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Note that in case three or more subjects are chosen and answered, they may be regarded as no answers.

2. Answer the questions in Japanese or English,

3. Use one sheet for each question. If required, the reverse side may be used. In that case, state “Over™ at the
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An English Translation:

Basic Mathematics 1

1

Define the functions f,(z) (n =0,1,2,...) by using the [ollowing expansion of the expo-
nential function E(f,z) = pat—t?

N
B(t,z) =3 fal2)—.
s nl
Answer the following questions.
(i) Show that
Potl®) _ sy 4 1) ol

for any n =0,1,2,....

(ii) Show that
frra(z) =2z fpia(z) — 2(n + 1) ful2)

for any n=0,1,2,....

(iii) Show that
Lle=ly (z) ) = ~2ne™ f,()
a2 \* @) T Il

for any n=10,1,2,....

(iv) Show the equality .
/ e fo(z)dz = 2'nly/T

O

forany n =10,1,2,.... You may use the equality / e dr = V7 without proof.

— X3
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An English Translation:

Data Structures and Algorithms

2

Let G = (V, E) denote a simple connected undirected graph with a vertex set V and an

edge set &, and let N(u) denote the set of neighbors of a vertex u in G. For a subgraph
H of G, let disty(u, v) denote the number of edges in a shortest path from a vertex u to
a vertex v in H, and let oy{u,v) denote the number of shortest paths from a vertex u to
a vertex v in H. For a start vertex s € V, let T' denote a spanning tree of G obtained by

the breadth-first search executed from s. Answer the following questions.

(i) Show how to compute in O(|V]) time duae = max{distg(s,u) | v € V} and V; =
{ueV |distg(s,u) =1i},1=0,1,..., dunax from 7.

(ii) Show how to compute in O(|E}) time all values in {cg(s,u) [u € V}.

(iii) A vertex t € V —{s} and a subset A S V — {s,t} are given. Show how to compute
in O(|£}) time the number of shortest paths from s to ¢ in G which pass through

at least one vertex in A.

(iv) A vertex t € V — {s} and a subset A S V — {s,1} are given. Show how to test in
O(]E|) time whether there is a shortest path from s to ¢ in G which passes through

at least two vertices in A.
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An English Translation:

Linear Programming

3

Answer the following questions (i) and (ii).

(i) Consider the following linear programming problem (P1) and its dual problem (D1):

(P1): Minimize c'x (D1): Maximize b'w
subject to Az =b subject to ATw ¢,
x =0,

where A is an m x n constant matrix, b is an m-dimensional constant vector, ¢ is an
n-dimensional constant vector, « is an n-dimensional vector of variables, w is an m-
dimensional vector of variables, and T denotes transposition. Suppose that problems
(P1) and (D1) have optimal solutions * and w*, respectively. Let y* = ¢ — AT w*.
Then show that 7 =0 if z} > 0.

(i) Consider the following linear programming problem:
(P2): Maximize xj
4
subject to in g1

il

4
> i Skry (k=1,2,3)

i=k+1
Tg é 4&5‘4.

Let =* be an optimal solution to problem (P2). Obtain an optimal solution to the

dual problem of problem (P2). Moreover, show that
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An English Translation:

Linear Control Theory

4

Consider the linear continuous-time system described by the transfer function

b

Pls) =
(s) 52+ 28 +a2+1"

where @ and b are real constants. Answer the following questions.

(i) Let u(t) and y(t) be the input and output of this system at time ¢, respectively.
Find the value of a and b such that the impulse response has its maximum at the
time { = 7 /4, and that y{t) converges to a sinusoid with the amplitude 1 when

u(l) = sint.

Figure 1 shows a control system, where P(s) is given as above, ¢ and b are the values
obtained in (i), and K is a nonzero real constant. Let T'(s) be the transfer function of

the system with input 7(¢) and output y(#).

(ii} Compute T'(s) and determine the range of K for which this system is stable.

(iif) Determine whether there exists K such that every pole of T°(s) has the real part
less than or equal to —0.5. Determine whether there exists K such that every pole

of 7'(s) has the real part less than —1. The derivation process should be shown.

Y

Figure 1. Control system
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An English Translation:

Basic Mechanics

5

A particle of mass m is moving under the action of a force F = ¢(r)r, where » denotes

the position vector of the particle from the origin, r := |r| stands for the length of »
and g(r) is a differentiable function for » > 0. It is assumed that the particle is never
dr

dt
angular momentum of the particle about the origin, where r x p denotes the vector or

at the origin. Let p := m-— be the momentum of the particle, and L := 7 x p be the

cross product of » and p. Answer the following questions.
(i) Show that F' is a congervative force.
(ii) Prove that L is conserved.

(iii) Explain that the particle is moving within the plane which is perpendicular to L

and includes the origin.

