EREE 1

1 |
n BT RTOEME N OLRTL EE, ~ DS = i oo lcRL, ~ oY L
T n n i)

neN neN

115 5 EOMICITRT 5. p BERTOER P O L2H &%, % DfE 1 +21) DR,
%m%‘\fh,

1 1 1 1 1 1
Z—=_+_+'”’ H(1+_)= (1+_) (14__)..., p1,p2, - EP
P P D P

promr peP 1) P2

e, EREI BB IR by ke, € {0,1,2,...} BFWVT

k k. ke
‘n:pll-p22.p31...

C—EICERBOETEBRC LICHETS. LE2LLLOERMETALE, LLITFOE
ORI HBHETEESR P 5. ITFORWNZEZ L.

(i) AL '
logH (1-!—1) < Z L
pEPyY, P pePL p

Ze.

GQII 11:IIO+§+£?%~)ﬁ+m£%ﬁ?%i&%ﬁﬁ.

peP 1 -~ — pel
r

i) I 11 3% B IEDMEICIERT B T L BRE.
peP 1'—'55

ﬁﬂll@+%)®ﬂ%,%ﬁMomT@m%oﬁfﬁza

pel

) 34 O, ROV TEHE DI TER X,
P

pelP
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1
When n runs over the set N of all natural numbers, the sum E p diverges to +oc and
neN

1 ' -
the sum E —; converges to a positive constant. Let
7
neEN

1 1 1 1 1 1
Z};:p—{-—-l—, H(1+—)=(1+_") (1+_)”’: P1,pe, - €EP
1

P b2 peP p n Dz

1 1
be the sum of — and the product of 1+ —, respectively, when p runs over the set P
of all prime numbers. Note that any natural number n admits a unique prime factor
decomposition

k I ks
n:pll.p;.p;...

in terms of suitable nonnegative integers &y, kz,--- € {0,1,2,...}. Let L be a natural
number greater than or equal to 2. Let P be the finite set of prime numbers less than or

equal to the natural number L. Answer the following questions.
(i) Show the inequality

g ] (143) <2 =

pelPr peEFL

s 1 1 1 . ‘
(ii) Show that H = H (1 + » + pe A - ) diverges to +oo.

peP 1 — — peP

1 .
(iii) Show that H ——— converges to a positive constant.

peP 1—;

. . 1
(iv) Determine whether the product H (1 + —) converges or not, giving reason for the

PP
answer.

: 1 :
(v) Determine whether the sum E — converges or not, giving reason for the answer.
peP
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BT A n HOBENITAONTWVS., s Z2—D0EKEI5. LIFOMWIER L.

(1) ADEFRZ AL S A2] £ - £ A LR2EHCEFTE—7Y— 1 (Heap
Sort) Z5 A K. ThORENREEMEZRL, BEHEHBRK.

(i) z W ADZDDERORTEITI BN E I D% O(nlogn) R THET 27T U X
L7ZRE.



Data Structures and Algorithms

2

Given an array A of n integers and another integer z, answer the following questions.

(i) Show a Heap Sort algorithm that sorts the elements in A in such a way that A[1] <

A[2] £ .-+ £ A[n] after sorting. Evaluate its worst-case running time.

(i) Show an O{nlogn) algorithm that determines whether or not there exist two ele-

ments in A whose sum is exactly z.
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SEOHRBEEZE 25,

(P): Minimize c'z

subject to ¢ € X

7e7Z L, widn RIOEE~Z by, clEnRILEE~Z b, THEELES, X IZKRAT
BZ2bhd R DORFZEETHD.

L g
T = Zaisi + Z bit;,

X=qzeR*| , = g=t
S si=152006=1...,9), 420G =1,..,9)
i=1

ZIT, pl qidEEEK, a; i=1,...,p) £ b; (1=1,...,9) HEnRTEH7 bV T
b5, a;#£0(E=1,...,p),b;#£0(j=1,...,9),c#0 &T3.
AT ORWIZE X L.

() X BEATHB I L &R e,

(i) B8 (P) BF/R TRV (T20B limy o e 2 = —c0 £725 L 57287 {=*} C X
PIET D) TehOUETHEMFE, H3 je{l,...,¢} KHFLT bje<0 MY
MO ETHD. O EEHRYT L.

