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Abstract. Various types of support vector machines (SVMs) have been pro-
posed for multiclass classification tasks. Recently, hypersphere and hyperellipsoid
classifiers have attracted much attention since they outperform the existing hyper-
plane classifiers. The twin hypersphere multi-classification support vector machine
(THKSVM) is an effective SVM-based method that exploits multiple hyperspheres
to classify data effectively. The THKSVM outperforms the existing methods based
on the SVM in terms of computational time, even though its prediction accuracy
is competitive. In this paper, we modify the THKSVM to achieve better classifiers
within a reasonable timeframe. Firstly, we adopt hyperellipsoids instead of hyper-
spheres for classification purposes. Secondly, we replace the multiple constraints in
the THKSVM with a single, specific constraint. Consequently, our proposed op-
timization model comprises a single nonconvex quadratic constraint and a convex
quadratic objective function. Although the problem remains nonconvex optimiza-
tion, the uniqueness of the constraint allows us to analytically obtain its global
optimum. Therefore, we anticipate that our proposed method will surpass the
THKSVM in terms of computational efficiency and prediction accuracy. Finally,
we conducted several numerical experiments to show the effectiveness of our pro-
posed method.

Keywords. Multiclass classification, Support vector machine, Twin Hyper-

sphere SVM, Twin Hyper-ellosoidal SVM

1 Introduction

The fundamental techniques in machine learning, including data classifica-
tion and regression, find applications in various fields such as text catego-
rization, face recognition, and bioinformatics. In particular, the support
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vector machine (SVM) [1] is a core method in machine learning that clas-
sifies datasets using a hyperplane. Although various methods based on the
SVM, including the twin SVM (TSVM), twin hypersphere SVM (THSVM),
and twin hyperellipsoidal SVM (TESVM), have primarily focused on bi-
nary classification tasks, recent advancements have extended some of these
approaches to accommodate multiclass classification.

Concerning multiclass classification, K-SVCR [8] and Twin-KSVC [10]
are the basic methods, which are based on the SVM. The K-SVCR is a
classification algorithm with ternary output based on Vapnik’s support vec-
tor theory [1] and can be regarded as an extension of the SVM for mul-
ticlass classification, employing a 1-versus-1 structure. The learning phase
of the K-SVCR requires solving QPPs K(K-1)/2 times, making it unsuit-
able for large-scale datasets. The Twin-KSVC is an improved classification
algorithm that combines the structural advantage of the K-SVCR, which
employs a ”1-versus-1-versus-rest” structure, with the high computational
speed of the TWSVM. Like the K-SVCR, it also utilizes a ”1-versus-1-versus-
rest” structure and classifies a dataset using two nonparallel hyperplanes.
Since these hyperplanes are constructed by solving smaller QPPs compared
to the K-SVCR, the Twin-KSVC generally outperforms the K-SVCR in
terms of computational speed.

The THKSVM is an extension of the THSVM for multiclass classification
and separates a dataset by exploiting K hyper-spheres, where K represents
the number of classes in the dataset. Similar to the THSVM, the THKSVM
maintains the same level of prediction accuracy. However, constructing these
hyperspheres involves solving nonconvex optimization problems, with no
guarantee of their global optimal solutions, leading to a higher computa-
tional cost than K-SVCR and Twin-KSVC, as K hyperspheres need to be
constructed. Moreover, since the THKSVM utilizes hyperspheres for pre-
diction, there is a possibility that its prediction accuracy could be improved
by replacing hyperspheres with hyperellipsoids.

In this paper, we propose a Twin Hyper-Ellipsoidal Multiclass Classifica-
tion Support Vector Machine (TEKSVM). Although the proposed TEKSVM
is derived from the THKSVM for multiclass classification, it differs in two
key aspects. The first difference lies in the fact that the TEKSVM utilizes
hyperellipsoids for dataset classification, instead of hyperspheres. There-
fore, we anticipate that the proposed method will achieve higher prediction
accuracy compared to the THKSVM, like the improvement seen with the
TESVM for binary classification due to the utilization of hyperellipsoids.
Regarding the second difference, we consider replacing the nonconvex op-
timization problems used in the THKSVM with quadratic programming
problems over one inequality quadratic constraint (QP1QC). Thanks to this
change, the global optima of the QP1QC can be analytically computed,
whereas obtaining global optima for the nonconvex optimization problem in
the THKSVM, as stated above is difficult. Moreover, the proposed method
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can be regarded as new rather than a simple extension of the THKSVM.
We summarize the contribution of this paper as follows.

(a) To propose a new method for multiclass classification.

(b) To derive an effective computational method for solving the QP1QC.

(c) To confirm the validity of the proposed method.

This paper is organized as follows. In Section 2, we introduce some no-
tation and basic results regarding a quadratic programming problem with
one inequality quadratic constraint. Furthermore, we review existing SVM
based multiclass classification methods. Section 3 presents the TEKSVM
and discusses its properties. In Section 4, we conduct numerical experi-
ments to show the effectiveness of the proposed TEKSVM. Finally, Section 6
provides conclusions and remarks.

