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Abstract

In the last two decades, many descent algorithms were extended to solve multi-
objective optimization problems. Recently, the multi-objective proximal gradient
descent method was also proposed for problems where each objective function
is written as the sum of a differentiable function and a proper convex but not
necessarily differentiable one. However, it requires the differentiable part of each
objective to have a Lipschitz continuous gradient, which limits its application.
Moreover, the method solves subproblems using Euclidean distances only.

The so-calledBregman scheme is common in single-objective proximal gradient-
type methods. In this case, the Euclidean distance is replaced by the more general
and flexible Bregman distance. Combined with the notion of relative smoothness,
we have an assumption less demanding than the Lipschitz continuity of the gra-
dients. Thus in this work, we propose a proximal gradient method with Bregman
distance for multi-objective optimization. At each iteration of our method, we
compute the search direction by solving a subproblem that contains the Bregman
distance. This subproblem can be solved easily depending on the choice of the
Bregman scheme. We also consider two stepsize strategies: the constant stepsize
and the backtracking procedure. In both cases, we prove convergence of the gener-
ated sequence to a Pareto stationary point, and analyze the convergence rate through
some merit functions. Specifically we get the convergence rates for non-convex
($ (

√
1/:)), convex ($ (1/:)), and strongly convex

(
$

(
A:

)
for some A ∈ (0, 1))

problems.
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1 Introduction
In this paper, we consider the following unconstrained multi-objective optimization
problem:

min � (G)
s.t G ∈ R=,

(1)

where � : R= → (R ∪ {∞})< is a vector-valued function with � := (�1, . . . , �<)> and
> denotes transpose. We assume that each component �8 : R= → R ∪ {∞} is defined
by

�8 (G) := 58 (G) + 68 (G), 8 = 1, . . . , <

where 58 : R= → R ∪ {∞} is continuously differentiable and 68 : R= → R ∪ {∞} is
proper convex and closed but not necessarily differentiable.

In multi-objective optimization we usually can not get a single point that minimize
all given objective functions at once. So instead the Pareto optimality concept is used
in multi-objective optimization.

A common solution strategy for multi-objective optimization is the scalarization
approach [1], where the problem is converted to a single objective optimization using
some parameters. The disadvantage of this method is that the parameters are not known
in advance, requiring the users to decide them. Some adaptive scalarization techniques
were also proposed in [2, 3] to choose parameters automatically during the course of
the algorithm, but they require convexity of the objectives.

Recently, many descent methods for multi-objective optimization algorithms have
been proposed. For instance, the steepest descent method has been discussed in [4], and
Newton’s method has been shown in [5]. The projected gradient method is proposed
in [6, 7], the subgradient method [8] and the proximal point method [9] were also
proposed. More recently, the proximal gradient method was also extended to multi-
objective problem in [10]. As the notion of Bregman distance was proposed in [11] and
began to be used in optimization [12], many researchers started to consider optimization
methods based on Bregman distances in particular for proximal point methods [13] and
proximal gradient methods [14,15]. But in multi-objective optimization, most methods
are only discussed under the Euclidean distance, and did not discuss the case of Bregman
distance in detail. In this paper we will propose the proximal gradient method with
Bregman distance in multi-objective optimization.

We also use the concept of relative smoothness here. A similar notion was proposed
in [16] as a new descent lemma without Lipschitz gradient continuity, where the refer-
ence function is required to a Legendre function. Recently Lu et al. gave the definition
of relative smoothness and relative strong convexity in [17] showing that it is less strict
than the usual Lipschitz continuity of the gradients assumption. Similarly, in this work,
we will assume the less restrictive relative smoothness for the differentiable part of the
objective function, making adaptations to deal with multi-objectives. We observe that
the use of Bregman distance is interesting for the computational point of view, because
the subproblems in our algorithm may become easier to solve. Furthermore, we will
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consider two types of stepsizes, and for both of them, we will show convergence to
Pareto stationary points and convergence rates.

The outline of this paper is as follows. In Section 2, we present proximal gra-
dient method for multi-objective problems, definition of Bregman function and some
preliminary materials. In Section 3, we propose a proximal gradient method with
Bregman function for multi-objective optimization considering both constant stepsizes
and backtracking procedure. Section 4 contains the proof of convergence to Pareto
stationary points. And we prove the convergence rates for non-convex ($ (

√
1/:)),

convex ($ (1/:)), and strongly convex
(
$

(
A:

)
for some A ∈ (0, 1)) problems.

2 Preliminaries
First we present some notations used in this paper. R denotes the set of real numbers and
N denotes the set of positive integers. The symbol ‖ · ‖ stands for the Euclidean norm
in R=. We define � 5 is the Jacobian matrix of function 5 . We also define the relation
≤ (<) in R< as D ≤ E(D < E) if and only if D8 ≤ E8 (D8 < E8) for all 8 = 1, . . . , <.

One way to solve problem (1) is by using the multi-objective proximal gradient
method, proposed in [10]. Define k̃G : R= → R by

k̃G (3) := max
8∈{1,...,<}

{
∇ 58 (G)>3 + 68 (G + 3) − 68 (G)

}
.

