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Abstract

Levenberg-Marquardt methods (LMMs) are the most typical algorithms for
solving nonlinear equations F (x) = 0, where F : Rn → Rm is a continuously
differentiable function. They sequentially solve subproblems represented as
squared residual of the Newton equations with the L2 regularization to de-
termine the search direction. However, since the subproblems of the LMMs
are usually reduced to linear equations with n variables, it takes much time
to solve them when m≪ n.

In this paper, we propose a new LMM which generalizes the L2 regular-
ization of the subproblems of the ordinary LMMs. By virtue of the gener-
alization, we can choose a suitable regularization term for each given prob-
lem. Moreover, we show that a sequence generated by the proposed method
converges globally and quadratically under some reasonable assumptions.
Finally, we conduct numerical experiments to confirm that the proposed
method performs better than the existing LMMs for some problems that
satisfy m≪ n.

Keywords: Nonlinear equation; Levenberg-Marquardt method; Global
convergence; Local convergence

1. Introduction

In this paper, we consider the following nonlinear equations:

F (x) = 0, (1)

where F : Rn → Rm is a continuously differentiable function and Rn denotes
the n–dimensional Euclidean space. We write X∗ for a solution set of (1).

Nonlinear equations arise from many fields such as engineering, eco-
nomics, and so on [1, 2, 3]. Since solving nonlinear equations plays an
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important role in such fields, various types of methods for (1) have been pro-
posed, such as Newton’s methods [4, 5], Gauss–Newton methods [6, 7, 8],
and Levenberg-Marquardt methods (LMMs) [4, 9, 10]. In particular, the
Newton’s methods are known as typical iterative algorithms and belong to
the most powerful ones. As it is well known, the simplest Newton’s methods
sequentially solve a sequence of the Newton equations Lk(x) = 0, which are
the first–order approximation of the nonlinear function F at each iteration
point xk, to determine the search direction and updates xk along the search
direction. However, there is no guarantee that the Newton equations are
solvable unless the current point xk is sufficiently close to the solution of
(1). On the other hand, the Gauss–Newton methods sequentially minimize
∥Lk(x)∥2/2 to obtain the search direction instead of solving the Newton
equations. Although these minimization subproblems are solvable unlike
the Newton methods because it is a linear least squares (LLS) problem, the
coefficient matrix of LLS is not necessarily regular, and hence it is unstable
for numerical error. Moreover, it is generally known that the Gauss–Newton
methods are ineffective for problems that the nonlinearity of F is strong or
the norm of F at the solution of (1) is large. The LMMs have nice global and
local convergence properties. The methods can be regarded as an improve-
ment of the Gauss–Newton methods because their subproblems correspond
to LLS with the L2 regularization, that is, their solutions are unique.

Researches regarding the LMMs have a long history, and various types
of them have been proposed so far. In [11, 12], a locally convergent LMM
was proposed and its superlinear and quadratic convergence was also shown
under some appropriate assumptions. Yamashita and Fukushima [11] pro-
posed a globally convergent LMM equipped with Armijo’s line search. As
stated above, LMMs sequentially solve the subproblems, which are described
as LLS with the L2 regularization, at each iteration. Although the subprob-
lems are generally reduced to linear equations with n variables, their scales
become large if m≪ n, and hence it takes much time to solve them. More-
over, search directions obtained by solving the subproblems are generally
dense.

In this paper, we propose a new LMM which generalizes the regulariza-
tion term of the subproblem. Thus, it enables us to select a suitable function
as the regularization term depending on a given problem. By virtue of the
generalization, we can deal with problems equipped with various regular-
izations. For example, if we use the L1 norm, the subproblem becomes an
L1–L2 optimization [13], or if we adopt the L2 norm cubed, it becomes the
cubic regularization [14]. For the proposed LMM equipped with Armijo’s
line search, we provide the following two convergence properties. The former
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is its global convergence, and the latter is its local and quadratic conver-
gence. Moreover, we conduct numerical experiments to confirm the useful-
ness of the proposed method.

This paper is organized as follows. In Section 2, we propose the gen-
eralized LMM with Armijo’s line search. In Section 3, we show that the
proposed method enjoys the global convergence property. Section 4 shows
the local and quadratic convergence of the proposed LMM without Armijo’s
line search. In Section 5, we prove that the proposed method with Armijo’s
line search indeed has the local and quadratic convergence property un-
der some appropriate conditions by utilizing the convergence result given in
Section 4. Some numerical results are reported in Section 6. Finally, we
conclude the paper and provide several future works.

We use the following notation in this paper. The identity matrix is
represented by I and the zero matrix is represented by O. For a vector
x ∈ Rn, ∥x∥ and ∥x∥1 indicate the L2 norm and L1 norm, respectively.
For a vector c ∈ Rn and positive real number r ∈ R, we define N(c, r) :=
{x | ∥x − c∥ ≤ r}. For a matrix A ∈ Rm×n, A⊤ denotes the transpose of
A and ∥A∥ denotes the operator norm of A, which is defined by ∥A∥ :=
sup{∥Ax∥/∥x∥ | x ∈ Rn, x ̸= 0}. For matrices A1 ∈ Rm×m and A2 ∈ Rn×n,
diag (A1, A2) stands for the block diagonal matrix consisting of A1 and A2.
For a function G : Rm → Rn, G′(a) is the Jacobian of G at a. For a vector
a ∈ Rn and a set X ⊂ Rn, dist(a,X) means the distance between a and
X, which is defined by dist(a,X) := inf{∥x − a∥ | x ∈ X}. For a function
G : Rm → Rn and a positive scalar t ∈ R, we write G(x) = O(t) (t → 0) if
there exist C > 0 and δ > 0 such that |t| < δ implies ∥G(x)∥ < C|t|. We
also write G(x) = o(t) (t → 0) if for all ε > 0 there exists δ > 0 such that
|t| < δ implies ∥G(x)∥ < ε|t|.