2 Preliminaries

In this section, we introduce some notation and existing results for subse-
quent discussions. Then we review three existing SVM-based models. We
denote the Euclidean norm of x ∈ Rn by ∥x∥ :=

√
x⊤x. If a symmetric

matrix A ∈ Rn×n is positive semidefinite, we denote A ⪰ O. For a matrix
A ∈ Rm×n, we denote the range of A as R(A).

2.1 Quadratic programming over one inequality quadratic
constraint

Now we introduce quadratic programming over one inequality quadratic
constraint (QP1QC):

minimize
x

x⊤Px− 2f⊤x

subject to x⊤Qx− 2g⊤x ≤ µ,
(QP1QC)

where P , Q are n×n real symmetric matrices, f, g are n-dimensional vectors,
and µ is a real number.

In general, finding the global optimum of quadratic programming prob-
lems with quadratic constraints is challenging due to their non-convexity.
However, in the case of (QP1QC), it is known that its global optimum can
be obtained under certain special assumptions. To explain this fact, we first
define the primal Slater condition for (QP1QC).

Definition 1. We say the primal Slater condition is satisfied if there exists
x0 such that

x⊤0 Qx0 − 2g⊤x0 < µ.
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Using the aforementioned primal Slater condition, Hsia et al. [7] showed the
following two theorems.

Theorem 1. [7, Theorem 4] Under the primal Slater condition, (QP1QC)
is unbounded below if and only if the system of σ:

P + σQ ⪰ O,
σ ≥ 0,
f + σg ∈ R(P + σQ),

(1)

has no solution.

Theorem 2. [7, Theorem 6] Under the primal Slater condition, if the value
of (QP1QC) is finite and I⪰(P,Q) is an interval, the infimum of (QP1QC)
is always attainable. Here, I⪰(P,Q) is defined as I⪰(P,Q) := {σ ∈ R |
P + σQ ⪰ O}, where P and Q are symmetric matrices.

We review some existing multi-classification methods based on the SVM.
Let T be a given dataset defined as

T = {(x1, y1), (x2, y2), . . . , (xl, yl)}

where xi ∈ Rn and yi ∈ {1, 2, . . . ,K} for i = 1, 2, . . . , l. From now on, φ
represents an arbitrary mapping to a feature space, and we will consider
classification in this feature space.

2.2 K-SVCR

The K-SVCR (Support Vector Classification Regression for K-class classifi-
cation) [8] selects two specified classes and trains a classifier using these two
classes and all others. For convenience, let us denote the two focused classes
as s and t represented them as

I+ := {i | yi = s},
I− := {i | yi = t},
Ir := {i | yi ̸= s, t}.

Moreover, we define ỹi as follows:

ỹi =


1 if i ∈ I+,

− 1 if i ∈ I−,

0 if i ∈ Ir.

As illustrated in Figure 1, for classes s and t, the K-SVCR seeks hyperplanes
that separate classes I+ and I− such that the points in Ir lie within the ϵ-
band of the hyperplanes. In Figure 1, I+ and I− respectively denote the
set of indices i such that yi = 1 and yi = 2, while Ir denotes the set of
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indices i such that yi = 3, 4. To find such hyperplanes, the K-SVCR solves
the following optimization problem.

minimize
w,b,ξ,η,ζ

1

2
∥w∥2 + c1

∑
i∈I+∪I−

ξi + c2
∑
i∈Ir

(ηi + η∗i )

subject to ỹi(w
⊤φ(xi) + b) ≥ 1− ξi, i ∈ I+ ∪ I−,

− ϵ− ζi ≤ w⊤φ(xi) + b ≤ ϵ+ ηi, i ∈ Ir,

ξi ≤ 0, i ∈ I+ ∪ I−,

ηi, ζi ≤ 0, i ∈ Ir,

(2)

where ξi, ηi, ζ are slack variables, c1 and c2 are parameters, and ϵ is restricted
to be smaller than 1 to avoid overlapping. Moreover, the corresponding
decision function is defined as

f(x) =


1 if (w∗)⊤φ(x) + b∗ ≥ ϵ,

− 1 if (w∗)⊤φ(x) + b∗ ≤ −ϵ,

0 otherwise,

where w∗ and b∗ are the optimal solution of problem (2). For each decision
function, if w⊤φ(x) + b ≥ ϵ is satisfied, the first class receives one vote,
and the others receive none. However, if w⊤φ(x) + b ≤ −ϵ holds, one vote
is assigned to the second class and none to the others. If neither of these
inequalities are satisfied, the votes for the first and second classes are reduced
by one, while the votes for the others remain the same. After tallying all the
votes, the testing point x is assigned to the class with the highest number
of votes.

Note that the K-SVCR solves problem (2) once for any two classes s and
t, i.e., it deals with the optimization problem K(K − 1)/2 times. Moreover,
since optimization problem (2) is solved for the two focused classes and all
others, the K-SVCR is said to have a ”1-versus1-versus-rest” structure.

