基礎力学

5

質量mの粒子が力F = g(r)rを受けて運動している。ここで、rは粒子の原点からの位置ベクトル、r := |r|はrの長さであり、g(r)はr > 0で微分可能な関数である。粒子の位置が原点となることは決してないと仮定する。 $p := m \frac{\mathrm{d}r}{\mathrm{d}t}$ は粒子の運動量とし、 $L := r \times p$ は粒子の原点に関する角運度量とする。ここで、 $r \times p$ は $r \ge p$ のベクトル積(外積)である。以下の問いに答えよ。

- (i) **F** は保存力であることを示せ.
- (ii) L が保存されることを証明せよ.
- (iii) 粒子は L に垂直で原点を含む平面内を運動する事を説明せよ.
- (iv) f(r) が r > 0 で微分可能な関数としたとき、任意の初期条件に対して $A := p \times L f(r)r$ が保存される場合の f(r) と g(r) を求めよ、任意のベクトル a, b, c に対して $a \times (b \times c) = (a,c)b (a,b)c$ を用いてよい、ここで、(a,c) はベクトル a と c の スカラー積(内積)である.

An English Translation:

Basic Mechanics

5

A particle of mass m is moving under the action of a force F = g(r)r, where r denotes the position vector of the particle from the origin, r := |r| stands for the length of r and g(r) is a differentiable function for r > 0. It is assumed that the particle is never at the origin. Let $p := m \frac{\mathrm{d} r}{\mathrm{d} t}$ be the momentum of the particle, and $L := r \times p$ be the angular momentum of the particle about the origin, where $r \times p$ denotes the vector or cross product of r and p. Answer the following questions.

- (i) Show that F is a conservative force.
- (ii) Prove that L is conserved.
- (iii) Explain that the particle is moving within the plane which is perpendicular to L and includes the origin.
- (iv) Obtain f(r) and g(r) such that $\mathbf{A} := \mathbf{p} \times \mathbf{L} f(r)\mathbf{r}$, where f(r) is a differentiable function for r > 0, is conserved for arbitrary initial conditions, with the use of $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a}, \mathbf{c})\mathbf{b} (\mathbf{a}, \mathbf{b})\mathbf{c}$ for arbitrary vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , where (\mathbf{a}, \mathbf{c}) stands for the scalar or dot product of \mathbf{a} and \mathbf{c} .

.