2. Generalized Levenberg-Marquardt Method

In this section, we propose a new LLM which generalizes the regular-
ization term included in the subproblem of the ordinary LMMs. Before
providing the explanation of the proposed method, we recall the existing
Gauss–Newton methods and LMMs as seen in the standard text books on
continuous optimization. Note that the superscript k indicates the k-th it-
eration of the algorithms. The Gauss–Newton methods solve the following
LLS to determine a search direction dk:

minimize
d∈Rn

∥F ′(xk)d+ F (xk)∥2. (2)

3



From convexity of the objective function and the first–order optimality con-
dition, problem (2) is reduced to solving the following linear equation:

F ′(xk)⊤F ′(xk)d = −F ′(xk)⊤F (xk). (3)

When F ′(xk) is full column rank, F ′(xk)⊤F ′(xk) becomes nonsingular and
equation (3) has a unique solution. However, since it is not always so,
equation (3) generally has various solutions and its calculation might be
unstable. On the other hand, the LMMs use a solution of the following
linear equations:

(F ′(xk)⊤F ′(xk) + µkI)d = −F ′(xk)⊤F (xk), (4)

where µk is a positive parameter. Since F ′(xk)⊤F ′(xk) + µkI is positive
definite, equation (4) has a unique solution and is equivalent to the following
minimization problem:

minimize
d∈Rn

∥F ′(xk)d+ F (xk)∥2 + µk∥d∥2,

which corresponds to LLS (2) with the L2 regularization.
Now, we propose a generalization related to the regularization term

µk∥d∥2. In particular, we consider the following subproblem:

minimize
d∈Rn

∥F ′(xk)d+ F (xk)∥2 + µkψ(d), (5)

where µkψ(d) is a generalized regularization term. Throughout this paper,
we suppose that the function ψ satisfies the following condition: There exist
constants 0 < γ1 ≤ γ2 and 0 < p ≤ 3 such that

γ1∥d∥p ≤ ψ(d) ≤ γ2∥d∥p (6)

for all d ∈ Rn. This generalized regularization term includes not only the
L2 norm squared [15] but also the L1 norm [13] and the L2 norm cubed [14].

The function ψ defined by (6) enjoys the following property when it is
differentiable at d = 0:

∇ψ(0) = 0. (7)

A simple proof is given below. We consider the following optimization prob-
lem:

minimize
d∈Rn

ψ(d). (8)
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Problem (8) has a unique solution d = 0 from (6), and hence the first–order
optimality condition of (8) implies (7).

As mentioned in Section 1, the traditional LMMs have local and global
convergence properties. In particular, the global convergence has been
shown by integrating Armijo’s line search with the LMMs. For example,
see [11, 12]. We also adopt Armijo’s line search so that the proposed LMM
converges globally. In the line search, we use the following merit function:

ϕ(x) =
1

2
∥F (x)∥2. (9)

The formal statement of the proposed generalized LMM is given below.

Algorithm 1 (Generalized Levenberg-Marquardt Method)

1: Choose parameters α, β ∈ (0, 1) and an initial point x0 ∈ Rn. Set k := 0.
2: If ∥F ′(xk)⊤F (xk)∥ = 0, then stop.
3: Find the solution dk of (5).
4: Let mk be the smallest nonnegative integer m such that

ϕ(xk + βmdk)− ϕ(xk) ≤ αβm∇ϕ(xk)⊤dk. (10)

Set xk+1 := xk + βmkdk.
5: Set k ← k + 1, and go to Step 2.

We show that Algorithm 1 is well-defined. To this end, we make the
following assumptions.

Assumption 1.

(1) ψ is differentiable at neighborhood of d = 0 and is continuously differ-
entiable at d = 0.

(2) Subgradient of ψ at neighborhood of d = 0 is bounded, i.e., there exist
constants M ∈ (0,∞) and b ∈ (0, 1) such that ∥η∥ ≤M for all η ∈ ∂ψ(d)
and d ∈ N(0, b).

Note that (2) of Assumption 1 holds when ψ is norm.

Assumption 2.

(1) When ψ is continuously differentiable at d = 0,

µk = ∥F (xk)∥2−p+δ, δ ∈ [1, 2].
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(2) When ψ is not continuously differentiable at d = 0,

µk = min

{
∥F (xk)∥2−p+δ,

∥F ′(xk)⊤F (xk)∥
M

}
, δ ∈ [1, 2].

To prove that Algorithm 1 is well-defined, we have to show the following
two properties.

� search direction is not zero until the termination criterion in Step 2 is
satisfied

� the line search in Step 4 terminates finitely

We prove the former property in Lemma 1. The latter property is omitted
because it clearly hold.

Lemma 1. Let {xk} be a sequence generated by Algorithm 1. Suppose that
either (1) or (2) of Assumption 1 holds and that Assumption 2 holds. Then,
the following inequalities hold:

∥F (xk)∥2 ≥ ∥F ′(xk)dk + F (xk)∥2 + µkψ(dk),

∇ϕ(xk)⊤dk ≤ −1

2
∥F ′(xk)dk∥2 − 1

2
µkψ(dk).

Moreover, if xk is not a stationary point of ϕ, i.e., F ′(xk)⊤F (xk) ̸= 0, then
the solution dk of subproblem (5) is not zero and satisfies ∇ϕ(xk)⊤dk < 0.

Proof. For simplicity, let us define θk(d) := ∥F ′(xk)d + F (xk)∥2 + µkψ(d).
Since dk is an optimal solution of (5), we have

∥F (xk)∥2 = θk(0) ≥ θk(dk) = ∥F ′(xk)dk + F (xk)∥2 + µkψ(dk). (11)

It follows from (11) and ∇ϕ(xk) = F ′(xk)⊤F (xk) that

∇ϕ(xk)⊤dk ≤ −1

2
∥F ′(xk)dk∥2 − 1

2
µkψ(dk). (12)

We prove the second half of assertion by contradiction. Assume that dk = 0.
We divide the proof into the following two cases: (i) ψ is differentiable at
d = 0; (ii) ψ is not differentiable at d = 0.

Case (i): Since dk is a solution of (5), we have 2F ′(xk)⊤F ′(xk)dk +
2F ′(xk)⊤F (xk) + µk∇ψ(dk) = 0. It then follows from dk = 0 and (7) that
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∇ϕ(xk) = F ′(xk)⊤F (xk) = 0. This contradicts the fact that xk is not a
stationary point of ϕ.

Case (ii): Since dk is a solution of (5), there exists η ∈ ∂ψ(dk) such
that 2F ′(xk)⊤F ′(xk)dk + 2F ′(xk)⊤F (xk) + µkη = 0. Substituting dk = 0
into the equality yields 2F ′(xk)⊤F (xk) + µkη = 0. It follows from (2) of
Assumption 1 and (2) of Assumption 2 that

0 = ∥2F ′(xk)⊤F (xk) + µkη∥ ≥ 2∥F ′(xk)⊤F (xk)∥ − µk∥η∥

> 2∥F ′(xk)⊤F (xk)∥ − 2∥F ′(xk)⊤F (xk)∥
M

·M = 0,

which contradicts. Moreover, since xk is not a stationary point and dk ̸= 0,
from (12), we have ∇ϕ(xk)⊤dk < 0.

