力学系数学

6

正方行列 A のエルミート共役を A^* で表す. $A=A^*$ をみたす行列 A をエルミート行列という. $n\times n$ エルミート行列の全体のなす線形空間を V で表す (n は 2 以上の整数). V には

$$\langle \xi, \eta \rangle = \operatorname{tr}(\xi^* \eta), \quad \xi, \eta \in V$$

により内積が定義される. J_k , k=1,2,3, は $n\times n$ のエルミート行列で, 次の交換関係をみたすものとする.

$$[J_1, J_2] = iJ_3, \quad [J_2, J_3] = iJ_1, \quad [J_3, J_1] = iJ_2$$

ここに, $i=\sqrt{-1}$ は虚数単位で, 正方行列 A,B の交換関係は [A,B]=AB-BA で定義される. 次に, V の線形部分空間 W を

$$W = \left\{ \sum_{k=1}^{3} a_k J_k | \ a_k \in \mathbb{R}, \ k = 1, 2, 3 \right\}$$

で定義する. 以下の問いに答えよ.

- (i) $\xi \in V$ と $n \times n$ ユニタリー行列 U とに対し, 変換 $\xi \mapsto U \xi U^{-1}$ は V の直交変換と なることを示せ.
- (ii) 各 $k \in \{1,2,3\}$ と $\xi \in W$ とに対し、写像 $\xi \mapsto e^{-itJ_k}\xi e^{itJ_k}$ 、 $t \in \mathbb{R}$ 、が W の線形変換であることを W の基底 J_ℓ 、 $\ell=1,2,3$ に関する行列表示の形で示せ. (t を独立変数とする行列値の関数として、 $e^{-itJ_k}J_\ell e^{itJ_k}$ がみたすべき 2 階常微分方程式を導き、適切な初期条件のもとでそれを解く.)
- (iii) A(t) を $n \times n$ エルミート行列に値をもつ $t \in \mathbb{R}$ の連続関数とする. $n \times n$ 行列 X に対する微分方程式

$$\frac{dX}{dt} = [iA(t), X], \quad X(0) = P$$

の解 X(t) は, P がエルミート行列なら X(t) もエルミート行列, P がユニタリー行列なら X(t) もユニタリー行列となることを示せ.

Mathematics for Dynamical Systems

6

For a square matrix A, its Hermitian conjugate is denoted by A^* . A square matrix A satisfying $A^* = A$ is called Hermitian. For a positive integer n with $n \ge 2$, let V denote the set of all the $n \times n$ Hermitian matrices, which is endowed with the inner product defined by

$$\langle \xi, \eta \rangle = \operatorname{tr}(\xi^* \eta), \quad \xi, \eta \in V.$$

Let J_k , k = 1, 2, 3, be $n \times n$ Hermitian matrices satisfying the commutation relations

$$[J_1,J_2]=iJ_3, \quad [J_2,J_3]=iJ_1, \quad [J_3,J_1]=iJ_2,$$

where $i = \sqrt{-1}$ denotes the imaginary unit, and where the commutation relation between square matrices A, B is defined to be [A, B] = AB - BA. Further, let W be the linear subspace of V defined by

$$W = \left\{ \sum_{k=1}^{3} a_k J_k | \ a_k \in \mathbb{R}, \ k = 1, 2, 3 \right\}.$$

Answer the following questions.

- (i) For $\xi \in V$ and an $n \times n$ unitary matrix U, show that the map $\xi \mapsto U\xi U^{-1}$ is an orthogonal transformation of V.
- (ii) Show that for $k \in \{1, 2, 3\}$, the transformation given by $\xi \mapsto e^{-itJ_k}\xi e^{itJ_k}$ with $t \in \mathbb{R}$ is a transformation of W by finding a matrix expression for the transformation with respect to the basis J_ℓ , $\ell = 1, 2, 3$. (Hint: A way to obtain required matrices is to derive a 2nd-order ordinary differential equation for $H(t) = e^{-itJ_k}J_\ell e^{itJ_k}$ as a matrix-valued function of t, which is to be solved with suitable initial conditions to provide another expression of H(t).)
- (iii) Let A(t) be an $n \times n$ Hermitian matrix-valued function continuous in $t \in \mathbb{R}$. Consider the following differential equation for an $n \times n$ matrix-valued function X,

$$\frac{dX}{dt} = [iA(t), X], \quad X(0) = P.$$

Show that the solution X(t) to the above initial value problem is Hermitian matrix-valued or unitary matrix-valued, depending on whether the initial matrix P is Hermitian or unitary.