(i) $2TD je {l,...,q} WHLT bje20BEVLoL L, ME (P) DHEHEAZD
EEGE S LRETDH £ S % a;(i=1...,p),b;(=1,...,9),c EAVTEK
. AL, BRESHFERTHD (THDD limpoe ||2F|| =c0 &5 K5 72851
{z*} Cc § BEELRW) HOORLE+SEGEFET. ERIITE



Linear Programming

3

Consider the following optimization problem:
(P) : Minimize c'z

subject to x € X,

where 2 is an n-dimensional vector of variables, ¢ is an n-dimensional constant vector,

T denotes transposition, and X is the set given by

p g
T = Z a;s; + Z bjtj,
=1

X={zechk*| , =
Zsi:]-: 3220(?’=17,p)= thO(j:].,,Q')
i=l

Here, p and g are positive integers, @; (¢ = 1,...,p) and b; (j =1, ..., ¢) are n-dimensional
constant vectors. We assume that a; #0 (i =1,...,p), b; #0(j =1,...,9),and ¢ # 0.

Answer the following questions.
(i) Show that X is a convex set.

(i) Show that problem (P) is unbounded (that is, there exists a sequence {z*} C X

such that limg,e €' ¥ = —00) if and only if b}c < 0 for some j € {1,...,¢}.

(iif) Assume that b]c = 0 for all j € {1,...,q}, and let S denote the set of optimal
solutions of problem (P). Give an explicit expression of the set S in terms of a;
(i=1,...,p), b; ( =1,...,q), and e. Moreover, write a necessary and sufficient
condition under which the set S is bounded (that is, there does not exist a sequence

{z*} C 8§ such that limy_,u ||2*|| = c0). [Proof is not necessary.]
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B CRTEEOERY I EBERDL. EOEMSIE, EFKBE ¢ [mol/m®] O
ATRE ¢ [m3/sec] T, AOENSE, EHIRE o [mol/m®] OBKIE ¢ [m®/sec] T,
FTNENY DU IRENAAT, BERICERIN, —RREBE ¢ [mol/m®] 2HD2b0&T
5. BBy 7 OEEEIET A m? THO, REUOWERR S m?]) £95. BHEOT
DOpiE f [m3/sec] FPUF U DEBRIZHSTHD, f= 5290 ZWMAETHDET S,
727U h [m] WAL, ¢ [m/sec?] BEAMEETH .
REE—TCMH ¢ = g0 @ = @p ETDEE, WHEMIE A = hy, I REBER
c=co CHHRBIZHEDDET S, FEREERLIDOEZEL2HDELT, LIFOBWIZ
BA LK.

(i) ERRTTRL ho & SEHRIEE o 2RO L.

(i) MEN g =qo+u @=qo+v EEMLAEELE, BEMMD h=ho+z, WERN
c=co+y EERELTBHBDET S, (1) TROEFEEHIKER D OBBELTT IV EE
ABHEE, uhSz, uby vbz, BEWy NS y ~NDEZEEHEEZNT
ko L.

(iii) (i) DAY ETIVCHLT, u=—kiz,v=—koy EBB T4 — RNy 7 HIEE
ABEE, AN—TREREICTDTA 2 (k, k) DEEGERD L.

#®1: BEFDME
g 9.8
(85} 100
Cz 800
S 0.01
A 2
a0 || 0.05
ga,0 || 0.02

B 1: By o



Linear Control Theory

4

Fig. 1 shows a stirred tank. The tank is fed with two incoming flows with time-

varying flow rates q; [m®/sec] and g, [m3/sec]. Both feeds contain dissolved material with
constant concentrations ¢; and c;. Assume that the material is stirred instantaneously
and the time-varying concentration ¢ [mol/m?®| of the solution in the tank is uniform. The
cylinder-shaped tank has constant cross-sectional area A [m?]. Assume further that the
outgoing flow f [m®/sec] obeys the Torricelli’s theorem, namely, f = S+/2gh, where S
[m?] is the cross-sectional area of the flow, g [m/sec?] is the gravitational acceleration,
and h [m] is the height of the liquid.