3. Global Convergence of Algorithm 1

In this section, we prove that a sequence generated by Algorithm 1 con-
verges globally.

Lemma 2. Let x̄ be a limit point of {xk}. Suppose that either (1) or (2) of
Assumption 1 holds and that Assumption 2 holds. If ψ(dk) → 0 (k → ∞),
then x̄ satisfies the stationary condition of min{ϕ(x) | x ∈ Rn}.

Proof. From (6), we have 0 ≤ γ1∥dk∥p ≤ ψ(dk). Utilizing ψ(dk) → 0 (k →
∞) yields dk → 0 (k → ∞). Since dk is a solution of (5), there exists
ηk ∈ ∂ψ(dk) such that 0 = ∥2F ′(xk)⊤F ′(xk)dk + 2F ′(xk)⊤F (xk) + µkη

k∥ ≥
2∥F ′(xk)⊤F (xk)∥ − 2∥F ′(xk)⊤F ′(xk)dk∥ − µk∥ηk∥. Then we have

∥F ′(xk)⊤F (xk)∥ ≤ ∥F ′(xk)⊤F ′(xk)dk∥+
1

2
µk∥ηk∥. (13)

Now we consider the following two cases: (i) ψ is continuously differentiable
at d = 0; (ii) ψ is not continuously differentiable at d = 0.

Case (i): Recall that µk = ∥F (xk)∥2−p+δ from (1) of Assumption 2.
Since ∇ψ is continuous and dk → 0 (k → ∞), it follows from (7) that
∇ψ(dk) → 0 (k → ∞). Therefore, inequality (13) and the continuity of F
and F ′ derive ∥F ′(x̄)⊤F (x̄)∥ ≤ 0.

Case (ii): Since dk → 0 (k →∞) and (2) of Assumption 1 holds, we have
∥ηk∥ ≤M for all sufficiently large k. It then follows from (2) of Assumption 2
and (13) that ∥F ′(xk)⊤F (xk)∥ ≤ ∥F ′(xk)⊤F ′(xk)dk∥ + ∥F ′(xk)⊤F (xk)∥/2.
Therefore, letting k → ∞ implies ∥F ′(x̄)⊤F (x̄)∥ ≤ ∥F ′(x̄)⊤F (x̄)∥/2, which
leads to ∥F ′(x̄)⊤F (x̄)∥ = 0.
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Theorem 1. Let {xk} be a bounded sequence generated by Algorithm 1.
Suppose that either (1) or (2) of Assumption 1 holds and that Assump-
tion 2 holds. Then, any accumulation point of {xk} satisfies the stationary
condition of min{ϕ(x) | x ∈ Rn}.

Proof. From Lemma 1, we have

∇ϕ(xk)⊤dk ≤ −1

2
µkψ(dk). (14)

Combining (10) and (14) yields ϕ(xk+1) − ϕ(xk) ≤ αβmk∇ϕ(xk)⊤dk ≤
−αβmkµkψ(dk)/2, which implies

ϕ(xk+1)− ϕ(x0) =
k∑

i=0

(
ϕ(xi+1)− ϕ(xi)

)
≤ −α

2

k∑
i=0

βmiµiψ(di). (15)

Now let x̄ be an accumulation point of {xk}. Then there exists a subsequence
{xk}K that converges to x̄, where K ⊂ N∪{0}. If K ∋ k →∞ in (15), then
ϕ(xk+1)−ϕ(x0) converges to ϕ(x̄)−ϕ(0), which implies that βmkµkψ(dk)→
0 (k → ∞). Hence, there are the two cases: (a) µk → 0 (k → ∞); (b)
µk ̸→ 0 (k →∞).

Case (a): From Assumption 2, it is clear that ∥F (x̄)∥2−p+δ = 0 or
∥F ′(x̄)⊤F (x̄)∥/M = 0, that is, ∇ϕ(x̄) = F ′(x̄)F (x̄) = 0.

Case (b): There exist µ̄ > 0 and J ⊂ K such that µk ≥ µ̄ for all
k ∈ J . It follows from Lemma 1 and (6) that ∥F (xk)∥2 ≥ µkψ(dk) ≥
µ̄γ1∥dk∥p, namely ∥dk∥p ≤ ∥F (xk)∥2/(µ̄γ1). Since {xk} is bounded, so is
{dk}. Therefore without loss of generality, we assume that {dk}K converges
to d̄. Now we consider the following two cases: (b1) βmk → 0 (k → ∞);
(b2) βmk ̸→ 0 (k →∞).

Case (b1): Since mk is the smallest nonnegative integer that satisfies the
Armijo’s condition (10), mk − 1 does not satisfy the condition, i.e., we have
ϕ(xk + βmk−1dk) − ϕ(xk) > αβmk−1∇ϕ(xk)⊤dk. From Mean Value Theo-
rem, there exists a constant ρk ∈ [0, 1] such that ϕ(xk +βmk−1dk)−ϕ(xk) =
βmk−1∇ϕ(xk + ρkβ

mk−1dk)⊤dk. Then we have ∇ϕ(xk + ρkβ
mk−1dk)⊤dk >

α∇ϕ(xk)⊤dk. The continuity of ∇ϕ ensures ∇ϕ(x̄)⊤d̄ ≥ α∇ϕ(x̄)⊤d̄. Since
α ∈ (0, 1), we obtain∇ϕ(x̄)⊤d̄ ≥ 0. Therefore, from (14), we have µkψ(dk)→
0 (k →∞). Because of µk ̸→ 0 (k →∞), it is clear that ψ(dk)→ 0 (k →∞).
Therefore, from Lemma 2, we obtain that x̄ satisfies the stationary condi-
tion.

Case (b2): Since ψ(dk)→ 0 (k →∞), Lemma 2 implies that x̄ satisfies
the stationary condition.
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4. Local Convergence without Line Search

This section shows the local convergence properties of Algorithm 2, which
is equal to Algorithm 1 without Armijo’s line search and provided below.

Algorithm 2 (Generalized Levenberg-Marquardt Method without Line Search)

1: Choose an initial point x0 ∈ Rn. Set k := 0.
2: If ∥F ′(xk)⊤F (xk)∥ = 0, then stop.
3: Find the solution dk of (5).
4: Set xk+1 := xk + dk.
5: Set k ← k + 1, and go to Step 2.

In particular, we first show superlinear convergence under appropriate
assumptions. Moreover, we prove quadratic convergence by some additional
assumptions. In the following, we discuss the local convergence around
x∗ ∈ X∗.