2.3 Twin-KSVC

The Twin-KSVC [10] also features a ”1-versus-1-versus-rest” structure but
employs two nonparallel hyperplanes for the two focused classes, unlike the
K-SVCR. To construct the two hyperplanes x⊤w1+b1 = 0 and x⊤w2+b2 = 0,
the Twin-KSVC uses (w1, b1) and (w2, b2) that respectively solve problems
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Figure 1: The hyperplanes of the K-SVCR for the two
focused classes 1 and 2.

(3) and (4) defined as follows:

minimize
w,b,ξ,η

1

2

∑
i∈I+

(φ(xi)
⊤w + b)2 + c1

∑
i∈I−

ξi + c2
∑
i∈Ir

ηi

subject to − (φ(xi)
⊤w + b) + ξi ≥ 1, i ∈ I−,

− (φ(xi)
⊤w + b) + ηi ≥ 1− ϵ, i ∈ Ir,

ξi ≥ 0, i ∈ I−,

ηi ≥ 0, i ∈ Ir,

(3)

and

minimize
w,b,ξ,η

1

2

∑
i∈I−

(φ(xi)
⊤w + b)2 + c1

∑
i∈I+

ξi + c2
∑
i∈Ir

ηi

subject to (φ(xi)
⊤w + b) + ξi ≥ 1, i ∈ I+,

(φ(xi)
⊤w + b) + ηi ≥ 1− ϵ, i ∈ Ir,

ξi ≥ 0, i ∈ I+,

ηi ≥ 0, i ∈ Ir,

(4)

respectively, where ξ and η are slack variables. Figure 2 shows an example of
the two nonparallel hyperplanes of the Twin-KSVC, where the two focused
classes are 1 and 2.
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Figure 2: Two nonparallel hyperplanes of the Twin-
KSCV for two classes 1 and 2.

The corresponding decision function is defined as

f(x) =


1 if φ(x)⊤w1 + b1 ≥ −1 + ϵ,

− 1 if φ(x)⊤w2 + b2 ≤ 1− ϵ,

0 otherwise.

Similar to the K-SVCR, the final class label for a testing point x is decided
by a voting rule. In total, the Twin-KSVC solves problems (3) and (4)
K(K−1)/2 times and generally operates faster than the K-SVCR. However,
its computational speed is not fast enough for large-scale datasets. One
reason for this is that the Twin-KSVC involves the inverse of matrices when
solving dual problems.

2.4 Twin hypersphere multiclass classification support vec-
tor machine

The THKSVM approach utilizes K hyperspheres to classify a dataset. For
each k ∈ {1, 2, . . . ,K}, the center ck and squared radius Rk of the k-th
hypersphere are obtained by solving the following problem:

minimize
c,R,ξ

1

2

∑
i∈Bk

∥φ(xi)− c∥2 − vkR+ dk
∑
j∈Ak

ξj

subject to ∥φ(xj)− c∥2 ≥ R− ξj , j ∈ Ak,

R ≥ 0, ξj ≥ 0, j ∈ Ak,

(5)

where Ak = {i | yi = k} and Bk = {i | yi ̸= k}, and vk and dk are
parameters.
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Problem (5) generates a hypersphere for the k-th class that includes as
many training points as possible except for the k-th class. Thus, we can say
that the THKSVM employs a ”rest-versus-1” structure. The first term of
the objective function in (5) aims to place the k-th hypersphere as close as
possible to the training points of the other K − 1 class. The second term of
the objective function in (5) is designed to maximize the radius of the k-th
hypersphere. The first constraint ensures that the k-th hypersphere does not
encompass the training points of the k-th class. Moreover, the variable ξ
quantifies an error wherein the k-th hypersphere includes the training points
of the k-th class. The third term of the objective function minimizes the sum
of such errors. Figure 3 indicates an example hypersphere of the THKSVM.

x
x

xx
x

x
x

x
x x

x
x

class 1 

class 2

hypersphere
corresponding to class 1

△

△
△

△
△

△

△

△

△

△

△ class 3

Figure 3: The hypersphere of the THKSVM
corresponding to the class 1.

Xu and Guo [3] consider solving Lagrangian dual problem of (5) to cal-
culate the optimal solutions of (5). The dual can be written as

minimize
α

tk
∑

j1∈Ak

∑
j2∈Ak

αj1αj2K(xj1 , xj2)

−
∑
j∈Ak

αj

tk
∑
i∈Bk

K(xj , xi)−K(xj , xj)


subject to

∑
j∈Ak

αj ≥ vk, 0 ≤ αj ≤ dk ∀j ∈ Ak,

(6)

where tk = 2/(lB − 2vk) and lB is the number of training points that do not
belong to the k-th class. By considering the KKT conditions of problem (5),
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its stationary point (ck, Rk, ξk) can be calculated by

ck =
tk
2

∑
i∈Bk

φ(xi)− 2
∑
j∈Ak

αjφ(xj)

 ,

Rk =
1

|Ik|
∑
j∈Ik

∥φ(xj)− ck∥2,

[ξk]j =


0 if j ∈ Ik ∪ {i | αi = 0},
1

|Ik|
∑

i∈Ik ∥φ(xi)− ck∥2

− ∥φ(xj)− ck∥2
otherwise,

(7)

where Ik = {j | 0 < αj < dk, j ∈ Ak}.
When predicting a new test point, the point is assigned to a class by

argmax
j=1,2,...,K

∥φ(x)− cj∥2

Rj
. (8)