Let h = hg and ¢ = ¢ be the height and concentration of the solution in equilibrium
when the incoming flows ¢; = g1 and g» == go o are constant. The values of the constants
are given in Table 1. Answer the following questions.

(i) Calculate the height and the concentration of the solution in equilibrium.

(ii) When the constant incoming flows g1 and gop are perturbed by u and v, i.e.,
g1 = quo+u and g = go0 + v, the height and the concentration of the solution
become h = hp + = and ¢ = ¢y + y, respectively. Consider the approximated linear
model around the equilibrium point calculated in (i). Derive the transfer functions
from u to z, u to y, v to z, and v to ¥.

(iii) Determine the set of stabilizing gains (k1, k2) when the linear feedback control law
u = —kiz and v = —kyy is applied to the approximated linear model derived in (ii).

C1 CP ;CQ
! Table 1: Constants

g 9.8

_____ c1 100
Co 800

h S 0.01

A 2
G0 | 0.05

A }! f gop || 0.02

Fig.1: Stirred tank
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DEREEZS. EOERREWVICACERES Lk OERTHENTWS. THERET
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Basic Mechanics

5

As shown in the figure, three particles, each of mass m, smoothly move along the circle

fixed in a horizontal plane. The particles are interconnected by three identical springs
of force constant k. The length of each spring is the natural one in the equilibrium

configuration of the system. Find the normal frequencies and modes of the system.
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o
n RIEATTH] A W3 U TEYETLEITH P BEEL T PLAP BHATIICER & -
%, A PIZXONALTIIEE VS, A OEFEPTNTHERS L&, A R/ ea
BECHB. n RESHTTH A, B BRE—D Pl OME{ETEETH B L&, A B IiZFEKEN
BIEAEEE WS, DIROMWICEZ K. 72720, U FBENBFINIERTY, <7 MY
WERENT MV ET 5.

() n REFHITI A, B NABNACTEESIE, AB = BA BRDIIDC L BRE.

(i) n REHTH A OEEENTXTHERD, DD, n KEHTH B LOMIC AB =
BAWBRDIIDOLE, A B EFHIHELIITSHS T LETE.

(iii) 4, B % n REATINETS. 113 ADHZEEM o KHISTEEERY MLk
x (#0) LB BRIEDER p (Sn) KDV, Bz (k=0,1,...,p— 1) 1T—XK
ML CHBN, Bz (k=0,1,...,0) 3—AWBTHBZ L L, BRLRHZRH

Lp(z) = Span{z,Bez,...,B" 'z}
= {yly=az+cBz+- - +c,B 'z, € C}

BEAT B, n RESITH A, BW AB = BARWGITLE, Lp(x) $5HB OB L
COREWN 2RI LB T L, BEE, A, BIRIEEOEENY Mz (£ 0) € L)
BEDT LETRE.

(iv) n RIES{THI A, B BMLEOEE Y MUz e Ly(z) BEDEE, 2 ICHIETS A
DEEGER o, B OEFEE pLTE. TOLE, Mla+ BT A+B OFHE
AT Bz SRS 2EEERZS X, f af 3175 AB OFEEY MU z leifisd
ZEAMEE5 X% ERRE.



Basic Mathematics 11

6

An n x n matrix A is called diagonalizable if there is an invertible matrix P such

that P~1AP is a diagonal matrix. When all the eigenvalues of A are different to each

other, then A is known to be diagonalizable. Two n X n matrices A and B are called

simultaneously diagonalizable if there is a common invertible matrix P such that both

P~1AP and P~'BP are diagonal. Answer the following questions, where all the matrices

and vectors are comlex.

(i)
(i)

(iii)

Show that AB = BA if n x n matrices A and B are simultaneously diagonalizable.

Show that two n X n matrices A and B are simultaneously diagonalizable if all the

eigenvalues of A are different to each other and AB = BA.

Let A and B be n x n matrices. Let ¢ (# 0) be an eigenvector corresponding to an
eigenvalue o of A. Suppose that the vectors B*z (k = 0,1,...,p — 1) are linearly
independent and the vectors B*z (k = 0,1,...,p) are linearly dependent for some

positive interger p (£ n). Define a linear subspace by

Lg(z) = Span{z,Bz,...,B" 'z}

= {yly=az+eBz+- 4B 'z, € C}.