4.1. Superlinear Convergence

We make two assumptions for the local convergence.

Assumption 3.

(1) The Jacobian of F is Lipschitz continuous on N(x∗, b), i.e., there exists
a positive constant L1 such that

∥F ′(y)− F ′(x)∥ ≤ L1∥y − x∥

for all x, y ∈ N(x∗, b).

(2) The norm of F (x) provides a local error bound on N(x∗, b) for the system
(1), i.e., there exists a positive constant c1 such that

c1dist(x,X∗) ≤ ∥F (x)∥

for all x ∈ N(x∗, b).

Assumption 4. There exist constants 0 < ξ1 ≤ ξ2 such that

ξ1∥F (xk)∥2−p+δ ≤ µk ≤ ξ2∥F (xk)∥2−p+δ, δ ∈ [1, 2].

Remark 1. The local error bound condition, that is, (2) of Assumption 3,
holds if the Jacobian of F is nonsingular at x∗. Moreover, it is known that
the condition is satisified if F is a piecewise linear function [11].
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To begin with, we provide the well-known results which can be derived
from (1) of Assumption 3.

Lemma 3 ([5, Lemma 4.1.12]). Suppose that (1) of Assumption 3 holds.
Then

∥F ′(y)(x− y)− (F (x)− F (y))∥ ≤ L1

2
∥x− y∥2

for all x, y ∈ N(x∗, b). Moreover, there exists a positive constant L2 such
that

∥F (x)− F (y)∥ ≤ L2∥x− y∥

for all x, y ∈ N(x∗, b).

Now, we prove superlinear convergence of Algorithm 2. As stated in
Section 1, Fan and Yuan [12] showed superlinear convergence of the ordinary
LMM. Although the difference between the existing and proposed methods
is the regularization term in (5), the same idea as [12] can be applied to
the convergence analysis of the proposed method by using inequality (6)
and Assumption 4 accordingly. Therefore, we omit proofs of the following
Lemmas and Theorem.

Lemma 4 ([12, Lemma 2.1]). Suppose that Assumptions 3 and 4 hold. Then
there exists c2 > 0 such that ∥dk∥ ≤ c2dist(xk, X∗) for all xk ∈ N(x∗, b/2).

Lemma 5 ([12, Lemma 2.2]). Suppose that Assumptions 3 and 4 hold. Then
there exists c3 > 0 such that dist(xk +dk, X∗) ≤ c3dist(xk, X∗)(2+δ)/2 for all
xk+1, xk ∈ N(x∗, b/2).

Let a positive constant r1 be

r1 := min

 b

2(1 + 11c2)
,
c
− 2

δ
3

2

 .

Lemma 6 ([12, Theorem 2.1]). Suppose that Assumptions 3 and 4 hold. If
x0 ∈ N(x∗, r1), then xk ∈ N(x∗, b/2) for all nonnegative integer k.

Theorem 2 ([12, Theorem 2.1]). Let {xk} be a sequence generated by Al-
gorithm 2. Suppose that Assumptions 3 and 4 hold. If x0 ∈ N(x∗, r1), then
the sequence {xk} converges to some solution x̄ ∈ X∗ superlinearly.

4.2. Quadratic Convergence

We prove that Algorithm 2 converges quadratically. To this end, we
make the following assumption.
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Assumption 5. There exists a positive constant γ such that

µk∥ηk∥ ≤ γ∥xk − x∗∥2

for all ηk ∈ ∂ψ(dk).

Remark 2. Suppose that Assumptions 3 and 4 hold, and xk ∈ N(x∗, b/2).
In the case of the common LMM, specifically, ψ(d) = ∥d∥2, we have ∂ψ(dk) =
{2dk}. Moreover, from (6), we have p = 2. It then follows from Assump-
tion 4, Lemmas 3, and 4 that µk∥ηk∥ ≤ 2ξ2∥F (xk)∥∥dk∥ ≤ 2ξ2L2c2∥xk −
x∗∥2, and hence Assmption 5 holds. When the L1 norm is adopted as ψ, we
obtain ∥ηk∥ ≤

√
n and p = 1. Therefore, from Assumption 4 and Lemma 3,

we have µk∥ηk∥ ≤
√
nξ2∥F (xk)∥2 ≤

√
nξ2L2∥xk − x∗∥2.

In the subsequent convergence analysis, we also utilize the way of Fan
and Yuan [12] to show quadratic convergence of the proposed method. They
proved the quadratic convergence of the normal LMM by using the fact
that the search direction can be written explicitly. However, the search
direction of the proposed method can not be expressed explicitly due to the
generalization of the regularization term. Therefore, we provide some new
lemmas which evaluate the difference between the search direction of the
exisiting LMM and of the proposed method so that we can use the same
approach as [12]. For this purpose, we define the search direction of the
ordinary LMM as follows. Let dkLM be a solution of the following traditional
LMM subproblem:

minimize
d∈Rn

∥F ′(xk)d+ F (xk)∥2 + νk∥d∥2, (16)

where νk is a positive parameter. In the following, as with [12], νk is defined
as below:

νk = ∥F (xk)∥δ, δ ∈ [1, 2]. (17)

First, we provide some lemmas related to the search direction of the ordinary
LMM.

Lemma 7 ([12, Lemma 2.1]). Suppose that Assumption 3 holds. Then there
exists c4 > 0 such that ∥dkLM∥ ≤ c4dist(xk, X∗) for all xk ∈ N(x∗, b/2).

Lemma 8. Suppose that Assumptions 3 and 5 hold. Then there exists c5 > 0
such that ∥F ′(xk)⊤F ′(xk)(dk−dkLM)∥ ≤ c5∥xk−x∗∥2 for all xk ∈ N(x∗, b/2).

Proof. From Lemma 3 and (17), we have

νk = ∥F (xk)∥δ ≤ Lδ
2∥xk − x∗∥δ ≤ Lδ

2∥xk − x∗∥. (18)
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Since dk and dkLM are respectively solutions of (5) and (16), we obtain
2F ′(xk)⊤F ′(xk)dkLM+2F ′(xk)⊤F (xk)+2νkd

k
LM = 0 and 2F ′(xk)⊤F ′(xk)dk+

2F ′(xk)⊤F (xk) + µkη
k = 0 , where ηk ∈ ∂ψ(dk). By subtracting these two

equations, we have 2F ′(xk)⊤F ′(xk)(dk−dkLM) +µkη
k−2νkd

k
LM = 0. It then

follows from Assumption 5, Lemma 7, and (18) that

∥F ′(xk)⊤F ′(xk)(dk − dkLM)∥ ≤ 1

2

(
µk∥ηk∥+ 2νk∥dkLM∥

)
≤ γ + 2c4L

δ
2

2
∥xk − x∗∥2.

