥2)|,

and denote EC = {ai | i ∈ [1,mC]}, E(≥2) = {ak | k ∈ [1, k̃C]}, E(≥1) = {ak | k ∈ [k̃C + 1, kC]},
E(0/1) = {ai | i ∈ [kC + 1, kC + |E(0/1)|]} and E(=1) = {ai | i ∈ [kC + |E(0/1)| + 1,mC]}. Let I(=1)

denote the set of indices i of edges ai ∈ E(=1). Similarly for I(0/1), I(≥1) and I(≥2).

To control the construction of such a path Pi for each edge ak ∈ E(≥2) ∪ E(≥1), we regard the

index k ∈ [1, kC] of each edge ak ∈ E(≥2)∪E(≥1) as the “color” of the edge. To introduce necessary

linear constraints that can construct such a path Pk properly in our MILP, we assign the color k

to the vertices vTj−1, v
T
j, . . . , v

T
j+t in VT when the above path Pk is used in ⟨C⟩.

For each index s ∈ [1, tC], let IC(s) denote the set of edges e ∈ EC incident to vertex vCs,

and E+
(=1)(s) (resp., E−

(=1)(s)) denote the set of edges ai ∈ E(=1) such that the tail (resp., head)

of ai is vertex vCs. Similarly for E+
(0/1)(s), E

−
(0/1)(s), E

+
(≥1)(s), E

−
(≥1)(s), E

+
(≥2)(s) and E−

(≥2)(s).

Let IC(s) denote the set of indices i of edges ai ∈ IC(s). Similarly for I+(=1)(s), I
−
(=1)(s), I

+
(0/1)(s),

I−(0/1)(s), I
+
(≥1)(s), I

−
(≥1)(s), I

+
(≥2)(s) and I

−
(≥2)(s). Note that [1, kC] = I(≥2)∪ I(≥1) and [k̃C+1,mC] =

I(≥1) ∪ I(0/1) ∪ I(=1).

constants:

- tC = |VC|, k̃C = |E(≥2)|, kC = |E(≥2) ∪ E(≥1)|, tT = nint
UB − |VC|, mC = |EC|. Note that

ai ∈ EC \ (E(≥2) ∪ E(≥1)) holds i ∈ [kC + 1,mC];

- ℓLB(k), ℓUB(k) ∈ [1, tT], k ∈ [1, kC]: lower and upper bounds on the length of path Pk;

- rGC
∈ [1,mC]: the rank r(GC) of seed graph GC;

variables:

- eC(i) ∈ [0, 1], i ∈ [1,mC]: e
C(i) represents edge ai ∈ EC, i ∈ [1,mC] (e

C(i) = 1, i ∈ I(=1);

eC(i) = 0, i ∈ I(≥2)) (e
C(i) = 1 ⇔ edge ai is used in ⟨C⟩);

- vT(i) ∈ [0, 1], i ∈ [1, tT]: v
T(i) = 1 ⇔ vertex vTi is used in ⟨C⟩;

- eT(i) ∈ [0, 1], i ∈ [1, tT+1]: eT(i) represents edge eTi = (vTi−1, v
T
i) ∈ ET, where e

T
1 and e

T
tT+1

are fictitious edges (eT(i) = 1 ⇔ edge eTi is used in ⟨C⟩);

- χT(i) ∈ [0, kC], i ∈ [1, tT]: χ
T(i) represents the color assigned to vertex vTi (χ

T(i) = k > 0 ⇔
vertex vTi is assigned color k; χT(i) = 0 means that vertex vTi is not used in ⟨C⟩);

- clrT(k) ∈ [ℓLB(k)− 1, ℓUB(k)− 1], k ∈ [1, kC], clr
T(0) ∈ [0, tT]: the number of vertices vTi ∈ VT

with color c;

36



- δTχ (k) ∈ [0, 1], k ∈ [0, kC]: δ
T
χ (k) = 1 ⇔ χT(i) = k for some i ∈ [1, tT];

- χT(i, k) ∈ [0, 1], i ∈ [1, tT], k ∈ [0, kC] (χ
T(i, k) = 1 ⇔ χT(i) = k);

- d̃eg
+

C(i) ∈ [0, 4], i ∈ [1, tC]: the out-degree of vertex vCi with the used edges eC in EC;

- d̃eg
−
C(i) ∈ [0, 4], i ∈ [1, tC]: the in-degree of vertex vCi with the used edges eC in EC;

- rank: the rank r(C) of a target chemical graph C;

constraints:

rank = rGC
−

∑
i∈I(0/1)

(1− eC(i)), (6)

eC(i) = 1, i ∈ I(=1), (7)

eC(i) = 0, clrT(i) ≥ 1, i ∈ I(≥2), (8)

eC(i) + clrT(i) ≥ 1, clrT(i) ≤ tT · (1− eC(i)), i ∈ I(≥1), (9)

∑
c∈I−

(≥1)
(i)∪I−

(0/1)
(i)∪I−

(=1)
(i)

eC(c) = d̃eg
−
C(i),

∑
c∈I+

(≥1)
(i)∪I+

(0/1)
(i)∪I+

(=1)
(i)

eC(c) = d̃eg
+

C(i), i ∈ [1, tC], (10)

χT(i, 0) = 1− vT(i),
∑

k∈[0,kC]

χT(i, k) = 1,
∑

k∈[0,kC]

k · χT(i, k) = χT(i), i ∈ [1, tT], (11)

∑
i∈[1,tT]

χT(i, k) = clrT(k), tT · δTχ (k) ≥
∑

i∈[1,tT]

χT(i, k) ≥ δTχ (k), k ∈ [0, kC], (12)

vT(i− 1) ≥ vT(i),

kC · (vT(i− 1)− eT(i)) ≥ χT(i− 1)− χT(i) ≥ vT(i− 1)− eT(i), i ∈ [2, tT]. (13)

D.2 Constraints for Including Leaf Paths

Let t̃C denote the number of vertices u ∈ VC such that blUB(u) = 1 and assume that VC =

{u1, u2, . . . , up} so that

blUB(ui) = 1, i ∈ [1, t̃C] and blUB(ui) = 0, i ∈ [t̃C + 1, tC].

Define the set of colors for the vertex set {ui | i ∈ [1, t̃C]} ∪ VT to be [1, cF] with

cF ≜ t̃C + tT = |{ui | i ∈ [1, t̃C]} ∪ VT|.

Let each vertex vCi, i ∈ [1, t̃C] (resp., v
T
i ∈ VT) correspond to a color i ∈ [1, cF] (resp., i + t̃C ∈

[1, cF]). When a path P = (u, vFj, v
F
j+1, . . . , v

F
j+t) from a vertex u ∈ VC ∪ VT is used in ⟨C⟩, we

assign the color i ∈ [1, cF] of the vertex u to the vertices vFj, v
F
j+1, . . . , v

F
j+t ∈ VF.

constants:

37



- cF: the maximum number of different colors assigned to the vertices in VF;

- n∗: an upper bound on the number n(C) of non-hydrogen atoms in C;

- nint
LB, n

int
UB ∈ [2, n∗]: lower and upper bounds on the number of interior-vertices in C;

- blLB(i) ∈ [0, 1], i ∈ [1, t̃C]: a lower bound on the number of leaf ρ-branches in the leaf path

rooted at a vertex vCi;

- blLB(k), blUB(k) ∈ [0, ℓUB(k) − 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1): lower and upper bounds on the

number of leaf ρ-branches in the trees rooted at internal vertices of a pure path Pk for an edge

ak ∈ E(≥1) ∪ E(≥2);

variables:

- nint
G ∈ [nint

LB, n
int
UB]: the number of interior-vertices in C;

- vF(i) ∈ [0, 1], i ∈ [1, tF]: v
F(i) = 1 ⇔ vertex vFi is used in C;

- eF(i) ∈ [0, 1], i ∈ [1, tF + 1]: eF(i) represents edge eFi = vFi−1v
F
i, where e

F
1 and eFtF+1 are

fictitious edges (eF(i) = 1 ⇔ edge eFi is used in C);

- χF(i) ∈ [0, cF], i ∈ [1, tF]: χ
F(i) represents the color assigned to vertex vFi (χ

F(i) = c ⇔ vertex

vFi is assigned color c);

- clrF(c) ∈ [0, tF], c ∈ [0, cF]: the number of vertices vFi with color c;

- δFχ(c) ∈ [blLB(c), 1], c ∈ [1, t̃C]: δ
F
χ(c) = 1 ⇔ χF(i) = c for some i ∈ [1, tF];

- δFχ(c) ∈ [0, 1], c ∈ [t̃C + 1, cF]: δ
F
χ(c) = 1 ⇔ χF(i) = c for some i ∈ [1, tF];

- χF(i, c) ∈ [0, 1], i ∈ [1, tF], c ∈ [0, cF]: χ
F(i, c) = 1 ⇔ χF(i) = c;

- bl(k, i) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), i ∈ [1, tT]: bl(k, i) = 1 ⇔ path Pk contains vertex v
T
i

as an internal vertex and the ρ-fringe-tree rooted at vTi contains a leaf ρ-branch;

constraints:

χF(i, 0) = 1− vF(i),
∑

c∈[0,cF]

χF(i, c) = 1,
∑

c∈[0,cF]

c · χF(i, c) = χF(i), i ∈ [1, tF], (14)

∑
i∈[1,tF]

χF(i, c) = clrF(c), tF · δFχ(c) ≥
∑
i∈[1,tF]