Show that £g(a) is an invariant subspace of the mapping B and that 4 and B have

a common eigenvector z (# 0) € Lp(z) if AB = BA.

Suppose that A and B has the common eigenvector z € Lp{z). Let o and 8 be
eigenvalues of A and B, respectively, corresponding to z. Show that the sum o+ 8
is equal to the eigenvalue of A + B corresponding to the eigenvector z, and the

product a8 is equal to the eigenvalue of AB corresponding to the eigenvector z.
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1
B f(2) %, BBl &3 58 RDMR DR(0) = {z € C||2| < R} K BWTEHI%
BHE & 55, £72, g2) ZEREFEAC ETEEALZEE T2, ZD&E, UToM
wEZ k.

(i) P D(0) £C F(2) = % cnz™ % 514,

1
<
o] £ 2mrmn

29
f |f('rei'9)|d9 (0 <7 < R)
0
DY IIHT & ZIAFAY L.

(i) FUR Da(0) £T £(2) = S, caz™ % 514,

et 1 2m )
Sl = oo [ s 0 <r <R)
n=0 0

DY LD & AW k|

(iii) |f(z)| 2SFIMR Dg(0) LCHmAMER & 2% 51, flz) G EHEAEE 5 2 & 25 H
® K.

(iv) (1) Z2A7TIEQEE n EIEQTEE M, RPFET 7% 01F, BB g(2) id n B
TOHERERZ T LETE.

lg(2)| £ Miz]"  (lz] 2 R) (1)



Applied Mathematics

1

Let f(z) be a holomorphic function on the open disk with the center at the origin and of
radius R: Dgr(0) = {z € C||z| < R}. Let g(z) be a holomorphic function on C. Answer

each of the following questions.

(i) Prove that if f(z) = .- ,cn2™ on Dg(0) then

1
e £
leal = 27

2T
/ F(re®)|do
0
for 0 <r < R.

(i) Prove that if f(2) =3 2 ¢,z™ on Dg(0) then

i 1 2 ]
S lenftr = oo [ 1pre s
n=0 0

for0<r < R.

(iii) Prove that if |f(2)| takes a maximum value on Dg(0) then f(z) must bé a constant

function.

(iv) Suppose that there exist some positive integer n and constants M > 0 and R > 0

such that
lg{z)| £ M|z|"

for all z with |z] 2 R. Then show that g(z) is a polynomial in z of degree less than

or equal to n.
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2
G=(V,BE) ZzBiR&EE YV, KEE E»Pbl2AMT 7 7L L, N=[G,cap| % G DELL
e € E IEHEDOEE caple) >0 252 THELNELAY NU—27 LT3, HiAER X I
HMREFEDL, SIRESY TRAZ L ORDESR BE(X,Y) LEE, HidvkamRET5
BOEEE Et(v), HiRvEBRETHROEESE E-(v) £ EL. FAEKOELER,
TRY. WESNL2R st e VICHL, WEBRFH D iy F€) — e F€) =0,
Vo € V — {s,t} BLUEEFK fe) Scaple), Ve € F 2WETEEF: E—- R, % (s,t)
T LR, EOWRVAL(S) % Tcpr i 1) — Deen-o /(&) TED B, LFOMN
Ex k.

(i) s€ 8, teT2WETERDHREEV OFES,T =V -SIZLT, cap(5,T) =
> eemsm) cap(e) & EHDEE, FBD (s,t) 7u— fIZRLT, val(f) £ cap(S,T)
MR LS T & E2FERE L.

(i) FAbhi(s,t) 7 n— fIZR LTED LNDFERTY PV —7 Ny =[Gy = (V, Ef), capy]
DIEY FerE.

(ii) BRI Y FT—7 N ITBWT, s bt ~DOFHBENEETDIEE, 200V0L2%
Ped%. PLOKED N ICBITAEEROR/IMEER A LT3 L%, NITEEER
val(f) + A T B (s,8) 7 2 —RHEET B - L 2 THYE L.

(iv) BRAY PU—7 Ny B s bt ~DEMEEbRNEE, N IZBWTshbEE
ARERERDEEESEL, T=V-85&72. Z0OL&ERec E(S,T)UVUE(T,S)
R LT, caple), f(e) BT HEE Iz oW TR L.