Therefore, the desired inequality holds.

As seen in the convergence analysis of [12], we will utilize the singular
value decomposition (SVD) of F ′(x∗) as follows.

F ′(x∗) = U∗Σ∗V ∗⊤ = U∗diag (Σ∗
1, O)V ∗⊤ = U∗

1Σ∗
1V

∗
1
⊤,

where Σ∗
1 := diag (σ∗1, . . . , σ

∗
r ), σ∗1 ≥ · · · ≥ σ∗r > 0 and rank (Σ∗

1) = r. Let

{xk} be a sequence converging to x∗, and σ
(k)
1 ≥ · · · ≥ σ

(k)
min{m,n} ≥ 0 be

singular values of F ′(xk). Note that F ′(xk) → F ′(x∗) as k → ∞. Then,

since σ
(k)
i → σ∗i (k →∞) for all i ∈ {1, . . . , r} and σ

(k)
i → 0 (k →∞) for all

i ∈ {r+ 1, . . . ,min{m,n}} from [16, Theorem 2.6.4], the number of positive
singular values of F ′(xk) is r or more for all sufficiently large k, i.e., the
SVD of F ′(xk) can be represented as follows:

F ′(xk) = UkΣkVk
⊤

= [Uk,1 Uk,2 Uk,3] diag(Σk,1,Σk,2, O)

 V ⊤
k,1

V ⊤
k,2

V ⊤
k,3


= Uk,1Σk,1V

⊤
k,1 + Uk,2Σk,2V

⊤
k,2, (19)

where Σk,1 := diag(σ
(k)
1 , . . . , σ

(k)
r ) > 0, Σk,2 := diag(σ

(k)
r+1, . . . , σ

(k)
r+q) ≥ 0,

rank (Σk,1) = r, and rank (Σk,2) = q ≥ 0. Let r̄ := min{b/2, r2, r3}, where
r2 is a radius such that SVD (19) exists for xk ∈ N(x∗, r2), and r3 is a
positive constant satisfying σ∗r − L1r3 > 0.

By utilizing SVD (19), some additional lemmas can be shown.

Lemma 9 ([12, Inequality (2.13) in Theorem 2.2]). Suppose that Assump-
tion 3 holds. Then there exists c6 > 0 such that ∥F ′(xk)dkLM + F (xk)∥ ≤
c6∥xk − x∗∥2 for all xk ∈ N(x∗, r̄).

12



Lemma 10. Suppose that Assumption 3 holds. Then

(i) ∥Σk,2∥ ≤ L1∥xk − x∗∥ for all xk ∈ N(x∗, r̄);

(ii) there exists c7 > 0 such that c7 ≤ (Σk,1)ii for all i ∈ {1, . . . , r} and all
xk ∈ N(x∗, r̄).

Proof. From [17, Theorem 4.11 (Mirsky)] and (1) of Assumption 3, we have

∥diag (Σk,1 − Σ∗
1,Σk,2, O) ∥ ≤ ∥F ′(xk)− F ′(x∗)∥ ≤ L1∥xk − x∗∥,

which leads to ∥Σk,1−Σ∗
1∥ ≤ L1∥xk−x∗∥ and ∥Σk,2∥ ≤ L1∥xk−x∗∥. Then,

we obtain

σ∗r − σ
(k)
i ≤ σ∗i − σ

(k)
i ≤ max

1≤i≤r
|σ(k)i − σ

∗
i | = ∥Σk,1 − Σ∗

1∥ ≤ L1r3

for all i ∈ {1, . . . , r}. Therefore, we have σ
(k)
i ≥ σ∗r − L1r3 > 0 for all

i ∈ {1, . . . , r}.

Lemma 11. Suppose that Assumptions 3, 4, and 5 hold. Then there exist
c8 > 0 and c9 > 0 such that

∥Σk,1V
⊤
k,1(d

k − dkLM)∥ ≤ c8∥xk − x∗∥2, ∥Σk,2V
⊤
k,2(d

k − dkLM)∥ ≤ c9∥xk − x∗∥2

for all xk ∈ N(x∗, r̄).

Proof. From Lemma 8, we have

c5∥xk − x∗∥2 ≥ ∥F ′(xk)⊤F ′(xk)(dk − dkLM)∥
= ∥(Vk,1Σ2

k,1V
⊤
k,1 + Vk,2Σ

2
k,2V

⊤
k,2)(d

k − dkLM)∥
≥ ∥Vk,1Σ2

k,1V
⊤
k,1(d

k − dkLM)∥ − ∥Vk,2Σ2
k,2V

⊤
k,2(d

k − dkLM)∥. (20)

Lemmas 4, 7, and 10 imply

∥Vk,2Σ2
k,2V

⊤
k,2(d

k − dkLM)∥ ≤ ∥Vk,2∥∥Σk,2∥2∥V ⊤
k,2∥∥dk − dkLM∥

≤ ∥Σk,2∥2
(
∥dk∥+ ∥dkLM∥

)
≤ L2

1(c2 + c4)∥xk − x∗∥2. (21)

13



Combining (20) and (21) yields

∥Vk,1Σ2
k,1V

⊤
k,1(d

k − dkLM)∥ ≤ c5∥xk − x∗∥2 + ∥Vk,2Σ2
k,2V

⊤
k,2(d

k − dkLM)∥
=

{
L2
1(c2 + c4) + c5

}
∥xk − x∗∥2.

It then follows from Lemma 10 that

∥Σk,1V
⊤
k,1(d

k − dkLM)∥ = ∥Σ−1
k,1V

⊤
k,1Vk,1Σ

2
k,1V

⊤
k,1(d

k − dkLM)∥

≤ ∥Σ−1
k,1∥∥V

⊤
k,1∥∥Vk,1Σ2

k,1V
⊤
k,1(d

k − dkLM)∥

≤ L2
1(c2 + c4) + c5

c7
∥xk − x∗∥2,

∥Σk,2V
⊤
k,2(d

k − dkLM)∥ ≤ ∥Σk,2∥∥V ⊤
k,2∥∥dk − dkLM∥

= ∥Σk,2∥∥dk − dkLM∥
≤ L1(c2 + c4)∥xk − x∗∥2.

Therefore, the desired inequalities hold.

Lemma 12. Suppose that Assumptions 3, 4, and 5 hold. Then there exists
a positive constant c10 such that ∥F (xk+1)∥ ≤ c10∥xk − x∗∥2 for all xk+1 ∈
N(x∗, b/2) and xk ∈ N(x∗, r̄).