In terms of prediction accuracy, the THKSVM competes with other exist-
ing methods, such as K-SVCR, Twin-KSVC, and 1-versus-rest TSVM, as
shown in [3]. Furthermore, the THKSVM outperforms other methods in
terms of computational speed. There are three reasons for this. First, the
classifiers required for the THKSVM are minimal, that is, the THKSVM
solves problem (5) only K times. In contrast, existing methods such as the
K-SVCR and Twin KSVC require K(K−1)/2 classifiers because they adopt
the ”1-versus-1-versus-rest” structure. Second, the THKSVM does not re-
quire high-cost computations. Third, optimization problem (5) has fewer
constraints than other optimization problems utilized in existing methods

However, the THKSVM has to solve the nonconvex optimization prob-
lem (5). In general, (ck, Rk, ξk) calculated by (7), which represents the KKT
conditions of (5), is not guaranteed to be a global optimum, although it is
a stationary point.

3 Twin hyper-ellipsoidal multiclass classification
support vector machine using (QP1QC)

We propose a new method that generates hyperellipsoids to classify multi-
class data. Based on the concept of the twin hyper-ellipsoidal support vec-
tor machine (TESVM) proposed by Ebrahimpour et al. [2], we extend the
THKSVM to classify multiclass data using hyperellipsoids instead of hyper-
spheres. To this end, we first consider the following problem, which replaces
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the Euclidean distance with the Mahalanobis distance in problem (5).

minimize
c,R,ξ

vk
lBk

∑
i∈Bk

(φ(xi)− c)⊤Σ−1
Bk

(φ(xi)− c)−R+
dk
lAk

∑
j∈Ak

ξj

subject to (φ(xj)− c)⊤Σ−1
Bk

(φ(xj)− c) ≥ R− ξj , j ∈ Ak,

R ≥ 0, ξj ≥ 0, j ∈ Ak,

(9)

where ΣBk
is the variance-covariance matrix of all the training points after

removing k-th training points, namely, it represents the variance-covariance
matrix of training points belonging to Bk, lAk

and lBk
are respectively de-

fined by lAk
= |Ak| and lBk

= |Bk|, and vk and dk are parameters. Figure 4
shows a hyperellipsoid corresponding to class 1.
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x

class 1 
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△ class 3

Figure 4: The hyperellipsoid corresponding to
the class 1.

Notice that finding a global optimum of problem (9) is challenging because
it is nonconvex. Meanwhile, as described below, the following problem ob-
tained by slightly modifying problem (9) has a global optimum if the pa-
rameters are appropriately set.

minimize
c,R,ξ

vk
lBk

∑
i∈Bk

(φ(xi)− c)⊤Σ−1
Bk

(φ(xi)− c)−R+
dk
lAk

∑
j∈Ak

ξ2j

subject to
∑
j∈Ak

(φ(xj)− c)⊤Σ−1
Bk

(φ(xj)− c) ≥
∑
j∈Ak

(R− ξj),

R ≥ 0, ξj ≥ 0, j ∈ Ak,

(10)

Although problem (10) is derived from problem (9), there are several differ-
ences as follows:

� The last term of the objective function is the square sum of each
element of ξ.
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� Instead of imposing inequality constraints separately for each j ∈ Ak,
we consider the sum of each inequality as a constraint.

In the proposed method, we construct hyperellipsoids by solving problem (10).
This change brings us several benefits described below.

(i) Problem (10) has a global optimum;

(ii) the global optimum can be calculated explicitly.

From now on, we discuss how to solve problem (10). First, we show that
problem (10) is equivalent to the following problem in the sense that their
optimal solutions coincide.

minimize
c,R,ξ

vk
lBk

∑
i∈Bk

(φ(xi)− c)⊤Σ−1
Bk

(φ(xi)− c)−R+
dk
lAk

∑
j∈Ak

ξ2j

subject to
∑
j∈Ak

(φ(xj)− c)⊤Σ−1
Bk

(φ(xj)− c) ≥
∑
j∈Ak

(R− ξj).
(11)

As shown in Theorem 3.2, solving problems (10) and (11) are equivalent.
We then observe that problem (11) satisfies the primal Slater condition
because there exists a strictly feasible solution (c,R, ξ) = (0, 0, e), and it can
be represented as the following quadratic programming over one inequality
quadratic constraint (QP1QC):

minimize
u

u⊤Pku− 2f⊤
k u

subject to u⊤Qku− 2g⊤k u ≤ µk,

where u, Pk, Qk, fk, gk, and µ are defined as follows:

u =

 c
R
ξ

 , Pk =

vkΣ
−1
Bk

0 O

0⊤ 0 0⊤

O 0 (dk/lAk
)I

 ,

Qk =

−lAk
Σ−1
Bk

0 O

0⊤ 0 0⊤

O 0 O

 , fk =


vk
lBk

∑
i∈Bk

(Σ−1
Bk

φ(xi))

1/2
0

 ,

gk =


−

∑
j∈Ak

(Σ−1
Bk

φ(xj))

−lAk
/2

e/2

 , µk =
∑
j∈Ak

φ(xj)
⊤Σ−1

Bk
φ(xj).