Themulti-objective proximal gradient method generates a sequence
{
G:

}
iteratively

with the following procedure:

G:+1 := G: + C:3: ,

where 3: is a search direction and C: is a stepsize. At every iteration : , we define this
3: by solving

3: := argmin
3∈R=

{
k̃G: (3) +

ℓ

2
‖3‖2

}
.

Note that this is equal to the following problem when C: = 1:

G:+1 = argmin
G∈R=

kG: (G) +
ℓ

2


G − G:

2

, (2)

where
kG: (G) = max

8=1,...,<
∇ 58

(
G:

)> (
G − G:

)
+ 68 (G) − 68

(
G:

)
.

It is also proved that each accumulation point of the sequence generated by this
method with and without line searches, if it exists, is Pareto stationary [10].

In this paper, we will replace the norm distance used in subproblem (2) with a
distance-like function, called Bregman function, which we define below.

Definition 2.1 (Bregman distance). [18] Letl : R= → (−∞,∞] be a proper closed and
convex function that is differentiable over dom(ml). The Bregman distance associated
with l is the function �l : dom(l) × dom(ml) → R given by

�l (G, H) = l(G) − l(H) − 〈∇l(H), G − H〉.
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The assumptions on l (given a set C) are gathered in the following.

Assumption 2.1. Let l : R= → (−∞,∞] be defined as in Definition 1. We assume the
following:

• l is proper closed and convex.

• l is differentiable over dom(ml).

• � ⊆ dom(l).

• l + X� is f-strongly convex (f > 0).

Nowwe give the basic properties for general Bregman distances satisfying the above
assumption. We also present some examples below.

Lemma 2.1. Suppose that � ⊆ R= is nonempty closed and convex and that l satisfies
the properties in Assumption 2.1. Let �l be the Bregman distance associated with l.
Then

(a) �l (G, H) ≥ f
2 ‖G − H‖

2 for all G ∈ �, H ∈ � ∩ dom(ml).
(b) Let G ∈ � and H ∈ � ∩ dom(ml). Then

• �l (G, H) ≥ 0,

• �l (G, H) = 0 if and only if G = H.

Example 2.1 (Euclidean Distance). Ifl : R= → R withl(G) = 1
2 ‖G‖

2, thenl satisfies
Assumption 2.1 with f = 1 and �l (G, H) = 1

2 ‖G − H‖
2.

Example 2.2 (KL Relative Entropy). If l : R=+ → R with l(G) = ∑=
9=1 G 9 log G 9 (with

the convention 0 log 0 = 0), thenl satisfiesAssumption 2.1with� =
{
G ∈ R= | G > 0,

∑=
8=1 G8 = 1

}
,

f = 1 and �l (G, H) =
∑=
9=1 G 9 log G 9

H 9
−∑=

8= 9

(
G 9 − H 9

)
.

Lemma 2.2 (Three-points lemma). [13] Suppose that l : R= → (−∞,∞] satisfies the
Assumption 2.1. Assume that 0, 1 ∈ dom(ml) and 2 ∈ dom(l). Then the following
equality holds:

〈∇l(1) − ∇l(0), 2 − 0〉 = �l (2, 0) + �l (0, 1) − �l (2, 1).

The next lemma is essential in the analysis of convergence of the proximal gradient
method with Bregman distance.

Lemma 2.3. [13] For any proper closed convex function \ : R= → (−∞,∞] and any
I ∈ R=, if l is differentiable at I+ = argmin

G

{\ (G) + �l (G, I)}, then

\ (G) + �l (G, I) ≥ \ (I+) + �l (I+, I) + �l (G, I+) ∀G ∈ dom(l).

And the following lemma is useful to proof the existence of optimal solution.

Lemma 2.4. [18] Assume the following:

4



• l : R= → (−∞,∞] is a proper closed and convex function differentiable over
dom(ml).

• i : R= → (−∞,∞] is a proper closed and convex function satisfying dom(i) ⊆
dom(l).

• l + Xdom(i) is f-strongly convex (f > 0).

Then the minimizer of the problem

min
G∈R=
{i(G) + l(G)}

is uniquely attained at a point in dom(i) ∩ dom(ml).

Definition 2.2 (Relative smoothness). [17] A function 5 is called !-smooth relative to
l on dom(l) if for any G, H ∈ dom(l), there is a scalar ! for which

5 (H) ≤ 5 (G) + 〈∇ 5 (G), H − G〉 + !�l (H, G).

The definition of relative smooth gives an upper approximation of 5 that is similar
to the so-called descend lemma. In fact, it is a special case of relative smooth with
l = 1

2 ‖G‖
2 and �l (G, H) = 1

2 ‖G − H‖
2.