(iv) Obtain f(r) and g(r) such that A ;== p x L — f(r)r, where f(r) is a differentiable
function for r > 0, is conserved for arbitrary initial conditions, with the use of
a x (bxc¢)={a,c)b— (a,b)c for arbitrary vectors a, b and ¢, where (a, ¢) stands

for the scalar or dot product of a and c.
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An English Translation:

Basic Mathematics I1

6

Let v; and vy be eigenvectors of the matrix

0 n
1 0 n—-1 O
0 2 0 n—2
A, = . -
n—2 0 2
n—1 0 1

O n 0

corresponding to the eigenvalues n and —n, respectively. Let e; be the unit vector e; =

(815,824, - -, 5n+1,j)T, where T denotes the transposition and
u-{ 3 G
i 0 (i# )

Answer the following questions.

(i} Compute eigenvectors v; and vy of A,.

(ii) Let us define the matrix T = (v; va €3 -+ epq1) for n 2 2. Show that T7 A, T
takes the block matrix structure
B C
0 D/’

where 0 is the (n — 1) x 2 zero matrix, and give the matrices B and D explicitly.

(iii) Show that there exists a regular lower triangular matrix S such that SDS™1 = A,

holds, where D is the matrix derived in (ii) .

(iv) Compute the characteristic polynomial of A, and give all the eigenvalues of A.,,.
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An English Translation:

Applied Mathematics

|

For a constant R > 0, let f(z) be a function which is holomorphic in the region 0 < 2| < R

and satisfies ) (@)
1 flz o

dz = -
2 Jiger 2 ()2

for 0 <7 < R and any n € Z, where o € C is a constant and (a},, is defined by

ala+1)--{a+n—-1) (n>0)
(@)p=qala-1)--(a+n+1) (n<0)

Answer the following questions.
(i) Show that f(z) is not holomorphic in |2| < R.
(if) Obtain the Laurent series of f(z) in 0 < |2| < R.

(ili) Assume that z == 0 is an Nth-order pole of f(z) for a positive integer N. Express o

by using N. Moreover, let

B N f(2) (0 < |z] < R)
960 = 9 lim 2Nf(z) (2=0).

z-30)

n

zg((}) for any positive integer n.

Obtain the nth-order differential coefficient

(iv) Find a necessary and sufficient condition on a for z = 0 to be an essential singularity

of f(z).
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An English Translation:

Graph Theory

2

Let G = (V, E) denote a simple directed graph with a vertex set V and an edge set E,

and let N = [G, ¢| denote a network obtained from G by assigning a real value c(e) > 0
to each edge e € E as its capacity. For vertex subsets X,Y C V, let B(X,Y) denote
the set of edges that leave a vertex in X and enter a vertex in Y. Let R, be the set
of nonnegative reals. For two designated vertices s,¢ € V, an (s, t)-flow is defined to be
a mapping f : B — R, which satisfies >°.cp3.v-1up) f(€) — 2eenv—{upfopy £ (8) = 0,
Yu € V — {s,1} (flow conservation law) and f(e) £ c(e), Ve € E (capacity constraint),
and its flow value val(f) is defined to be
>, fe- > e
ecB({s},V—{s}) ceB(V—{s},{s})
An (s, ¢)-cut is defined to be a vertex subset X £ V such that s € X and t € V — X, and
its capacity cap(X) is defined to be
Z c(e).
€ B(X,V~X)
Answer the following questions.
(i) Prove that for any (s,¢)-flow f and any (s, )-cut X
wfy=" >, - > Je
e€E(X,V-X) e€E(V ~ X, X)

holds.

(ii) For a given (s,t}-flow f, show how to construct its residual network N F= Gy =
(I/: Ef ): Cf ]

(ili) For an (s,¢)-flow f, let S be the set of all vertices reachable from s in the residual
network Ny, and assume that ¢ € S holds. Prove that S is an (s,¢)-cut in N that

minimizes the capacity.

(iv) Prove that any (s,t)-cut X in N that minimizes the capacity satisfies X =2 S for
the (s,¢)-cut S in (iii).
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An English Translation:

Operations Research

3

Let f : R* — R be a continuously differentiable convex function, and let § = {& €

R™ | a™® = b}, where a is an n-dimensional nonzero vector, b is a scalar, and the
superscript | denotes transposition of a vector.

Consider the following convex programming problem:

(P): Minimize f(x)
subject to = € 5.

Moreover, consider the following convex quadratic programming problem with a vector

z € R® of parameters:

P(z): Minimize Vf(z)Ty+i(y—2)"(y-=2)
subject to y € 5,

where y is the vector of decision variables. For each z € R™, problem P(z) has a unique
optimal solution §(z).

Answer the following questions.
(i) Let z € 5. Obtain §(z) by using Karush-Kuhn-Tucker conditions for problem P(z).