Proof. Using Lemma 11 yields

∥F ′(xk)(dk − dkLM)∥2 = ∥Σk,1V
⊤
k,1(d

k − dkLM)∥2 + ∥Σk,2V
⊤
k,2(d

k − dkLM)∥2

≤
(
c28 + c29

)
∥xk − x∗∥4,

and hence

∥F ′(xk)(dk − dkLM)∥ ≤
√
c28 + c29∥x

k − x∗∥2. (22)

Since ∥F (xk+1)∥ − ∥F ′(xk)dk + F (xk)∥ ≤ ∥F ′(xk)(xk+1 − xk)− (F (xk+1)−
F (xk))∥ ≤ L1

2 ∥d
k∥2, inequality (22) and Lemmas 4 and 9 imply

∥F (xk+1)∥ ≤ ∥F ′(xk)dk + F (xk)∥+
L1

2
∥dk∥2

≤ ∥F ′(xk)dkLM + F (xk)∥+ ∥F ′(xk)(dk − dkLM)∥+
L1

2
∥dk∥2

=

(
L1c

2
2

2
+ c6 +

√
c28 + c29

)
∥xk − x∗∥2.

Therefore, the assertion is proven.
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Theorem 3. Let {xk} be a sequence generated by Algorithm 2. Suppose
that Assumptions 3, 4, and 5 hold. If x0 ∈ N(x∗, r1), then the sequence
{xk} converges to the solution x∗ quadratically.

Proof. Let a positive constant r̃ be

r̃ := min

{(
1

2c3

) 2
δ

, r̄

}
.

From Theorem 2 and x0 ∈ N(x∗, r1), we have xk → x∗ (k → ∞). Then we
obtain ∥dk∥ ≤ ∥xk+1 − x∗∥ + ∥xk − x∗∥ → 0 (k → ∞). Therefore, there
exists a constant n1 ∈ N such that xk ∈ N(x∗, r̃) and

∥dk∥ ≤ min

{(
1

3c

) 2
δ

,
1

3c′

}
(23)

for all k ≥ n1, where c = 2
2+δ
2 c2c3 and c′ = 9c2c10/(4c1). Let ℓ ≥ n1 be an

arbitrary. Since xℓ ∈ N(x∗, b/2) and xℓ + dℓ = xℓ+1 ∈ N(x∗, b/2), Lemma 5
ensures dist(xℓ, X∗) ≤ dist(xℓ + dℓ, X∗) + ∥dℓ∥ ≤ c3dist(xℓ, X∗)(2+δ)/2 +
∥dℓ∥, which implies that

{
1− c3dist(xℓ, X∗)δ/2

}
dist(xℓ, X∗) ≤ ∥dℓ∥. Since

we have c3dist(xℓ, X∗)δ/2 ≤ c3∥xℓ − x∗∥δ/2 ≤ 1/2, we obtain dist(xℓ, X∗) ≤
2∥dℓ∥. Therefore, from Lemmas 4 and 5, we have

∥dℓ+1∥ ≤ c2dist(xℓ+1, X∗) ≤ c2c3dist(xℓ, X∗)
2+δ
2 ≤ 2

2+δ
2 c2c3∥dℓ∥

2+δ
2 . (24)

Suppose that m > ℓ. Then from (23) and (24), we have

∥dj∥ ≤ c∥dj−1∥
2+δ
2 ≤ 1

3
∥dj−1∥ ≤ c

3
∥dj−2∥

2+δ
2

≤
(

1

3

)2

∥dj−2∥ ≤ · · · ≤
(

1

3

)j−ℓ

∥dℓ∥

for all j ∈ {ℓ+ 1, . . . ,m− 1}. Hence we obtain

∥xm − xℓ∥ =

∥∥∥∥∥∥
m−1∑
j=ℓ

dj

∥∥∥∥∥∥ ≤ ∥dℓ∥+

m−1∑
j=ℓ+1

∥dj∥

≤

{
1 +

m−ℓ−1∑
l=1

(
1

3

)l
}
∥dℓ∥ =

3− 3−m+ℓ+1

2
∥dℓ∥,
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which implies from m→∞ that ∥xℓ−x∗∥ ≤ (3/2)∥dℓ∥. Therefore, it follows
from (2) of Assumption 3, Lemmas 4, and 12 that

∥dℓ+1∥ ≤ c2dist(xℓ+1, X∗) ≤ c2
c1
∥F (xℓ+1)∥

≤ c2c10
c1
∥xℓ − x∗∥2 ≤ 9c2c10

4c1
∥dℓ∥2. (25)

Then, from (23) and (25), we have

∥dj∥ ≤ c′∥dj−1∥2 ≤ 1

3
∥dj−1∥ ≤ c′

3
∥dj−2∥2

≤
(

1

3

)2

∥dj−2∥ ≤ · · · ≤
(

1

3

)j−ℓ

∥dℓ∥

for all j ∈ {ℓ+ 1, . . . ,m− 1}. Therefore, we obtain

∥xm − xℓ∥ =

∥∥∥∥∥∥
m−1∑
j=ℓ

dj

∥∥∥∥∥∥ ≥ ∥dℓ∥ −
m−1∑
j=ℓ+1

∥dj∥

≥

{
1−

m−ℓ−1∑
l=1

(
1

3

)l
}
∥dℓ∥ =

1 + 3−m+ℓ+1

2
∥dℓ∥. (26)

On the other hand, we have

∥dj∥ ≤ c′∥dj−1∥2 ≤ 1

3
∥dj−1∥ ≤ c′

3
∥dj−2∥2

≤
(

1

3

)2

∥dj−2∥ ≤ · · · ≤
(

1

3

)j−ℓ−1

∥dℓ+1∥

for all j ∈ {ℓ+ 2, . . . ,m− 1}. It then follows that

∥xm − xℓ+1∥ =

∥∥∥∥∥∥
m−1∑
j=ℓ+1

dj

∥∥∥∥∥∥ ≤ ∥dℓ+1∥+
m−1∑
j=ℓ+2

∥dj∥

≤

{
1 +

m−ℓ−2∑
l=1

(
1

3

)l
}
∥dℓ+1∥ =

3(1− 3−m+ℓ+1)

2
∥dℓ+1∥. (27)
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Hence, inequalities (25), (26), and (27) yield

∥xℓ+1 − xm∥ ≤ 3c′(1− 3−m+ℓ+1)

2
∥dℓ∥2 ≤ 6c′(1− 3−m+ℓ+1)

(1 + 3−m+ℓ+1)2
∥xℓ − xm∥2.