In optimization problems, many methods assume that ∇ 5 (G) satisfies a Lipschitz
condition with a constant !, as defined as

‖∇ 5 (G) − ∇ 5 (H)‖ ≤ !‖G − H‖,

to ensure associated computational guarantees. But this is a strict condition for func-
tions. In many applications the differentiable function does not have such a property.
Even if the condition is satisfied, !may be too large. For example, let 5 (G) = − ln(G)+G2

on & = R++, and consider the level set {G : 5 (G) ≤ 10}. It still has ! ≈ exp20 on this
level set. Compared to Lipschitz condition, the notion of “relative smoothness” using
a function l(G) to be a “reference function” is less restrictive. The function l(G) does
not require the specification of any particular norm and it need not be either strictly or
strongly convex.

Definition 2.3 (Relative strongly convexity). [17] A function 5 is called `-strongly
convex relative to ℎ(·) on dom(l) if for any G, H ∈ dom(l), there is a scalar ` ≥ 0 for
which

5 (H) ≥ 5 (G) + 〈∇ 5 (G), H − G〉 + `�l (H, G).

Now we introduce the Pareto optimal related concept for multi-objective optimiza-
tion problem. First, we introduce the directional derivative of 5 : R= → R ∪ {∞} at G
in the direction 3,

5 ′(G; 3) := lim
U↘0

5 (G + U3) − ℎ(G)
U

.

Here we follow the notation used in [10]. Recall that G∗ ∈ R= is a Pareto optimal point
for �, if there is no G ∈ R= such that � (G) ≤ � (G∗) and � (G) ≠ � (G∗) . The set of all
Pareto optimal values is called Pareto frontier. Likewise, G∗ ∈ R= is a weakly Pareto
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optimal point for �, if there is no G ∈ R= such that � (G) < � (G∗). It is known that
Pareto optimal points are always weakly Pareto optimal, and the converse is not always
true. We also recall that Ḡ ∈ R= is Pareto stationary (or critical), if and only if,

max
8=1,...,<

� ′8 (Ḡ; 3) ≥ 0 for all 3 ∈ R=.

Lemma 2.5. The following assertions hold:
1. If G ∈ R= is a weakly Pareto optimal point of �, then G is Pareto stationary.
2. Let every component �8 of � be convex. If G ∈ R= is a Pareto stationary point of �,
then G is weakly Pareto optimal.
3. Let every component �8 of � be strictly convex. If G ∈ R= is a Pareto stationary
point of �, then G is Pareto optimal.

3 The multi-objective proximal gradient method with
Bregman distance

In this section we explain in details the proposed proximal gradient descent method
with Bregman distance. For now on, we suppose that the following assumption holds.

Assumption 3.1. We assume that

• The function l : R= → (−∞,∞] satisfies Assumption 2.1 with � = dom(g) and
f = 1.

• For all 8, 58 (G) is !8-smooth relative to l(G). Moreover, ! = max8=1,...,< !
8 .

For each iteration, define kG: : R= → R as

kG: (G) = max
8=1...<

∇ 58
(
G:

)> (
G − G:

)
+ 68 (G) − 68

(
G:

)
. (3)

At each iteration : , we consider the mininization of the following function as a
subproblem. Define qG: : R= → R as

qG: (G) = kG: (G) + !:�l
(
G, G:

)
, (4)

where !: ≥ !. Moreover, we define the following:

G:+1 = ?!: (G: ) := argmin
G∈R=

qG: (G), (5)

\ (G: ) := min
G∈R=

qG: (G) = qG:
(
?!: (G: )

)
. (6)

From the definition of qG: (G), we know qG: (G: ) = 0, so \ (G: ) ≤ 0. Then,

kG: (G:+1) + !:�l
(
G:+1, G:

)
≤ 0.
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Proposition 3.1. The function ?!: (G: ) is well-defined for all : .

Proof. From the definition of �l (G, G: ), we have

G:+1 = argmin
G∈R=

{
max

8=1,...,<

{
∇ 58

(
G:

)> (
G − G:

)
+ 68 (G) − 68

(
G:

)
+ !:�l

(
G, G:

)}}
= argmin

G∈R=

{
max

8=1,...,<

{
∇ 58

(
G:

)> (
G − G:

)
+ 68 (G) − 68

(
G:

)
+ !:

(
l(G) − l

(
G:

)
−∇l

(
G:

)> (
G − G:

))}}
= argmin

G∈R=

{
max

8=1,...,<

{〈
∇ 58

(
G:

)
− !:∇l

(
G:

)
, G − G:

〉
+ 68 (G) − 68

(
G:

)
+!:l(G) − !:l

(
G:

)}}
= argmin

G∈R=

{
max

8=1,...,<

{〈
1
!:
∇ 58

(
G:

)
− ∇l

(
G:

)
, G

〉
+ 1
!:
68 (G) + l(G)

}}
.

