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Mathematics for Dynamical Systems

For a square mafrix A, its Hermitian conjugate is denoted by A*. A square matrix A
satisfying A* = A is called Hermitian. For a positive integer n with n 2.2, let V denote
the set of all the n x n Hermitian matrices, which is endowed with the inner product
defined by

(&m =tr(§™n), &neV.

Let Ji, £ =1,2,3, be n x n Hermitian matrices satisfying the commutation relations
[1,o) = iJs, [Jo,Ja] =i, [J3, 1] =iJs,

where ¢ == /—1 denotes the imaginary unit, and where the commutation relation between
square matrices A, B is defined to be [A, Bl = AB — BA. Further, let W be the linear
subspace of V' defined by

W= {iakm o €R, k= 1,2,3}.

k=1
Answer the following questions.

(i) For £ € V and an n x n unitary matrix U, show that the map & — UEU~! is an

orthogonal transformation of V.

(ii} Show that for & € {1,2,3}, the transformation given by € = e~#/k¢eits with £ € R
is a transformation of W by finding a matrix expression for the transformation with
respect to the basis Jp, £ = 1,2,3. (Hint: A way to obtain required matrices is
to derive a 2nd-order ordinary differential equation for H(t) = e~k Jeft/k a5 a
matrix-valued function of ¢, which is to be solved with suitable initial conditions to

provide another expression of H(t).)

(iii) Let A(t) be an nxn Hermitian matrix-valued function continuous in¢t € R. Consider

the following differential equation for an n x n matrix-valued function X,

— =A@, X], X(0)=P

Show that the solution X (2} to the above initial value problem is Hermitian matrix-
valued or unitary matrix-valued, depending on whether the initial matrix P is Her-

mitian or unitary.