χF(i, c) ≥ δFχ(c), c ∈ [0, cF], (15)

eF(1) = eF(tF + 1) = 0, (16)

38



vF(i− 1) ≥ vF(i),

cF · (vF(i− 1)− eF(i)) ≥ χF(i− 1)− χF(i) ≥ vF(i− 1)− eF(i), i ∈ [2, tF], (17)

bl(k, i) ≥ δFχ(t̃C + i) + χT(i, k)− 1, k ∈ [1, kC], i ∈ [1, tT], (18)

∑
k∈[1,kC],i∈[1,tT]

bl(k, i) ≤
∑

i∈[1,tT]

δFχ(t̃C + i), (19)

blLB(k) ≤
∑

i∈[1,tT]

bl(k, i) ≤ blUB(k), k ∈ [1, kC], (20)

tC +
∑

i∈[1,tT]

vT(i) +
∑
i∈[1,tF]

vF(i) = nint
G . (21)

D.3 Constraints for Including Fringe-trees

Recall that F(Dπ) denotes the set of chemical rooted trees ψ r-isomorphic to a chemical rooted

tree in T (C) over all chemical graphs C ∈ Dπ, where possibly a chemical rooted tree ψ ∈ F(Dπ)

consists of a single chemical element a ∈ Λ \ {H}.
To express the condition that the ρ-fringe-tree is chosen from a rooted tree Ci, Ti or Fi, we

introduce the following set of variables and constraints.

constants:

- nLB: a lower bound on the number n(C) of non-hydrogen atoms in C, where nLB, n
∗ ≥ nint

LB;

- chLB(i), chUB(i) ∈ [0, n∗], i ∈ [1, tT]: lower and upper bounds on ht(⟨Ti⟩) of the tree Ti rooted

at a vertex vCi;

- chLB(k), chUB(k) ∈ [0, n∗], k ∈ [1, kC] = I(≥2) ∪ I(≥1): lower and upper bounds on the maximum

height ht(⟨T ⟩) of the tree T ∈ F(Pk) rooted at an internal vertex of a path Pk for an edge

ak ∈ E(≥1) ∪ E(≥2);

- Prepare a coding of the set F(Dπ) and let [ψ] denote the coded integer of an element ψ in

F(Dπ);

- Sets F(v) ⊆ F(Dπ), v ∈ VC and FE ⊆ F(Dπ) of chemical rooted trees T with ht(T ) ∈ [1, ρ];

- Define F∗ :=
∪
v∈VC F(v) ∪ FE, FC

i := F(vCi), i ∈ [1, tC], FT
i := FE, i ∈ [1, tT] and FF

i := FE,

i ∈ [1, tF];

39



- fcLB(ψ), fcUB(ψ) ∈ [0, n∗], ψ ∈ F∗: lower and upper bound functions on the number of interior-

vertices v such that C[v] is r-isomorphic to ψ in C;

- FX
i [p], p ∈ [1, ρ],X ∈ {C,T,F}: the set of chemical rooted trees T ∈ FX

i with ht(⟨T ⟩) = p;

- nH([ψ]) ∈ [0, 3ρ], ψ ∈ F∗: the number n(⟨ψ⟩) of non-root hydrogen vertices in a chemical rooted

tree ψ;

- htH([ψ]) ∈ [0, ρ], ψ ∈ F∗: the height ht(⟨ψ⟩) of the hydrogen-suppressed chemical rooted tree

⟨ψ⟩;

- degHr ([ψ]) ∈ [0, 3], ψ ∈ F∗: the number degr(⟨ψ⟩) of non-hydrogen children of the root r of a

chemical rooted tree ψ;

- deghydr ([ψ]) ∈ [0, 3], ψ ∈ F∗: the number degr(ψ)− degr(⟨ψ⟩) of hydrogen children of the root r

of a chemical rooted tree ψ;

- vion(ψ) ∈ [−3,+3], ψ ∈ F∗: the ion-valence of the root in ψ;

- aclfν (ψ), ν ∈ Γlf
ac: the frequency of leaf-edges with adjacency-configuration ν in ψ;

- aclfLB, ac
lf
UB : Γlf

ac → [0, n∗]: lower and upper bound functions on the number of leaf-edges uv in

acC with adjacency-configuration ν;

variables:

- nG ∈ [nLB, n
∗]: the number n(C) of non-hydrogen atoms in C;

- vX(i) ∈ [0, 1], i ∈ [1, tX], X ∈ {T,F}: vX(i) = 1 ⇔ vertex vXi is used in C;

- δXfr (i, [ψ]) ∈ [0, 1], i ∈ [1, tX], ψ ∈ FX
i ,X ∈ {C,T,F}: δXfr (i, [ψ]) = 1 ⇔ ψ is the ρ-fringe-tree

rooted at vertex vXi in C;

- fc([ψ]) ∈ [fcLB(ψ), fcUB(ψ)], ψ ∈ F∗: the number of interior-vertices v such that C[v] is r-

isomorphic to ψ in C;

- aclf([ν]) ∈ [aclfLB(ν), ac
lf
UB(ν)], ν ∈ Γlf

ac: the number of leaf-edge with adjacency-configuration ν

in C;

- degexX (i) ∈ [0, 3], i ∈ [1, tX],X ∈ {C,T,F}: the number of non-hydrogen children of the root of

the ρ-fringe-tree rooted at vertex vXi in C;

- hyddegX(i) ∈ [0, 4], i ∈ [1, tX], X ∈ {C,T,F}: the number of hydrogen atoms adjacent to vertex

vXi (i.e., hyddeg(v
X
i)) in C = (H,α, β);

- eledegX(i) ∈ [−3,+3], i ∈ [1, tX], X ∈ {C,T,F}: the ion-valence vion(ψ) of vertex vXi (i.e.,

eledegX(i) = vion(ψ) for the ρ-fringe-tree ψ rooted at vXi) in C = (H,α, β);

- hX(i) ∈ [0, ρ], i ∈ [1, tX], X ∈ {C,T,F}: the height ht(⟨T ⟩) of the hydrogen-suppressed chemical

rooted tree ⟨T ⟩ of the ρ-fringe-tree T rooted at vertex vXi in C;

40



- σ(k, i) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), i ∈ [1, tT]: σ(k, i) = 1 ⇔ the ρ-fringe-tree Tv rooted at

vertex v = vTi with color k has the largest height ht(⟨Tv⟩) among such trees Tv, v ∈ VT;

constraints: ∑
ψ∈FC

i

δCfr(i, [ψ]) = 1, i ∈ [1, tC],

∑
ψ∈FX

i

δXfr (i, [ψ]) = vX(i), i ∈ [1, tX],X ∈ {T,F}, (22)

∑
ψ∈FX

i

degHr ([ψ]) · δXfr (i, [ψ]) = degexX (i),

∑
ψ∈FX

i

deghydr ([ψ]) · δXfr (i, [ψ]) = hyddegX(i),

∑
ψ∈FX

i

vion([ψ]) · δXfr (i, [ψ]) = eledegX(i), i ∈ [1, tX],X ∈ {C,T,F}, (23)

∑
ψ∈FF

i [ρ]

δFfr(i, [ψ]) ≥ vF(i)− eF(i+ 1), i ∈ [1, tF] (e
F(tF + 1) = 0), (24)

∑
ψ∈FX

i

htH([ψ]) · δXfr (i, [ψ]) = hX(i), i ∈ [1, tX],X ∈ {C,T,F}, (25)

∑
ψ∈FX

i
i∈[1,tX],X∈{C,T,F}

nH([ψ]) · δXfr (i, [ψ]) +
∑

i∈[1,tX],X∈{T,F}

vX(i) + tC = nG, (26)

∑
i∈[1,tX],X∈{C,T,F}

δXfr (i, [ψ]) = fc([ψ]), ψ ∈ F∗, (27)

∑
ψ∈FX

i ,i∈[1,tX],X∈{C,T,F}

aclfν (ψ) · δXfr (i, [ψ]) = aclf([ν]), ν ∈ Γlf
ac, (28)

hC(i) ≥ chLB(i)− n∗ · δFχ(i), clrF(i) + ρ ≥ chLB(i),

hC(i) ≤ chUB(i), clrF(i) + ρ ≤ chUB(i) + n∗ · (1− δFχ(i)), i ∈ [1, t̃C], (29)

chLB(i) ≤ hC(i) ≤ chUB(i), i ∈ [t̃C + 1, tC], (30)

41



hT(i) ≤ chUB(k) + n∗ · (δFχ(t̃C + i) + 1− χT(i, k)),

clrF(t̃C + i) + ρ ≤ chUB(k) + n∗ · (2− δFχ(t̃C + i)− χT(i, k)), k ∈ [1, kC], i ∈ [1, tT], (31)

∑
i∈[1,tT]

σ(k, i) = δTχ (k), k ∈ [1, kC], (32)

χT(i, k) ≥ σ(k, i),

hT(i) ≥ chLB(k)− n∗ · (δFχ(t̃C + i) + 1− σ(k, i)),

clrF(t̃C + i) + ρ ≥ chLB(k)− n∗ · (2− δFχ(t̃C + i)− σ(k, i)), k ∈ [1, kC], i ∈ [1, tT]. (33)

D.4 Descriptor for the Number of Specified Degree

We include constraints to compute descriptors for degrees in C.

variables:

- degX(i) ∈ [0, 4], i ∈ [1, tX], X ∈ {C,T,F}: the number of non-hydrogen atoms adjacent to

vertex v = vXi (i.e., deg⟨C⟩(v) = degH(v)− hyddegC(v)) in C = (H,α, β);