Graph Theory

2

Let G = (V, E) denote a directed graph with a vertex set V and an edge set E, and let

N =[G, cap] denote a network on G obtained by assigning a real value cap(e) > 0 to each
edge e € E as its capacity. For two subsets X,Y C V, let E(X,Y) denote the set of edges
which leave a vertex in X and enter a vertex in Y. For a vertex v, let E*(v) denote the
set of edges leaving v, and £~ (v) denote the set of edges entering v. Let R, be the set

of nonnegative reals. For two designated vertices s,t € V, an (s, t)-flow is defined to be a

- mapping f : £ - R, which satisfies } ¢ pi () f(€) = Yecp-m) f(€) =0, Vv € V — {s,1}

(flow conservation law) and f(e) < cap(e), Ve € E (capacity constraint), and its flow value

val(f) is defined to be > cpr(s) f(€) = 2 een- (s £ (€). Answer the following questions.

(i) For a partition S,T' =V — S of V such that s € S and t € T, define cap(S,T) =
Y ecr(s) caple). Prove that val(f) < cap(S,T) holds for any (s, t)-flow f.

ii) For a given (s,t)-flow f, show how to construct its residual network N; = [G; =
f f
(V, Ey), capy).

(iii) For an (s,t)-flow f in N, assume that there is a directed path P from s to ¢ in the
residual network Ny. Let A be the minimum cap; of an edge in P. Prove that N

has an (s,t)-flow whose flow value is val(f) + A.

{(iv) For an (s,t)-flow f in N, assume that there is no directed path from s to ¢ in
the residual network N;. Let S be the set of vertices which are reachable from
sin Ng, and T = V — §. Describe what property holds for cap(e) and f(e),
e € E(S,T)UE(T,S5).
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DEDOM 2 RFTEMEEZEXD.

P: Minimize zz'Aw
subject to a'

=25

727 L, AtnxnEEESFITH, a0 TRV RIS MY, biZAIT—THY,
TRy MADEBEERT. ZOMBEIIE—OKER 2 ¥ b,

Ry ={teR|t20} &F5. NTA—FAeR & pec R, ZEFLOXDHIWR LML
MEZEZ2 5.

P(A, p) : Minimize %wTA:B + A (aTa: — b) +p (aTm ~ b)2
subject to = € R"

FEEDAER L peRUWCKH LTHEPO, p) 1IME—DFERE £2(), p) & H.
PIToORWIEZ &.

(i) MBEP DI NV— =« Fo— - & v J— (Karush-Kuhn-Tucker) £ % T
z* RO K.
(i) 3(\,p) BRD L.

(i) NTA—F XN eRIZA +Xa=0%F~TETH. ZOLETEDpe R ITH
LTE,p)=a* &RDT L &RE.

(iv) BEEDAER E pe RLIH LT, IROFREXDBRLY IO & ZxRE.
1 1
5@ Az 2 280, 0)TAZ(N 0) + A (aT2(N p) ~ b) + 2 (aTE(N 0) — b)"*

(V) EED A e RICH LT, lmy e (), p) FFEETHZ LBHENTND,
RIA—FZANDEEEDLLT, lim, ,oZ(\,p) =" £R2DZ L ERE.



Operations Research

3

Consider the following convex quadratic programming problem:

P: Minimize ja' Az
subject to a'x = b,

where A is an n X n symmetric positive definite matrix, a is an n-dimensional nonzero
vector, b is a scalar, and the superscript " denotes transposition of a vector. This problem
has a unique optimal solution x*.

Let Ry = {t € R{t¢ = 0}. Consider the following unconstrained minimization problem

with parameters A € R and p € R,.

P(\,p): Minimize izTAz+A(a"z—b)+p(a’z-b)’
subject to = € R".

For each A € R and p € R., Problem P(}, p) has a unique optimal solution Z(A, p).

Answer the following questions.
(i} Obtain «* by using Karush-Kuhn-Tucker conditions for Problem P.
(ii) Obtain Z(A, p).

(iii) Suppose that a parameter A* € R satisfies Az*+ A*a = 0. Show that Z(A*, p) = z*
for all p e R,.

(iv) Show that the following inequality holds for all A € R and p € R..

