グラフ理論

2

 $\overline{G}=(V,E)$ を節点集合 V,枝集合 E から成る有向グラフとし, $N=[G,\operatorname{cap}]$ をG の各枝 $e\in E$ に実数値の容量 $\operatorname{cap}(e)>0$ を与えて得られるネットワークとする.節点集合 X に 始点を持ち,節点集合 Y に終点をもつ枝の集合を E(X,Y) と書き,節点 v を始点とする 枝の集合を $E^+(v)$,節点 v を終点とする枝の集合を $E^-(v)$ と書く.非負実数の集合を \mathbb{R}_+ で表す.指定された 2 点 $s,t\in V$ に対し,流量保存則 $\sum_{e\in E^+(v)}f(e)-\sum_{e\in E^-(v)}f(e)=0$, $\forall v\in V-\{s,t\}$ および容量制約 $f(e)\leq \operatorname{cap}(e)$, $\forall e\in E$ を満たす関数 $f:E\to\mathbb{R}_+$ を (s,t) フローと呼び,その流量 $\operatorname{val}(f)$ を $\sum_{e\in E^+(s)}f(e)-\sum_{e\in E^-(s)}f(e)$ で定める.以下の問いに 答えよ.

- (i) $s \in S$, $t \in T$ を満たす任意の節点集合 V の分割 S, T = V S に対して, $\operatorname{cap}(S,T) = \sum_{e \in E(S,T)} \operatorname{cap}(e)$ と定めるとき,任意の (s,t) フロー f に対して, $\operatorname{val}(f) \leq \operatorname{cap}(S,T)$ が成り立つことを証明せよ.
- (ii) 与えられた (s,t) フロー f に対して定められる残余ネットワーク $N_f = [G_f = (V, E_f), \operatorname{cap}_f]$ の作り方を示せ.
- (iii) 残余ネットワーク N_f において、s から t への有向路が存在するとき、そのひとつを P とする、P 上の枝の N_f における容量の最小値を Δ とするとき、N には流量が $\mathrm{val}(f) + \Delta$ である (s,t) フローが存在することを証明せよ.
- (iv) 残余ネットワーク N_f が s から t への有向路をもたないとき, N_f において s から到達可能な節点の集合を S とし,T=V-S とする.このとき各枝 $e\in E(S,T)\cup E(T,S)$ に対して, $\mathrm{cap}(e)$,f(e) が満たす性質について述べよ.

Graph Theory

2

Let G=(V,E) denote a directed graph with a vertex set V and an edge set E, and let $N=[G,\operatorname{cap}]$ denote a network on G obtained by assigning a real value $\operatorname{cap}(e)>0$ to each edge $e\in E$ as its capacity. For two subsets $X,Y\subseteq V$, let E(X,Y) denote the set of edges which leave a vertex in X and enter a vertex in Y. For a vertex v, let $E^+(v)$ denote the set of edges leaving v, and $E^-(v)$ denote the set of edges entering v. Let \mathbb{R}_+ be the set of nonnegative reals. For two designated vertices $s,t\in V$, an (s,t)-flow is defined to be a mapping $f:E\to\mathbb{R}_+$ which satisfies $\sum_{e\in E^+(v)}f(e)-\sum_{e\in E^-(v)}f(e)=0, \ \forall v\in V-\{s,t\}$ (flow conservation law) and $f(e)\subseteq \operatorname{cap}(e), \ \forall e\in E$ (capacity constraint), and its flow value $\operatorname{val}(f)$ is defined to be $\sum_{e\in E^+(s)}f(e)-\sum_{e\in E^-(s)}f(e)$. Answer the following questions.

- (i) For a partition S, T = V S of V such that $s \in S$ and $t \in T$, define $\operatorname{cap}(S, T) = \sum_{e \in E(S,T)} \operatorname{cap}(e)$. Prove that $\operatorname{val}(f) \leq \operatorname{cap}(S,T)$ holds for any (s,t)-flow f.
- (ii) For a given (s,t)-flow f, show how to construct its residual network $N_f = [G_f = (V, E_f), \text{cap}_f]$.
- (iii) For an (s,t)-flow f in N, assume that there is a directed path P from s to t in the residual network N_f . Let Δ be the minimum cap_f of an edge in P. Prove that N has an (s,t)-flow whose flow value is $\operatorname{val}(f) + \Delta$.
- (iv) For an (s,t)-flow f in N, assume that there is no directed path from s to t in the residual network N_f . Let S be the set of vertices which are reachable from s in N_f , and T = V S. Describe what property holds for $\operatorname{cap}(e)$ and f(e), $e \in E(S,T) \cup E(T,S)$.