- degCT(i) ∈ [0, 4], i ∈ [1, tC]: the number of edges from vertex vCi to vertices vTj, j ∈ [1, tT];

- degTC(i) ∈ [0, 4], i ∈ [1, tC]: the number of edges from vertices vTj, j ∈ [1, tT] to vertex vCi;

- δCdg(i, d) ∈ [0, 1], i ∈ [1, tC], d ∈ [1, 4], δXdg(i, d) ∈ [0, 1], i ∈ [1, tX], d ∈ [0, 4], X ∈ {T,F}:
δXdg(i, d) = 1 ⇔ degX(i) + hyddegX(i) = d;

- dg(d) ∈ [dgLB(d), dgUB(d)], d ∈ [1, 4]: the number of interior-vertices v with degH(v
X
i) = d in

C = (H,α, β);

- degintC (i) ∈ [1, 4], i ∈ [1, tC], degintX (i) ∈ [0, 4], i ∈ [1, tX],X ∈ {T,F}: the interior-degree

degHint(vXi) in the interior H int = (V int(C), E int(C)) of C; i.e., the number of interior-edges

incident to vertex vXi;

- δintdg,C(i, d) ∈ [0, 1], i ∈ [1, tC], d ∈ [1, 4], δintdg,X(i, d) ∈ [0, 1], i ∈ [1, tX], d ∈ [0, 4], X ∈ {T,F}:
δintdg,X(i, d) = 1 ⇔ degintX (i) = d;

- dgint(d) ∈ [dgLB(d), dgUB(d)], d ∈ [1, 4]: the number of interior-vertices v with the interior-

degree degHint(v) = d in the interior H int = (V int(C), E int(C)) of C = (H,α, β).

constraints:∑
k∈I+

(≥2)
(i)∪I+

(≥1)
(i)

δTχ (k) = degCT(i),
∑

k∈I−
(≥2)

(i)∪I−
(≥1)

(i)

δTχ (k) = degTC(i), i ∈ [1, tC], (34)

42



d̃eg
−
C(i) + d̃eg

+

C(i) + degCT(i) + degTC(i) + δFχ(i) = degintC (i), i ∈ [1, t̃C], (35)

d̃eg
−
C(i) + d̃eg

+

C(i) + degCT(i) + degTC(i) = degintC (i), i ∈ [t̃C + 1, tC], (36)

degintC (i) + degexC (i) = degC(i), i ∈ [1, tC], (37)

∑
ψ∈FC

i [ρ]

δCfr(i, [ψ]) ≥ 2− degintC (i) i ∈ [1, tC], (38)

2vT(i) + δFχ(t̃C + i) = degintT (i),

degintT (i) + degexT (i) = degT(i), i ∈ [1, tT] (e
T(1) = eT(tT + 1) = 0), (39)

vF(i) + eF(i+ 1) = degintF (i),

degintF (i) + degexF (i) = degF(i), i ∈ [1, tF] (e
F(1) = eF(tF + 1) = 0), (40)

∑
d∈[0,4]

δXdg(i, d) = 1,
∑
d∈[1,4]

d · δXdg(i, d) = degX(i) + hyddegX(i),

∑
d∈[0,4]

δintdg,X(i, d) = 1,
∑
d∈[1,4]

d · δintdg,X(i, d) = degintX (i), i ∈ [1, tX],X ∈ {T,C,F}, (41)

∑
i∈[1,tC]

δCdg(i, d) +
∑

i∈[1,tT]

δTdg(i, d) +
∑
i∈[1,tF]

δFdg(i, d) = dg(d),

∑
i∈[1,tC]

δintdg,C(i, d) +
∑

i∈[1,tT]

δintdg,T(i, d) +
∑
i∈[1,tF]

δintdg,F(i, d) = dgint(d), d ∈ [1, 4]. (42)

D.5 Assigning Multiplicity

We prepare an integer variable β(e) for each edge e in the scheme graph SG to denote the bond-

multiplicity of e in a selected graph H and include necessary constraints for the variables to satisfy

in H.

constants:

- βr([ψ]): the sum βψ(r) of bond-multiplicities of edges incident to the root r of a chemical rooted

tree ψ ∈ F∗;

43



variables:

- βX(i) ∈ [0, 3], i ∈ [2, tX], X ∈ {T,F}: the bond-multiplicity of edge eXi in C;

- βC(i) ∈ [0, 3], i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1): the bond-multiplicity of edge ai ∈
E(≥1) ∪ E(0/1) ∪ E(=1) in C;

- βCT(k), βTC(k) ∈ [0, 3], k ∈ [1, kC] = I(≥2) ∪ I(≥1): the bond-multiplicity of the first (resp., last)

edge of the pure path Pk in C;

- β∗F(c) ∈ [0, 3], c ∈ [1, cF = t̃C + tT]: the bond-multiplicity of the first edge of the leaf path Qc

rooted at vertex vCc, c ≤ t̃C or vTc−t̃C , c > t̃C in C;

- βX
ex(i) ∈ [0, 4], i ∈ [1, tX],X ∈ {C,T,F}: the sum βC[v](v) of bond-multiplicities of edges in the

ρ-fringe-tree C[v] rooted at interior-vertex v = vXi;

- δXβ (i,m) ∈ [0, 1], i ∈ [2, tX], m ∈ [0, 3], X ∈ {T,F}: δXβ (i,m) = 1 ⇔ βX(i) = m;

- δCβ (i,m) ∈ [0, 1], i ∈ [k̃C,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), m ∈ [0, 3]: δCβ (i,m) = 1 ⇔ βC(i) = m;

- δCT
β (k,m), δTC

β (k,m) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), m ∈ [0, 3]: δCT
β (k,m) = 1 (resp.,

δTC
β (k,m) = 1) ⇔ βCT(k) = m (resp., βTC(k) = m);

- δ∗Fβ (c,m) ∈ [0, 1], c ∈ [1, cF], m ∈ [0, 3],X ∈ {C,T}: δ∗Fβ (c,m) = 1 ⇔ β∗F(c) = m;

- bdint(m) ∈ [0, 2nint
UB], m ∈ [1, 3]: the number of interior-edges with bond-multiplicity m in C;

- bdX(m) ∈ [0, 2nint
UB],X ∈ {C,T,CT,TC}, bdX(m) ∈ [0, 2nint

UB],X ∈ {F,CF,TF}, m ∈ [1, 3]: the

number of interior-edges e ∈ EX with bond-multiplicity m in C;

constraints:

eC(i) ≤ βC(i) ≤ 3eC(i), i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), (43)

eX(i) ≤ βX(i) ≤ 3eX(i), i ∈ [2, tX],X ∈ {T,F}, (44)

δTχ (k) ≤ βCT(k) ≤ 3δTχ (k), δTχ (k) ≤ βTC(k) ≤ 3δTχ (k), k ∈ [1, kC], (45)

δFχ(c) ≤ βXF(c) ≤ 3δFχ(c), c ∈ [1, cF], (46)

∑
m∈[0,3]

δXβ (i,m) = 1,
∑

m∈[0,3]

m · δXβ (i,m) = βX(i), i ∈ [2, tX],X ∈ {T,F}, (47)

44



∑
m∈[0,3]

δCβ (i,m) = 1,
∑

m∈[0,3]

m · δCβ (i,m) = βC(i), i ∈ [k̃C + 1,mC], (48)

∑
m∈[0,3]

δCT
β (k,m) = 1,

∑
m∈[0,3]

m · δCT
β (k,m) = βCT(k), k ∈ [1, kC],∑

m∈[0,3]

δTC
β (k,m) = 1,

∑
m∈[0,3]

m · δTC
β (k,m) = βTC(k), k ∈ [1, kC],∑

m∈[0,3]

δ∗Fβ (c,m) = 1,
∑

m∈[0,3]

m · δ∗Fβ (c,m) = β∗F(c), c ∈ [1, cF], (49)

∑
ψ∈FX

i

βr([ψ]) · δXfr (i, [ψ]) = βX
ex(i), i ∈ [1, tX],X ∈ {C,T,F}, (50)

∑
i∈[k̃C+1,mC]

δCβ (i,m) = bdC(m),
∑

i∈[2,tT]

δTβ (i,m) = bdT(m),

∑
k∈[1,kC]

δCT
β (k,m) = bdCT(m),

∑
k∈[1,kC]

δTC
β (k,m) = bdTC(m),

∑
i∈[2,tF]

δFβ (i,m) = bdF(m),
∑

c∈[1,t̃C]

δ∗Fβ (c,m) = bdCF(m),

∑
c∈[t̃C+1,cF]

δ∗Fβ (c,m) = bdTF(m),

bdC(m) + bdT(m) + bdF(m) + bdCT(m) + bdTC(m) + bdTF(m) + bdCF(m) = bdint(m),

m ∈ [1, 3]. (51)

D.6 Assigning Chemical Elements and Valence Condition

We include constraints so that each vertex v in a selected graph H satisfies the valence condition;

i.e., βC(v) = val(α(v)) + eledegC(v), where eledegC(v) = vion(ψ) for the ρ-fringe-tree C[v] r-

isomorphic to ψ. With these constraints, a chemical graph C = (H,α, β) on a selected subgraph

H will be constructed.

constants:

- Subsets Λint ⊆ Λ \ {H},Λex ⊆ Λ of chemical elements, where we denote by [e] (resp., [e]int and