Fortunately, Hsia et al. [7] has researched this types of problems and pro-
vided a sufficient conditions under which its optimal solution exists. By
using Theorem 1 and 2, we can prove that problem (11) has an optimal
solution.
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Theorem 3. If parameters vk and dk are chosen such that vk > 1 and
dk > 0, the optimal solution of problem (11) is always attainable.

Proof. We begin by showing that problem (11) is bounded below if vk and
dk are chosen such that vk > 1 and dk > 0. According to Theorem 1, it is
sufficient to prove that there exists σ such that

Pk + σQk ⪰ O, σ ≥ 0, fk + σgk ∈ R(Pk + σQk). (12)

By using the definition of Pk and Qk, we get

Pk + σQk =

(vk − σlAk
)Σ−1

Bk
0 O

0⊤ 0 0⊤

O 0 (dk/lAk
)I

 .

Thus, if we set σ = 1/lAk
, then Pk + σQk ⪰ O holds. If we define ū as

ū =

 1
vk−1

(
vk
lBk

∑
i∈Bk

φ(xi)− 1
lAk

∑
j∈Ak

φ(xj)
)

0
1

2dk
e

 ,

we get

(Pk + σQk)ū =

Σ−1
Bk

(
vk
lBk

∑
i∈Bk

φ(xi)− 1
lAk

∑
j∈Ak

φ(xj)
)

0
1

2lAk
e


= fk + σgk.

Therefore, fk + σgk ∈ R(Pk + σQk) is satisfied. Since (12) is verified,
Theorem 1 implies that problem (11) is bounded below. Meanwhile, we can
easily confirm that I⪰(Pk, Qk) is represented as follows:

I⪰(Pk, Qk) = {σ ∈ R | Pk + σQk ⪰ O}
= {σ | vk − σlAk

≥ 0}
= {σ | σ ≤ vk/lAk

}.

It then follows from Theorem 2.2 that problem (11) has a global optimum.
2

From Theorem 3, if the parameters vk and dk are chosen such that vk > 1
and dk > 0, problem (11) is bounded below and its optimal solution always
exists. From now on, we assume that the parameters vk and dk satisfy vk > 1
and dk > 0.

Theorem 4. Suppose that problem (10) has a global optimum (ck, Rk, ξk).
Then, the following statements hold:
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(a) (ck, Rk, ξk) is also a global optimum of problem (11),

(b) (ck, Rk, ξk) is represented by

ck =
1

1− vk

 1

lAk

∑
j∈Ak

φ(xj)−
vk
lBk

∑
i∈Bk

φ(xi)

 ,

Rk =
1

lAk

∑
j∈Ak

(
(φ(xj)− ck)

⊤Σ−1
Bk

(φ(xj)− ck)
)
+

1

2dk
,

[ξk]j =
1

2dk
, j ∈ Ak.

Proof. We first confirm that Cottle’s constraint qualification is satisfied
in problem (11). Let us denote the objective and constraint functions in
problem (11) as

fk(c,R, ξ) := Fk(c)−R+
dk
lAk

∑
j∈Ak

ξ2j

gk(c,R, ξ) :=
∑
j∈Ak

(R− ξj)−Gk(c),

where Fk(c) and Gk(c) are defined as

Fk(c) :=
vk
lBk

∑
i∈Bk

(φ(xi)− c)⊤Σ−1
Bk

(φ(xi)− c)

Gk(c) :=
∑
j∈Ak

(φ(xj)− c)⊤Σ−1
Bk

(φ(xj)− c).

Since ∇gk(c,R, ξ) = (−∇Gk(c)
⊤, lAk

,−e⊤)⊤, by taking w = (0⊤, 1/2, e⊤)⊤,
we get

⟨∇gk(c,R, ξ), w⟩ = lAk

2
− lAk

= − lAk

2
< 0.

Thus, Cottle’s constraint qualification holds. Since Theorem 3 ensures that
problem (11) has a global optimum (ck, Rk, ξk), there exists a Lagrange
multiplier λk such that (ck, Rk, ξk, λk) satisfies the KKT conditions, that is,

∇Fk(ck)− λk∇Gk(ck) = 0, (13)

−1 + lAk
λk = 0, (14)

(2dk/lAk
)[ξk]j − λk = 0, j ∈ Ak, (15)

λkgk(ck, Rk, ξk) = 0, gk(ck, Rk, ξk) ≤ 0, λk ≥ 0 (16)
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Using (14) and (15) yields λk = 1/lAk
> 0 and [ξk]j = 1/(2dk) > 0, j ∈ Ak.

