力学系数学

6

 $\mathbb{R}^{n\times n}$ で $n\times n$ 実行列の全体を表す. $\mathbb{R}^{n\times n}$ において次の常微分方程式の初期値問題を考える.

$$\frac{dY}{dt} = (A + \lambda B(t))Y, \quad Y(0) = I. \tag{*}$$

ただし, $A \in \mathbb{R}^{n \times n}$ は定数行列, $B(t) \in \mathbb{R}^{n \times n}$ は t=0 を含むある区間 (a,b) で定義された連続関数で, λ は実のパラメータである. また, I は単位行列である. 特に, $\lambda=0$ のときの微分方程式

$$\frac{dX}{dt} = AX, \quad X(0) = I$$

の解はよく知られているように $X(t) = e^{tA}$ で与えられる. 以下の各問に答えよ.

- (i) (*) の解を $Y(t) = e^{tA}W(t)$ の形に仮定して, W(t) に対する微分方程式を導き, それを利用して Y(t) のみたすべき積分方程式を見出せ.
- (ii) (i) で導いた積分方程式の解を $Y(t;\lambda)$ で表す. $Y(t;\lambda)$ が λ について微分可能であるのは既知として,

$$\left. rac{\partial^n}{\partial \lambda^n} Y(t;\lambda) \right|_{\lambda=0} = n! Y_n(t), \quad n=0,1,2,\cdots$$

を示せ. ただし, $Y_n(t)$ は以下のように定義される.

$$Y_0(t) = e^{tA},$$

$$Y_n(t) = \int_0^t e^{(t-s)A} B(s) Y_{n-1}(s) ds, \quad n = 1, 2, \cdots$$
 (**)

(iii) (a,b) の任意の閉部分区間で t=0 をその中に含むようなものを J とし、定数 M、 β を以下の式で定義する. ただし、 $\|\cdot\|$ で行列ノルムを表す.

$$M := \max_{t \in J} ||e^{tA}||, \quad \beta := \max_{t \in J} ||B(t)||.$$

(**) を用いて, $t \in J$ のとき, 以下の評価式を証明せよ.

$$||Y_n(t)|| \le \frac{M}{n!} (\beta M|t|)^n$$

Mathematics for Dynamical Systems

6

Let $\mathbb{R}^{n\times n}$ denote the linear space of $n\times n$ real matrices. Consider the initial value problem for the ordinary differential equation given on $\mathbb{R}^{n\times n}$ by

$$\frac{dY}{dt} = (A + \lambda B(t))Y, \quad Y(0) = I, \tag{*}$$

where $A, B(t) \in \mathbb{R}^{n \times n}$ are, respectively, a constant matrix and a continuous function defined on an interval (a, b) including t = 0, and where λ is a real parameter, and I is the identity. As is well-known, the solution to the equation (*) with $\lambda = 0$,

$$\frac{dX}{dt} = AX, \quad X(0) = I,$$

is given by $X(t) = e^{tA}$. Answer each of the following questions.

- (i) On assuming that a solution to (*) takes the form $Y(t) = e^{tA}W(t)$, find an differential equation for W(t), and thereby obtain an integral equation that Y(t) should be subject to.
- (ii) Denote by $Y(t; \lambda)$ a solution to the integral equation found in (i). Given the fact that $Y(t; \lambda)$ is differentiable with respect to λ , show that

$$\frac{\partial^n}{\partial \lambda^n} Y(t;\lambda) \bigg|_{\lambda=0} = n! Y_n(t), \quad n=0,1,2,\cdots,$$

where $Y_n(t)$'s are defined as follows:

$$Y_0(t) = e^{tA},$$

$$Y_n(t) = \int_0^t e^{(t-s)A} B(s) Y_{n-1}(s) ds, \quad n = 1, 2, \dots$$
 (**)

(iii) Let J denote an arbitrary closed sub-interval of (a, b) such that $0 \in J$, and M and β be constants determined, respectively, by

$$M:=\max_{t\in J}\|e^{tA}\|,\quad \beta:=\max_{t\in J}\|B(t)\|,$$

where $\|\cdot\|$ denotes a matrix norm. By using (**), show that

$$||Y_n(t)|| \le \frac{M}{n!} (\beta M|t|)^n$$
 for $t \in J$.