Let i(G) = max8=1,...,<

{〈
1
!:
∇ 58

(
G:

)
− ∇l

(
G:

)
, G

〉
+ 1
!:
68 (G)

}
. The function i is

closed if 5 , 6 andl are closed; it is proper by the fact that 3><(6)∩3><(l) ≠ ∅. Since
6 is convex, i is convex. To conclude, i is proper closed and convex function, and hence,
by Lemma 2.4 the subproblem has a unique optimal solution in 3><(6) ∩ 3><(l). It
means that ?!: (G: ) is well defined. �

Lemma 3.1. Let
{
G:

}
be generated iteratively with (5) and recall the definition of kG:

in (3). Then, we have

kG:

(
G:+1

)
≤ −!:



G:+1 − G:

2 for all :. (7)

Proof. According to the Lemma 2.3, we have

\ (G) + �l (G, I) ≥ \ (I+) + �l (I+, I) + �l (G, I+) ∀G ∈ dom(l).

By letting I+ = G:+1, I = G: , G = G: , and \ = !−1
:
kG: , we have

kG: (G: ) + !:�l (G: , G: ) ≥ kG:
(
G:+1

)
+ !:�l

(
G:+1, G:

)
+ !:�l

(
G: , G:+1

)
.

From the Lemma 2.1(1) and the fact that kG: (G: ) = 0, we have

kG:

(
G:+1

)
≤ −!:�l

(
G:+1, G:

)
− !:�l

(
G: , G:+1

)
≤ −!:



G:+1 − G:

2
,

where the last inequality follows from Lemma 2.1(0). Thus, we obtain,

kG:

(
G:+1

)
≤ −!:



G:+1 − G:

2
.

�
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From the relative smoothness of 58 , if !: ≥ !, we have

�8

(
G:+1

)
− �8

(
G:

)
≤ ∇ 58

(
G:

)>
(G:+1 − G: ) + 68

(
G:+1

)
− 68

(
G:

)
+ !:�l

(
G:+1, G:

)
.

(8)
Since G:+1 is the optimal solution of (5), the maximum in 8 of the right right-hand side
of (8) is less than or equal to zero. Thus,

�8

(
G:+1

)
≤ �8

(
G:

)
for all :. (9)

In the following subsections, we consider two stepsize rules for our method.

3.1 Constant stepsize
Now consider the constant stepsize, which we set as !: = !̄ for all : ,with !̄ > !. Then
the proximal gradient method with Bregman distance is given below.

Algorithm 3.1. Multi-objective proximal gradient method with Bregman distance and
constant stepsize

Step 1 Choose !: = !̄ with !̄ > !, Y > 0, G0 ∈ dom(6) ∩ dom(ml) and set : := 0.
Step 2 Compute ?!: (G: ) by solving subproblem (5).
Step 3 If



?!: (G: ) − G:

 < Y, then stop.
Step 4 Set G:+1 := ?!: (G: ), : := : + 1, and go to Step 2 .

3.2 Backtracking procedure
Now we consider backtracking procedure. In the beginning, let !−1 = B with B > 0. At
iteration : ≥ 0, let !: = !:−1. Then, while exist 8 such that

58

(
?!: (G: )

)
> 58

(
G:

)
+

〈
∇ 58

(
G:

)
, ?!: (G: ) − G:

〉
+ !:

2


?!: (G: ) − G:

2

,

we set !: := [!: where [ > 1. In other words, the stepsize is chosen as !: = !:−1[
9: ,

where 9: is the smallest nonnegative integer for which the condition

9: := argmin
9∈N

{
5

(
?!:−1[

9: (G: )
)
≤ 5

(
G:

)
+ � 5 (G: )> (?!:−1[ 9 (G

: ) − G: )

+!:−1[
9

2


?!:−1[ 9 (G

: ) − G:


2

}
,

(10)

is satisfied.
Letting 3: = G:+1 − G: , from the so-called descent lemma [19, Proposition A.24],

for all 8 ∈ 1, ..., <, if !: ≥ !, we have

�8

(
G:+1

)
− �8

(
G:

)
≤ ∇ 58

(
G:

)>
3: + 68

(
G:+1

)
− 68

(
G:

)
+ !:

2


3:

2

. (11)

The stepsize rule above ensure that (11) is still satisfied at each iteration. In addition,
the step !: that the backtracking procedure produces satisfy the following bounds for
all : ≥ 0 :

B ≤ !: ≤ max {[!, B} .
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The inequality B ≤ !: is obvious. To prove the inequality !: ≤ max {[!, B}, we note
that either !: = B or !: > B. In the latter case there exists an index 0 ≤ : ′ ≤ : for
which the inequality (11) is not satisfied with : = : ′ and !:

[
replacing !: . By the

descent lemma, this implies in particular that !:
[
< !, and we have thus shown that

!: ≤ max {[!, B}. Namely, !: ≤ U!, where U = max
{
[, B

!

}
.We also note that the

bounds on !: can be rewritten as

V! ≤ !: ≤ U!,

where

U =

{
!̄
!
, constant,

max
{
[, B

!

}
, backtracking,

V =

{
!̄
!
, constant

B
!
, backtracking.

