物理統計学

5

1次元ランダムウォークを考える.ランダムウォーカーは 1 直線上に等間隔に並んだ点 $\dots, x_{-1}, x_0, x_1, \dots$ のどこかにいるものとする.ここで, $x_k = ak$ $(k = \dots, -1, 0, 1, \dots)$ で a は正の定数.ウォーカーは初期には x_0 におり,時間 τ ごとに右か左の最近接点に,それ ぞれ確率 p, q = 1 - p でジャンプすることを繰りかえす.ここで, $0 である.す なわち,時刻 <math>t = n\tau$ $(n = 1, 2, \dots)$ にウォーカーはジャンプする. $P_n(k)$ を n 回のジャン プの後ウォーカーが x_k にいる確率とする.以下の問いに答えよ.

- (i) $P_n(k)$ を求めよ.
- (ii) $P_n(k)$ の n に関する漸化式を求めよ.
- (iii) $f(x,t):=\frac{1}{2a}P_{\frac{t}{\tau}}\left(\frac{x}{a}\right)$ とし,f(x,t) は t に関して連続的に微分可能で x に関して連続的に 2 階微分可能であると仮定する.f(x,t) に対する偏微分方程式を,問 (ii) で求めた $P_n(k)$ の漸化式から, $\frac{a^2}{2\tau}=D$, $\frac{(p-q)a}{\tau}=v$ という条件のもとで, $a\to 0$, $\tau\to 0$ の極限をとって導出せよ.ここで,v は定数で,D は正の定数である.
- (iv) ウォーカーの時刻 t での位置の平均 $X(t):=\int_{-\infty}^{\infty}\mathrm{d}x\ xf(x,t)$ と位置の分散 $\sigma^2(t):=-(X(t))^2+\int_{-\infty}^{\infty}\mathrm{d}x\ x^2f(x,t)$ を計算せよ.ここで, $\lim_{x\to\pm\infty}x^2f(x,t)=\lim_{x\to\pm\infty}x^2\frac{\partial f(x,t)}{\partial x}=0$, $X(0)=\sigma^2(0)=0$ および $\int_{-\infty}^{\infty}\mathrm{d}x\ f(x,t)=1$ を用いてよい.

An English Translation:

Physical Statistics

5

Let us consider the one-dimensional random walk. A random walker can be at regularly spaced positions ..., $x_{-1}, x_0, x_1, ...$ along a line, where $x_k = ak$ with k = ..., -1, 0, 1, ... and a is a positive constant. The walker is at x_0 initially, and sequentially jumps to the nearest right or left position with probability p or q = 1 - p, respectively, where $0 . Every time interval between the successive jumps equals <math>\tau$, i.e. the walker jumps at time $t = n\tau$ (n = 1, 2, ...). $P_n(k)$ denotes the probability that the walker is at x_k after n jumps. Answer the following questions.

- (i) Obtain $P_n(k)$.
- (ii) Obtain the recurrence formula of $P_n(k)$ for n.
- (iii) Let $f(x,t) := \frac{1}{2a} P_{\frac{t}{\tau}} \left(\frac{x}{a}\right)$. f(x,t) is assumed to be continuously differentiable with respect to t and twice continuously differentiable with respect to x. Derive the partial differential equation for f(x,t) from the recurrence formula of $P_n(k)$ obtained in the question (ii) under the limit, $a \to 0$ and $\tau \to 0$ with $\frac{a^2}{2\tau} = D$ and $\frac{(p-q)a}{\tau} = v$, where v is a constant and D is a positive constant.
- (iv) Calculate the average position X(t) of the walker at time $t, X(t) := \int_{-\infty}^{\infty} \mathrm{d}x \ x f(x,t)$ and the variance $\sigma^2(t)$ of the position at $t, \ \sigma^2(t) := -(X(t))^2 + \int_{-\infty}^{\infty} \mathrm{d}x \ x^2 f(x,t)$ with the use of $\lim_{x \to \pm \infty} \ x^2 f(x,t) = \lim_{x \to \pm \infty} x^2 \frac{\partial f(x,t)}{\partial x} = 0, \ X(0) = \sigma^2(0) = 0$ and $\int_{-\infty}^{\infty} \mathrm{d}x \ f(x,t) = 1.$