[e]ex) of a standard encoding of an element e in the set Λ (resp., Λint
ϵ and Λex

ϵ );

- A valence function: val : Λ → [1, 6];

- Subsets Λ∗(i) ⊆ Λint, i ∈ [1, tC];

45



- naLB(a), naUB(a) ∈ [0, n∗], a ∈ Λ: lower and upper bounds on the number of vertices v with

α(v) = a;

- naintLB(a), na
int
UB(a) ∈ [0, n∗], a ∈ Λint: lower and upper bounds on the number of interior-vertices

v with α(v) = a;

- αr([ψ]) ∈ [Λex],∈ F∗: the chemical element α(r) of the root r of ψ;

- naexa ([ψ]) ∈ [0, n∗], a ∈ Λex, ψ ∈ F∗: the frequency of chemical element a in the set of non-rooted

vertices in ψ, where possibly a = H;

- M: an upper bound for the average ms(C) of mass∗ over all atoms in C;

variables:

- βCT(i), βTC(i) ∈ [0, 3], i ∈ [1, tT]: the bond-multiplicity of edge eCT
j,i (resp., e

TC
j,i) if one exists;

- βCF(i), βTF(i) ∈ [0, 3], i ∈ [1, tF]: the bond-multiplicity of eCF
j,i (resp., e

TF
j,i) if one exists;

- αX(i) ∈ [Λint
ϵ ], δXα (i, [a]

int) ∈ [0, 1], a ∈ Λint
ϵ , i ∈ [1, tX],X ∈ {C,T,F}: αX(i) = [a]int ≥ 1 (resp.,

αX(i) = 0) ⇔ δXα (i, [a]
int) = 1 (resp., δXα (i, 0) = 0) ⇔ α(vXi) = a ∈ Λ (resp., vertex vXi is not

used in C);

- δXα (i, [a]
int) ∈ [0, 1], i ∈ [1, tX], a ∈ Λint,X ∈ {C,T,F}: δXα (i, [a]t) = 1 ⇔ α(vXi) = a;

- na([a]) ∈ [naLB(a), naUB(a)], a ∈ Λ: the number of vertices v ∈ V (H) with α(v) = a, where

possibly a = H;

- naint([a]int) ∈ [naintLB(a), na
int
UB(a)], a ∈ Λ,X ∈ {C,T,F}: the number of interior-vertices v ∈ V (C)

with α(v) = a;

- naexX ([a]ex), naex([a]ex) ∈ [0, naUB(a)], a ∈ Λ, X ∈ {C,T,F}: the number of exterior-vertices

rooted at vertices v ∈ VX and the number of exterior-vertices v such that α(v) = a;

constraints:

βCT(k)− 3(eT(i)− χT(i, k) + 1) ≤ βCT(i) ≤ βCT(k) + 3(eT(i)− χT(i, k) + 1), i ∈ [1, tT],

βTC(k)− 3(eT(i+ 1)− χT(i, k) + 1) ≤ βTC(i) ≤ βTC(k) + 3(eT(i+ 1)− χT(i, k) + 1), i ∈ [1, tT],

k ∈ [1, kC],

(52)

β∗F(c)− 3(eF(i)− χF(i, c) + 1) ≤ βCF(i) ≤ β∗F(c) + 3(eF(i)− χF(i, c) + 1), i ∈ [1, tF], c ∈ [1, t̃C],

β∗F(c)− 3(eF(i)− χF(i, c) + 1) ≤ βTF(i) ≤ β∗F(c) + 3(eF(i)− χF(i, c) + 1), i ∈ [1, tF], c ∈ [t̃C + 1, cF],

(53)

46



∑
a∈Λint

δCα (i, [a]
int) = 1,

∑
a∈Λint

[a]int · δXα (i, [a]int) = αC(i), i ∈ [1, tC],∑
a∈Λint

δXα (i, [a]
int) = vX(i),

∑
a∈Λint

[a]int · δXα (i, [a]int) = αX(i), i ∈ [1, tX],X ∈ {T,F}, (54)

∑
ψ∈FX

i

αr([ψ]) · δXfr (i, [ψ]) = αX(i), i ∈ [1, tX],X ∈ {C,T,F}, (55)

∑
j∈IC(i)

βC(j) +
∑

k∈I+
(≥2)

(i)∪I+
(≥1)

(i)

βCT(k) +
∑

k∈I−
(≥2)

(i)∪I−
(≥1)

(i)

βTC(k)

+β∗F(i) + βC
ex(i)− eledegC(i) =

∑
a∈Λint

val(a)δCα (i, [a]
int), i ∈ [1, t̃C], (56)

∑
j∈IC(i)

βC(j) +
∑

k∈I+
(≥2)

(i)∪I+
(≥1)

(i)

βCT(k) +
∑

k∈I−
(≥2)

(i)∪I−
(≥1)

(i)

βTC(k)

+βC
ex(i)− eledegC(i) =

∑
a∈Λint

val(a)δCα (i, [a]
int), i ∈ [t̃C + 1, tC], (57)

βT(i) + βT(i+1) + βT
ex(i) + βCT(i) + βTC(i)

+β∗F(t̃C + i)− eledegT(i) =
∑
a∈Λint

val(a)δTα (i, [a]
int),

i ∈ [1, tT] (β
T(1) = βT(tT + 1) = 0), (58)

βF(i) + βF(i+1) + βCF(i) + βTF(i)

+βF
ex(i)− eledegF(i) =

∑
a∈Λint

val(a)δFα(i, [a]
int),

i ∈ [1, tF] (β
F(1) = βF(tF + 1) = 0), (59)

∑
i∈[1,tX]

δXα (i, [a]
int) = naX([a]

int), a ∈ Λint,X ∈ {C,T,F}, (60)

∑
ψ∈FX

i ,i∈[1,tX]

naexa ([ψ]) · δXfr (i, [ψ]) = naexX ([a]ex), a ∈ Λex,X ∈ {C,T,F}, (61)

47



naC([a]
int) + naT([a]

int) + naF([a]
int) = naint([a]int), a ∈ Λint,∑

X∈{C,T,F}

naexX ([a]ex) = naex([a]ex), a ∈ Λex,

naint([a]int) + naex([a]ex) = na([a]), a ∈ Λint ∩ Λex,

naint([a]int) = na([a]), a ∈ Λint \ Λex,

naex([a]ex) = na([a]), a ∈ Λex \ Λint, (62)

∑
a∈Λ∗(i)

δCα (i, [a]
int) = 1, i ∈ [1, tC]. (63)

D.7 Constraints for Bounds on the Number of Bonds

We include constraints for specification of lower and upper bounds bdLB and bdUB.

constants:

- bdm,LB(i), bdm,UB(i) ∈ [0, nint
UB], i ∈ [1,mC], m ∈ [2, 3]: lower and upper bounds on the number

of edges e ∈ E(Pi) with bond-multiplicity β(e) = m in the pure path Pi for edge ei ∈ EC;

variables :

- bdT(k, i,m) ∈ [0, 1], k ∈ [1, kC], i ∈ [2, tT], m ∈ [2, 3]: bdT(k, i,m) = 1 ⇔ the pure path Pk for

edge ek ∈ EC contains edge eTi with β(e
T
i) = m;

constraints:

bdm,LB(i) ≤ δCβ (i,m) ≤ bdm,UB(i), i ∈ I(=1) ∪ I(0/1),m ∈ [2, 3], (64)

bdT(k, i,m) ≥ δTβ (i,m) + χT(i, k)− 1, k ∈ [1, kC], i ∈ [2, tT],m ∈ [2, 3], (65)

∑
j∈[2,tT]

δTβ (j,m) ≥
∑

k∈[1,kC],i∈[2,tT]

bdT(k, i,m), m ∈ [2, 3], (66)

bdm,LB(k) ≤
∑

i∈[2,tT]

bdT(k, i,m) + δCT
β (k,m) + δTC

β (k,m) ≤ bdm,UB(k),

k ∈ [1, kC],m ∈ [2, 3]. (67)

48



D.8 Descriptor for the Number of Adjacency-configurations

We call a tuple (a, b,m) ∈ (Λ\{H})× (Λ\{H})× [1, 3] an adjacency-configuration. The adjacency-

configuration of an edge-configuration (µ = ad, µ′ = bd′,m) is defined to be (a, b,m). We include

constraints to compute the frequency of each adjacency-configuration in an inferred chemical graph

C.
constants:

- A set Γint of edge-configurations γ = (µ, µ′,m) with µ ≤ µ′;

- Let γ of an edge-configuration γ = (µ, µ′,m) denote the edge-configuration (µ′, µ,m);

- Let Γint
< = {(µ, µ′,m) ∈ Γint | µ < µ′}, Γint

= = {(µ, µ′,m) ∈ Γint | µ = µ′} and Γint
> = {γ | γ ∈

Γint
< };

- Let Γint
ac,<, Γ

int
ac,= and Γint

ac,> denote the sets of the adjacency-configurations of edge-configurations

in the sets Γint
< , Γint

= and Γint
> , respectively;

- Let ν of an adjacency-configuration ν = (a, b,m) denote the adjacency-configuration (b, a,m);

- Prepare a coding of the set Γint
ac ∪ Γint

ac,> and let [ν]int denote the coded integer of an element ν

in Γint
ac ∪ Γint

ac,>;