Let c̄ := 6c′ > 0 andm→∞ leads to ∥xℓ+1−x∗∥ ≤ c̄∥xℓ−x∗∥2, which implies
that the sequence {xk} converges to the solution x∗ quadratically.

5. Local Convergence of Algorithm 1

In this section, we prove local and quadratic convergence of Algorithm 1
which converges globally under Assumptions 1 and 2. Although we consider
applying Theorem 3 to the current convergence analysis, there are some
differences between Algorithms 1 and 2 as follows:

� Algorithm 1 set the step size as βmk ∈ (0, 1] whereas Algorithm 2
always adopt 1.

� Algorithm 1 supposes that µk satisfies Assumption 2. Meanwhile,
Algorithm 2 needs to satisfy Assumption 4.

Therefore, we provide sufficient conditions under which the step size becomes
1 and µk given in Assumption 2 satisfies Assumption 4.

Throughout this section, we use the following notation:

u := sup
{
σ1

(
F ′(x)

)
| x ∈ N (x∗, b)

}
,

where σi(M) : Rm×n → R is a function that returns the i-th largest singular
value of M . Then, the continuity of σi and F ′ implies u < ∞, and the
definition of u ensures

(Σk)ii = σi

(
F ′(xk)

)
≤ σ1

(
F ′(xk)

)
≤ u (28)

for all xk ∈ N(x∗, b) and i ∈ {1, . . . ,min{m,n}}. By using the positive
constant u, we also define the following positive constant ω:

ω =
2c22u

2

c21
+
bγ̄c2

2
.

Now we make the following three assumptions.

Assumption 6. When ψ is not continuously differentiable at d = 0, the
following two conditions hold.
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(1) 2− p+ δ ≥ 1.

(2) For the merit function ϕ, Polyak- Lojasiewicz inequality holds at a neigh-
borhood of x∗, i.e., there exists a positive constant µ such that

1

2
∥∇ϕ(x)∥2 ≥ µ (ϕ(x)− ϕ(x∗))

for all x ∈ N(x∗, b/2).

Assumption 7. There exists a positive constant γ̄ such that

µk∥ηk∥ ≤ γ̄∥F (xk)∥2

for all ηk ∈ ∂ψ(dk).

Assumption 8. The parameter α in Algorithm 1 is chosen to satisfy the
following inequality:

1− αω > 0.

Remark 3. The Polyak- Lojasiewicz inequality, that is, (2) of Assumption 6
is satisfied if ϕ is strongly convex. Moreover, it is known that there exist
several sufficient conditions, which are milder than strong convexity, for the
Polyak- Lojasiewicz inequality [18].

Remark 4. As with Remark 2, we show that Assumption 7 is satisfied in the
case of ψ(d) = ∥d∥2 and of ψ(d) = ∥d∥1. Suppose that Assumptions 3 and 4
hold, and xk ∈ N(x∗, b/2). When ψ(d) = ∥d∥2, from Assumptions 3, 4, and
Lemma 4, we have µk∥ηk∥ ≤ 2ξ2∥F (xk)∥∥dk∥ ≤ 2ξ2c2∥F (xk)∥·dist(xk, X∗) ≤
(2ξ2c2/c1)∥F (xk)∥2. On the other hand, when ψ(d) = ∥d∥1, we obtain
µk∥ηk∥ ≤

√
nξ2∥F (xk)∥2.

Remark 5. Suppose that Assumption 3 holds. If Assumption 7 holds and
xk ∈ N(x∗, b), then from Lemma 3, we have µk∥ηk∥ ≤ γ̄∥F (xk)∥2 ≤ γ̄L2

2∥xk−
x∗∥2, which implies that Assumption 5 holds.

The next lemma shows that µk given in Assumption 2 satisfies Assump-
tion 4 at a neighborhood of x∗.

Lemma 13. Suppose that Assumptions 2 and 6 hold. If xk ∈ N(x∗, b/2)
and ∥F (xk)∥ ≤ 1, then the following inequalities hold:

min

{
1,

√
µ

M

}
∥F (xk)∥2−p+δ ≤ µk ≤ ∥F (xk)∥2−p+δ.
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Proof. When ψ is continuously differentiable at d = 0, (1) of Assumption 2
implies that the desired inequality holds. In the following, we consider the
case where ψ is not continuously differentiable at d = 0. From (2) of As-
sumption 6 and (9), we have

√
µ∥F (x)∥ ≤ ∥F ′(x)⊤F (x)∥ for all x ∈ N(x∗, b).

It then follows from (1) of Assumption 6 that (
√
µ/M)∥F (xk)∥2−p+δ ≤

(
√
µ/M)∥F (xk)∥ ≤ ∥F ′(xk)⊤F (xk)∥/M . Therefore, we obtain

min

{
1,

√
µ

M

}
∥F (xk)∥2−p+δ ≤ min

{
∥F (xk)∥2−p+δ,

∥F ′(xk)⊤F (xk)∥
M

}
= µk ≤ ∥F (xk)∥2−p+δ.

This completes the proof.

The next lemma shows that 1 is chosen as the step size.

Lemma 14. Suppose that Assumptions 2, 3, 6, 7, and 8 hold. If xk+dk, xk ∈
N(x∗, b/2) and

∥F (xk)∥ ≤ min


c

2+δ
2

1

√
1− αω

L2c3

 2
δ

, 1

 ,

then the step size βmk becomes 1.

Proof. Note that from Lemma 13, Assumption 4 holds. Since dk is a solution
of (5), there exists ηk ∈ ∂ψ(dk) such that 2F ′(xk)⊤F ′(xk)dk+2F ′(xk)⊤F (xk)+
µkη

k = 0. Therefore, we have∇ϕ(xk) = F ′(xk)⊤F (xk) = −F ′(xk)⊤F ′(xk)dk−
µkη

k/2, which implies that

∇ϕ(xk)⊤dk = −∥F ′(xk)dk∥2 − 1

2
µk

(
ηk

)⊤
dk. (29)

From (2) of Assumption 3, Lemma 4, and (28), we obtain

−∥F ′(xk)dk∥2 = −∥UkΣkV
⊤
k d

k∥2 ≥ −∥Uk∥2∥Σk∥2∥V ⊤
k ∥2∥dk∥2

≥ −u2 · c22dist(xk, X∗)2 ≥ −c
2
2u

2

c21
∥F (xk)∥2. (30)

On the other hand, from (2) of Assumption 3, Assumption 7, and Lemma 4,
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we have

−1

2
µk

(
ηk

)⊤
dk ≥ −1

2
µk∥ηk∥∥dk∥

≥ − γ̄c2
2
∥F (xk)∥2 · dist(xk, X∗)

≥ −bγ̄c2
4
∥F (xk)∥2. (31)

Hence, using (29), (30), and (31) yields

∇ϕ(xk)⊤dk = −∥F ′(xk)dk∥2 − 1

2
µk

(
ηk

)⊤
dk

≥ −c
2
2u

2

c21
∥F (xk)∥2 − bγ̄c2

4
∥F (xk)∥2

= −ω
2
∥F (xk)∥2.