So the algorithm with backtracking stepsize is given below.
Algorithm 3.2. Multi-objective proximal gradient method with Bregman distance and
backtracking procedure

Step 1 Choose B > 0, [ > 1, G0 ∈ dom(6) ∩ dom(ml) and set !−1 = B, : := 0.
Step 2 Compute !: by solving (10).
Step 3 Compute ?!: (G: ) by solving subproblem (5).
Step 4 If



?!: (G: ) − G:

 < Y, then stop.
Step 5 Set G:+1 := ?!: (G: ), : := : + 1, and go to Step 2 .

4 Convergence analysis
In this section, we prove that the sequences generated byAlgorithm 3.1 and 3.2 converge
to Pareto stationary points and discuss their rate of convergence.

4.1 Convergence to Pareto stationary points
Now we analysis the convergence of the proximal gradient method with bregman
distance.
Lemma 4.1. let G: be generated by Algorithm 3.1 or Algorithm 3.2 and suppose that
�8 (G: ) is bouded from below for all 8 = 1, ..., <. Then we have

lim
:→∞



G:+1 − G:

 = 0. (12)

Proof. At the :th iteration,

58

(
G:+1

)
+ 68

(
G:+1

)
= 58

(
G:

)
+ 68

(
G:

)
+ 58

(
G:+1

)
− 58

(
G:

)
+ 68

(
G:+1

)
− 68

(
G:

)
6 58

(
G:

)
+ 68

(
G:

)
+ ∇ 58

(
G:

) (
G:+1 − G:

)
+ !�l

(
G:+1, G:

)
+ 68

(
G:+1

)
− 68

(
G:

)
6 58

(
G:

)
+ 68

(
G:

)
+ kG:

(
G:+1

)
+ !�l

(
G:+1, G:

)
+ !:�l

(
G:+1, G:

)
− !:�l

(
G:+1, G:

)
6 58

(
G:

)
+ 68

(
G:

)
+ kG: (G) + !:

(
�l

(
G, G:

)
− �l

(
G, G:+1

))
+ (! − !: ) �l

(
G:+1, G:

)
9



for all G. Here, the first inequality follows from the relative smoothness of 58 . The
second inequality follows from the definition of kG:

(
G:+1

)
. And the third inequality

follows from the Lemma 2.3. Letting G = G: , we obtain

58 (G:+1) + 68 (G:+1)

6 58
(
G:

)
+ 68

(
G:

)
− !:�l

(
G: , G:+1

)
+ (! − !: ) �l

(
G:+1, G:

)
6 58

(
G:

)
+ 68

(
G:

)
+ (! − !: ) �l

(
G:+1, G:

)
.

Since
{
�8

(
G:

)}
is bounded from below from (9), there exists �̃8 ≤ �8

(
G:

)
=

58
(
G:

)
+ 68

(
G:

)
for all 8, : . Adding up the above inequality from : = 0 to : = :̂ , we

obtain
58

(
G :̂+1

)
+ 68

(
G :̂+1

)
≤ 58

(
G0

)
+ 68

(
G0

)
+

:̂∑
:=0
(! − !: ) �l

(
G:+1, G:

)
.

If {G: } be generated by Algorithm 3.1, then for all : , !: = !̄. Then,

58

(
G :̂+1

)
+ 68

(
G :̂+1

)
≤ 58

(
G0

)
+ 68

(
G0

)
+ (! − !̄)

:̂∑
:=0

�l

(
G:+1, G:

)
.

Because ! < !̄, we have

:̂∑
:=0

�l

(
G:+1, G:

)
≤

(
!̄ − !

)−1
(
58

(
G0

)
+ 68

(
G0

)
− 58

(
G :̂+1

)
− 68

(
G :̂+1

))
,

so
:̂∑
:=0

�l

(
G:+1, G:

)
< ∞,

which is equal to
lim
:→∞

�l

(
G:+1, G:

)
= 0,

namely,
lim
:→∞



G:+1 − G:

 = 0.

Let {G: } be generated by Algorithm 3.2, considering the definition of ! and !: .
Since ! is finite, the backtracking only needs a finite number of steps to make !: > !.
So, without losing the generality, we can assume !: > !. Then the rest of the proof is
similar to the case !: = !̄. �

Theorem 4.1. Every accumulation point of the sequence
{
G:

}
generated by Algorithm

3.1 or 3.2, if it exists, is a Pareto stationary point.

10



Proof. From the inequation (11) , we can obtain

�8

(
G:+1

)
− �8

(
G:

)
≤ ∇ 58

(
G:

)>
(G:+1 − G: ) + 68

(
G:+1

)
− 68

(
G:

)
+ !:

2


G:+1 − G:

2

≤ max
1,...,<

∇ 58
(
G:

)>
(G:+1 − G: ) + 68

(
G:+1

)
− 68

(
G:

)
+ !:

2


G:+1 − G:

2

= −F!:
(
G:

)
≤ 0.

Namely,
�8

(
G:+1

)
− �8

(
G:

)
≤ −F!:

(
G:

)
≤ 0. (13)

From Lemma 4.1, we have

lim
:→∞



G:+1 − G:

 = 0.

