現代制御論

4

図 1 および図 2 のブロック線図で表される線形システムを考える.これらの図においてu とy はそれぞれシステムの入力と出力である.また, $\frac{1}{s}$ は積分器であり,各積分器の出力を z_i ,i=1,2,3 とする.

- (i) 図1の線形システムについて,以下の問いに答えよ.
 - (a) このシステムの状態空間モデルを導出せよ.
 - (b) 閉ループシステムのすべての極 e^{-1} に配置する状態フィードバック制御則を設計せよ.

- (ii) 図 2 の線形システムについて、以下の問いに答えよ、ただし、 a_1 , a_2 および a_3 は実定数である。
 - (a) このシステムの状態空間モデルを導出せよ.
 - (b) このシステムが可制御となる (a_1, a_2, a_3) の範囲を求めよ.

Modern Control Theory

4

Consider the linear systems shown in the block diagrams of Figures 1 and 2. In these figures, u and y are the input and output of the systems, respectively. Moreover, $\frac{1}{s}$ is an integrator, and z_i , i = 1, 2, 3 denote the outputs of integrators.

- (i) Answer the following questions for the linear system in Figure 1.
 - (a) Derive a state-space model of this system.
 - (b) Design a state feedback control law that assigns all poles of the closed-loop system to -1.

Figure 1

- (ii) Answer the following questions for the linear system in Figure 2, where a_1 , a_2 , and a_3 are real constants.
 - (a) Derive a state-space model of this system.
 - (b) Determine the range of the triple (a_1, a_2, a_3) for which this system is controllable.

Figure 2