Let xkp ∈ X∗ denotes the vector such that ∥xkp − xk∥ = dist(xk, X∗). Since

∥xkp − x∗∥ ≤ ∥xkp − xk∥+ ∥xk − x∗∥ ≤ b, (2) of Assumption 3 and Lemmas 3
and 5 derive

∥F (xk + dk)∥ ≤ L2∥xk + dk − xk+1
p ∥

≤ L2c3dist(xk, X∗)
2+δ
2

≤ L2c
− 2+δ

2
1 c3∥F (xk)∥

2+δ
2

= L2c
− 2+δ

2
1 c3∥F (xk)∥

δ
2 · ∥F (xk)∥

≤
√

1− αω∥F (xk)∥.

Therefore, we obtain

ϕ(xk + dk)− ϕ(xk) =
1

2

(
∥F (xk+1)∥2 − ∥F (xk)∥2

)
≤ 1

2

{
(1− αω)∥F (xk)∥2 − ∥F (xk)∥2

}
= −αω

2
∥F (xk)∥2

≤ α∇ϕ(xk)⊤dk,

which leads to βmk = 1.

Theorem 4. Let {xk} be a bounded sequence generated by Algorithm 1.
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Suppose that either (1) or (2) of the Assumption 1 holds and that Assump-
tion 2 holds. Then, any accumulation point of {xk} satisfies the stationary
condition of min{ϕ(x) | x ∈ Rn}. Moreover, if the accumulation point x∗

solves (1) and Assumptions 3, 6, 7, and 8 hold at x∗, then the sequence {xk}
converges to x∗ quadratically.

Proof. From Theorem 1, we have already proved the former part of this
theorem. In the following, we show the latter part. Note that Assumption 5
holds from Remark 5. By Theorem 3, it suffices to show that there exists a
positive integer k̃ such that µk satisfies Assumption 4 and βmk = 1 for all
k ≥ k̃.

Since xk → x∗ (k →∞) and F (xk)→ F (x∗) = 0 (k →∞), there exists
a constant k̃ such that xl ∈ N(x∗, r1) and

∥F (xl)∥ ≤ min


c

2+δ
2

1

√
1− αω

L2c3

 2
δ

, 1


for all l ≥ k̃. Suppose that k ≥ k̃. From Lemma 13, Assumption 4 holds
for µk. It then follows from Lemma 4 that ∥xk + dk − x∗∥ ≤ ∥xk − x∗∥ +
c2dist(xk, X∗) ≤ (1 + c2)r1 ≤ b/2, which implies xk + dk ∈ N(x∗, b/2).
Therefore, Lemma 14 guarantees βmk = 1. Hence, Theorem 3 implies that
{xk} converges to x∗ quadratically.

6. Numerical Experiments

In this section, we conduct numerical experiments to compare Algo-
rithm 1 with the existing LMM [12, Algorithm 3.1]. All experiments were
performed using MATLAB R2021b on a machine with Intel Core i5-5350U
1.80GHz of CPU and 8GB of RAM. In both Algorithm 1 and the ordi-
nary LMM, we chose α = 0.0001 and β = 0.5 for line search, and used
∥F ′(xk)⊤F (xk)∥ < ε for termination criteria, where ε = n · 10−6. The reg-
ularization parameter was set to min{µk, 0.1} for preventing it getting too
large. Algorithm 1 adopted the L1 norm as the regularization term ψ of (5)
and solved the subproblem by using dual methods [19].

We consider a continuously differentiable function F : Rn → Rm as fol-
lows:

F (x) := (F1(x), . . . , Fm(x))⊤ , Fi(x) :=
1

2
x⊤Aix+ b⊤i x+ ci,
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where Fi : Rn → R is a continuously differentiable function and Ai ∈ Rn×n is
a symmetric matrix. We generated constants of the test problems as below.

(1) We generate Bi ∈ Rn×n, bi ∈ Rn and x∗ ∈ Rn whose elements are
generated randomly from the interval [0, 1], and

(2) set Ai := (Bi +Bi
⊤)/2 and ci := −(x∗)⊤Aix

∗/2 + b⊤i x
∗

We fix m = 10, and change n to n = 10, 100, 500, 1000, 1500, 2000, 2500,
3000, 3500, 4000, 4500, 5000. For each n, we solved 10 test problems by using
the different initial points x0 ∈ Rn whose elements are generated randomly
from the interval [0, 1].

Table 1: Comparison of average CPU time between the LMM and Algorithm 1 [sec.]

n LMM (CD) LMM (SMW) proposed method

10 0.0236 0.0143 0.1109
100 0.0255 0.0037 0.0373
500 0.0430 0.0238 0.0302
1000 0.1360 0.0527 0.0337
1500 0.3706 0.1118 0.0533
2000 0.8421 0.1915 0.0647
2500 1.1657 0.2570 0.0745
3000 1.5159 0.3365 0.0800
3500 2.2266 0.4512 0.1035
4000 3.0280 0.5722 0.1193
4500 4.6363 0.7494 0.1682
5000 5.9642 0.9137 0.1920

Table 1 and Figure 1 indicate the average CPU time of the existing LMM
and Algorithm 1. In particular, LMM (CD) and LMM (SMW) mean that
they respectively solve (4) by using the Cholesky decomposition (CD) and
the Sherman-Morrison-Woodbury (SMW) formula. The table and figure
imply that the proposed method was superior to the other methods when n
is getting larger while m is fixed.

7. Conclusions

In this paper, we proposed a new LMM with generalized regulariza-
tion terms. We showed not only the global but also the local quadratic
convergence of the proposed method. Moreover, we conducted numerical
experiments to verify the efficiency of the proposed method.
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Figure 1: Comparison of average CPU time between the LMM and Algorithm 1

Future works will be to consider better regularization terms that satisfy
condition (6), to povide inexact criteria which do not affect the convergence
property for the case where it is expensive to solve the subproblems exactly,
and to develop a regularized Newton method with generalized regularization
terms for convex optimization.
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