線形計画

3

つぎの最適化問題を考える.

(P): Minimize
$$c^{\top}x$$

subject to $x \in X$

ただし、x はn 次元変数ベクトル、c はn 次元定数ベクトル、 $^{\mathsf{T}}$ は転置記号、X は次式で与えられる \mathbb{R}^n の部分集合である.

$$egin{aligned} oldsymbol{X} &= \left\{ oldsymbol{x} \in \mathbb{R}^n \;\middle|\; oldsymbol{x} = \sum_{i=1}^p oldsymbol{a}_i s_i + \sum_{j=1}^q oldsymbol{b}_j t_j, \ &\sum_{i=1}^p s_i = 1, \; s_i \geqq 0 \; (i=1,\ldots,p), \; t_j \geqq 0 \; (j=1,\ldots,q) \;
ight. \end{aligned}$$

ここで、p と q は正整数、 \mathbf{a}_i $(i=1,\ldots,p)$ と \mathbf{b}_j $(j=1,\ldots,q)$ は n 次元定数ベクトルである。 $\mathbf{a}_i \neq \mathbf{0}$ $(i=1,\ldots,p)$, $\mathbf{b}_j \neq \mathbf{0}$ $(j=1,\ldots,q)$, $\mathbf{c} \neq \mathbf{0}$ とする。以下の問いに答えよ。

- (i) **X** は凸集合であることを示せ.
- (ii) 問題 (P) が有界 でない (すなわち $\lim_{k\to\infty} {\boldsymbol c}^{\mathsf T} {\boldsymbol x}^k = -\infty$ となるような点列 $\{{\boldsymbol x}^k\}\subset {\boldsymbol X}$ が存在する) ための必要十分条件は、ある $j\in\{1,\ldots,q\}$ に対して ${\boldsymbol b}_j^{\mathsf T}{\boldsymbol c}<0$ が成り立つことである.このことを証明せよ.
- (iii) すべての $j \in \{1,\ldots,q\}$ に対して $\boldsymbol{b}_j^{\mathsf{T}}\boldsymbol{c} \geq 0$ が成り立つとし、問題 (P) の最適解の集合を \boldsymbol{S} と表記する. 集合 \boldsymbol{S} を \boldsymbol{a}_i $(i=1,\ldots,p)$, \boldsymbol{b}_j $(j=1,\ldots,q)$, \boldsymbol{c} を用いて表せ、さらに、集合 \boldsymbol{S} が有界である (すなわち $\lim_{k\to\infty}||\boldsymbol{x}^k||=\infty$ となるような点列 $\{\boldsymbol{x}^k\}\subset \boldsymbol{S}$ が存在しない) ための必要十分条件を書け、[証明は不要]

Linear Programming

3

Consider the following optimization problem:

(P): Minimize
$$c^{\top}x$$
 subject to $x \in X$,

where x is an n-dimensional vector of variables, c is an n-dimensional constant vector, $^{\top}$ denotes transposition, and X is the set given by

$$egin{aligned} oldsymbol{X} &= \left\{ oldsymbol{x} \in \mathbb{R}^n \;\middle|\; oldsymbol{x} = \sum_{i=1}^p oldsymbol{a}_i s_i + \sum_{j=1}^q oldsymbol{b}_j t_j, \ &\sum_{i=1}^p s_i = 1, \; s_i \geqq 0 \; (i=1,\ldots,p), \; t_j \geqq 0 \; (j=1,\ldots,q) \;\;
ight\}. \end{aligned}$$

Here, p and q are positive integers, \mathbf{a}_i $(i=1,\ldots,p)$ and \mathbf{b}_j $(j=1,\ldots,q)$ are n-dimensional constant vectors. We assume that $\mathbf{a}_i \neq \mathbf{0}$ $(i=1,\ldots,p)$, $\mathbf{b}_j \neq \mathbf{0}$ $(j=1,\ldots,q)$, and $\mathbf{c} \neq \mathbf{0}$. Answer the following questions.

- (i) Show that X is a convex set.
- (ii) Show that problem (P) is unbounded (that is, there exists a sequence $\{x^k\} \subset X$ such that $\lim_{k\to\infty} c^{\top}x^k = -\infty$) if and only if $b_j^{\top}c < 0$ for some $j \in \{1, \ldots, q\}$.
- (iii) Assume that $\boldsymbol{b}_j^{\top} \boldsymbol{c} \geq 0$ for all $j \in \{1, \ldots, q\}$, and let \boldsymbol{S} denote the set of optimal solutions of problem (P). Give an explicit expression of the set \boldsymbol{S} in terms of \boldsymbol{a}_i $(i=1,\ldots,p), \ \boldsymbol{b}_j \ (j=1,\ldots,q), \ \text{and} \ \boldsymbol{c}$. Moreover, write a necessary and sufficient condition under which the set \boldsymbol{S} is bounded (that is, there does not exist a sequence $\{\boldsymbol{x}^k\} \subset \boldsymbol{S}$ such that $\lim_{k\to\infty} ||\boldsymbol{x}^k|| = \infty$). [Proof is not necessary.]