From (13), we obtain

∇Fk(ck)− λk∇Gk(ck)

= 2(vk − λklAk
)Σ−1

Bk
ck + 2Σ−1

Bk

λk

∑
j∈Ak

φ(xj)−
vk
lBk

∑
i∈Bk

φ(xi)

 = 0,

which implies

ck =
1

1− vk

 1

lAk

∑
j∈Ak

φ(xj)−
vk
lBk

∑
i∈Bk

φ(xi)

 ,

Moreover, (16) and λk > 0 derive∑
j∈Ak

(Rk − [ξk]j)−Gk(ck) = gk(ck, Rk, ξk) = 0,

namely,

Rk =
1

lAk

Gk(ck) +
1

2dk

=
1

lAk

∑
j∈Ak

(
(φ(xj)− ck)

⊤Σ−1
Bk

(φ(xj)− ck)
)
+

1

2dk
> 0.

These results mean that (ck, Rk, ξk) is feasible for problem (10). From now
on, we show that (ck, Rk, ξk) is an optimal solution of problem (10). As-
sume, to the contrary, i.e., there exists a feasible solution (ĉk, R̂k, ξ̂k) of
problem (10) such that

fk(ĉk, R̂k, ξ̂k) < fk(ck, Rk, ξk). (17)

Recall that (ck, Rk, ξk) is an optimal solution of problem (11). Since (ĉk, R̂k, ξ̂k)
is also feasible to problem (11), we have

fk(ĉk, R̂k, ξ̂k) ≥ fk(ck, Rk, ξk).

This contradicts (17). Therefore (ck, Rk, ξk) is an optimal solution of prob-
lem (10). 2

Now, we notice that the following two models can be constructed. The first
one is a model using problem (9), which is a simple extension of THKSVM by
using the Mahalanobis distance. We call this model TEKSVM. Meanwhile,
the second one is a model utilizing problem (10). We call this model a
relaxed THKSVM because it is based on (QP1QC), which relaxes some
constraints in problem (9).

In the remainder of the section, we discuss the following:
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(i) The interpretation of the relaxed TEKSVM,

(ii) classification for given test data,

(iii) efficient computations for a Mahalanobis distance kernel.

Regarding item (i), we begin by interpreting the objective and constraint
functions in problems (9) and (10). As shown in Figure 4, the original
problem (9) for the k-th class generates a hyperellipsoid that contains as
many training points as possible belonging to classes other than k-th, and
is located as far as possible from the points belonging to the k-th class.
Moreover, the same interpretation can not be applied to the relaxed problem,
i.e., (10) or (11), because the constraints differ from those in (9). However,
the following equivalent reformulation of the constraint provides a different
interpretation:

1

lAk

∑
j∈Ak

(φ(xj)− c)⊤Σ−1
Bk

(φ(xj)− c) ≥ R− 1

lAk

∑
j∈Ak

ξj .

This implies that the average Mahalanobis distance between c and train-
ing points belonging to Ak is required to be greater than or equal to R −
(1/lAk

)
∑

j∈Ak
ξj . In other words, the relaxed TEKSVM considers the av-

erage Mahalanobis distance between each training point, rather than the
individual Mahalanobis distance.

Next, we consider item (ii). It may be reasonable to adopt a method
based on the existing one used in the THKSVM. That is, a new test point x
is assigned to the class j ∈ {1, 2, . . . ,K} defined below depending on which
of the K hyperellipsoids it lies farthest from.

j = arg max
k=1,2,...,K

(φ(x)− ck)
⊤Σ−1

Bk
(φ(x)− ck)

Rk
.

Finally, we discuss efficient computations related to a Mahalanobis dis-
tance kernel calculated in the relaxed TEKSVM. Theorem 4 implies that
the relaxed TEKSVM needs to calculate φ(xi)

⊤Σ−1
Bk

φ(xj) included in Rk

although it does not require any iterative methods to solve problem (10),
where xi and xj are arbitrary data points. Since computing quadratic forms
involves significant computational costs, it is advisable to avoid calculat-
ing them directly. To this end, we utilize a Mahalanobis distance ker-
nel defined by KBk

(xi, xj) := φ(xi)Σ
−1
Bk

φ(xj). As is the existing binary
case described in [2], we will show that the Mahalanobis distance kernel
can be calculated by exploiting a positive definite kernel. Notice that this
method requires computing the inverse of the variance-covariance matrix
ΣBk

or an approximation thereof. Let training points belonging to Bk de-

note x
(1)
Bk

, x
(2)
Bk

, . . . , x
(lBk

)

Bk
, and let φ(XBk

) = φ(x
(1)
Bk

), φ(x
(2)
Bk

), . . . , φ(x
(lBk

)

Bk
).
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Then, the variance-covariance matrix ΣBk
can be expressed as

ΣBk
= φ(XBk

)JBk
J⊤
Bk

φ(XBk
)⊤,

where JBk
is a matrix satisfying

JBk
J⊤
Bk

=
1

lBk

(
I− 1

lBk

ee⊤
)
.