Let G∗ ∈ dom(6) ∩ dom(ml) be an accumulation point of the sequence
{
G:

}
generated

by Algorithm 3.1 or 3.2 and assume that lim:→∞ G: = G∗.
If

{
G:

}
is generated by Algorithm 3.1, then !: = !̄. From (13), we get F !̄ (G∗) = 0,

and according to [20, Theorem 3.1(ii)] , G∗ is the Pareto stationary point of problem
(1).

If
{
G:

}
is generated by Algorithm 3.2, then !: ≤ U!, where U = max

{
[, B

!

}
.

From [21, Theorem 3.2], we have

−F!:
(
G:

)
≤ −FU!

(
G:

)
≤ 0.

Combined with (13), we obtain

�8

(
G:+1

)
− �8

(
G:

)
≤ −FU!

(
G:

)
≤ 0.

Then, in the same way, we conclude that G∗ is a Pareto stationary point of problem (1).
�

4.2 Convergence rate analysis
We introduce two merit functions for the multi-objective optimization problem, and use
them to estimate the convergence rate.

The first merit function is the simple function D0 : R= → R ∪ {∞} defined as
follows:

D0 (G) := sup
H∈R=

min
8∈{1,...,<}

{�8 (G) − �8 (H)} .

The second type is the regularized and partially linearized merit function Fℓ :
R= → R, given by

Fℓ (G) := max
H∈R=

min
8∈{1,...,<}

{
∇ 58 (G)> (G − H) + 68 (G) − 68 (H) −

ℓ

2
‖G − H‖2

}
,

where ℓ > 0 is a given constant.

11



Lemma 4.2. Let {G: } be a sequence generated by Algorithm 3.1 or 3.2. Then, the
following inequality holds for all k:

F!: (G: ) ≥ −qG: (G:+1).

Proof. Let i8 (G, H) = ∇ 58 (G)> (H − G) + 68 (H) − 68 (G), then

Fℓ (G: ) =max
H∈Rn

min
8∈{1,...,<}

{
∇ 58 (G: )> (G: − H) + 68 (G: ) − 68 (H) −

ℓ

2
‖G: − H‖2

}
.

=max
H∈Rn

min
8∈{1,...,<}

{
−i8 (G: ) −

ℓ

2
‖H − G: ‖2

}
=max
H∈Rn

{
− max
8∈{1,...,<}

i8 (G: ) −
ℓ

2
‖H − G: ‖2

}
=max
H∈Rn

{
−kG: (H) −

ℓ

2
‖H − G: ‖2

}
= − min

H∈Rn

{
kG: (H) +

ℓ

2
‖H − G: ‖2

}
.

According to the Lemma 2.1(0),

qG: (G:+1) = kG: (G:+1) + !:�l
(
G:+1, G:

)
= max
8∈{1,...,<}

∇ 58
(
G:

)> (
G:+1 − G:

)
+ 68

(
G:+1

)
− 68

(
G:

)
+ !:�l

(
G:+1, G:

)
> max
8∈{1,...,<}

∇ 58
(
G:

)> (
G:+1 − G:

)
+ 68

(
G:+1

)
− 68

(
G:

)
+ !:

2


G:+1 − G:

2

= kG: (G:+1) +
!:

2
‖G:+1 − G: ‖2

> −F!:
(
G:

)
,

that is,
F!: (G: ) ≥ −qG: (G:+1).

�

4.2.1 The non-convex case

Here we use the function Fℓ (G) to analyze the convergence rate.

Theorem 4.2. Suppose that there exists some nonempty set J ⊆ {1, . . . , <} such that if
8 ∈ J then �8 (G) has a lower bound �min

8
for all G ∈ R=. Let �min := min8∈J �min

8
and

�max
0 := max8∈{1,...,<} �8

(
G0) . Then, the Algorithm 3.1 (or Algorithm 3.2) generates a

sequence
{
G:

}
such that

min
0≤ 9≤:−1

F1
(
G 9

)
≤

(
�max

0 − �min
)

max{1, U!}

:
,

12



where U = !̄
!
in the constant stepsize setting and U = max

{
[, B

!

}
if the backtracking

rule is employed.

Proof. Let 8 ∈ J . From (11), we have

�8

(
G:+1

)
− �8

(
G:

)
≤ ∇ 58

(
G:

)>
3: + 68

(
G:+1

)
− 68

(
G:

)
+ !:

2


3:

2

≤ max
8∈{1,...,<}

{
∇ 58

(
G:

)>
3: + 68

(
G:+1

)
− 68

(
G:

)
+ !:

2


3:

2

}
= −F!:

(
G:

)
,

Adding up the above inequality from : = 0 to : = :̃ − 1 yields that

�8

(
G :̃

)
− �8

(
G0

)
≤ −

:̃−1∑
:=0

Fℓ

(
G:

)
≤ −:̃ min

0≤:≤ :̃−1
F!:

(
G:

)
.

From the definitions of �min and �max
0 , we obtain

min
0≤:≤ :̃−1

F!:

(
G:

)
≤
�max

0 − �min

:̃
.