(ii) Suppose that € § and §(x) = @. Then show that = is an optimal solution to
problem (P).

(iii) Suppose that « € S and g(x) # x. Then show that

V(@) (g(e) -2) <0, a'(F(x)—=z)=0.

(iv) Suppose that §(x) # «. Then show that z is not an optimal solution to problem

(P).
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An English Translation:

Modern Control Theory
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Fig.1: Series connection

U =U n
— T
U +y¥Y =0+ Y
Uz =Y Y2
L ¥

Fig.2: Parallel connection

Linear dynamical systems ¥; and L, are described by the linear state equations:

dt dt

dz d
== Ay + By ) o Aazo + Baug
21 . ) 22 » 3
= Crzy + D Y2 = Cozg + Daug

where z(t) € R™, z2(f) € R™ are the state vectors, u;(¢) € R, uy(t) € R are the inputs,
and y:1(t) € R, ya2(t) € R are the outputs of the systems 2;, Xy, respectively. Furthermore,

AI & Rmxm, B1 € Rﬂ’ﬁd, 01 & Rlxm’ D e §R, Ag c R’nzxnz, By, € Rn2X1, 02 = ]R:{XTIQ,
and D, € R. Answer the following questions (i)-(v).

(i) Describe the state equation of the system with series connection shown in Fig. 1

when the input is u(t), the output is y(t), and the state vector is chosen as

(if) Describe the state equation of the system with parallel connection shown in Fig. 2

when the input is u(t), the output is y(t), and the state vector is chosen as

T
z=|"1.
Ta



(iti)

In this subproblem, consider the system with series connection shown in Fig. 1
where ¥y and Ly are given by

A1=1,Bl=1,01x1,DIxO,Azm{_?6 __15},323[3,02:[1 2], D, =0,

and k is a real constant. Check the observability of the system. Let the initial
condition of ¥; be given as z1(0) = 3. Suppose that the output y(¢) of the system
becomes identically 0 when the input u(t) is identically 0 and the initial condition

z2(0) of Xy is appropriately selected. Determine &k and z2(0).

It is known that the system 3, is observable if and only if the matrix

Gy
C14,
Cr At

is nonsingular. Prove that this condition is equivalent to the statement that any
eigenvector z # 0 of A; satisfies Cyz # 0.

Assume that the systems ¥; and ¥, are observable. Prove that the state equation
derived in (ii) is observable if and only if the matrices A; and A, share no common

eigenvalues.
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An English Translation:

Physical Statistics

5

Let the velocity u(t) of a particle obey the following Langevin equatiomn,

m &Y = cofe) + ),

where m is a positive constant (corresponding to the mass), ¢ is a positive constant

(corresponding to the friction coefficient), and 7(t) is the white noise, which satisfies the
relations (n{t)) = 0 and {n(t)n(s)) = 2e6(t — s). Here, {A) denotes the average of A, ¢ a
positive constant and 6(¢) the Dirac delta function. Assume that the energy equipartition
law limy_,o0 3{v*(t)) = LkpT holds, where kp is the Boltzmann constant and T is a

temperature. Answer the following questions.

¢

(i) Show that v(t) = e~ ( f e*s(w)ds + v(0) ), where v = &.
0 m

(ii) Compute the fluctuation {v?(t)).

(iii) Show that the fluctuation-dissipation theorem

¢ = kpTC

holds in the limit ¢ — co.
(iv) Compute the velocity corvelation (v(t)v(s)).

¢
(v)  Let z(t) be the position value which satisfies the relation z(¢) = z(0)+ / v(s)ds .
0
Show that the diffusion coefficient D defined by the following equation
)12
b i (el —=(0)?)

t—00 A

satisfies the relation

D = -kpT.
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(iif) (ii) TROoNEMOFERNEME, RN () O—BfitE Rk L.

(if) (1) Tz =

y By Bl IO ITEAE RO &,

3
— ER()DVLOORLT D, HTFOMVILER L.

(iv) 2% (1) OB 2(6) DRLMEREIL [1,00) KB W THRE B 200D, t = 11281 5%)
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An English Translation:

Mathematics for Dynamical Systems

6

Let a(t) be a continuous function defined on the semi-infinite interval [1, o), and consider

the differential equation

d?x 9 dx
3
Assume that 2 = 211 is a solution of Eq. (1). Answer the following questions.

(i) Determine the function a(t).
3

241

(ii) Let z = y in Eq. (1). Derive a differential equation which y has to satisfy.

(iii) Solve the differential equation derived in (ii), and obtain the general solution of
Eq. (1).

(iv) Let z(t) be a solution of Eq. (1). Find a necessary and sufficient condition on the
. dx
initial values (2g,v) = :L(l),ﬁ-(l)) at ¢ = 1 for 2(¢) to be bounded on the

semi-infinite interval [1,00).