Since ΣBk
can be close to a singular matrix, we use a matrix ΣBk

+ δI
instead of ΣBk

, where δ > 0 is a sufficiently small constant. Using Sherman-
Morrison-Woodbury formula (A+BC)−1 = A−1−A−1B(I+CA−1B)−1CA−1

derives

(δI + ΣBk
)−1

=
(
δI + (φ(XBk

)JBk
)(J⊤

Bk
φ(XBk

)⊤)
)−1

=
1

δ
I− φ(XBk

)JBk

(
I +

1

δ
J⊤
Bk

φ(XBk
)⊤φ(XBk

)JBk

)−1

J⊤
Bk

φ(XBk
)⊤

=
1

δ
I− 1

δ
φ(XBk

)JBk

(
δI + J⊤

Bk
K̄Bk

JBk

)−1
J⊤
Bk

φ(XBk
)⊤,

where K̄Bk
= φ(XBk

)⊤φ(XBk
). Thus, we can calculate KBk

(xi, xj) as

KBk
(xi, xj)

=
1

δ
K(xi, xj)

− 1

δ
φ(xi)

⊤φ(XBk
)JBk

(
δI + J⊤

Bk
K̄Bk

JBk

)−1
J⊤
Bk

φ(XBk
)⊤φ(xj).

(18)

4 Numerical Experiments

This section discusses numerical results to confirm the effectiveness of the
proposed relaxed TEKSVM. We conduct experiments to compare the pro-
posed method with the K-SVCR, Twin-KSVC, THKSVM, and relaxed THKSVM,
where the relaxed THKSVM is a THKSVM-based method that classifies
data using hyperspheres generated by solving the following problem:

minimize
c,R,ξ

vk
lBk

∑
i∈Bk

∥φ(xi)− c∥2 −R+
dk
lAk

∑
j∈Ak

ξ2j

subject to
∑
j∈Ak

∥φ(xj)− c∥2 ≥
∑
j∈Ak

(R− ξj).

This problem is similar to (11), and utilizes the Euclidean distance instead
of the Mahalanobis distance. When calculating the Mahalanobis distance
kernel given by (18), the Gaussian kernel below is employed:

K(xi, xj) = exp

{
−∥xi − xj∥2

2p

}
. (19)
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The Gaussian kernel is also employed for the other existing methods. We
conducted experiments using datasets described in in Table 1 and 2. All the
methods were implemented with Python 3.8.7 and ran on a machine with
2.8GHz quad-core Intel Core i7 CPU and 16 GB RAM.

Table 1: Details of benchmark datasets used in experiments
Dataset name ♯ of classes ♯ of data points ♯of features

Iris 3 150 4
Wine 3 178 13

Soybean 4 47 35
Teaching evaluation 3 150 5

Ecoli 5 327 7
Hayes roth 3 132 4
Balance 3 625 4

Table 2: Details of large datasets used in experiments
Dataset name ♯ of classes ♯ of data points ♯ of features

yeast 14 2417 103
USPS 10 9298 256

4.1 Experiment procedure

The procedure for the experiments is shown below. The process was iter-
ated five times. As described in Step 3, parameter selection was conducted
through the grid search and 5-fold cross-validation. This involved dividing
the training data into five subsets, with four used for training the model and
one for validation. The process was repeated five times, and the average pre-
diction accuracy on the validation data was used for parameter selection. In
the parameter selection process, each parameter was set as shown in Table 3,
and the parameter p in the Gaussian kernel, given by (19), was chosen from
{2i | i = −2,−1, 0, 1, 2}. Moreover, the parameter δ in the Mahalanobis dis-
tance kernel defined by (18) is selected from {10i | i = −1,−2,−4,−6,−8}.
Note that the parameters v and d in the relaxed THKSVM and relaxed
TEKSVM respectively satisfy v > 1 and d > 0 as mentioned in Theorem 3.
Comparing the average accuracy of each parameter combination, the best
combination is chosen. The large datasets were used only to emphasize im-
proved computational speed. Thus, for the large datasets, we skipped Step
3 by using prefixed parameters, and compared the running time among all
the methods.

17



Experiment procedure

Step 1. Standardize the data.

Step 2. Split randomly the data into two sets in a ratio of 8 : 2. The
first set is used for training, and the second set is for testing.

Step 3. Tune parameters by a grid search and 5-fold cross-validation.

Step 4. Construct the models using the parameters.

Step 5. Classify the test data using the constructed models.

Table 3: Parameter space of four models
Model name Parameter Parameter space

K-SVCR ϵ {0, 0.333, 0.666, 0.999}
c1 {2i | i = −4,−2, 0, 1, 2, 4, 6}
c2 {2i | i = −4,−2, 0, 1, 2, 4, 6}

Twin-KSVC ϵ {0, 0.1, 0.2}
c1 {2i | i = −4,−2, 0, 1, 2, 4, 6, 8}
c2 {2i | i = −4,−2, 0, 1, 2, 4, 6, 8}

THKSVM v {2i | i = −4,−3, . . . , 8}
d {2i | i = −8,−7, . . . , 8}

relaxed THKSVM v {2i | i = 1, 2, . . . , 8}
d {2i | i = −8,−7, . . . , 8}

relaxed TEKSVM v {2i | i = 1, 2, . . . , 8}
d {2i | i = −8,−7, . . . , 8}

4.2 Result comparisons

The results of the numerical experiments are shown in Table 4 and 5. Table 4
reports the average prediction accuracy, along with the standard deviation,
and the running time of Steps 4 and 5 over five iterations on the benchmark
datasets. Table 5 indicates the average running time of Steps 4 and 5 over
five iterations on the large datasets. From Table 4, we obtain the following
conclusions:

� In terms of prediction accuracy, the proposed relaxed TEKSVM per-
forms at least as well as the other models on more than half of the
datasets. In particular, the relaxed TEKSVM is superior to the THKSVM
for all datasets. These results imply that it is effective to utilize hyper-
ellipsoids for data classification.