- Choose subsets Γ̃C
ac, Γ̃

T
ac, Γ̃

CT
ac , Γ̃

TC
ac , Γ̃

F
ac, Γ̃

CF
ac , Γ̃

TF
ac ⊆ Γint

ac ∪ Γint
ac,>; To compute the frequency of

adjacency-configurations exactly, set Γ̃C
ac := Γ̃T

ac := Γ̃CT
ac := Γ̃TC

ac := Γ̃F
ac := Γ̃CF

ac := Γ̃TF
ac :=

Γint
ac ∪ Γint

ac,>;

- acintLB(ν), ac
int
UB(ν) ∈ [0, 2nint

UB], ν = (a, b,m) ∈ Γint
ac : lower and upper bounds on the number of

interior-edges e = uv with α(u) = a, α(v) = b and β(e) = m;

variables:

- acint([ν]int) ∈ [acintLB(ν), ac
int
UB(ν)], ν ∈ Γint

ac : the number of interior-edges with adjacency-configuration

ν;

- acC([ν]
int) ∈ [0,mC], ν ∈ Γ̃C

ac, acT([ν]
int) ∈ [0, tT], ν ∈ Γ̃T

ac, acF([ν]
int) ∈ [0, tF], ν ∈ Γ̃F

ac: the

number of edges eC ∈ EC (resp., edges eT ∈ ET and edges eF ∈ EF) with adjacency-configuration

ν;

- acCT([ν]
int) ∈ [0,min{kC, tT}], ν ∈ Γ̃CT

ac , acTC([ν]
int) ∈ [0,min{kC, tT}], ν ∈ Γ̃CT

ac , acCF([ν]
int) ∈

[0, t̃C], ν ∈ Γ̃CF
ac , acTF([ν]

int) ∈ [0, tT], ν ∈ Γ̃TF
ac : the number of edges eCT ∈ ECT (resp., edges

eTC ∈ ETC and edges eCF ∈ ECF and eTF ∈ ETF) with adjacency-configuration ν;

- δCac(i, [ν]
int) ∈ [0, 1], i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), ν ∈ Γ̃C

ac, δ
T
ac(i, [ν]

int) ∈ [0, 1], i ∈
[2, tT], ν ∈ Γ̃T

ac, δ
F
ac(i, [ν]

int) ∈ [0, 1], i ∈ [2, tF], ν ∈ Γ̃F
ac: δXac(i, [ν]

int) = 1 ⇔ edge eXi has

adjacency-configuration ν;

49



- δCT
ac (k, [ν]int), δTC

ac (k, [ν]int) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), ν ∈ Γ̃CT
ac : δCT

ac (k, [ν]int) = 1 (resp.,

δTC
ac (k, [ν]int) = 1) ⇔ edge eCT

tail(k),j (resp., eTC
head(k),j) for some j ∈ [1, tT] has adjacency-

configuration ν;

- δCF
ac (c, [ν]

int) ∈ [0, 1], c ∈ [1, t̃C], ν ∈ Γ̃CF
ac : δ

CF
ac (c, [ν]

int) = 1 ⇔ edge eCF
c,i for some i ∈ [1, tF] has

adjacency-configuration ν;

- δTF
ac (i, [ν]

int) ∈ [0, 1], i ∈ [1, tT], ν ∈ Γ̃TF
ac : δ

TF
ac (i, [ν]

int) = 1 ⇔ edge eTF
i,j for some j ∈ [1, tF] has

adjacency-configuration ν;

- αCT(k), αTC(k) ∈ [0, |Λint|], k ∈ [1, kC]: α(v) of the edge (v
C
tail(k), v) ∈ ECT (resp., (v, vChead(k)) ∈

ETC) if any;

- αCF(c) ∈ [0, |Λint|], c ∈ [1, t̃C]: α(v) of the edge (vCc, v) ∈ ECF if any;

- αTF(i) ∈ [0, |Λint|], i ∈ [1, tT]: α(v) of the edge (vTi, v) ∈ ETF if any;

- ∆C+
ac (i),∆C−

ac (i),∈ [0, |Λint|], i ∈ [k̃C+1,mC], ∆
T+
ac (i),∆T−

ac (i) ∈ [0, |Λint|], i ∈ [2, tT], ∆
F+
ac (i),∆

F−
ac (i) ∈

[0, |Λint|], i ∈ [2, tF]: ∆X+
ac (i) = ∆X−

ac (i) = 0 (resp., ∆X+
ac (i) = α(u) and ∆X−

ac (i) = α(v)) ⇔ edge

eXi = (u, v) ∈ EX is used in C (resp., eXi ̸∈ E(G));

- ∆CT+
ac (k),∆CT−

ac (k) ∈ [0, |Λint|], k ∈ [1, kC] = I(≥2) ∪ I(≥1): ∆CT+
ac (k) = ∆CT−

ac (k) = 0 (resp.,

∆CT+
ac (k) = α(u) and ∆CT−

ac (k) = α(v)) ⇔ edge eCT
tail(k),j = (u, v) ∈ ECT for some j ∈ [1, tT] is

used in C (resp., otherwise);

- ∆TC+
ac (k),∆TC−

ac (k) ∈ [0, |Λint|], k ∈ [1, kC] = I(≥2) ∪ I(≥1): Analogous with ∆CT+
ac (k) and

∆CT−
ac (k);

- ∆CF+
ac (c) ∈ [0, |Λint|],∆CF−

ac (c) ∈ [0, |Λint|], c ∈ [1, t̃C]: ∆
CF+
ac (c) = ∆CF−

ac (c) = 0 (resp., ∆CF+
ac (c) =

α(u) and ∆CF−
ac (c) = α(v)) ⇔ edge eCF

c,i = (u, v) ∈ ECF for some i ∈ [1, tF] is used in C (resp.,

otherwise);

- ∆TF+
ac (i) ∈ [0, |Λint|],∆TF−

ac (i) ∈ [0, |Λint|], i ∈ [1, tT]: Analogous with ∆CF+
ac (c) and ∆CF−

ac (c);

constraints:

acC([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃C
ac,

acT([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃T
ac,

acF([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃F
ac,

acCT([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃CT
ac ,

acTC([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃TC
ac ,

acCF([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃CF
ac ,

acTF([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃TF
ac ,

(68)

50



∑
(a,b,m)=ν∈Γint

ac

acC([ν]
int) =

∑
i∈[k̃C+1,mC]

δCβ (i,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acT([ν]
int) =

∑
i∈[2,tT]

δTβ (i,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acF([ν]
int) =

∑
i∈[2,tF]

δFβ (i,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acCT([ν]
int) =

∑
k∈[1,kC]

δCT
β (k,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acTC([ν]
int) =

∑
k∈[1,kC]

δTC
β (k,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acCF([ν]
int) =

∑
c∈[1,t̃C]

δ∗Fβ (c,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acTF([ν]
int) =

∑
c∈[t̃C+1,cF]

δ∗Fβ (c,m), m ∈ [1, 3],

(69)

∑
ν=(a,b,m)∈Γ̃C

ac

m · δCac(i, [ν]int) = βC(i),

∆C+
ac (i) +

∑
ν=(a,b,m)∈Γ̃C

ac

[a]intδCac(i, [ν]
int) = αC(tail(i)),

∆C−
ac (i) +

∑
ν=(a,b,m)∈Γ̃C

ac

[b]intδCac(i, [ν]
int) = αC(head(i)),

∆C+
ac (i) + ∆C−

ac (i) ≤ 2|Λint|(1− eC(i)), i ∈ [k̃C + 1,mC],∑
i∈[k̃C+1,mC]

δCac(i, [ν]
int) = acC([ν]

int), ν ∈ Γ̃C
ac, (70)

∑
ν=(a,b,m)∈Γ̃T

ac

m · δTac(i, [ν]int) = βT(i),

∆T+
ac (i) +

∑
ν=(a,b,m)∈Γ̃T

ac

[a]intδTac(i, [ν]
int) = αT(i− 1),

∆T−
ac (i) +

∑
ν=(a,b,m)∈Γ̃T

ac

[b]intδTac(i, [ν]
int) = αT(i),

∆T+
ac (i) + ∆T−

ac (i) ≤ 2|Λint|(1− eT(i)), i ∈ [2, tT],∑
i∈[2,tT]

δTac(i, [ν]
int) = acT([ν]

int), ν ∈ Γ̃T
ac, (71)

51



∑
ν=(a,b,m)∈Γ̃F

ac

m · δFac(i, [ν]int) = βF(i),

∆F+
ac (i) +

∑
ν=(a,b,m)∈Γ̃F

ac

[a]intδFac(i, [ν]
int) = αF(i− 1),

∆F−
ac (i) +

∑
ν=(a,b,m)∈Γ̃F

ac

[b]intδFac(i, [ν]
int) = αF(i),

∆F+
ac (i) + ∆F−

ac (i) ≤ 2|Λex|(1− eF(i)), i ∈ [2, tF],∑
i∈[2,tF]

δFac(i, [ν]
int) = acF([ν]

int), ν ∈ Γ̃F
ac, (72)

αT(i) + |Λint|(1− χT(i, k) + eT(i)) ≥ αCT(k),

αCT(k) ≥ αT(i)− |Λint|(1− χT(i, k) + eT(i)), i ∈ [1, tT],∑
ν=(a,b,m)∈Γ̃CT

ac

m · δCT
ac (k, [ν]int) = βCT(k),

∆CT+
ac (k) +

∑
ν=(a,b,m)∈Γ̃CT

ac

[a]intδCT
ac (k, [ν]int) = αC(tail(k)),

∆CT−
ac (k) +

∑
ν=(a,b,m)∈Γ̃CT

ac

[b]intδCT
ac (k, [ν]int) = αCT(k),

∆CT+
ac (k) + ∆CT−

ac (k) ≤ 2|Λint|(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δCT
ac (k, [ν]int) = acCT([ν]

int), ν ∈ Γ̃CT
ac , (73)