Finally, from [21, Theorem 3.2], we get

min
0≤:≤ :̃−1

F1

(
G:

)
≤

(
�max

0 − �min
)

max{1, !: }

:̃
.

Namely ,

min
0≤ 9≤:−1

F1
(
G 9

)
≤

(
�max

0 − �min
)

max{1, U!}

:
,

where U = !̄
!
in the constant stepsize setting and U = max

{
[, B

!

}
if the backtracking

rule is employed. �

4.2.2 The convex case

Here we use the function D0 (G: ) to analyze the convergence rate. First we give the
following lemma. Note that we state it with 58 and 68 having general convexity param-
eters, which turn out to be zero in this subsection. It will not make a difference here,
but it will be important in the discussion of the next subsection.

Lemma 4.3. Assume that 58 is `8-strongly convex relative to l and 68 has convexity
parameters a8 ∈ R, and write ` := min8∈{1,...,<} `8 and a := min8∈{1,...,<} a8 . Then, for
all G ∈ R= it follows that

<∑
8=1

V:8

(
�8

(
G:+1

)
− �8 (G)

)
6!:

(
�l

(
G, G:

)
− �l

(
G, G:+1

))
− `�l

(
G, G:

)
− a�l

(
G, G:+1

)
,

13



where V:
8
satisfies the following conditions:

(i) There exists [:
8
∈ m68

(
G:+1

)
such that

<∑
8=1

V:8

(
∇ 58

(
G:

)
+ [:8

)
+ !:

(
∇l

(
G:+1

)
− ∇l

(
G:

))
= 0,

(ii)
∑<
8=1 V

:
8
= 1, V:

8
≥ 0

(
8 ∈ IG:

(
G:+1

) )
and V:

8
= 0

(
8 ∉ IG:

(
G:+1

) )
,

whereIG: (G:+1) :=
{
8 ∈ {1, . . . , <} | kG: (G:+1) = ∇ 58 (G: )>3 + 68 (G:+1) − 68 (G: )

}
.

Proof. As we know, for all 8, from the relative smoothness of 58 , we have

�8

(
G:+1

)
− �8

(
G:

)
≤ ∇ 58

(
G:

)> (
G:+1 − G:

)
+ 68

(
G:+1

)
− 68

(
G:

)
+ !:�l

(
G:+1, G:

)
.

(14)
The above inequality and relative strong convexity of 58 with modulus `8 give

�8

(
G:+1

)
− �8 (G) =

(
�8

(
G:

)
− �8 (G)

)
+

(
�8

(
G:+1

)
− �8

(
G:

))
≤

(
∇ 58

(
G:

)> (
G: − G

)
− `8

2
�l

(
G, G:

)
+ 68

(
G:

)
− 68 (G)

)
+

(
∇ 58

(
G:

)> (
G:+1 − G:

)
+ 68

(
G:+1

)
− 68

(
G:

)
+ !:�l

(
G:+1, G:

))
≤∇ 58

(
G:

)> (
G:+1 − G

)
+ 68

(
G:+1

)
− 68 (G) − `�l

(
G, G:

)
+ !:�l

(
G, G:

)
≤

(
∇ 58

(
G:

)
+ [:8

)> (
G:+1 − G

)
− `�l

(
G, G:

)
− a�l

(
G, G:+1

)
+ !:�l

(
G:+1, G:

)
,

where the second inequality follows from the definition of ` and the last one comes
from the convexity of 68 . Multiplying the above inequality by V:

8
and summing for all
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8 ∈ {1, . . . , <}, the conditions (i) and (ii) give

<∑
8=1

V:8

(
�8

(
G:+1

)
− �8 (G)

)
≤ !:

(
∇l

(
G:+1

)
− ∇l

(
G:

))> (
G:+1 − G

)
+ !:�l

(
G:+1, G:

)
− `�l

(
G, G:

)
− a�l

(
G, G:+1

)
= !:

(
∇l

(
G:

)> (
G:+1 − G

)
− ∇l

(
G:+1

)> (
G:+1 − G

)
+ �l

(
G:+1, G:

))
− `�l

(
G, G:

)
− a�l

(
G, G:+1

)
= !:

(
∇l

(
G:

)>
G:+1 − ∇l

(
G:

)>
G + ∇l

(
G:+1

)> (
G − G:+1

)
+ l

(
G:+1

)
− l

(
G:

)
−∇l

(
G:

)> (
G:+1 − G:

))
− `�l

(
G, G:

)
− a�l

(
G, G:+1

)
= !:

(
l(G) − l

(
G:

)
− ∇l

(
G:

)> (
G − G:

)
− l(G) + l

(
G:+1

)
+ ∇l

(
G:+1

)> (
G − G:+1

))
− `�l

(
G, G:

)
− a�l

(
G, G:+1

)
= !:

(
�l

(
G − G:

)
− �l

(
G − G:+1

))
− `�l

(
G, G:

)
− a�l

(
G, G:+1

)
,

where the third and last equalities follow from the definition of Bregman distance.
�

Assumption 4.1. Let -∗ be the set of weakly Pareto optimal points for the multi-
objective problem, and define the level set of � for U ∈ R< by Ω� (U) := {G ∈ ( |
� (G) ≤ U}. Then, for all G ∈ Ω�

(
�

(
G0) ) there exists G∗ ∈ -∗ such that � (G∗) ≤ � (G)

and
' := sup

� ∗∈� (-∗∩Ω� (� (G0)))
inf

G∈�−1 ( {� ∗ })
�l

(
G, G0

)
< ∞.