� Comparing the THKSVM with the relaxed THKSVM, we can see that
the relaxed version performs slightly better than the ordinary one in
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terms of prediction accuracy. This suggests that by relaxing the opti-
mization problems, the optimization process does not treat each train-
ing point individually and may reduce the impact of outliers.

� From the perspective of running time, the relaxed TEKSVM and the
relaxed THKSVM significantly outperform the existing models. As
detailed in Section 3.2, the solutions to problem (11) can be computed
analytically, and hence they do not need to use any iterative methods
to perform optimization. It is noteworthy that the relaxed TEKSVM
is slightly slower than the relaxed THKSVM. This can be attributed
to the calculations of the Mahalanobis distance kernel in the relaxed
TEKSVM. Nevertheless, the relaxed TEKSVM demonstrates high-
speed performance compared to the existing methods.

On the other hand, we summarize the results of Table 5 in the following.

� The relaxed TEKSVM runs significantly faster than the K-SVCR and
Twin-KSVC. However, comparing the relaxed TEKSVM with the re-
laxed THKSVM, the TEKSVM is slower than the THKSVM although
this difference cannot be observed on the benchmark datasets. This is
because calculations of the Mahalanobis distance kernel in the relaxed
TEKSVM take more time than solving the optimization problems in
the THKSVM.

� From a computational time perspective, regarding the THKSVM and
relaxed THKSVM, the relaxation technique is effective in speeding up
calculations.

Table 4: Experiment result on benchmark datasets
THKSVM K-SVCR Twin-KSVC relaxed THKSVM relaxed TEKSVM

Dataset Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)

Time(s) Time(s) Time(s) Time(s) Time(s)

Parameter δ

iris

91.58 ± 6.09 × 10−2

0.151

96.32 ± 2.68 × 10−2

0.621

97.37 ± 3.32 × 10−2

0.542

92.11 ± 4.99 × 10−2

0.00379

95.79 ± 3.57 × 10−2

0.00911

δ = 10−1

wine

99.56 ± 8.89 × 10−3

0.245

99.11 ± 1.09 × 10−3

0.634

99.56 ± 8.89 × 10−3

0.575

100 ± 0.0

0.00314

100.0 ± 0.0

0.0135

δ = 10−6

soybean

100 ± 0.0

0.070

100 ± 0.0

0.484

100.0 ± 0.0

0.384

100.00 ± 0.0

0.00283

100.0 ± 0.0

0.0119

δ = 10−6

teaching

evaluation

53.68 ± 9.50 × 10−2

0.158

55.26 ± 6.44 × 10−2

0.565

52.63 ± 1.05 × 10−1

0.564

53.16 ± 1.00 × 10−1

0.0044

57.89 ± 7.44 × 10−2

0.0154

δ = 10−4

ecoli

84.88 ± 2.51 × 10−2

0.284

86.59 ± 1.09 × 10−2

5.340

80.73 ± 9.10 × 10−3

4.943

86.34 ± 2.10 × 10−2

0.0330

86.61 ± 1.951 × 10−2

0.0613

δ = 10−4

balance scale

90.57 ± 9.36 × 10−3

0.508

92.36 ± 4.43 × 10−2

3.838

96.18 ± 1.14 × 10−2

3.383

90.57 ± 1.58 × 10−2

0.0144

91.72 ± 1.34 × 10−2

0.131

δ = 10−4

hayes roth

63.03 ± 1.17 × 10−1

0.137

80.00 ± 3.09 × 10−2

0.485

74.54 ± 6.23 × 10−2

0.452

73.33 ± 1.21 × 10−2

0.00346

76.37 ± 2.97 × 10−2

0.0102

δ = 10−1
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Table 5: Experiment result on large datasets
Dataset THKSVM K-SVCR Twin-KSVC relaxed THKSVM relaxed TEKSVM

Time(s) Time(s) Time(s) Time(s) Time(s)

yeast 3.022 2.281 × 103 7.461 × 102 0.646 3.835 × 101

USPS 2.302 × 101 1.006 × 105 1.711 × 104 1.087 × 101 1.828 × 103

5 Conclusion

In this paper, we proposed a novel relaxed twin hyper-ellipsoidal multiclass
classification support vector machine (relaxed TEKSVM). The proposed
method generates hyperellipsoids by solving optimization problems called
the (QP1QC), unlike other existing methods. Although (QP1QC) is non-
convex, it possesses at least one global optimum. Moreover, the optimum
can be represented explicitly, enabling us to solve the (QP1QC) quickly. In
the numerical experiments on benchmark datasets, the proposed method
was competitive with some existing methods in terms of accuracy while
significantly improving computational speed.
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