αT(i) + |Λint|(1− χT(i, k) + eT(i+ 1)) ≥ αTC(k),

αTC(k) ≥ αT(i)− |Λint|(1− χT(i, k) + eT(i+ 1)), i ∈ [1, tT],∑
ν=(a,b,m)∈Γ̃TC

ac

m · δTC
ac (k, [ν]int) = βTC(k),

∆TC+
ac (k) +

∑
ν=(a,b,m)∈Γ̃TC

ac

[a]intδTC
ac (k, [ν]int) = αTC(k),

∆TC−
ac (k) +

∑
ν=(a,b,m)∈Γ̃TC

ac

[b]intδTC
ac (k, [ν]int) = αC(head(k)),

∆TC+
ac (k) + ∆TC−

ac (k) ≤ 2|Λint|(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δTC
ac (k, [ν]int) = acTC([ν]

int), ν ∈ Γ̃TC
ac , (74)

52



αF(i) + |Λint|(1− χF(i, c) + eF(i)) ≥ αCF(c),

αCF(c) ≥ αF(i)− |Λint|(1− χF(i, c) + eF(i)), i ∈ [1, tF],∑
ν=(a,b,m)∈Γ̃CF

ac

m · δCF
ac (c, [ν]

int) = β∗F(c),

∆CF+
ac (c) +

∑
ν=(a,b,m)∈Γ̃CF

ac

[a]intδCF
ac (c, [ν]

int) = αC(head(c)),

∆CF−
ac (c) +

∑
ν=(a,b,m)∈Γ̃CF

ac

[b]intδCF
ac (c, [ν]

int) = αCF(c),

∆CF+
ac (c) + ∆CF−

ac (c) ≤ 2max{|Λint|, |Λint|}(1− δFχ(c)), c ∈ [1, t̃C],∑
c∈[1,t̃C]

δCF
ac (c, [ν]

int) = acCF([ν]
int), ν ∈ Γ̃CF

ac , (75)

αF(j) + |Λint|(1− χF(j, i+ t̃C) + eF(j)) ≥ αTF(i),

αTF(i) ≥ αF(j)− |Λint|(1− χF(j, i+ t̃C) + eF(j)), j ∈ [1, tF],∑
ν=(a,b,m)∈Γ̃TF

ac

m · δTF
ac (i, [ν]

int) = β∗F(i+ t̃C),

∆TF+
ac (i) +

∑
ν=(a,b,m)∈Γ̃TF

ac

[a]intδTF
ac (i, [ν]

int) = αT(i),

∆TF−
ac (i) +

∑
ν=(a,b,m)∈Γ̃TF

ac

[b]intδTF
ac (i, [ν]

int) = αTF(i),

∆TF+
ac (i) + ∆TF−

ac (i) ≤ 2max{|Λint|, |Λint|}(1− δFχ(i+ t̃C)), i ∈ [1, tT],∑
i∈[1,tT]

δTF
ac (i, [ν]

int) = acTF([ν]
int), ν ∈ Γ̃TF

ac , (76)

∑
X∈{C,T,F,CT,TC,CF,TF}

(acX([ν]
int) + acX([ν]

int)) = acint([ν]int), ν ∈ Γint
ac,<,∑

X∈{C,T,F,CT,TC,CF,TF}

acX([ν]
int) = acint([ν]int), ν ∈ Γint

ac,=. (77)

D.9 Descriptor for the Number of Chemical Symbols

We include constraints for computing the frequency of each chemical symbol in Λdg. Let cs(v)

denote the chemical symbol of an interior-vertex v in a chemical graph C to be inferred; i.e.,

cs(v) = µ = ad ∈ Λdg such that α(v) = a and deg⟨C⟩(v) = degH(v)−deghydC (v) = d in C = (H,α, β).

constants:

- A set Λint
dg of chemical symbols;

53



- Prepare a coding of each of the two sets Λint
dg and let [µ]int denote the coded integer of an element

µ ∈ Λint
dg ;

- Choose subsets Λ̃C
dg, Λ̃

T
dg, Λ̃

F
dg ⊆ Λint

dg : To compute the frequency of chemical symbols exactly, set

Λ̃C
dg := Λ̃T

dg := Λ̃F
dg := Λint

dg ;

variables:

- nsint([µ]int) ∈ [0, nint
UB], µ ∈ Λint

dg : the number of interior-vertices v with cs(v) = µ;

- δXns(i, [µ]
int) ∈ [0, 1], i ∈ [1, tX], µ ∈ Λint

dg , X ∈ {C,T,F};

constraints: ∑
µ∈Λ̃X

dg∪{ϵ}

δXns(i, [µ]
int) = 1,

∑
µ=ad∈Λ̃X

dg

[a]int · δXns(i, [µ]int) = αX(i),

∑
µ=ad∈Λ̃X

dg

d · δXns(i, [µ]int) = degX(i),

i ∈ [1, tX],X ∈ {C,T,F}, (78)

∑
i∈[1,tC]

δCns(i, [µ]
int) +

∑
i∈[1,tT]

δTns(i, [µ]
int) +

∑
i∈[1,tF]

δFns(i, [µ]
int) = nsint([µ]int), µ ∈ Λint

dg . (79)

D.10 Descriptor for the Number of Edge-configurations

We include constraints to compute the frequency of each edge-configuration in an inferred chemical

graph C.
constants:

- A set Γint of edge-configurations γ = (µ, µ′,m) with µ ≤ µ′;

- Let Γint
< = {(µ, µ′,m) ∈ Γint | µ < µ′}, Γint

= = {(µ, µ′,m) ∈ Γint | µ = µ′} and Γint
> = {(µ′, µ,m) |

(µ, µ′,m) ∈ Γint
< };

- Prepare a coding of the set Γint ∪ Γint
> and let [γ]int denote the coded integer of an element γ in

Γint ∪ Γint
> ;

- Choose subsets Γ̃C
ec, Γ̃

T
ec, Γ̃

CT
ec , Γ̃

TC
ec , Γ̃

F
ec, Γ̃

CF
ec , Γ̃

TF
ec ⊆ Γint ∪Γint

> ; To compute the frequency of edge-

configurations exactly, set Γ̃C
ec := Γ̃T

ec := Γ̃CT
ec := Γ̃TC

ec := Γ̃F
ec := Γ̃CF

ec := Γ̃TF
ec := Γint ∪ Γint

> ;

- ecintLB(γ), ec
int
UB(γ) ∈ [0, 2nint

UB], γ = (µ, µ′,m) ∈ Γint: lower and upper bounds on the number of

interior-edges e = uv with cs(u) = µ, cs(v) = µ′ and β(e) = m;

variables:

54



- ecint([γ]int) ∈ [ecintLB(γ), ec
int
UB(γ)], γ ∈ Γint: the number of interior-edges with edge-configuration

γ;

- ecC([γ]
int) ∈ [0,mC], γ ∈ Γ̃C

ec, ecT([γ]
int) ∈ [0, tT], γ ∈ Γ̃T

ec, ecF([γ]
int) ∈ [0, tF], γ ∈ Γ̃F

ec: the

number of edges eC ∈ EC (resp., edges eT ∈ ET and edges eF ∈ EF) with edge-configuration γ;

- ecCT([γ]
int) ∈ [0,min{kC, tT}], γ ∈ Γ̃CT

ec , ecTC([γ]
int) ∈ [0,min{kC, tT}], γ ∈ Γ̃CT

ec , ecCF([γ]
int) ∈

[0, t̃C], γ ∈ Γ̃CF
ec , ecTF([γ]

int) ∈ [0, tT], γ ∈ Γ̃TF
ec : the number of edges eCT ∈ ECT (resp., edges

eTC ∈ ETC and edges eCF ∈ ECF and eTF ∈ ETF) with edge-configuration γ;

- δCec(i, [γ]
int) ∈ [0, 1], i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), γ ∈ Γ̃C

ec, δ
T
ec(i, [γ]

int) ∈ [0, 1], i ∈
[2, tT], γ ∈ Γ̃T

ec, δ
F
ec(i, [γ]

int) ∈ [0, 1], i ∈ [2, tF], γ ∈ Γ̃F
ec: δ

X
ec(i, [γ]

t) = 1 ⇔ edge eXi has edge-

configuration γ;

- δCT
ec,C(k, [γ]

int), δTC
ec,C(k, [γ]

int) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), γ ∈ Γ̃CT
ec : δCT

ec,C(k, [γ]
int) = 1

(resp., δTC
ec,C(k, [γ]

int) = 1) ⇔ edge eCT
tail(k),j (resp., eTC

head(k),j) for some j ∈ [1, tT] has edge-

configuration γ;

- δCF
ec,C(c, [γ]

int) ∈ [0, 1], c ∈ [1, t̃C], γ ∈ Γ̃CF
ec : δ

CF
ec,C(c, [γ]

int) = 1 ⇔ edge eCF
c,i for some i ∈ [1, tF]

has edge-configuration γ;

- δTF
ec,T(i, [γ]

int) ∈ [0, 1], i ∈ [1, tT], γ ∈ Γ̃TF
ec : δ

TF
ec,T(i, [γ]

int) = 1 ⇔ edge eTF
i,j for some j ∈ [1, tF]

has edge-configuration γ;