Theorem 4.3. Assume that �8 is convex for all 8 ∈ {1, . . . , <}. Under Assumption 4.1,
Algorithm 3.1 (or Algorithm 3.2) generates a sequence

{
G:

}
such that

D0

(
G:

)
≤ U!'

:
for all : ≥ 1,

where U = !̄
!
in the constant stepsize setting and U = max

{
[, B

!

}
if the backtracking

rule is employed.

Proof. From Lemma 4.3 and the convexity of 58 and 68 , for all G ∈ R= we have

<∑
8=1

V:8

(
�8

(
G:+1

)
− �8 (G)

)
≤ !:

(
�l

(
G − G:

)
− �l

(
G − G:+1

))
.
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Adding up the above inequality from : = 0 to : = :̂ , we obtain

:̂∑
:=0

<∑
8=1

V:8

(
�8

(
G:+1

)
− �8 (G)

)
≤ !:

(
�l

(
G, G0

)
− �l

(
G, G :̂+1

))
≤ !:�l

(
G, G0

)
.

The rest of the proof follows similarly to the proof of [20, Theorem 5.2 ]. �

4.2.3 The strongly convex case

Here, we show that {G: } generated by Algorithms 3.1 and 3.2 converges linearly to a
Pareto optimal point in the strongly convex case.

Theorem 4.4. Let 58 and 68 have convexity parameters `8 ∈ R and a8 ∈ R, respectively,
and write ` := min8∈{1,...,<} `8 and a := min8∈{1,...,<} a8 . Assume that ∇l is Lipschitz
continuous with parameter @ and 1 ≤ ? < V!+a

U!−` . If !: > !, then there exists a Pareto
optimal point G∗ ∈ R= such that for each iteration : ,



G:+1 − G∗

 6 √
@ (U! − `)
V! + a



G: − G∗

 ,
where

U =

{
!̄
!
, constant,

max
{
[, B

!

}
, backtracking,

V =

{
!̄
!
, constant

B
!
, backtracking.

Thus, we have 

G: − G∗

 ≤ (√
@ (U! − `)
V! + a

) : 

G0 − G∗


 .

Proof. Since each �8 is strongly convex, the level set of every �8 is bounded. Thus,{
G:

}
has an accumulation point G∗ ∈ R=. Note that G∗ is Pareto stationary, from Lemma

4.3, we have
<∑
8=1

V:8

(
�8

(
G:+1

)
− �8 (G∗)

)
6!:

(
�l

(
G∗, G:

)
− �l

(
G∗, G:+1

))
− `�l

(
G∗, G:

)
− a�l

(
G∗, G:+1

)
,

Since the left-hand side is nonnegative because of (9), we obtain

0 ≤ !:
(
�l

(
G∗, G:

)
− �l

(
G∗, G:+1

))
− `�l

(
G∗, G:

)
− a�l

(
G∗, G:+1

)
.

Namely,
(!: + a) �l

(
G∗, G:+1

)
≤ (!: − `) �l

(
G∗, G:

)
. (15)
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From the so-called descent lemma [19, Proposition A.24] and by Lipschitz continuity
of ∇l, we obtain for all G, H,

l (G) ≤ l (H) + ∇l (H)> (G − H) + @
2
‖H − G‖2 .

Combined with the definition of �l (G, H), we have

1
2
‖G − H‖2 6 �l (G, H) 6

@

2
‖G − H‖2.

The above inequality, Lemma 2.1(a) and (15) give

!: + a
2



G∗ − G:+1

2
6
@ (!: − `)

2


G∗ − G:

2

, (16)

which is equivalent to



G:+1 − G∗

 6 √
@ (!: − `)
!: + a



G: − G∗

 .
Namely, 

G:+1 − G∗

 6 √

< (U! − `)
V! + a



G: − G∗

 ,
where U = !̄

!
in the constant stepsize setting and U = max

{
[, B

!

}
if the backtracking

rule is employed. �

5 Conclusion
We proposed a proximal gradient method with Bregman distance for multi-objective
optimization problems. We also used two step size strategies: the constant stepsize
and the backtracking strategy. We prove that the sequence generated by the algorithms
can converge to a Pareto stationary point and further analyze its convergence rate
through some merit functions. Finally, we proved the convergence rates for non-convex
($ (

√
1/:)), convex ($ (1/:)), and strongly convex

(
$

(
A:

)
for some A ∈ (0, 1))

problems. In the future, we can consider trying other stepsize strategies to improve the
algorithm, carry out numerical experiments to show the validity of out method, and
compare it with other methods.
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