%(m*)TAw* > 25(\, )T AB(, p) + A (aTE(\, p) — b) + p (aTZ(N, p) — B)°.

SR

(v) Itis known that lim, ,., Z(}, p) exists for any A € R. Show that lim, ., Z(}, p) = =*
for any A € R.
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Modern Control Theory

4

Consider the linear systems shown in the block diagrams of Figures 1 and 2. In these

1
figures, z and y are the input and output of the systems, respectively. Moreover, — is an
E

integrator, and z;, ¢ = 1,2, 3 denote the outputs of integrators.

(i) Answer the following questions for the linear system in Figure 1.

(a) Derive a state-space model of this system.

(b) Design a state feedback control law that assigns all poles of the closed-loop

system to ~1.

U Y

o |

21 29

Figure 1

(ii) Answer the following questions for the linear system in Figure 2, where a4, as, and

az are real constants.

(a) Derive a state-space model of this system.

(b) Determine the range of the triple (a1, a2, as) for which this system is controllable.

+ +
1 + (1 +
8 r) 8

w | =

21

Figure 2
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b AHEZEL, dwHHohENE TERHER

{w, tjwg, tg) = .t ex (_—(w — wO)z)
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p(wa tl'lU[), tU) = f dwlp(w: tlwlp f"l)jt'-",("l'ulu tl |w0: tD)

—0oC

FRET BT LERE.
(i) n ZIEDEKE LT, ay(w, )%
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CRBTD. A w) = lim 2T BB T gy e s TS S SRR,

T—0 T
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Physical Statistics

5

Let W(t) be a Wiener process. The probability that W(t) satisfies w = W(t) <

w + dw for ¢ > tp with an initial condition W {ts) = wo when dw is sufficiently small is

plw, tlwg, to)dw, where p(w, t|wy, to) denotes the transition probability

plw, twy, to) 1= m exp (—H) .

The Wiener process is a stationary Markov process.

(i) Show that p(w, t|wg,tp) obeys the Chapman-Kolmogorov equation,

(s a]
p(w,t|w0,t0)=f dwp(w, tlwy, t1)plw, t1|wo, to)

—x

for t > t; > 1.

(ii) Evaluate A,(w) := lin}] M—, where n 1s a positive integer and
T—

an(w,7) = / dw; (wy — w)™p(wy, te + 7w, to).

—0o0

Derive the Fokker-Planck equation for the Wiener process.

(iii) Verify that p(w, t|wg, to) obeys the Fokker-Planck equation derived in (ii).
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Mathematics for Dynamical Systems

For a square mafrix A, its Hermitian conjugate is denoted by A*. A square matrix A
satisfying A* = A is called Hermitian. For a positive integer n with n 2.2, let V denote
the set of all the n x n Hermitian matrices, which is endowed with the inner product
defined by

(&m =tr(§™n), &neV.

Let Ji, £ =1,2,3, be n x n Hermitian matrices satisfying the commutation relations
[1,o) = iJs, [Jo,Ja] =i, [J3, 1] =iJs,

where ¢ == /—1 denotes the imaginary unit, and where the commutation relation between
square matrices A, B is defined to be [A, Bl = AB — BA. Further, let W be the linear
subspace of V' defined by

W= {iakm o €R, k= 1,2,3}.

k=1
Answer the following questions.

(i) For £ € V and an n x n unitary matrix U, show that the map & — UEU~! is an

orthogonal transformation of V.

(ii} Show that for & € {1,2,3}, the transformation given by € = e~#/k¢eits with £ € R
is a transformation of W by finding a matrix expression for the transformation with
respect to the basis Jp, £ = 1,2,3. (Hint: A way to obtain required matrices is
to derive a 2nd-order ordinary differential equation for H(t) = e~k Jeft/k a5 a
matrix-valued function of ¢, which is to be solved with suitable initial conditions to

provide another expression of H(t).)

(iii) Let A(t) be an nxn Hermitian matrix-valued function continuous in¢t € R. Consider

the following differential equation for an n x n matrix-valued function X,

— =A@, X], X(0)=P

Show that the solution X (2} to the above initial value problem is Hermitian matrix-
valued or unitary matrix-valued, depending on whether the initial matrix P is Her-

mitian or unitary.
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