- degCT
T (k), degTC

T (k) ∈ [0, 4], k ∈ [1, kC]: deg⟨C⟩(v) of an end-vertex v ∈ VT of the edge (vCtail(k), v) ∈
ECT (resp., (v, vChead(k)) ∈ ETC) if any;

- degCF
F (c) ∈ [0, 4], c ∈ [1, t̃C]: deg⟨C⟩(v) of an end-vertex v ∈ VF of the edge (vCc, v) ∈ ECF if any;

- degTF
F (i) ∈ [0, 4], i ∈ [1, tT]: deg⟨C⟩(v) of an end-vertex v ∈ VF of the edge (vTi, v) ∈ ETF if any;

- ∆C+
ec (i),∆C−

ec (i),∈ [0, 4], i ∈ [k̃C + 1,mC], ∆
T+
ec (i),∆T−

ec (i) ∈ [0, 4], i ∈ [2, tT], ∆
F+
ec (i),∆F−

ec (i) ∈
[0, 4], i ∈ [2, tF]: ∆X+

ec (i) = ∆X−
ec (i) = 0 (resp., ∆X+

ec (i) = deg⟨C⟩(u) and ∆X−
ec (i) = deg⟨C⟩(v)) ⇔

edge eXi = (u, v) ∈ EX is used in ⟨C⟩ (resp., eXi ̸∈ E(⟨C⟩));

- ∆CT+
ec (k),∆CT−

ec (k) ∈ [0, 4], k ∈ [1, kC] = I(≥2) ∪ I(≥1): ∆CT+
ec (k) = ∆CT−

ec (k) = 0 (resp.,

∆CT+
ec (k) = deg⟨C⟩(u) and ∆CT−

ec (k) = deg⟨C⟩(v)) ⇔ edge eCT
tail(k),j = (u, v) ∈ ECT for some

j ∈ [1, tT] is used in ⟨C⟩ (resp., otherwise);

- ∆TC+
ec (k),∆TC−

ec (k) ∈ [0, 4], k ∈ [1, kC] = I(≥2) ∪ I(≥1): Analogous with ∆CT+
ec (k) and ∆CT−

ec (k);

- ∆CF+
ac (c),∆CF−

ec (c) ∈ [0, 4], c ∈ [1, t̃C]: ∆
CF+
ec (c) = ∆CF−

ec (c) = 0 (resp., ∆CF+
ec (c) = deg⟨C⟩(u) and

∆CF−
ec (c) = deg⟨C⟩(v)) ⇔ edge eCF

c,j = (u, v) ∈ ECF for some j ∈ [1, tF] is used in ⟨C⟩ (resp.,

otherwise);

- ∆TF+
ec (i),∆TF−

ec (i) ∈ [0, 4], i ∈ [1, tT]: Analogous with ∆CF+
ec (c) and ∆CF−

ec (c);

55



constraints:

ecC([γ]
int) = 0, γ ∈ Γint \ Γ̃C

ec,

ecT([γ]
int) = 0, γ ∈ Γint \ Γ̃T

ec,

ecF([γ]
int) = 0, γ ∈ Γint \ Γ̃F

ec,

ecCT([γ]
int) = 0, γ ∈ Γint \ Γ̃CT

ec ,

ecTC([γ]
int) = 0, γ ∈ Γint \ Γ̃TC

ec ,

ecCF([γ]
int) = 0, γ ∈ Γint \ Γ̃CF

ec ,

ecTF([γ]
int) = 0, γ ∈ Γint \ Γ̃TF

ec ,

(80)

∑
(µ,µ′,m)=γ∈Γint

ecC([γ]
int) =

∑
i∈[k̃C+1,mC]

δCβ (i,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecT([γ]
int) =

∑
i∈[2,tT]

δTβ (i,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecF([γ]
int) =

∑
i∈[2,tF]

δFβ (i,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecCT([γ]
int) =

∑
k∈[1,kC]

δCT
β (k,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecTC([γ]
int) =

∑
k∈[1,kC]

δTC
β (k,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecCF([γ]
int) =

∑
c∈[1,t̃C]

δ∗Fβ (c,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecTF([γ]
int) =

∑
c∈[t̃C+1,cF]

δ∗Fβ (c,m), m ∈ [1, 3],

(81)

∑
γ=(ad,bd′,m)∈Γ̃C

ec

[(a, b,m)]int · δCec(i, [γ]int) =
∑
ν∈Γ̃C

ac

[ν]int · δCac(i, [ν]int),

∆C+
ec (i) +

∑
γ=(ad,µ′,m)∈Γ̃C

ec

d · δCec(i, [γ]int) = degC(tail(i)),

∆C−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃C

ec

d · δCec(i, [γ]int) = degC(head(i)),

∆C+
ec (i) + ∆C−

ec (i) ≤ 8(1− eC(i)), i ∈ [k̃C + 1,mC],∑
i∈[k̃C+1,mC]

δCec(i, [γ]
int) = ecC([γ]

int), γ ∈ Γ̃C
ec, (82)

56



∑
γ=(ad,bd′,m)∈Γ̃T

ec

[(a, b,m)]int · δTec(i, [γ]int) =
∑
ν∈Γ̃T

ac

[ν]int · δTac(i, [ν]int),

∆T+
ec (i) +

∑
γ=(ad,µ′,m)∈Γ̃T

ec

d · δTec(i, [γ]int) = degT(i− 1),

∆T−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃T

ec

d · δTec(i, [γ]int) = degT(i),

∆T+
ec (i) + ∆T−

ec (i) ≤ 8(1− eT(i)), i ∈ [2, tT],∑
i∈[2,tT]

δTec(i, [γ]
int) = ecT([γ]

int), γ ∈ Γ̃T
ec, (83)

∑
γ=(ad,bd′,m)∈Γ̃F

ec

[(a, b,m)]int · δFec(i, [γ]int) =
∑
ν∈Γ̃F

ac

[ν]int · δFac(i, [ν]int),

∆F+
ec (i) +

∑
γ=(ad,µ′,m)∈Γ̃F

ec

d · δFec(i, [γ]int) = degF(i− 1),

∆F−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃F

ec

d · δFec(i, [γ]int) = degF(i, 0),

∆F+
ec (i) + ∆F−

ec (i) ≤ 8(1− eF(i)), i ∈ [2, tF],∑
i∈[2,tF]

δFec(i, [γ]
int) = ecF([γ]

int), γ ∈ Γ̃F
ec, (84)

degT(i) + 4(1− χT(i, k) + eT(i)) ≥ degCT
T (k),

degCT
T (k) ≥ degT(i)− 4(1− χT(i, k) + eT(i)), i ∈ [1, tT],∑

γ=(ad,bd′,m)∈Γ̃CT
ec

[(a, b,m)]int · δCT
ec,C(k, [γ]

int) =
∑
ν∈Γ̃CT

ac

[ν]int · δCT
ac (k, [ν]int),

∆CT+
ec (k) +

∑
γ=(ad,µ′,m)∈Γ̃CT

ec

d · δCT
ec,C(k, [γ]

int) = degC(tail(k)),

∆CT−
ec (k) +

∑
γ=(µ,bd,m)∈Γ̃CT

ec

d · δCT
ec,C(k, [γ]

int) = degCT
T (k),

∆CT+
ec (k) + ∆CT−

ec (k) ≤ 8(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δCT
ec,C(k, [γ]

int) = ecCT([γ]
int), γ ∈ Γ̃CT

ec , (85)

57



degT(i) + 4(1− χT(i, k) + eT(i+ 1)) ≥ degTC
T (k),

degTC
T (k) ≥ degT(i)− 4(1− χT(i, k) + eT(i+ 1)), i ∈ [1, tT],∑

γ=(ad,bd′,m)∈Γ̃TC
ec

[(a, b,m)]int · δTC
ec,C(k, [γ]

int) =
∑
ν∈Γ̃TC

ac

[ν]int · δTC
ac (k, [ν]int),

∆TC+
ec (k) +

∑
γ=(ad,µ′,m)∈Γ̃TC

ec

d · δTC
ec,C(k, [γ]

int) = degTC
T (k),

∆TC−
ec (k) +

∑
γ=(µ,bd,m)∈Γ̃TC

ec

d · δTC
ec,C(k, [γ]

int) = degC(head(k)),

∆TC+
ec (k) + ∆TC−

ec (k) ≤ 8(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δTC
ec,C(k, [γ]

int) = ecTC([γ]
int), γ ∈ Γ̃TC

ec , (86)

degF(i) + 4(1− χF(i, c) + eF(i)) ≥ degCF
F (c),

degCF
F (c) ≥ degF(i)− 4(1− χF(i, c) + eF(i)), i ∈ [1, tF],∑

γ=(ad,bd′,m)∈Γ̃CF
ec

[(a, b,m)]int · δCF
ec,C(c, [γ]

int) =
∑
ν∈Γ̃CF

ac

[ν]int · δCF
ac (c, [ν]

int),

∆CF+
ec (c) +

∑
γ=(ad,µ′,m)∈Γ̃CF

ec

d · δCF
ec,C(c, [γ]

int) = degC(c),

∆CF−
ec (c) +

∑
γ=(µ,bd,m)∈Γ̃CF

ec

d · δCF
ec,C(c, [γ]

int) = degCF
F (c),

∆CF+
ec (c) + ∆CF−

ec (c) ≤ 8(1− δFχ(c)), c ∈ [1, t̃C],∑
c∈[1,t̃C]

δCF
ec,C(c, [γ]

int) = ecCF([γ]
int), γ ∈ Γ̃CF

ec , (87)

degF(j) + 4(1− χF(j, i+ t̃C) + eF(j)) ≥ degTF
F (i),

degTF
F (i) ≥ degF(j)− 4(1− χF(j, i+ t̃C) + eF(j)), j ∈ [1, tF],∑

γ=(ad,bd′,m)∈Γ̃TF
ec

[(a, b,m)]int · δTF
ec,T(i, [γ]

int) =
∑
ν∈Γ̃TF

ac

[ν]int · δTF
ac (i, [ν]

int),

∆TF+
ec (i) +

∑
γ=(ad,µ′,m)∈Γ̃TF

ec

d · δTF
ec,T(i, [γ]

int) = degT(i),

∆TF−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃TF

ec

d · δTF
ec,T(i, [γ]

int) = degTF
F (i),

∆TF+
ec (i) + ∆TF−

ec (i) ≤ 8(1− δFχ(i+ t̃C)), i ∈ [1, tT],∑
i∈[1,tT]

δTF
ec,T(i, [γ]

int) = ecTF([γ]
int), γ ∈ Γ̃TF

ec , (88)

58



∑
X∈{C,T,F,CT,TC,CF,TF}

(ecX([γ]
int) + ecX([γ]

int)) = ecint([γ]int), γ ∈ Γint
< ,∑

X∈{C,T,F,CT,TC,CF,TF}

ecX([γ]
int) = ecint([γ]int), γ ∈ Γint

= . (89)

D.11 Constraints for Prediction Functions

This section introduces an MILP that simulates the computation process of a prediction function

constructed with elastic linear regression.

Let x = (x(1), x(2), . . . , x(K)) ∈ RK denote the feature function f(C) of a chemical graph C.
Let cmin(j) (resp., cmax(j)) denote the minimum (resp., maximum) values of the j-th descriptor in

a data set Dπ for a chemical property π. Let atmLB ∈ Z+ (resp., atmUB ∈ Z+) be a lower bound

(resp., an upper bound) on the number of atoms in a chemical graph C to be inferred. Let mass(a)

denote the observed mass of a chemical element a ∈ Λ, and define mass∗(a) ≜ ⌊10 · mass(a)⌋.
Let MsLB ∈ Z+ (resp., MsUB ∈ Z+) be a lower bound (resp., an upper bound) on the sum

1
|V (H)|

∑
v∈V (H) mass∗(α(v)) in a chemical graph C to be inferred. Let jms denote the index j ∈ [1, K]

such that the j-th descriptor dcpj(C) is the average mass ms(C) = 1
|V (H)|

∑
v∈V (H) mass∗(α(v)).

Assume that all other descriptors dcpj(C), j ∈ [1, K] \ {jms} are integers.

Let ηΨ,w,b be a prediction function obtained by elastic linear regression, where Ψ = {ϕj | j ∈
[0, K]} and (w, b) is a hyperplane.

We first normalize each of the sets of descriptors x(j), j ∈ [1, K] and the set of observed

values a(C) before we apply the prediction function to compute a predicted value ηΨ,w,b(f(C)) of a
chemical graph C, where the set {ai | i ∈ [1,m]} of observed values in the data set Dπ is converted

into a set {ϕ−1
0 (ai−a

a−a ) | i ∈ [1,m]}, where a (resp., a) denotes the minimum (resp., maximum) value

of a(C) over the chemical graphs C ∈ Dπ.

Let y∗ and y∗ be lower and upper bounds on the predicted value

etaΨ,w,b(f(C)) of a target chemical graph C, respectively.
We first converted them into ϕ−1

0 (
y∗−a
a−a ) and ϕ

−1
0 (y

∗−a
a−a ) . We denote by ψj(t) the function ϕj((t−

cmin(j))/(cmax(j)−cmin(j))). We pre-compute the values ψj(s) for all integers s ∈ [cmin(j), cmax(j)],

j ∈ [1, K] \ {jms} (resp., ϕjms(
s/i−cmin(jms)

cmax(jms)−cmin(jms)
) for all integers s ∈ [MsLB,MsUB] and i ∈ [atmLB,

atmUB]) as constants.

An MILP that simulates the computation process of a prediction function ηΨ,w,b is described

as follows.

M(x, y; C1):
constants:

- A hyperplane (w, b) with w ∈ RK and b ∈ R;
- Activation functions ϕj : R → R, j ∈ [0, K];

- Real values y∗, y∗ ∈ R such that y∗ < y∗; Set y∗∗ := ϕ−1
0 (

y∗−a
a−a ) and y

∗∗ := ϕ−1
0 (y

∗−a
a−a ) .

- cmin(j), cmax(j) ∈ R, j ∈ [1, K]: the minimum and maximum values of the j-th descriptor in the

data set Dπ, respectively;

59



- Reals ∆(j, s) ∈ R, j ∈ [1, K] \ {jms}, s ∈ [cmin(j), cmax(j)]: ∆(j, cmin(j)) := ψj(cmin(j)) and

∆(j, s) := ψj(s)− ψj(s− 1), s ∈ [cmin(j) + 1, cmax(j)];

- atmLB, atmUB ∈ Z+: lower and upper bounds on the number of atoms in a chemical graph C
to be inferred; Set atmLB := nLB + naLB(H) and atmUB := n∗ + naUB(H);

- MsLB,MsUB ∈ Z+: lower and upper bounds on the sum
∑

v∈V (H) mass∗(α(v)); For example, set

MsLB := ⌊min{mass∗([a]) | a ∈ Λ, val(a) = 1} · (3nLB/4) + min{mass∗([a]) | a ∈ Λ, val(a) ≥
2} · (nLB/4)+mass∗([H])naLB(H)⌋ and MsUB := n∗max{mass∗([a]) | a ∈ Λ}+mass∗([H])naUB(H);

- M ∈ R+: an upper bound on ζ(x(jms)); For example, set M := 2ϕjms(1);

- Define ζ(s, i) ≜ ϕjms(
s/i−cmin(jms)

cmax(jms)−cmin(jms)
), s ∈ [MsLB,MsUB], i ∈ [atmLB, atmUB],

where ψjms(s/i) = ζ(s, i);

- Reals ∆Ms(s, i) ∈ R, s ∈ [MsLB,MsUB], i ∈ [atmLB, atmUB]: ∆Ms(MsLB, i) := ζ(MsLB, i) and

∆Ms(s, i) := ζ(s, i)− ζ(s− 1, i), s ∈ [MsLB + 1,MsUB], i ∈ [atmLB, atmUB];

- A real ε(j) > 0, j ∈ [1, K]: a tolerance. For example, set ε(j) := 1
105

min{∆(j, s) | s ∈
[cmin(j), cmax(j)]}, j ∈ [1, K] \ {jms} and ε(jms) := 1

105
min{∆Ms(s, i) | s ∈ [MsLB,MsUB], i ∈

[atmLB, atmUB]}:
variables:

- Real variables x̂(j) ∈ R, j ∈ [1, K]: x̂(j) represents ψj(x(j));

- Integer variables x(j) ∈ [cmin(j), cmax(j)], j ∈ [1, K] \ {jms}: x(j) represents the j-th descriptor

in an MILP M(x, g; C2);
- A real variable x(jms) ∈ R+ with cmin(jms) ≤ x(jms) ≤ cmax(jms): x(jms) represents the average

mass ms(C) in an MILP M(x, g; C2);
- Binary variables δ(j, s) ∈ [0, 1], j ∈ [1, K] \ {jms}, s ∈ [cmin(j), cmax(j)]: δ(j, s) = 1 ⇔ x(j) ≥ s;

- Binary variables δatm(i) ∈ [0, 1], i ∈ [atmLB, atmUB]: δatm(i) = 1 ⇔ |V (H)| = i;

- Binary variables δMs(s) ∈ [0, 1], s ∈ [MsLB,MsUB] δMs(i) = 1 ⇔
∑

v∈V (H) mass∗(α(v)) ≥ s;

constraints:

y∗∗ ≤
∑

j∈[1,K]

w(j)x̂(j) + b ≤ y∗∗, (90)

∑
s∈[cmin(j),cmax(j)]

δ(j, s) + cmin(j)− 1 = x(j),

δ(j, s) ≥ δ(j, s+ 1), s ∈ [cmin(j), cmax(j)− 1],∑
s∈[cmin(j),cmax(j)]

∆(j, s)δ(j, s)− ϵ(j) ≤ x̂(j) ≤
∑

s∈[cmin(j),cmax(j)]

∆(j, s)δ(j, s) + ϵ(j), j ∈ [1, K] \ {jms},

(91)

60



∑
i∈[atmLB,atmUB]

δatm(i) = 1,

∑
i∈[atmLB,atmUB]

i · δatm(i) = nG + naex([H]ex),

∑
a∈Λ

mass∗(a) · na([a]) =
∑

s∈[MsLB,MsUB]

δMs(s) + MsLB − 1, (92)

δMs(s) ≥ δMs(s+ 1), s ∈ [MsLB,MsUB − 1], (93)∑
s∈[MsLB,MsUB]

∆Ms(s, i)δMs(s)−M · (1−δatm(i))− ϵ(jms) ≤ x̂(jms) ≤∑
s∈[MsLB,MsUB]

∆Ms(s, i)δMs(s) +M · (1−δatm(i)) + ϵ(jms), i ∈ [atmLB, atmUB]. (94)

61


